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5.5.1 Itô’s formula for BM . . . . . . . . . . . . . . . . . . . 80
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5.6 Selected applications of Itô’s formula . . . . . . . . . . . . . . 81
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Chapter 1

Introduction

In these notes our aim will be to build the background stochastic analysis
to enable the development of the theory of stochastic differential equations.
A stochastic differential equation is simply an ordinary differential equation
perturbed by random noise. If we take the view of approximating the ODE

dx

dt
= f(t, x),

by a difference equation we can think of the evolution in time of a deter-
ministic system as

xt+∆t = xt + f(t, xt)∆t.

In order to add noise we can imagine introducing a random shock at each
time step with a size that may depend on the current value and time. Thus
the solution will become a random variable and should satisfy

Xt+∆t = Xt + f(t,Xt)∆t+ σ(t,Xt)∆Wt, (1.1)

with ∆Wt an independent random variable generated for each time step ∆t.
If we were to write (1.1) in differential form we would have the following

dXt

dt
= f(t,Xt) + σ(t,Xt)

dWt

dt
.

How do we make sense of the final term? Before taking the limit, if we write
Wt =

∑
i∆Wti we see that W is a random walk with steps determined by

the distribution of ∆W . In order to put everything on the right timescale
it is natural for the random walk to move a unit distance in a unit time
so from the central limit theorem we should take the variance of ∆Wt to
be ∆t. This suggests that Ẇt = dWt/dt should have an ‘infinitesimal’
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2 CHAPTER 1. INTRODUCTION

normal distribution. Such a random noise can be modelled by Brownian
motion (Wt)t≥0, a mathematical model developed to describe the random
movements of pollen particles in a liquid, as observed by Robert Brown in
1827. The mathematical model for Brownian motion and the description
of its distribution were derived by Albert Einstein in a short paper “On
the motion of small particles suspended in liquids at rest required by the
molecular-kinetic theory of heat” published in 1905, Annalen der Physik 17,
549-560. About the same time, in 1900, L. Bachelier submitted his Ph. D.
thesis in which he used Brownian motion to model price movements in the
stock market. His results were published in a paper titled “Théorie de la
spéculation” in Ann. Sci. Ecole Norm. sup ., 17 (1900), 21-86, which is the
first paper devoted to applications of Brownian motion to finance.

On the other hand, the first mathematical construction of Brownian
motion had to wait until 1923 when Norbert Wiener published his article
“Differential space”, J. Math. Phys. 2, 132-174. After this the unusual fea-
tures of Brownian motion were revealed, mainly by Paul Lévy, in the 1930’s
- 40’s. Among them, Lévy showed that almost surely t→Wt is nowhere dif-
ferentiable, and therefore the time-derivative of Brownian motion, Ẇt, does
not exist. It is thus customary to rewrite the previous differential equation
as an infinitesimal evolution

dXt = f(t,Xt)dt+ σ(t,Xt)dWt

which in turn has to be interpreted as an integral equation

Xt −X0 =

∫ t

0
f(s,Xs)ds+

∫ t

0
σ(s,Xs)dWs.

In order to make sense of this we require a definition for the stochastic
integral ∫

σ(t,Xt)dWt.

The construction of such an integral is non-trivial and it was Kiyosi Itô in
the 1940’s who first established an integration theory for Brownian motion,
and therefore the theory of stochastic differential equations. There are many
powerful applications of the theory, both within and outside mathematics
itself. One of the most remarkable applications of Itô’s theory is to finance.
Itô’s theory was brought to worldwide attention by the award to Harry
Markowitz, William Sharpe and Merton Miller of the 1990 Nobel Prize,
and Robert Merton and Myron Scholes of the 1997 Nobel Prize, both in
Economics. Itô was awarded the Gauss prize in 2010 in recognition of the
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extent to which his work had influenced applications of mathematics in many
disciplines.

These notes provide the core part of Itô’s calculus: it provides the nec-
essary background in stochastic analysis for those who are interested in
stochastic models and their applications.
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Chapter 2

Preliminaries

2.1 Toolbox

2.1.1 The monotone class theorem

A collection B of subsets of Ω is called a π-system, if it is closed under finite
intersections. By the monotone class theorem, we mean the following lemma
or a version of it.

Lemma 2.1.1 Let B be a π-system, and F = σ{B} the smallest σ-algebra
containing it. Let H be a family of real-valued functions on Ω satisfying the
following two conditions:

1. 1 ∈ H and 1A ∈ H for every A ∈ B.

2. If fn ∈ H, each fn is non-negative, fn ↑ (in n), and supn fn < +∞,
then supn fn ∈ H.

Then H contains all bounded, real-valued and F-measurable functions on
Ω.

2.2 Probability spaces

A probability space is a triple (Ω,F , P ) consisting of a sample space Ω
of basic events (also called sample points), a σ-algebra F of events, and a
probability measure P . The probability measure P is a function on F taking
values in [0, 1], which satisfies the following conditions:

5
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1. P (Ω) = 1, P (∅) = 0 (where ∅ is the empty set), and P (A) ≥ 0 for any
event A ∈ F .

2. Countably additivity: If {Ai}i=1,··· is a countable family of mutually
disjoint events, i.e. Ai ∈ F and Ai ∩Aj = ∅, then

P (∪∞
i=1Ai) =

∞∑

i=1

P (Ai).

By a random variable on (Ω,F , P ) taking values in Rd (or an Rd-valued
random variable), we mean a measurable (vector-valued) function on (Ω,F).
Recall that mapping X : Ω → Rd is measurable, if for every Borel subset B
of Rd, the pre-image of B under the map X

X−1(B) = {ω : X(ω) ∈ B}

belongs to F . Loosely speaking, a random variable is a function X on Ω with
the property that we can determine the probabilities of events of interest,
such as for example, the probability that X lies in a ball B: ie we can assign
a probability to the set {ω ∈ Ω : X(ω) ∈ B} .

If

E|X| ≡
∫

Ω
|X(ω)|P (dω) <∞,

then we say X is integrable, denoted by X ∈ L1(Ω,F , P ). In this case,
the expectation of X, denoted by E(X), is the integral of X against the
probability measure P :

E(X) ≡
∫

Ω
X(ω)P (dω).

In general, a random variable X ∈ Lp(Ω,F , P ) for p ≥ 0, if

∫

Ω
|X(ω)|pP (dω) <∞.

In this case, we also say X has finite p-th moment or is Lp-integrable. For
p ≥ 1, the space Lp(Ω,F , P ) of all random variables X with finite p-th
moment is a Banach space under the usual algebraic operations for functions
and the Lp-norm

||X||Lp ≡
(∫

Ω
|X(ω)|pP (dω)

)1/p

.
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Remark 2.2.1 If p ≥ q, then Lp(Ω,F , P ) ⊂ Lq(Ω,F , P ) and ||X||q ≤
||X||p. Therefore p→ ||X||p is increasing in p ∈ (0,∞]. Indeed, by a simple
use of Hölder’s inequality we have

||X||qq =

∫

Ω
|X(ω)|qP (dω)

≤
(∫

Ω
|X(ω)|q

p
qP (dω)

)q/p

=

(∫

Ω
|X(ω)|pP (dω)

)q/p

.

Stochastic processes are mathematical models which are used to describe
random phenomena evolving in time. We thus need to have a set T for
the time-parameter. In these lectures, T is either the set of non-negative
integers Z+ or the semi-infinite real interval [0,+∞). T is thus an ordered
set endowed with the natural topology.

Definition 2.2.2 A stochastic process is a parametrized family X = (Xt)t∈T
of random variables taking values in a topological space S. In these notes,
unless otherwise specified, S will be the real line R, or the Euclidean space
Rd of dimension d.

A stochastic process X = (Xt)t∈T may be considered as a function from
T × Ω → Rd, which is the reason why a stochastic process is also called a
random function.

For each sample point ω ∈ Ω, the function t → Xt(ω) from T to S is
called a sample path (or a trajectory, or a sample function). Naturally, a
stochastic process X = (Xt)t∈T is continuous (resp. right-continuous, right-
continuous with left-limits) if the sample paths t → Xt(ω) are continuous
(resp. right-continuous, right-continuous with left-limits) for almost all ω ∈
Ω.

Remark 2.2.3 A function f : (a, b) → Rd is right-continuous at t0 ∈ (a, b)
if its right-limit at t0 exists and equals f(t0). Similarly, f is right-continuous
with left-limit at t0, if f is right-continuous at t0 and its left-limit at t0 exists.
For example, any monotone function on an interval has right- and left-limits.

Example 2.2.4 (Poisson process) Let (ξn) be a sequence of independent
identically distributed (i.i.d.) random variables with the Poisson distribution
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of intensity λ > 0. Let

T0 = 0; Tn =
n∑

j=1

ξj

and, for every t ≥ 0 define

Xt = n if Tn ≤ t < Tn+1.

Then for every sample point ω, t → Xt(ω) is a step function, constant on
each interval (Tn, Tn+1), with jump 1 at (random time) Tn, and is right-
continuous with left limit n− 1 at Tn.

Let X = (Xt)t≥0 be a stochastic process taking values in Rd. For each
n ∈ N and collection of times 0 ≤ t1 < t2 < · · · < tn, the joint distribution
of the random variables (Xt1 , · · · , Xtn) is specified by

µt1,t2,··· ,tn(dx1, · · · , dxn) = P (Xt1 ∈ dx1, · · · , Xtn ∈ dxn) ,

a probability measure on Rd×· · ·×Rd. These are called the finite-dimensional
distributions of X = (Xt)t≥0. If d = 1 and (Xt)t≥0 is a real stochastic pro-
cess, the distribution µt1,t2,··· ,tn is determined via its distribution function

Ft1,t2,··· ,tn(x1, · · · , xn) = P (Xt1 ≤ x1, · · · , Xtn ≤ xn) .

We need to overcome some technical difficulties when we deal with
stochastic processes in continuous-time. For example, a subset of Ω such
as

{ω ∈ Ω : Xt(ω) ∈ B for all t ∈ [0, 1]}
may be not measurable, i.e. not an event, so that

P (ω ∈ Ω : Xt(ω) ∈ B for all t ∈ [0, 1])

may not make sense, unless additional conditions on (Xt)t≥0 are imposed.
Similarly, a function such as supt∈K Xt, which is often of interest, may be
not a random variable.

Exercise 2.2.5 Let (Xt)t≥0 be a stochastic process in Rd on (Ω,F ,P), and
let B be a Borel measurable subset of Rd. If F is a finite or countable subset
of [0,+∞), then

{ω : Xt(ω) ∈ B for any t ∈ F}
and

sup
t∈F

|Xt|

are measurable.
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To avoid such technical difficulties, a common condition, which is good
enough to include a large class of interesting stochastic processes, is that
the process X is right-continuous with left limits almost surely, and the
probability space (Ω,F , P ) is complete in the sense that any trivial subsets
of probability null sets are events.

An important task in stochastic analysis is the study of the probabilities
(or distributional properties) of random functions determined by their finite-
dimensional distributions.

Definition 2.2.6 Two stochastic processes X = (Xt)t≥0 and Y = (Yt)t≥0

are equivalent (indistinguishable) if for every t ≥ 0 we have

P {ω : Xt(ω) = Yt(ω)} = 1.

In this case, (Yt)t≥0 is a version of (Xt)t≥0.

By definition, the family of finite-dimensional distributions of a stochas-
tic process X = (Xt)t≥0 is unique up to equivalence of processes.

On the other hand, in many practical situations, we are given a col-
lection of compatible finite dimensional distributions D = {µt1,··· ,tn , for
t1 < · · · < tn, tj ∈ T}, we would like to construct a stochastic model
(Xt)t∈T on some probability space (Ω,F , P ) so that the family of finite di-
mensional distributions determined by (Xt)t∈T coincides with the family D
of distributions. In this case, (Xt)t∈T is called a realization of D.

2.3 Conditional expectations

Many important concepts in probability theory, including independence, the
martingale property and the Markov property, are stated in terms of condi-
tional expectations (and conditional probability). We follow the formulation
of these ideas due to J.L. Doob.

Let X be an integrable or non-negative random variable on a probability
space (Ω,F , P ), and let G be a sub σ-algebra of F . The conditional expec-
tation E(X|G) of X given G is a random variable (unique almost surely)
which satisfies the following two conditions.

1. E(X|G) is measurable with respect to G; and

2. For any A ∈ G we have

E {E(X|G)1A} = E {X1A} .
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The conditional expectation E(X|G) is the best L2-predictor of the ran-
dom variable X based on the available information G. By a monotone class
argument, it follows that

E {E(X|G)Y } = E (XY )

as long as both sides make sense.
For simplicity, we write E(X|Y ) for E(X|σ(Y )), where σ(Y ) is the small-

est σ-algebra with respect to which Y is measurable. It can be shown that
E(X|Y ) is a measurable function of Y , that is there is a function F such
that

E(X|Y ) = F (Y ).

By definition, if Y is G-measurable, then

E(Y X|G) = Y E(X|G).
If X and G are independent, then

E(X|G) = E (X) .

Indeed X is independent of σ-algebra G if and only if for any bounded Borel
measurable function f

E(f(X)|G) = E (f(X)) .

2.4 Uniform integrability

The uniform integrability of a family of integrable random variables has been
formulated to handle the convergence of random variables in L1(Ω,F , P ).
In spirit, it is very close to the ideas of uniform convergence and uniform
continuity.

If ξ is integrable, i.e. ξ ∈ L1(Ω,F , P ), then

lim
N→∞

∫

{|ξ|≥N}
|ξ|dP = 0.

We now make this definition uniform over a family of random variables in
the following way.

Definition 2.4.1 Let A be a family of integrable random variables on (Ω,F , P ).
A is uniformly integrable if

lim
N→∞

sup
ξ∈A

∫

{|ξ|≥N}
|ξ|dP = 0.

That is, E
{
1{|ξ|≥N}|ξ|

}
tends to zero uniformly on A as N → ∞.
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In terms of ε-δ language, A is uniformly integrable, if for any ε > 0 there
is an N > 0 depending only on ε such that

∫

{|ξ|≥N}
|ξ|dP< ε

for all ξ ∈ A.

Some simple consequences of the definition are the following.

1. Any finite family of integrable random variables is uniformly inte-
grable.

2. Let A ⊂ L1(Ω,F , P ) be a family of integrable random variables. If
there is an integrable random variable η such that |ξ| ≤ η for every
ξ ∈ A, then A is uniformly integrable. In fact

sup
ξ∈A

∫

{|ξ|≥N}
|ξ|dP ≤

∫

{η≥N}
ηdP → 0 as N → ∞.

3. If A ⊂ Lp(Ω,F , P ) for some p > 1 and

sup
ξ∈A

E|ξ|p <∞,

thenA is uniformly integrable. That is, a bounded subset of Lp(Ω,F , P )
for p > 1 is uniformly integrable. Indeed

sup
ξ∈A

∫

{|ξ|≥N}
|ξ|dP ≤ sup

ξ∈A

∫

{|ξ|≥N}

1

Np−1
|ξ|pdP

≤ 1

Np−1
sup
ξ∈A

E|ξ|p → 0

as N → ∞.

4. If ξ ∈ L1(Ω,F , P ), and {Gα}α∈A is a collection of sub σ-algebras of F ,
then the family

A = {E (ξ|Gα) : α ∈ A}

is uniformly integrable. Let ξα = E (ξ|Gα). Since {ξα ≥ N} and
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{ξα ≤ −N} are Gα-measurable,
∫

{|ξα|≥N}
|ξα|dP =

∫

{ξα≥N}
ξαdP −

∫

{ξα≤−N}
ξαdP

=

∫

{ξα≥N}
ξdP −

∫

{ξα≤−N}
ξdP

=

∫

{|ξα|≥N}
|ξ|dP

≤
∫

{|ξ|≥N}
|ξ|dP

which proves the claim.

Theorem 2.4.2 Let A ⊂ L1(Ω,F , P ). Then A is uniformly integrable if
and only if

1. A is a bounded subset of L1(Ω,F , P ), that is, supξ∈AE|ξ| <∞.

2. For any ε > 0 there is a δ > 0 such that
∫

A
|ξ|dP ≤ ε

whenever A ∈ F and P (A) ≤ δ.

Proof. Necessity. For any A ∈ F and N > 0
∫

A
|ξ|dP =

∫

A∩{|ξ|<N}
|ξ|dP +

∫

A∩{|ξ|≥N}
|ξ|dP

≤ NP (A) +

∫

{|ξ|≥N}
|ξ|dP .

Given ε > 0, choose N > 0 such that

sup
ξ∈A

∫

{|ξ|≥N}
|ξ|dP ≤ ε

2
.

Then

sup
ξ∈A

∫

A
|ξ|dP ≤ NP (A) +

ε

2

for any A ∈ F . In particular

sup
ξ∈A

∫

Ω
|ξ|dP ≤ N +

ε

2
,
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and by setting δ = ε/(2N) we also have

sup
ξ∈A

∫

A
|ξ|dP ≤ ε

as long as P (A) ≤ δ.

Sufficiency. Let β = supξ∈AE|ξ|. By the Markov inequality

P (|ξ| ≥ N) ≤ β

N

for any N > 0. For any ε > 0, there is a δ > 0 such that the inequality in 2
holds. Choose N = β/δ. Then P (|ξ| ≥ N) ≤ δ so that

∫

{|ξ|≥N}
|ξ|dP ≤ ε

for any ξ ∈ A.

Corollary 2.4.3 Let A ⊂ L1(Ω,F , P ) and η ∈ L1(Ω,F , P ) such that for
any D ∈ F

E (1D|ξ|) ≤ E (1D|η|) ; ∀ξ ∈ A.

Then A is uniformly integrable.

The following theorem demonstrates the importance of uniform integra-
bility.

Theorem 2.4.4 Let {Xn}n∈Z+ be a sequence of integrable random variables
on (Ω,F , P ). Then Xn → X in L1(Ω,F , P ) for some random variable X
as n→ ∞: ∫

Ω
|Xn −X|dP → 0 as n→ ∞,

if and only if {Xn}n∈Z+ is uniformly integrable and Xn → X in probability
as n→ ∞.

Proof. Necessity: It is standard that convergence in L1 implies conver-
gence in probability. We show the uniform integrability. For any ε > 0 there
is a natural number m such that

∫

Ω
|Xn −X|dP ≤ ε

2
for all n > m.
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Therefore for every measurable subset A
∫

A
|Xn|dP ≤

∫

A
|X|dP +

∫

Ω
|Xn −X|dP

so that

sup
n

∫

A
|Xn|dP ≤

∫

A
|X|dP + sup

k≤m

∫

A
|Xk|dP +

ε

2
.

In particular

sup
n
E|Xn| ≤ E|X|+ sup

k≤m
E|Xk|+

ε

2

i.e. {Xn : n ≥ 1} is bounded in L1(Ω,F , P ). Moreover, since X,X1, · · · , Xm

belong to L1, so that there is δ > 0 such that, if P (A) ≤ δ, then
∫

A
|X|dP +

m∑

k=1

∫

A
|Xk|dP ≤ ε

2

and therefore

sup
n

∫

A
|Xn|dP ≤ ε

as long as P (A) ≤ δ.
Sufficiency. By Fatou’s lemma

∫

Ω
|X|dP ≤ sup

n

∫

Ω
|Xn|dP < +∞

so that X ∈ L1(Ω,F , P ). Therefore {Xn − X : n ≥ 1} is uniformly inte-
grable, thus, by Theorem 2.4.2, for any ε > 0 there is δ > 0 such that

∫

A
|Xn −X|dP < ε

for any A ∈ F such that P (A) ≤ δ. Since Xn → X in probability, there is
an N > 0 such that

P (|Xn −X| ≥ ε) ≤ δ ∀n ≥ N .

Therefore for n ≥ N we have
∫

Ω
|Xn −X|dP ≤

∫

{|Xn−X|≥ε}
|Xn −X|dP + εP (Xn −X| < ε)

≤ ε+ εP (Xn −X| < ε)

≤ 2ε.

Hence
lim
n→∞

E|Xn −X| = 0.



Chapter 3

Elements of martingale

theory

In this chapter we collect together the fundamental results about martin-
gales that we will need, including Doob’s martingale inequalities and the
convergence theorem for martingales.

3.1 Martingales in discrete-time

In probability theory we study properties of random variables determined
by their distributions. Let (Ω,F , P ) be a probability space, and Z+ denote
the set of non-negative integers. An increasing family {Fn}n∈Z+ of sub σ-
algebras of F is called a filtration. A probability space (Ω,F , P ) together
with a filtration {Fn}n∈Z+ is called a filtered probability space, denoted by
(Ω,Fn,F , P ). Given a sequence X ≡ {Xn}n∈Z+ of random variables on
(Ω,F , P ), the filtration generated by the sequence {Xn} is defined to be
FX
n = σ{Xm : m ≤ n} which is the smallest σ-algebra with respect to which

X0, · · · , Xn are measurable. If {Xn} represents the discrete time evolution
of a random process, then informally FX

n is the information obtained by
observing this process up to time n.

Definition 3.1.1 A sequence {Xn : n ∈ Z+} of random variables on (Ω,F , P )
is adapted to {Fn} if for every n ∈ Z+, Xn is Fn -measurable. In this case
we say {Xn} is an adapted sequence, or an adapted process with respect to
{Fn}.

If Xn is Fn−1-measurable for any n ∈ N and X0 ∈ F0, then we say {Xn}
is predictable.

15
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Definition 3.1.2 Let {Fn : n ∈ Z+} be a filtration on a probability space
(Ω,F , P ). Then a measurable function T : Ω → Z+ ∪ {+∞} is called a
stopping time (or a random time) with respect to the filtration {Fn} if {ω :
T (ω) = n} ∈ Fn for every n.

Remark 3.1.3 1) By definition, if T is a stopping time, then {ω : T (ω) =
+∞} ∈ F .
2) By writing

{ω : T (ω) ≤ n} = ∪n
k=0{ω : T (ω) = k},

we see that a random variable T : Ω → Z+∪{+∞} is a stopping time if and
only if {ω : T (ω) ≤ n} ∈ Fn for every n.

Of course, a constant time T = n for some n ∈ N or +∞ is a stopping
time.

Example 3.1.4 A basic example of stopping time is the following. Let
{Xn} be an Rd-valued, adapted process on a filtered probability space (Ω,Fn,F , P ),
and let B be a Borel subset of Rd. Then the first time T that the process
{Xn} hits B:

T (ω) = inf{n ≥ 0 : Xn(ω) ∈ B}
(with the convention that inf Φ = +∞) is a stopping time with respect to the
filtration {Fn}. T is called the hitting time of B.

To see this observe that

{T = n} = ∩n−1
k=0{Xk ∈ Bc} ∩ {Xn ∈ B}.

Thus, since {Xn} is adapted, and therefore {Xk ∈ Bc} ∈ Fk and {Xn ∈
B} ∈ Fn, we have {T = n} ∈ Fn and therefore T is a stopping time.

Given a stopping time T on the filtered probability space (Ω,Fn,F , P ),
we define the σ-algebra that represents the information available up to the
random time T by

FT = {A ∈ F : such that A ∩ {T ≤ n} ∈ Fn for any n ∈ Z+}.

It is obvious that FT = Fn if T = n is a constant time n.

Theorem 3.1.5 Let {Xn} be an adapted process on (Ω,Fn,F , P ), let ξ be
a random variable, and set X∞ = ξ. Let T be a stopping time with respect
to {Fn}, and define XT (ω) = XT (ω)(ω) for any ω ∈ Ω. Then XT is FT -
measurable. In particular, XT 1{T<∞} is FT -measurable.
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Proof. For any r ∈ R, we have

{XT ≤ r} ∩ {T ≤ n} = ∪n
k=0{Xk ≤ r} ∩ {T = k}

which belongs to Fn as {Xk ≤ r} ∩ {T = k} ∈ Fk, k = 0, 1, · · · , n, so that
XT is FT -measurable.

The term martingale has a number of meanings but, in the sense it is used
in modern probability theory, it probably began with its use as a term for a
gambling strategy in 18th century France. This was the doubling strategy
in that a gambler bets a unit stake on the first game and then doubles their
stake after each loss in order to end up winning a unit at the time they
have their first win. It has now come to mean a canonical model for a fair
game, in that the expectation of a player, whose fortune is the value of the
martingale, has constant mean.

Definition 3.1.6 Let {Xn} be an adapted process on a filtered probability
space (Ω,Fn,F , P ). Suppose Xn ∈ L1(Ω,F , P ) for each n ∈ Z+

1. {Xn} is a martingale, if E(Xn+1|Fn) = Xn for all n.

2. {Xn} is a supermartingale (resp. a submartingale), if E(Xn+1|Fn) ≤
Xn (resp. E(Xn+1|Fn) ≥ Xn) for all n.

Example 3.1.7 (Martingale transform) Let {Hn} be a predictable process
and {Xn} be a martingale, and let

(H.X)n :=
n∑

k=1

Hk(Xk −Xk−1), (H.X)0 = 0.

Then {(H.X)n} is a martingale.

We recall Jensen’s inequality for conditional expectation: if ϕ : R → R

is a convex function, ξ, ϕ(ξ) ∈ L1(Ω,F , P ), and G is a sub σ-field of F , then

ϕ(E(ξ|G)) ≤ E(ϕ(ξ)|G).
For example ϕ(t) = (t ln t) 1(1,∞)(t), t1(0,∞) and |t|p (for p ≥ 1) are all
convex functions.

Theorem 3.1.8 1) Let {Xn} be a martingale, and let ϕ : R → R be a
convex function. If ϕ(Xn) is integrable for any n, then {ϕ(Xn)} is a sub-
martingale.

2) Let {Xn} be a submartingale, and let ϕ : R → R be an increasing
convex function. If ϕ(Xn) is integrable for any n, then {ϕ(Xn)} is a sub-
martingale.
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Proof. For example, let us prove the first claim. Indeed

ϕ(Xn) = ϕ(E(Xn+1|Fn)) (martingale property)

≤ E(ϕ(Xn+1)|Fn) (Jensen’s inequality).

Corollary 3.1.9 If X = (Xn) is a sub-martingale, so is (X+
n ). If, in addi-

tion, each Xn log
+Xn is integrable, then (Xn log

+Xn) is a sub-martingale,
where log+ x = 1{x≥1} log x.

3.2 Doob’s inequalities

An important result about martingales is Doob’s optional sampling theorem,
which says that the (super-, sub-) martingale property holds at random
times.

Theorem 3.2.1 (Doob’s optional sampling Theorem) Let {Xn} be a mar-
tingale (resp. super-martingale), and let S, T be two bounded stopping
times. Suppose S ≤ T . Then E(XT |FS) = XS (resp. E(XT |FS) ≤ XS).

Proof. We prove this theorem for the case that {Xn} is a supermartin-
gale. Let T ≤ n (as it is bounded by our assumption). Then

E|XT | =
n∑

j=0

E (|XT | : T = j)

=
n∑

j=0

E (|Xj | : T = j)

≤
n∑

j=0

E|Xj |,

which implies that XT is integrable. Similarly XS ∈ L1(Ω,FS , P ).
Let A ∈ FS , j ≥ 0. Then A ∩ {S = j} ∈ Fj and {T > j} ∈ Fj as S and

T are stopping times. We consider several cases.
1. If 0 ≤ T − S ≤ 1, then

∫

A
(XS −XT )dP =

n∑

j=0

∫

A∩{S=j}∩{T>j}
(Xj −Xj+1)dP

≥ 0



3.2. DOOB’S INEQUALITIES 19

as each term in the above sum is non-negative.
2. General case. Set Rj = T ∧ (S + j), j = 1, · · · , n. Then each Rj is a

stopping time,
S ≤ R1 ≤ · · · ≤ Rn = T

and
R1 − S ≤ 1, Rj+1 −Rj ≤ 1, for 1 ≤ j ≤ n− 1.

Let A ∈ FS . Then A ∈ FRj
(as S ≤ Rj). Therefore, applying the first case

to Rj , we have
∫

A
XSdP ≥

∫

A
XR1dP ≥ · · · ≥

∫

A
XTdP

so that
E (1AXS) ≥ E (1AXT ) for any A ∈ FS .

Since XS ∈ FS we conclude that

XS ≥ E(XT |FS).

Thus we have proved the theorem.

Corollary 3.2.2 1) For a martingale {Xn} we have, if T is a bounded
stopping time then

EXT = EX0.

2) Let {Xn} be a submartingale, and let T be a stopping time. Then

E|XT∧k| ≤ E (X0) + 2E
(
X−

k

)
for any k = 0, 1, 2, · · ·

and therefore
E(|XT |1{T<∞}) ≤ 3 sup

n
E|Xn|.

Proof. 1) Let S = 0 and take expectations in the optional sampling
Theorem.

2) As we know that {X−
n } is a supermartingale, by the previous theorem

we have

E|XT∧k| = EXT∧k + 2E
(
X−

T∧k
)

≤ EX0 + 2E
(
X−

k

)
.

This is the first inequality. While

E(|XT∧k|1{T<∞}) ≤ EX0 + 2E
(
X−

k

)

≤ 3 sup
n
E (|Xn|)

and the second inequality thus follows from Fatou’s lemma.
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Theorem 3.2.3 (Doob’s maximal inequality). Let {Xn} be a super-martingale.
Then for any λ > 0, n ≥ 0 we have

λP

{
sup
k≤n

Xk ≥ λ

}
≤ EX0 −

∫

{supk≤n Xk<λ}
XndP

= EX0 − E

{
Xn: sup

k≤n
Xk < λ

}
;

λP

{
inf
k≤n

Xk ≤ −λ
}

≤
∫

{infk≤n Xk≤−λ}
−XndP

= −E
{
Xn: inf

k≤n
Xk ≤ −λ

}

and

λP

{
sup
k≤n

|Xk| ≥ λ

}
≤ EX0 + 2E

(
X−

n

)
.

Proof. Let us prove the first inequality. Let R = inf{k ≥ 0 : Xk ≥ λ}
and T = R ∧ n. Then T is a bounded stopping time. By definition,

XR ≥ λ, on {R <∞},

so that

{sup
k≤n

Xk ≥ λ} ⊆ {XT ≥ λ},

{sup
k≤n

Xk < λ} ⊆ {T = n}.

By Doob’s optional sampling theorem,

EX0 ≥ EXT

=

∫

{supk≤n Xk≥λ}
XTdP+

∫

{supk≤n Xk<λ}
XTdP

≥ λP

{
sup
k≤n

Xk ≥ λ

}
+

∫

{supk≤n Xk<λ}
XndP

= λP

{
sup
k≤n

Xk ≥ λ

}
+ E

{
Xn; sup

k≤n
Xk < λ

}
.
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In order to prove the second inequality, we set Yk = −Xk. Then {Yn} is a
submartingale. Define

R = inf{k ≥ 0 : Yk ≥ λ}, T = R ∧ n.

Then T is a stopping time and T ≤ n. Again we have

{sup
k≤n

Yk ≥ λ} ⊆ {YT ≥ λ};

{sup
k≤n

Yk < λ} ⊆ {T = n}.

Therefore by applying Doob’s optional sampling theorem to Y we have

EYn ≥ EYT

=

∫

{supk≤n Yk≥λ}
YTdP+

∫

{supk≤n Yk<λ}
YTdP

≥ λP

{
sup
k≤n

Yk ≥ λ

}
+

∫

{supk≤n Yk<λ}
YndP

= λP

{
sup
k≤n

−Xk ≥ λ

}
+

∫

{supk≤n Yk<λ}
YndP .

Therefore

λP

{
sup
k≤n

−Xk ≥ λ

}
= λP

{
inf
k≤n

Xk ≤ −λ
}

≤ EYn −
∫

{supk≤n Yk<λ}
YndP

=

∫

{supk≤n Yk≥λ}
YndP

= −
∫

{infk≤n Xk≤−λ}
XndP .

The third inequality follows from the first two inequalities.
As a consequence we have

Theorem 3.2.4 (Kolmogorov’s inequality) Let {Xn} be a martingale and
Xn ∈ L2(Ω,F , P ). Then for any λ > 0,

P

{
sup
k≤n

|Xk| ≥ λ

}
≤ 1

λ2
E
(
X2

n

)
.
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Proof. By Jensen’s inequality, for any k ≤ n we have

E
(
X2

k

)
= E (E(Xn|Fk))

2

≤ E
(
X2

n

)
<∞.

Therefore (−X2
k) (k = 0, 1, · · · , n) is a supermartingale. By the second

inequality in Theorem 3.2.3, we have

λ2P

{
inf
k≤n

−X2
k ≤ −λ2

}
≤
∫

{infk≤n −X2
k
≤−λ2}

X2
ndP

and therefore

λ2P

{
sup
k≤n

X2
k ≥ λ2

}
≤

∫

{infk≤n −X2
k
≤−λ2}

X2
ndP

≤
∫

Ω
X2

ndP = E
(
X2

n

)
.

Next we establish Doob’s Lp-inequality. Let X∗
n = maxk≤nXk. If

Φ : R+ → [0,∞) is a continuous and increasing function such that Φ(0) = 0,
then

EΦ(X∗
n) = E

∫ X∗
n

0
dΦ(λ) =

∫

Ω×[0,X∗
n]
dΦ(λ)dP .

Theorem 3.2.5 (Doob’s Lp-inequality) 1) If (Xn) is a sub-martingale, then
for any p > 1

E

(
max
k≤n

X+
k

)p

≤
(

p

p− 1

)p

E|X+
n |p.

2) If (Xn) is a martingale, then for any p > 1,

E

(
max
k≤n

|Xk|p
)

≤
(

p

p− 1

)p

E|Xn|p.

Proof. If (Xn) is a martingale, then (|Xn|) is a submartingale, so 2)
follows from 1). Let us prove the first conclusion. Replacing (Xn) by (X+

n ),
we may, without lose of the generality, assume that (Xn) is a non-negative
sub-martingale. By Fubini’s theorem

EΦ(X∗
n) = E

{∫ X∗
n

0
dΦ(λ)

}

=

∫ ∞

0
P (X∗

n ≥ λ)dΦ(λ)

≤
∫ ∞

0

1

λ
E(Xn;X

∗
n ≥ λ)dΦ(λ)
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together with Doob’s maximal inequality

P (X∗
n ≥ λ) ≤ 1

λ
E {Xn : X∗

n ≥ λ}

we thus obtain

EΦ(X∗
n) ≤

∫ ∞

0

1

λ
E {Xn : X∗

n ≥ λ} dΦ(λ)

=

∫ ∞

0

1

λ

∫

{X∗
n≥λ}

XndPdΦ(λ)

= E

{
Xn

(∫ X∗
n

0

1

λ
dΦ(λ)

)}
. (3.1)

Choose Φ(λ) = λp, then Φ′(λ) = pλp−1, and therefore

E|X∗
n|p ≤ E

{
Xn

(∫ X∗
n

0

1

λ
pλp−1dλ

)}

= E

{
p

p− 1
Xn (X

∗
n)

p−1

}

=
p

p− 1
E
(
Xn (X

∗
n)

p−1
)

≤ p

p− 1
(|EXn|p)

1
p (E|X∗

n|p)
1
q

the last equality follows from Hölder’s inequality.

Exercise 3.2.6 Prove log x ≤ x/e for all x > 0, hence prove that

a log+ b ≤ a log+ a+
b

e
.

Theorem 3.2.7 (Doob’s inequality) Let (Xn) be a non-negative sub-martingale.
Then

E

{
max
k≤n

Xk

}
≤ e

e− 1

{
1 + max

k≤n
E
(
Xk log

+Xk

)}
.

Proof. We may use the same argument as in the proof of the previous
theorem, but with the choice that Φ(λ) = (λ − 1)+. We thus obtain (by
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(3.1))

E {Φ(X∗
n)} ≤ E

{
Xn

(∫ X∗
n

0

1

λ
dΦ(λ)

)}

= E

{
Xn

(
1{X∗

n≥1}

∫ X∗
n

1

1

λ
dλ

)}

= E
(
Xn log

+X∗
n

)
,

which implies that

E (X∗
n − 1) ≤ E (X∗

n − 1)+ ≤ E
{
Xn log

+X∗
n

}
.

Together with the inequality (see the previous exercise)

Xn log
+X∗

n ≤ Xn log
+Xn +

1

e
X∗

n

it follows that

E (X∗
n − 1) ≤ E

{
Xn log

+X∗
n

}

≤ E
{
Xn log

+Xn

}
+

1

e
EX∗

n,

so that

EX∗
n ≤ 1

1− 1/e
E
{
Xn log

+Xn

}
.

3.3 The convergence theorem

Let {Xn : n ∈ Z+} be an adapted sequence of random variables, and [a, b]
be a closed interval. Define

T0 = inf{n ≥ 0 : Xn ≤ a} ;

T1 = inf{n > T0 : Xn ≥ b} ;

and for j ≥ 1,

T2j = inf{n > T2j−1 : Xn ≤ a} ;

T2j+1 = inf{n > T2j : Xn ≥ b}.
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Then {Tk} is an increasing sequence of stopping times. If T2j−1(ω) < ∞,
then the sequence

X0(ω), · · · , XT2j−1(ω)

upcrosses the interval [a, b] j times. Denote by U b
a(X;n) the number of

upcrossing [a, b] by {Xk} up to time n. Then

{U b
a(X;n) = j} = {T2j−1 ≤ n < T2j+1} ∈ Fn.

By definition

XT2j ≤ a, on {T2j <∞} ;

XT2j+1 ≥ b, on {T2j+1 <∞}.

Theorem 3.3.1 (Doob’s upcrossing theorem) 1) If X = {Xn} is a super-
martingale, then for any n ≥ 1, k ≥ 0, we have

P
{
U b
a(X;n) ≥ k

}
≤ 1

b− a
E
{
(Xn − a)− : U b

a(X;n) = k
}

and

EU b
a(X;n) ≤ 1

b− a
E(Xn − a)−.

2. Similarly, if X = {Xn} is a submartingale, then

P
{
U b
a(X;n) ≥ k

}
≤ 1

b− a
E
{
(Xn − a)+ : U b

a(X;n) = k
}

and

EU b
a(X;n) ≤ 1

b− a
E(Xn − a)+.

Proof. We first prove the inequalities for a supermartingale. Since X
is a supermartingale, by Doob’s optional sampling theorem,

0 ≥ E
(
XT2k+1∧n −XT2k∧n

)

= E
(
XT2k+1∧n −XT2k∧n

)
1{T2k≤n<T2k+1}

+E
(
XT2k+1∧n −XT2k∧n

)
1{T2k+1≤n}

≥ E (Xn − a) 1{T2k≤n<T2k+1} ( as XT2k∧n = XT2k
≤ a)

+E (b− a) 1{T2k+1≤n} (as XT2k+1∧n = XT2k+1
≥ b).

However
{U b

a(X;n) ≥ k} ⊂ {T2k−1 ≤ n},
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{U b
a(X;n) = k} = {T2k−1 ≤ n < T2k}

so that

0 ≥ E (Xn − a) 1{Ub
a(X;n)=k}

+E (b− a) 1{Ub
a(X;n)≥k}

= E (Xn − a) 1{Ub
a(X;n)=k} + (b− a)P{U b

a(X;n) ≥ k}

which yields the first inequality. By adding up over all k ≥ 0 we get the
second inequality.

Now we prove the inequalities for a submartingale X. The argument is
very similar. Again by Doob’s optional sampling theorem,

0 ≥ E
(
XT2k−1∧n −XT2k∧n

)

= E
(
XT2k−1∧n −XT2k∧n

)
1{T2k−1≤n<T2k}

+E
(
XT2k−1∧n −XT2k∧n

)
1{T2k≤n}

≥ E (b−Xn) 1{T2k−1≤n<T2k} + E (b− a) 1{T2k≤n}
= E (a−Xn) 1{T2k−1≤n<T2k} + E (b− a) 1{T2k−1≤n}

which yields the desired inequality.

Theorem 3.3.2 (The martingale convergence theorem). Let {Xn} be a su-
permartingale. If supnE|Xn| <∞, then

Xn → X∞ exists almost surely.

Moreover if, in addition, {Xn} is non-negative, then

E(X∞|Fn) ≤ Xn for any n.

Proof. For any rational numbers a, b ∈ Q, a < b we set

U b
a(X) = lim

n→∞
U b
a(X;n).

Then by the Fatou lemma

EU b
a(X) ≤ 1

b− a
sup
n
E(Xn − a)−

≤ |a|
b− a

+
1

b− a
sup
n
E|Xn| <∞.

Therefore
U b
a(X) <∞, almost surely.
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Let
W(a,b) = {liminfn→∞Xn < a, limsupn→∞Xn > b}

and
W = ∪(a,b)W(a,b)

the countable union over all rational pairs (a, b), a < b. Clearly

W(a,b) ⊂ {U b
a(X) = ∞}

so that
P (W(a,b)) = 0.

Hence P (W ) = 0. However if ω /∈ W, then limn→∞Xn(ω) exists, and we
denote it by X∞(ω) and on W we let X∞(ω) = 0. Then we have Xn → X∞
almost surely. Moreover by Fatou’s lemma,

E|X∞| ≤ sup
n
E|Xn| <∞,

i.e. X∞ ∈ L1(Ω,F , P ).
If in addition {Xn} is non-negative, then

E(Xm|Fn) = Xn, for any m ≥ n,

by letting m→ ∞, Fatou’s lemma then yields that

E(X∞|Fn) ≤ Xn.

3.4 Martingales in continuous-time

Martingales (as well as super- and submartingales) and Doob’s fundamental
inequalities in discrete-time can be extended to martingales in continuous
time.

In this section, we present the regularity theory for martingales, which
does not appear in the discrete-time case.

Let (Ω,G,Gt, P ) be a probability space with a filtration (Gt)t≥0 which is
an increasing family of σ-algebras Gt ⊂ G for all t ∈ R+. A (Gt)-adapted
(real valued) process (Xt)t≥0 is called a martingale (resp. supermartingale;
resp. submartingale), if for any t ≥ s, almost surely E (Xt|Gs) = Xs (resp.
E (Xt|Gs) ≤ Xs; resp. E (Xt|Gs) ≥ Xs). Similarly, the concept of stopping
time can be stated in this setting as well, namely, a function T : Ω → [0,+∞]
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is a (Gt)-stopping time if for every t ≥ 0, the event {T ≤ t} belongs to Gt. A
new kind of stopping time called a predictable time, which has no counter-
part in the discrete-time setting, will play a role if the underlying stochastic
process has jumps. A stopping time T : Ω → [0,+∞] is predictable if there
is an increasing sequence {Tn} of (Gt)-stopping times such that for each n,
Tn < T and limn→∞ Tn = T .

Let
GT = {A ∈ G : for any t ≥ 0, (T ≤ t) ∩A ∈ Gt}

be the σ-algebra representing the information available up to the random
time T , and let

GT− = {A ∈ G : for any t ≥ 0, (T < t) ∩A ∈ Gt}
which represents the information available strictly before time T .

The following lemma can be used to generalize many results about mar-
tingales in discrete-time to the continuous-time setting.

Lemma 3.4.1 Let T : Ω → [0,+∞] be a (Gt)-stopping time. For every n
let

T (n) =

∞∑

k=1

k

2n
1{ k−1

2n
≤T< k

2n } + (+∞)1{T=+∞}.

Then T (n) ≥ T are (Gt)-stopping times and T (n) ↓ T as n→ ∞.

Proof. For any n and t ≥ 0 we have

{
T (n) ≤ t

}
=

∞⋃

k=1

{
T (n) ≤ t

}
∩
{
k − 1

2n
≤ T <

k

2n

}

=
⋃

k/2n≤t

{
T (n) ≤ t

}
∩
{
k − 1

2n
≤ T <

k

2n

}

∈
∨

k/2n≤t

G k
2n

⊂ Gt.

For each t ≥ 0 let Gt+ = ∩s>tGs. Then (Gt+) is again a filtration on the
measurable space (Ω,G) and obviously Gt+ ⊇ Gt for every t. If T : Ω →
[0,+∞] is a (Gt+)-stopping time then

GT+ = {A ∈ G : for any t ≥ 0, (T ≤ t) ∩A ∈ Gt+} .
A filtration (Gt) is said to be right-continuous if Gt+ = Gt for each t ≥ 0.
Hence, by definition, (Gt+) is right-continuous. Similarly, for t > 0 we define
Gt− = σ{Gs : s < t}.
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Theorem 3.4.2 If (Xt)t≥0 is a martingale (resp. supermartingale, resp.
submartingale) on (Ω,G,Gt, P ) with right-continuous sample paths almost
surely, then (Xt)t≥0 is a martingale (resp. supermartingale, resp. sub-
martingale) on (Ω,G,Gt+, P ).

Proof. Let us prove the supermartingale case. Since (Xt)t≥0 is inte-
grable and adapted to (Gt+)t≥0 we just need to prove

E (Xt|Gs+) ≤ Xs P -a.s. (3.2)

for every t > s. For any u between s and t

E (Xt|Gu) ≤ Xu P -a.s.

so that for any A ∈ Gs+ ⊂ Gu

E (1AXt) ≤ E (1AXu) .

Letting u ↓ s, as limu↓sXu = Xs, we thus obtain

E (1AXt) ≤ E (1AXs)

for any A ∈ Gs+, which is equivalent to (3.2).

Corollary 3.4.3 (Doob’s optional sampling theorem) Let (Xt)t≥0 be a su-
permartingale on (Ω,G,Gt, P ) with right-continuous sample paths almost
surely, and let T be a (Gt)-stopping time. Then

E
(
Xs+T 1{T<+∞}|GT+

)
≤ XT 1{T<+∞} P -a.s.

for any s ≥ 0.

Proof. The only thing needed here is the fact that GT+ is the σ-algebra
at the random time T with respect to the right-continuous filtration (Gt+)t≥0.
The corollary then follows from Doob’s optional sampling in discrete time,
Lemma 3.4.1 and the above Theorem 3.4.2.

Similar conclusions hold for martingales and submartingales.
One could ask when a martingale (supermartingale) has right-continuous

sample paths almost surely. The question can be answered via Doob’s con-
vergence theorem for supermartingales.

Let X = (Xt)t≥0 be a real valued stochastic process, and let a < b. If

F = {0 ≤ t1 < t2 < · · · < tN}
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is a finite subset of [0,+∞), then we let U b
a(X,F ) denote the number of

upcrossings by {Xt1 , · · · , XtN}, and if D ⊂ [0,+∞), then we let U b
a(X,D)

denote the superemum of U b
a(X,F ) when F is a subset of D. Obviously

D → U b
a(X,D) is increasing with respect to the inclusion ⊂. In particular,

if X = (Xt)t≥0 is a (Gt)-adapted process and if D is a countable subset of
[0,+∞) then for every t ≥ 0, U b

a(X,D ∩ [0, t]) is measurable with respect to
Gt. Since we may apply Doob’s upcrossing inequality to (Xt)t∈F where F is
a finite subset, we can establish the following result.

Theorem 3.4.4 (Doob’s upcrossing inequality). If X = (Xt)t≥0 is a super-
martingale on (Ω,G,Gt, P ), then for any a < b, t > 0 and any countable
subset D of [0, t]

EU b
a(X,D) ≤ 1

b− a
E (Xt − a)−

where x− = (−x) ∨ 0.

This gives the following version of the supermartingale convergence the-
orem.

Corollary 3.4.5 Let X = (Xt)t≥0 be a supermartingale on (Ω,G,Gt, P ),
and let D be a countable dense subset of [0,+∞). Then for almost all
w ∈ Ω, the right limit of (Xt)t≥0 along the countable dense set D at t

lim
s∈D,s>t,s↓t

Xs exists .

Similarly for almost all w ∈ Ω, for each t > 0, the left limt of Xt along
D at time t,

lim
s∈D,s<t,s↑t

Xs exists .

We are now in a position to prove the following fundamental theorem,
which in the literature is called Föllmer’s lemma.

Theorem 3.4.6 Let (Xt)t≥0 be a supermartingale (resp. martingale) on
(Ω,G,Gt, P ), and let D be a countable dense subset in [0,+∞).

1. For almost all w ∈ Ω

Zt(w) = lim
s∈D,s>t,s↓t

Xs(w)

exists for all t ≥ 0, and Zt is Gt+-measurable,
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2. For almost all w ∈ Ω and for all t > 0 the following left limit exists

Zt−(w) = lim
s<t,s↑

Zs(w),

and therefore (Zt)t≥0 is a (Gt+)-adapted process with right-continuous
sample paths and left limits.

3. For any t ≥ 0

E (Zt|Gt) ≤ Xt , resp. E (Zt|Gt) = Xt P -a.s.

4. (Zt)t≥0 is a supermartingale (resp. martingale) on (Ω,G,Gt+, P ).

Proof. We only need to prove statements 3 and 4. Firstly we show the
third statement. For any r > t r ∈ D

E (Xr|Gt) ≤ Xt

so that for any A ∈ Gt

E (1AXr) ≤ E(1AXt).

Letting r ↓ t along D
E (1AZt) ≤ E(1AXt).

which is equivalent to the inequality in 3. Similarly, if t > s, u > t > r > s
and u, r ∈ D then

E (Xu|Gr) ≤ Xr

In particular, for any A ∈ Gs+ ⊂ Gr

E (1AXu) ≤ E(1AXr).

Letting u ∈ D ↓ t and r ∈ D ↓ s we obtain that

E (1AXt) ≤ E(1AXs)

for every A ∈ Gs+, which implies the statement 4.
However we can not in general conclude that (Zt)t≥0 is a version of

(Xt)t≥0. The two processes can be very different.

Corollary 3.4.7 We use the same assumptions and notation as in Theorem
3.4.6. Assume that (Gt)t≥0 is right-continuous. Then (Zt)t≥0 is a version
of (Xt)t≥0; that is, for each t ≥ 0, Zt = Xt almost surely, if and only if
t→ E(Xt) is right-continuous.
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Proof. Since Zt ∈ Gt = Gt+ so that, according to 3 of Theorem 3.4.6

Zt = E (Zt|Gt) ≤ Xt.

While, by the first conclusion in the same theorem,

E(Zt) = lim
s∈D,s>t,s↓t

E(Xs).

Therefore, in order to have the equality Zt = Xt, the necessary and sufficient
condition is that

E(Zt) = lim
s∈D,s>t,s↓t

E(Xs) = E(Xt).

However s→ E(Xs) is decreasing, so the above equality is equivalent to

lim
s>t,s↓t

E(Xs) = E(Xt)

i.e. t→ E(Xt) is right-continuous.

Corollary 3.4.8 We use the same assumptions and notation as in Theo-
rem 3.4.6. If (Gt)t≥0 is right continuous, and if (Xt)t≥0 is a martingale on
(Ω,G,Gt, P ), then the process (Zt)t≥0 defined in 3.4.6 is a version of (Xt)t≥0.

Proof. This is because for a martingale (Xt)t≥0, t → E(Xt) = E(X0)
is a constant.

There is a previsible version of the optional sampling theorem. Let
(Gt)t≥0 be a right-continuous filtration. We say a (Gt)-stopping time T :
Ω → [0,+∞] is predictable if there is a sequence {Tn} of (Gt)-stopping
times such that Tn < T for every n and limn→∞ Tn = T . The filtration
(Gt)t≥0 is quasi-left continuous if for every predictable stopping time T we
have GT− = GT .

Theorem 3.4.9 (Doob’s optional sampling theorem - predictable version)
Let (Xt)t∈[0,∞] be a supermartingale on (Ω,G,Gt, P ) which is right-continuous
with left-limits, where (Gt)t≥0 is a right-continuous filtration. Then for any
predictable stopping time T and s ≥ 0

E
(
Xs+T 1{T<+∞}|GT−

)
≤ XT−1{T<+∞} a.s.

3.5 Local martingales

Let (Ω,F ,Ft, P ) be a filtered probability space.
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3.5.1 Stopping times

Recall that a random variable T : Ω → [0,+∞] (note that the value +∞
is allowed) is called a stopping time (a random time) if for each t ≥ 0 the
event

{ω : T (ω) ≤ t} ∈ Ft.

If T is a stopping time, then

FT = {A ∈ F : A ∩ {T ≤ t} ∈ Ft for all t ≥ 0}

which represents the information available up to the random time T . For
technical reasons we will require the following conditions to be satisfied
unless otherwise specified.

1. (Ω,F , P ) is a complete probability space.

2. The filtration (Ft)t≥0 is right-continuous, that is, for each t ≥ 0

Ft = Ft+ ≡ ∩s>tFs.

3. Each Ft contains all null sets in F .

In this case, we say the filtered probability space (Ω,F ,Ft, P ) satisfies
the usual conditions.

Remark 3.5.1 If X = (Xt)t≥0 is a right-continuous stochastic process
on a complete probability space (Ω,F , P ), then its natural filtration (Ft)t≥0

satisfies the usual conditions.

The following is a result we will not prove in this course.

Theorem 3.5.2 If X = (Xt)t≥0 is a right-continuous stochastic process
adapted to (Ft)t≥0 (recall that our filtration (Ft)t≥0 satisfies the usual con-
ditions), and if T : Ω → [0,+∞] is a stopping time, then the random variable
XT 1{T<∞} is measurable with respect to the σ-algebra FT , where

XT 1{T<∞}(ω) = XT (ω)(ω)1{ω:T (ω)<∞}(ω)

=

{
XT (ω)(ω) ; if T (ω) < +∞,

0; if T (ω) = +∞.
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Remark 3.5.3 If X = (Xn)n∈Z+ and T : Ω → Z+ ∪ {+∞}, then

XT 1{T<∞} =
∑

n∈Z+

Xn1{T=n}

=
∞∑

n=0

Xn1{T=n}.

Therefore, if X is adapted to {Fn}n∈Z+ and T is a stopping time, then for
any n ∈ Z+,

XT 1{T<∞}1{T≤n} =
n∑

k=0

Xk1{T=k}

which is measurable with respect to Fn, thus by definition XT 1{T<∞} is
FT -measurable.

The following theorem provides us with a class of interesting stopping
times.

Theorem 3.5.4 Let X = (Xt)t≥0 be an Rd-valued, adapted stochastic pro-
cess that is right-continuous and has left-limits. Then for any Borel subset
D ⊂ Rd and t0 ≥ 0

T = inf {t ≥ t0 : Xt ∈ D}
is a stopping time, where inf ∅ = +∞. T is called the hitting time of D by
the process X.

Remark 3.5.5 Let us look at the discrete-time case. If X = (Xn)n∈Z+ is
adapted to {Fn}n∈Z+ taking values in Rd. Then for a Borel subset D ⊂ Rd,
and k ∈ Z+

T = inf {n ≥ k : Xn ∈ D}
is a stopping time. Indeed, if n ≤ k− 1 then {T = n} = ∅ and for n ≥ k we
have

{T = n} =
n−1⋂

j=k

{Xj ∈ Dc}
⋂

{Xn ∈ D}

which belongs to Fn.

Example 3.5.6 If X = (Xt)t≥0 is an adapted, continuous process on (Ω,F ,Ft,P)
and if D ∈ Rd is a bounded closed subset of Rd, then

T = inf{t ≥ 0 : Xt ∈ D}
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is a stopping time. If X0 ∈ Dc, then

XT 1{T<+∞} ∈ ∂D.

In particular, if d = 1 and b is a real number, then

Tb = inf{t ≥ 0 : Xt = b}

is a stopping time. In this case supt∈[0,N ]Xt is a random variable,

{
sup

t∈[0,N ]
Xt < b

}
= {Tb > N}

and {
sup

t∈[0,N ]
Xt ≥ b

}
= {Tb ≤ N} .

3.5.2 The technique of localization

The concept of a stopping time provides us with a means of “localizing”
quantities. Suppose (Xt)t≥0 is a stochastic process, and T is a stopping
time, then XT = (Xt∧T )t≥0 is a stochastic process stopped at (random)
time T , where

Xt∧T (ω) =

{
Xt(ω) if t ≤ T (ω) ;
XT (ω)(ω) if t ≥ T (ω).

This is often called the stopped process Another interesting stopped process
at random time T associated with X is the process X1[0,T ] which is by
definition

(
X1[0,T ]

)
t
(ω) = Xt1{t≤T}(ω)

=

{
Xt(ω) if t ≤ T (ω) ;
0 if t > T (ω).

It is obvious that

XT
t = Xt1{t≤T} +XT 1{t>T}.

If (Xt)t≥0 is adapted to the filtration (Ft)t≥0 , so are the processes (Xt∧T )t≥0

stopped at stopping time T and Xt1{t≤T}.
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Definition 3.5.7 An adapted stochastic process X = (Xt)t≥0 on the fil-
tered probability space (Ω,F ,Ft, P ) is called a local martingale if there is an
increasing family {Tn} of finite stopping times such that

Tn ↑ +∞ as n→ +∞

and such that for each n, (Xt∧Tn)t≥0 is a martingale.

Similarly, we may define local super- or sub-martingales.
We conclude with a useful result which shows that suitable control on

moments of increments is enough to establish the existence of a continuous
version of a stochastic process.

Theorem 3.5.8 (Kolmogorov’s continuity theorem) Suppose that a stochas-
tic process X = (Xt)0≤t≤T with values in Rd on a probability space (Ω,F ,Ft, P )
satisfies

E|Xt −Xs|α ≤ C|t− s|1+β , 0 ≤ s, t ≤ T,

for some positive constants α, β, C. Then there exists a continuous modifi-
cation X̃ of X which is locally Hölder continuous with exponent γ for every
γ ∈ (0, β/α) (that is a.s. there exists a constant c such that |Xt − Xs| ≤
c|t− s|γ for all 0 ≤ s, t ≤ T ).

Proof. We take the dyadic points D∩ [0, T ] and show X is Hölder γ on
this set. Let

Ak = {|Xi2−k −X(i−1)2−k | > 2−γk, i ∈ N, i2−k ≤ T}.

Then a straightforward calculation with Markov’s inequality and our as-
sumption on the moments of the increments gives

P (Ak) ≤
[2kT ]∑

i=1

P (|Xi2−k −X(i−1)2−k | > 2−γk)

≤ 2kTC2−k(1+β)2γαk

= CT2−k(β−γα).

Thus be definition of γ and the Borel-Cantelli lemma we see that almost
surely Ak only happens finitely often and hence almost surely there exists a
random constant c(ω) such that

|Xi2−k −X(i−1)2−k | ≤ c(ω)2−γk, ∀k ≥ 0, 1 ≤ i ≤ T2k. (3.3)
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We now extend this result by taking any 0 ≤ s < t ≤ T ∈ D, so that there
is a maximal k and an i such that s ≤ (i − 1)2−k < i2−k ≤ t. By taking
a sequence of dyadic intervals from s to (i− 1)2−k and from i2−k to t, and
using (3.3) we can see that

|Xs −Xt| ≤ |X(i−1)2−k −Xs|+ |Xt −Xi2−k |+ c(ω)2−γk

≤ 2
∞∑

j=k+1

c(ω)2−jγ + c(ω)2−γk

= c′(ω)2−γk

= c′′(ω)|t− s|γ .

Thus we have the Hölder continuity on the dyadics and we can extend this
to the whole of [0, T ] by density.
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Chapter 4

Brownian motion

Brownian motion is the canonical mathematical model for random motion in
continuous time and space. It is a building block for modelling via stochastic
differential equations. It arises naturally in the same way as the central limit
theorem in that scaling limits of random walks, provided the jumps have
finite variance, will be Brownian motion. We will also see that there is an
intimate connection with continuous martingales, in that every continuous
martingale can be time changed into Brownian motion.

4.1 Construction of Brownian motion

We begin with the definition and then show thatthe existence of Brownian
motion.

Definition 4.1.1 A stochastic process B = (Bt)t≥0 on a probability space
(Ω,F , P ) taking values in Rd is called a Brownian motion (BM) in Rd, if

1. (Bt)t≥0 possesses independent increments: for any 0 ≤ t0 < t1 < · · · <
tn the random variables

Bt0, Bt1 −Bt0, · · · , Btn −Btn−1

are independent.

2. For any t > s ≥ 0, random variable Bt−Bs has a normal distribution
N(0, t− s), that is, Bt −Bs has pdf (probability density function)

p(t− s, x) =
1

(2π(t− s))d/2
e
− |x|2

2(t−s) ; x ∈ Rd.

39
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In other words

P{Bt −Bs ∈ dx} = p(t− s, x)dx.

3. Almost all sample paths of (Bt)t≥0 are continuous.

If, in addition, P{B0 = x} = 1 where x ∈ Rd, then we say (Bt)t≥0 is a
Brownian motion starting at x. If P{B0 = 0} = 1 where 0 is the origin of
Rd, then we say that (Bt)t≥0 is a standard Brownian motion.

Let p(t, x, y) = p(t, x− y), and define for every t > 0

Ptf(x) =

∫

Rd

f(y)p(t, x, y)dy ∀f ∈ Cb(R
d).

Since

p(t+ s, x, y) =

∫

Rd

p(t, x, z)p(s, z, y)dz

therefore (Pt)t≥0 is a semigroup on Cb(R
d). (Pt)t≥0 is called the heat semi-

group in Rd: if f ∈ C2
b (R

d), then u(t, x) = (Ptf)(x) solves the heat equation

(
1

2
∆ +

∂

∂t

)
u(t, x) = 0 ; u(0, ·) = f ,

where ∆ =
∑

i
∂2

∂x2
i

is the Laplace operator.

The connection between Brownian motion and the Laplace operator ∆
(and hence harmonic analysis) is demonstrated through the following iden-
tity:

(Ptf) (x) = E (f(Bt + x))

=
1

(2πt)d/2

∫

Rd

f(y)e−
|y−x|2

2t dy

where Bt is a standard Brownian motion.

Example 4.1.2 If B = (Bt)t≥0 is a BM in R, then

E|Bt −Bs|p = cp|t− s|p/2 for all s, t ≥ 0 (4.1)

for p ≥ 0, where cp is a constant depending only on p. Indeed

E|Bt −Bs|p =
1√

2π|t− s|

∫

R

|x|p exp
(
− |x|2
2|t− s|

)
dx.
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Making change of variable

x√
|t− s|

= y ; dx =
√
|t− s|dy

we thus have

E|Bt −Bs|p =
(
√
|t− s|)p√
2π

∫

R

|x|p exp
(
−|x|2

2

)
dx

= cp|t− s|p/2

where

cp =
1√
2π

∫

Rd

|x|p exp
(
−|x|2

2

)
dx.

(4.1) remains true for BM in Rd with a constant cp depending on p and d.

Remark 4.1.3 Since Bt − Bs ∼ N(0, t − s), it is an easy exercise to show
that for every n ∈ Z+

E(Bt −Bs)
2n =

(2n)!

2nn!
|t− s|n.

Let B = (Bt)t≥0 be a standard BM in R. Then B is a centered Gaus-
sian process with co-variance function C(s, t) = s ∧ t. Indeed, any finite-
dimensional distribution of B is Gaussian, so that B is a centered Gaussian
process, and its co-variance function (if s < t)

E(BtBs) = E((Bt −Bs)Bs +B2
s )

= E((Bt −Bs)Bs) + EB2
s

= E(Bt −Bs)EBs + EB2
s

= s.

This gives an alternative definition.

Definition 4.1.4 A Brownian motion B = (Bt)t≥0 is a continuous Gaus-
sian process with mean 0 and covariance function cov(Bt, Bs) = min(t, s).

In order to show that these definitions are not vacuous we demonstrate
the existence of Brownian motion.

Theorem 4.1.5 (N. Wiener) There is a standard Brownian motion in Rd.
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Proof. We may assume that d = 1, the proof in higher dimension
is similar. Observe that a BM (Bt) must be a Gaussian process (i.e. a
process whose finite-dimensional distributions are Gaussian distributions)
with mean zero and covariance function E(BtBs) = s∧ t. Therefore we may
first construct a Gaussian process (Xt) such that EXt = 0 and E(XtXs) =
s∧ t on some completed probability space (Ω,F , P ). It can be verified that
(Xt)t≥0 satisfies all conditions in the definition of BM, except the continuity
of its sample paths. The Gaussian process (Xt) may be not continuous,
we thus need to modify the construction of Xt to make it continuous. Let
D = { j

2n : j ∈ Z+, n ∈ N} be the dyadic real numbers. The key fact we
need is that D is dense in R+. Define

H =
∞⋃

N=1

∞⋂

l=1

∞⋃

n=l

N2n⋃

j=1

(∣∣∣X j
2n

X j−1
2n

∣∣∣ ≥ 1

2n/8

)
.

Let, for fixed N ,

Al =
∞⋃

n=l

N2n⋃

j=1

(∣∣∣X j
2n

X j−1
2n

∣∣∣ ≥ 1

2n/8

)
.

We are going to show that each
⋂∞

l=1Al has probability zero, and therefore
as a sum of countable many events with probability zero, P (H) = 0. Since

P





N2n⋃

j=1

(∣∣∣X j
2n

X j−1
2n

∣∣∣ ≥ 1

2n/8

)


≤
N2n∑

j=1

P

(∣∣∣X j
2n

X j−1
2n

∣∣∣ ≥ 1

2n/8

)

= N2nP

(∣∣∣X 1
2n

∣∣∣ ≥ 1

2n/8

)

≤ N2n
(
2n/8

)4
E
∣∣∣X 1

2n

∣∣∣
4

=
(
2n/8

)4
N2n3

(
1

2n

)2

= 3N
1

2n/2
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so that

P (Al) ≤
∞∑

n=l

P





N2n⋃

j=1

(∣∣∣X j
2n

X j−1
2n

∣∣∣ ≥ 1

2n/8

)


≤ 3N
∞∑

n=l

1

2n/2

=
3N

√
2√

2− 1

1
(√

2
)l .

Therefore

P

(∞⋂

l=1

Al

)
= lim

n→∞
P {Al}

≤ 3N
√
2√

2− 1
lim
n→∞

1
(√

2
)l

= 0.

It follows that P (H) = 0, thus P (Hc) = 1. On the other hand, by De
Morgan’s laws

Hc =
∞⋂

N=1

∞⋃

l=1

∞⋂

n=l

N2n⋂

j=1

{
ω :
∣∣∣X j

2n
(ω) X j−1

2n
(ω)
∣∣∣ <

1

2n/8

}

and thus, if ω ∈ Hc, then for any N , there is an l such that for any n > l
and for all j = 1, · · · , N2n we have

∣∣∣X j
2n
(ω) X j−1

2n
(ω)
∣∣∣ <

1

2n/8
.

Thus we have that, for any ω ∈ Hc and t ≥ 0, the limit of Xs(ω) exists as
s → t along the dyadic numbers, i.e. as s → t and s ∈ D. Moreover, D is
dense in [0,∞), thus for any t ∈ [0,∞) we may define

Bt(ω) = lim
s∈D→t

Xs(ω) if ω ∈ Hc

otherwise if ω ∈ H we set Bt(ω) = 0. By definition, (Bt)t≥0 is a continuous
process which coincides with Xt on Hc when t ∈ D. It remains to verify
that (Bt)t≥0 is a Brownian motion in R and this is left as an exercise.

There are a number of alternative constructions which can be found in
textbooks.
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4.1.1 Scaling properties

Let B = (Bt)t≥0 be a standard BM in Rd. By definition, the distribution of
the increments of BM B = (Bt)t≥0 is stationary, so that for any fixed time
s, B̃t = Bt+s −Bs is again a standard Brownian motion. This statement is
true indeed for any finite stopping time S.

Lemma 4.1.6 (Scaling invariance, self-similarity) For any real number λ 6=
0

Mt := λBt/λ2

is a standard BM in Rd.

This statement follows directly from the definition of BM. In particular,
(−Bt)t≥0 is also a standard BM, so that (−Bt)t≥0 and (Bt)t≥0 have the same
distribution.

Lemma 4.1.7 If U is an d × d orthonormal matrix, then UB = (UBt)t≥0

is a standard BM in Rd. That is, BM is invariant under the action of the
orthogonal group on Rd.

This lemma is an easy corollary of the invariance property of Gaussian
distributions under the orthogonal group action.

Lemma 4.1.8 Let B = (Bt)t≥0 be a standard BM in R, and define

M0 = 0 , Mt = tB1/t for t > 0.

Then M = (Mt)t≥0 is a standard BM in R.

Proof. Obviously Mt possesses a normal distribution with mean zero,
and covariance

E (MtMs) = tsE
(
B1/tB1/s

)

= ts

(
1

t
∧ 1

s

)
= s ∧ t

so that (Mt) is a centred Gaussian process with co-variance function s ∧ t.
Moreover t → Mt is continuous for t > 0. To see the continuity of Mt at
t = 0, we use the fact that

lim
t→∞

Bt

t
= 0

which is the law of large numbers for BM. We will not prove this here, but
see the remark below.
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Remark 4.1.9 To convince yourself why the law of large numbers for BM
is true, we may look at a special way t → ∞ through natural numbers,
namely

lim
n→∞

Bn

n
= lim

n→∞
X1 + · · ·+Xn

n

where Xi = Bi−Bi−1. Notice that (Xi) is a sequence of independent random
variables with identical distribution N(0, 1), so that by the strong law of
large numbers

X1 + · · ·+Xn

n
→ EX1 = 0 almost surely.

In order to handle the general case t ≥ 0, we may write t = [t] + rt where
[t] is the integer part of t and rt ∈ [0, 1). Then

Bt

t
=
Bt −B[t]

t
+

[t]

t

B[t]

[t]

the second term tends to 0 since as t → ∞, [t]
t → 1 and

B[t]

[t] → 0. To see
why

Bt −B[t]

t
→ 0

as t→ ∞, we need the following Gaussian tail estimate for BM (see section
1.2.3 below)

P

{
ω : sup

t∈[0,T ]
|Bt(ω)| ≥ R

}
= 2

√
2

π

∫ ∞

R/
√
T
e−x2/2dx

≤ 2 exp

(
−R

2

2T

)
for all R > 0.

It follows that for any ε > 0

∞∑

n=0

P

{
ω : sup

t∈[n,n+1]

|Bt(ω)−Bn(ω)|
n

≥ ε

}
<∞

and thus by the Borel-Cantelli lemma

lim
n→∞

sup
t∈[n,n+1]

∣∣∣∣
Bt

t
− Bn

n

∣∣∣∣ = 0 almost surely.

For more detail, see D. Stroock: Probability Theory: An Analytic View,
page 180-181.
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It is also easy to see from this scaling result that there will be diffi-
culties with the differentiability of Brownian paths. If a standard BM was
differentiable at 0 we would need limt↓0

Bt

t to exist. However by the above

lim
t↓0

Bt

t
= lim

t→∞
tB1/t = lim

t→∞
Mt,

in distribution. It is not hard to see that a standard BM has supt≥0Bt =
− inft≥0Bt = ∞ and hence the limit cannot exist; indeed

lim sup
t→0

Bt

t
= − lim inf t→ 0

Bt

t
= ∞.

Much more than this is true and we can show that Brownian paths are
almost surely not differentiable at any point.

4.1.2 Markov property and finite-dimensional distributions

Let X = (Xt)t≥0 be a stochastic process on (Ω,F , P ). For every t ≥ 0, set

F0
t = σ{Xs : s ≤ t}

which is the smallest σ-algebra with respect to which every Xs (where s ≤ t)
is measurable. In particular, for each t ≥ 0, Xt ∈ F0

t and in this sense we
say (Xt)t≥0 is adapted to the filtration {F0

t }. {F0
t }t≥0 is called the filtration

generated by X = (Xt)t≥0.

In this section, we use (F0
t )t≥0 to denote the filtration generated by a

standard Brownian motion (Bt)t≥0, and let F0
∞ = ∪t≥0F0

t .

Lemma 4.1.10 For any t > s ≥ 0, the increment Bt − Bs is independent
of F0

s .

Recall that

p(t, x) =
1

(2πt)d/2
e−

|x|2

2t

in Rd, and (Pt)t≥0 the heat semigroup

Ptf(x) =

∫

Rd

f(y)p(t, x− y)dy

for every t > 0.
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Lemma 4.1.11 If t > s, then the joint distribution of Bs and Bt is given
by

P {Bs ∈ dx, Bt ∈ dy} = p(s, x)p(t− s, y − x)dxdy.

Indeed, since Bs and Bt − Bs are independent, (Bs, Bt − Bs) has the
joint pdf

p(s, x1)p(t− s, x2)

and thus, for any bounded Borel measurable function f ,

Ef(Bs, Bt) = Ef(Bs, Bt −Bs +Bs)

=

∫∫
f(x1, x2 + x1)p(s, x1)p(t− s, x2)dx1dx2.

Making the change of variables x1 = x and x2 + x1 = y in the last double
integral, the induced Jacobian is 1 so that dx1dx2 =dxdy (as measures),
and therefore

Ef(Bs, Bt) =

∫∫
f(x, y)p(s, x)p(t− s, y − x)dxdy

which implies that the pdf of (Bs, Bt) is p(s, x)p(t− s, y − x).

Theorem 4.1.12 Let t > s, and f a bounded Borel measurable function.
Then

E
{
f(Bt)|F0

s

}
= Pt−sf(Bs) a.s. (4.2)

where (Pt)t>0 is the heat semigroup. In particular

E
{
f(Bt)|F0

s

}
= E {f(Bt)|Bs}

which is the Markov property, and E
{
f(Bt)|F0

s

}
equals F (Bs) where

F (x) = Pt−sf(x) ≡
1

(2π(t− s))d/2

∫

Rd

f(y)e
− |x−y|2

2(t−s) dy.

Proof. First we show the Markov property of Brownian motion, that

E
{
f(Bt)|F0

s

}
= E {f(Bt)|Bs} .

Clearly we only need to prove this for bounded continuous (and smooth)
functions f . For such a function, we can show that

f(x+ y) = lim
n→∞

Nn∑

k=1

fnk
(x)gnk

(y)
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for some functions fnk
, gnk

(for example, by taking the Taylor expansion of
f(x+ y)). Hence

E
{
f(Bt)|F0

s

}
= E

{
f(Bs +Bt −Bs)|F0

s

}

= lim
n→∞

Nn∑

k=1

E
{
fnk

(Bs)gnk
(Bt −Bs)|F0

s

}

= lim
n→∞

Nn∑

k=1

E
{
gnk

(Bt −Bs)|F0
s

}
fnk

(Bs)

= lim
n→∞

Nn∑

k=1

fnk
(Bs)E {fnk

(Bt −Bs)}

= lim
n→∞

Nn∑

k=1

fnk
(Bs)

∫

Rd

fnk
(z)p(t− s, z)dz,

which depends only on Bs, and can therefore be written as F (Bs). In par-
ticular

E
{
f(Bt)|F0

s

}
= E {f(Bt)|Bs} = F (Bs).

To compute the conditional expectation E {f(Bt)|Bs}, we use the fact that
the pdf of (Bs, Bt) is

p(s, x)p(t− s, y − x)

so that

E {1A(Bs)f(Bt)} =

∫ ∫
1A(x)f(y)p(s, x)p(t− s, y − x)dxdy

=

∫
1A(x)Pt−sf(x)p(s, x)dx

= E {1A(Bs)Pt−sf(Bs)}

as

Pt−sf(x) =

∫
f(y)p(t− s, y − x)dy.

Since Pt−sf(Bs) is a function of Bs so that

E (f(Bt)|Bs) = Pt−sf(Bs).

The family of finite-dimensional distributions of BM can be expressed in
terms of the Gaussian density function p(t, x).
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Proposition 4.1.13 For any 0 < t1 < t2 < · · · < tn, the (Rn×d-valued)
random variable (Bt1 , · · · , Btn) has a pdf

p(t1, x1)p(t2 − t1, x2 − x1) · · · p(tn − tn−1, xn − xn−1)

where

p(t, x) =
1

(2πt)d/2
e−|x|2/(2t)

is a standard Gaussian pdf in Rd. That is, the joint distribution of (Bt1 , · · · , Btn)
is given by

P {Bt1 ∈ dx1, · · · , Btn ∈ dxn}
= p(t1, x1)p(t2 − t1, x2 − x1) · · · p(tn − tn−1, xn − xn−1)dx1 · · · dxn.(4.3)

Proof. Let f be a bounded, continuous function. We want to calculate

E (f(Bt1 , · · · , Btn)) .

One can use the fact that the increments Bt1 , Bt2 − Bt1 , · · · , Btn − Btn−1

are independent, and have the joint distribution with pdf

p(t1, z1)p(t2 − t1, z2) · · · p(tn − tn−1, zn).

The equation (4.3) then follows after a change of variables.
We can also show this with an induction argument which uses only the

Markov property. Indeed, by the Markov property

E (f1(Bt1) · · · fn(Btn))

= E
{
E
(
f1(Bt1) · · · fn(Btn)|F0

tn−1

)}

= E
{
f1(Bt1) · · · fn−1(Btn−1)E

(
fn(Btn)|F0

tn−1

)}

= E
{
f1(Bt1) · · · fn−1(Btn−1)

(
Ptn−tn−1fn

)
(Btn−1)

}

= E
{
f1(Bt1) · · · fn−2(Btn−2)

(
fn−1Ptn−tn−1fn

)
(Btn−1)

}

which reduces the number of time points ti to n−1, so the conclusion follows
from the induction immediately.

Corollary 4.1.14 Let Bt = (B1
t , · · · , Bd

t ) be a d-dimensional standard Brow-
nian motion. Then for each j, Bj

t is a standard BM in R, and (Bj
t )t≥0

(j = 1, · · · , d) are mutually independent.

Therefore a d-dimensional BM consists of d independent copies of BM
in R.



50 CHAPTER 4. BROWNIAN MOTION

4.1.3 The reflection principle

Brownian motion starts afresh at a stopping time, i.e. the Markov property
for Brownian motion remains true at stopping times. Therefore Brownian
motion possesses what is called the strong Markov property, a very impor-
tant property which was used by Paul Lévy in the form of the reflection
principle, long before the concept of the strong Markov property had been
properly defined. We will exhibit this principle and use it in computing the
distribution of the running maximum of a Brownian motion.

Theorem 4.1.15 (The reflection principle) Let T be a stopping time and
B = (Bt)t≥0 a BM in R. If we set

Wt =
Bt t < T
2BT −Bt t ≥ T,

then W is a standard BM in R.

In many applications, especially in statistics, we would like to estimate
distributions of running maxima of a stochastic process. For Brownian mo-
tion B = (Bt)t≥0, the distribution of sups∈[0,t]Bs can be derived by means
of the reflection principle.

Let B = (Bt)t≥0 be a standard Brownian motion on (Ω,F ,Ft, P ) in R.
Let b > 0 and b > a, and let

Tb = inf{t > 0 : Bt = b}.

Then Tb is a stopping time, (and the Brownian motion starts afresh as a
standard Brownian motion after hitting b), by the reflection principle

P

{
sup
s∈[0,t]

Bs ≥ b, Bt ≤ a

}
= P

{
sup
s∈[0,t]

Bs ≥ b, 2BTb
−Bt ≤ a

}

= P

{
sup
s∈[0,t]

bs ≥ b, Bt ≥ 2b− a

}

= P {Bt ≥ 2b− a} .

As the events {
sup
s∈[0,t]

Bs ≥ b

}
= {Tb ≤ t},
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the above equation may be written as

P {Tb ≤ t, Bt ≤ a} = P {Tb ≤ t, Bt ≥ 2b− a}
= P {Bt ≥ 2b− a} .

Therefore

P

{
sup
s∈[0,t]

Bs ≥ b, Bt ≤ a

}
=

1√
2πt

∫ +∞

2b−a
e−

x2

2t dt,

which gives us the joint distribution of a Brownian motion and its maximum
at a fixed time t. By differentiating in a and in b we conclude the following

Theorem 4.1.16 Let B = (Bt)t≥0 be a standard BM in R, and let t > 0.
Then the pdf of the joint distribution of random variables (Mt = sups∈[0,t]Bs, Bt)
is given as

P {Mt ∈ db, Bt ∈ da} =
2(2b− a)√

2πt3
exp

{
−(2b− a)2

2t

}
dadb

over the region {(b, a) : a ≤ b, b ≥ 0} in R2.

In particular, for any b > 0,

P (Bt ≥ b) = P (Bt ≥ b, Tb ≤ t) = P (Bt−Tb
≥ b, Tb ≤ t).

By the strong Markov property Bt−Tb
is a Brownian motion started from b

and is independent of Tb and hence

P (Bt ≥ b) =
1

2
P (Tb ≤ t).

Thus we have the result that

P

{
sup
s∈[0,t]

Bs ≥ b

}
= 2P (Bt ≥ b) =

2√
2πt

∫ ∞

b
exp

(
−x

2

2t

)
dx,

which is the exact distribution function of sups∈[0,t]Bs (and the stopping
time Tb) and leads to an exact formula for the tail probability of the Brow-
nian motion.
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4.1.4 Martingale property

Let B = (Bi
t)t≥0 (i = 1, · · · , d) be a standard BM in Rd, with its generated

filtration (F0
t )t≥0. Brownian motion is a martingale and indeed can be

characterised by its martingales.

Proposition 4.1.17 1) Each Bt has finite p-th moment for any p > 0, and
for t > s

E(|Bt −Bs|p) = cp,d|t− s|p/2. (4.4)

2) (Bt)t≥0 is a continuous, square-integrable martingale.

3) For each pair i, j, M ij
t = Bi

tB
j
t − δijt is a continuous martingale.

Proof. The first part was proved before.
Since Bt −Bs is independent of F0

s when t > s we thus have

E(Bt −Bs|F0
s ) = E(Bt −Bs) = 0

so that
E(Bt|F0

s ) = E(Bs|F0
s ) = Bs

so that (Bt)t≥0 is a continuous martingale.
We only need to show 3) for BM in R. In this case

E(B2
t −B2

s |F0
s ) = E((Bt −Bs)

2 |F0
s )

+E(2Bs (Bt −Bs) |F0
s )

= E((Bt −Bs)
2) + 2BsE((Bt −Bs) |F0

s )

= E (Bt −Bs)
2

= t− s

so that

E(B2
t − t|F0

s ) = E(B2
s − s|F0

s )

= B2
s − s

which shows that B2
t − t is a martingale.

Theorem 4.1.18 Let B = (Bt)t≥0 be a continuous stochastic process in R

such that B0 = 0. Then (Bt)t≥0 is a standard BM in R, if and only if for
any ξ ∈ R and t > s

E
{
exp (i〈ξ, Bt −Bs〉) |F0

s

}
= exp

(
−(t− s)|ξ|2

2

)
. (4.5)
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Proof. We observe that (4.5) implies Bt − Bs is independent of F0
s

and has normal distribution with variance t− s. Conversely, if (Bt)t≥0 is a
standard BM in R, then Bt − Bs is independent of F0

s , and Bt − Bs has a
normal distribution of mean zero and variance (t− s), so that

E
{
exp (i〈ξ, Bt −Bs〉) |F0

s

}

= E {exp (i〈ξ, Bt −Bs〉)}

=
1√

2π(t− s)

∫

R

e
i〈ξ,x〉− |x|2

2(t−s)dx

= exp

(
−(t− s)|ξ|2

2

)
.

Corollary 4.1.19 Let (Bt) be a standard BM in R. If ξ ∈ R, then

Mt ≡ exp

(
i〈ξ, Bt〉+

|ξ|2
2
t

)

is a martingale.

Remark 4.1.20 Note that both sides of (4.5) are analytic in ξ so that
the identity continues to hold for any complex vector ξ. In particular, by
replacing ξ by −iξ we obtain that

E
{
exp (〈ξ, Bt −Bs〉) |F0

s

}
= exp

(
(t− s)|ξ|2

2

)

so that for any vector ξ

exp

(
〈ξ, Bt〉 −

|ξ|2
2
t

)

is a continuous martingale. This statement will be extended to vector fields
ξ in R. The resulting identity is called the Cameron-Martin formula.

BM is a basic example of a Lévy process. These are right continuous
stochastic processes in Rd which possess stationary independent increments,
and (4.5) is the Lévy-Khinchin formula for BM. In general if (Xt) is a Lévy
process in Rd, then

E
{
exp (i〈ξ,Xt −Xs〉) |F0

s

}
= exp (ψ(ξ)(t− s))
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for t > s and ξ ∈ Rd, where

ψ(ξ) = −1

2
〈AAT ξ, ξ〉+ i〈b, ξ〉

+

∫

Rd\{0}

(
ei〈ξ,x〉 − 1− i1{|x|<1}〈ξ, x〉

)
ν(dx) (4.6)

for some d×r matrix A, vector b and Lévy measure ν(dx) of (Xt) which is a
σ-finite measure on Rd \ {0} satisfying the following integrability condition

∫

Rd\{0}

|x|2
1 + |x|2 ν(dx) < +∞. (4.7)

The equation (4.6) is the Lévy-Khintchine formula for the general Lévy
process.

4.2 The quadratic variation process

As we have seen, both (one-dimensional) Brownian motion Bt and Mt ≡
B2

t − t are martingales, and thus

B2
t =Mt +At

where of course At = t. Therefore, the continuous sub-martingale B2
t is a

sum of a martingale and an adapted increasing process. We will see this
decomposition for B2

t is the key to establishing Itô’s integration theory.
Let

D = {0 = t0 < t1 < · · · < tn = t}
be a finite partition of the interval [0, t], and let

VD =
n∑

l=1

|Btl −Btl−1
|2

the quadratic variation of B over the partition D, which is a non-negative
random variable. We will consider the behaviour of this random variable as
the partition is refined.

Lemma 4.2.1 The random variable VD has

EVD = t

and variance

E
{
(VD − EVD)

2
}
= 2

n∑

l=1

(tl − tl−1)
2.
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Proof. Indeed

EVD =
n∑

l=1

E|Btl −Btl−1
|2

=
n∑

l=1

(tl − tl−1)

= t.

To prove the second formula we proceed as follows

E
{
(VD − EVD)

2
}

= E





(
n∑

l=1

|Btl −Btl−1
|2 − t

)2




= E





(
n∑

l=1

(
|Btl −Btl−1

|2 − (tl − tl−1)
)
)2




=
n∑

k,l=1

E
{(

|Btk −Btk−1
|2 − (tk − tk−1)

) (
|Btl −Btl−1

|2 − (tl − tl−1)
)}

=
n∑

l=1

E
{(

|Btl −Btl−1
|2 − (tl − tl−1)

)2}

+

n∑

k 6=l

E
{(

|Btk −Btk−1
|2 − (tk − tk−1)

) (
|Btl −Btl−1

|2 − (tl − tl−1)
)}

.

Since the increments over different intervals are independent, so that the
expectation of each product in the last sum on the right-hand side equals
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the product of their expectations, which gives contribution zero, therefore

E
{
(VD − EVD)

2
}

=
n∑

l=1

E
{(

|Btl −Btl−1
|2 − (tl − tl−1)

)2}

=
n∑

l=1

E
{
|Btl −Btl−1

|4 − 2(tl − tl−1)|Btl −Btl−1
|2 + (tl − tl−1)

2
}

=
n∑

l=1

{
E|Btl −Btl−1

|4 − 2(tl − tl−1)E|Btl −Btl−1
|2 + (tl − tl−1)

2
}

= 2
n∑

l=1

(tl − tl−1)
2

where we have used the moment result that

E|Btl −Btl−1
|4 = 3(tl − tl−1)

2.

We are now in a position to prove the following.

Theorem 4.2.2 Let B = (Bt)t≥0 be a standard BM in R. Then

lim
m(D)→0

∑

l

|Btl −Btl−1
|2 = t in L2(Ω, P )

for any t, where D runs over all finite partitions of the interval [0, t], and

m(D) = max
l

|tl − tl−1|.

Therefore

lim
m(D)→0

∑

l

|Btl −Btl−1
|2 = t in probability.

Proof. According to the previous lemma we have

E

∣∣∣∣∣
∑

l

|Btl −Btl−1
|2 − t

∣∣∣∣∣

2

= E |VD − E (VD)|2

= 2
n∑

l=1

(tl − tl−1)
2

≤ 2m(D)
n∑

l=1

(tl − tl−1)

= 2tm(D)
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and therefore

lim
m(D)→0

E

∣∣∣∣∣
∑

l

|Btl −Btl−1
|2 − t

∣∣∣∣∣

2

= 0.

For good partitions the convergence in the above theorem takes place al-
most surely. To this end, we recall the Borel-Cantelli lemma: if

∑∞
n P (An) <

∞, then limsupnAn = 0, where

limsupnAn =
∞⋂

m=1

∞⋃

n=m

An

= {ω belongs to infinitely many An} .

If in addition {An} are independent, then
∑∞

n P (An) = ∞ if and only if

P (limsupnAn) = 1.

Proposition 4.2.3 Let (Bt)t≥0 be a standard BM in R. Then for any t > 0
we have

2n∑

j=1

∣∣∣B j
2n

t −B j−1
2n

t

∣∣∣
2
→ t a.s. (4.8)

as n→ ∞.

Proof. Let Dn be the dyadic partition of [0, t]

Dn = {0 =
0

2n
t <

1

2n
t < · · · < 2n

2n
t = t}.

and Vn denote VDn . Then, according to Lemma 4.2.1, EVn = t and

E |Vn − EVn|2 = 2
2n∑

l=1

(
l

2n
t− l − 1

2n
t

)2

= 22n
(

1

2n
t

)2

=
1

2n−1
t2.

Therefore, by Markov’s inequality,

P

{
|Vn − EVn| ≥

1

n

}
≤ n2E |Vn − EVn|2

=
n2

2n−1
t2
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so that ∞∑

n=1

P

{
|Vn − EVn| ≥

1

n

}
= t2

∞∑

n=1

n2

2n−1
< +∞.

By the Borel-Cantelli lemma, it follows that Vn → t almost surely.

Remark 4.2.4 Indeed the conclusion is true for monotone partitions. More
precisely, for each n let

Dn = {0 = tn,0 < t1,n < · · · < tnk,n = t}
be a finite partition of [0, t]. Suppose Dn+1 ⊃ Dn and

lim
n→∞

m(Dn) = lim
n→∞

max |tni,n − tni−1,n| = 0.

Then
nk∑

i=1

∣∣∣Btni,n
−Btni−1,n

∣∣∣
2
→ t a.s. (4.9)

as n → ∞. This follows from the martingale convergence theorem applied
to a suitable martingale and is left as an exercise.

It can be shown (not easy) that

sup
D

∑

l

|Btl −Btl−1
|p <∞ a.s.

if p > 2, where the supremum is taken over all finite partitions of [0, 1], and

sup
D

∑

l

|Btl −Btl−1
|2 = ∞ a.s.

That is to say, Brownian motion has finite p-variation for any p > 2 but
infinite 2-variation. Indeed almost all Brownian motion sample paths are
α-Hölder continuous for any α < 1/2 but not for α = 1/2. It follows that
almost all Brownian motion paths are nowhere differentiable. We will not
go into a deep study of the sample paths of BM, as this is not needed in
order to develop Itô’s calculus for Brownian motion.

Definition 4.2.5 Let p > 0 be a constant. A path f(t) in Rd [a function
on [0, T ] valued in Rd] is said to have finite p-variation on [0, T ], if

sup
D

∑

l

|f(ti)− f(ti−1)|p <∞

where D runs over all finite partitions of [0, T ]. f(t) in Rd has finite (total)
variation if it has finite 1-variation.
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A function with finite variation must be a difference of two increasing
functions. It particular, it has at most countably many points of disconti-
nuity.

A stochastic process V = (Vt)t≥0 is called a finite variation process, if
for almost all ω ∈ Ω, the sample path t → Vt(ω) possesses finite variation
on any finite interval. A Brownian motion is not a finite variation process.

If M = (Mt)t≥0 is a continuous, square-integrable martingale, then by
Jensen’s inequality (M2

t )t≥0 is a sub-martingale, except for the trivial case.
As in the case of Brownian motion, the following limit

〈M〉t = lim
m(D)→0

∑

l

∣∣Mtl −Mtl−1

∣∣2

exists both in probability and in L2, where the limit is taken over all finite
partitions D of the interval [0, t]. {〈M〉t}t≥0 is called the quadratic variation
process of (Mt)t≥0, or simply the bracket process of (Mt)t≥0. The quadratic
variation process t→ 〈M〉t is an adapted, continuous, increasing stochastic
process (and therefore has finite variation) with initial value zero. The
following theorem demonstrates the importance of 〈M〉t.
Theorem 4.2.6 (The quadratic variation process) Let M = (Mt)t≥0 be a
continuous, square-integrable martingale. Then 〈M〉t is the unique con-
tinuous, adapted and increasing process with initial value zero, such that
M2

t − 〈M〉t is a martingale.

The process 〈M〉 is called the quadratic variation process associated with
the martingale M . The theorem is a special case of the Doob-Meyer decom-
position for sub-martingales: any sub-martingale can be decomposed into a
sum of a martingale and a predictable, increasing process with initial value
zero. The decomposition was conjectured by Doob, and proved by P. A.
Meyer in the 60’s, which opened the way for the general development of
stochastic calculus.

Remark 4.2.7 IfM = (Mt)t≥0 is a continuous martingale, andA = (At)t≥0

is an adapted, continuous and integrable increasing process, thenX =M+A
is a continuous sub-martingale. The reverse statement is also true, that is
the content of the Doob-Meyer decomposition theorem.

We can see this easily in discrete time. Consider a sub-martingale in
discrete-time: X = (Xn)n∈Z+ with respect to the filtration (Fn)n∈Z+ . A
sequence (An)n∈Z+ may be defined by

A0 = 0 ;

An = An−1 + E(Xn −Xn−1|Fn−1), n = 1, 2, · · · .
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Then

1. AsX is submartingale E(Xn−Xn−1|Fn−1) = E(Xn|Fn−1)−Xn−1 ≥ 0,
and hence (An)n∈Z+ is increasing.

2. An ∈ Fn−1, so that (An)n∈Z+ is predictable!

3. By definition

E(Xn −An|Fn−1) = Xn−1 −An−1, n = 1, 2, · · · ,

therefore Mn = Xn −An is a martingale.

Theorem 4.2.8 Let (Mt)t≥0 and (Nt)t≥0 be two continuous, square-integrable
martingales, and let

〈M,N〉t =
1

4
(〈M +N〉t − 〈M −N〉t) .

This process is called the quadratic covariation or bracket process of M and
N . Then 〈M,N〉t is the unique adapted, continuous, variation process with
initial value zero, such that MtNt − 〈M,N〉t is a martingale. Moreover

lim
m(D)→0

n∑

l=1

(Mtl −Mtl−1
)(Ntl −Ntl−1

) = 〈M,N〉t , in prob. (4.10)

where D = {0 = t0 < · · · < tn = t} and m(D) = maxl(tl − tl−1).

If (Bt)t≥0 is a Brownian motion in Rd, then for any f ∈ C2
b (R

d)

Mf
t ≡ f(Bt)− f(B0)−

∫ t

0

1

2
∆f(Bs)ds

is a continuous martingale (with respect to the natural filtration generated
by the Brownian motion (Bt)t≥0), and

〈Mf ,Mg〉t =
∫ t

0
〈∇f,∇g〉(Bs)ds.

These claims will be proven below after we have established Itô’s formula
for Brownian motion.



Chapter 5

Itô calculus

In this Chapter we develop Itô’s integration theory in a traditional way.
We first define the stochastic integral

∫ t
0 FsdBs for adapted simple processes

(Ft)t≥0, then extend the definition to a large class of integrands by exploiting
the martingale characterization of the Itô integral.

5.1 Introduction

Let B = (Bt)t≥0 be a standard Brownian motion in R on a complete proba-
bility space (Ω,F , P ) and let (F0

t )t≥0 be the filtration generated by (Bt)t≥0,
which we sometimes call the Brownian filtration. That is, for each t ≥ 0

F0
t = σ{Bs for s ≤ t}

which represents the history of the Brownian motion B = (Bt)t≥0 up to
time t.

We are going to define Itô integrals of the following form

It =

∫ t

0
FsdBs for t ≥ 0

where I is a continuous stochastic process, where the integrand F = (Ft)t≥0

is a stochastic process satisfying certain conditions that will be described
later. For example, we would like to define integrals such as

∫ t

0
f(Bs)dBs

for Borel measurable functions f .

61
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Since, for almost all ω ∈ Ω, the sample path of Brownian motion t →
Bt(ω) is nowhere differentiable, the obvious definition via Riemann sums

∑

i

Ft∗i
(Bti −Bti−1)

does not work: the limit of the Riemann sums does not exist pathwise.
However the limit does exist in a probabilistic sense, if for any finite partition
we properly choose t∗i ∈ [ti−1, ti] and if the integrand process (Ft)t≥0 is
adapted to the Brownian filtration (F0

t )t≥0. That is to say, for every t ≥ 0,
Ft is measurable with respect to F0

t . We will see that this approach works
because both (Bt)t≥0 and (B2

t − t)t≥0 are continuous martingales.
In summary, the Itô integral

∫ t
0 FsdBs of an adapted process F = (Ft)t≥0

(such that F is measurable with respect to the product σ-algebra B([0,∞))⊗
F0
∞) with respect to the Brownian motion B = (Bt)t≥0 may be simply

defined to be the limit of a special sort of Riemann sum:

∫ t

0
FsdBs = lim

m(D)→0

∑

i

Fti−1(Bti −Bti−1)

where the limit is taken in the L2-sense (with respect to the product measure
P (dω)⊗dt), over finite partitions

D = {0 = t0 < t1 < · · · < tn = t}

of [0, t] so that m(D) = maxi(ti − ti−1) → 0. We choose Fti−1(Bti − Bti−1)
as this is the only choice giving

E
(
Fti−1(Bti −Bti−1)

)
= 0 (5.1)

and
E
(
F 2
ti−1

(Bti −Bti−1)
2 − F 2

ti−1
(ti − ti−1)

)
= 0. (5.2)

It will become clear that it is these important features that mean that
this sort of Riemann sum converges to a martingale! Thus (5.1), (5.2) imply
that both the Itô integral ∫ t

0
FsdBs

and (∫ t

0
FsdBs

)2

−
∫ t

0
F 2
s ds

are martingales.
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Indeed, since Fti−1 is F0
ti−1

-measurable, we have that

E
(
Fti−1(Bti −Bti−1)

)
= E

{
E
(
Fti−1(Bti −Bti−1)

∣∣F0
ti−1

)}

= E
{
Fti−1E

(
(Bti −Bti−1)

∣∣F0
ti−1

)}

= E
(
Fti−1E

(
Bti −Bti−1

))

= 0.

Similarly, since B2
t − t is a martingale, we have

E
(
(Bti −Bti−1)

2 − (ti − ti−1)
∣∣F0

ti−1

)

= E
(
B2

ti − ti
∣∣F0

ti−1

)
− 2E

(
Bti−1Bti

∣∣F0
ti−1

)

+B2
ti−1

+ ti−1

= 2B2
ti−1

− 2Bti−1E
(
Bti | F0

ti−1

)

= 0

and therefore

E
(
F 2
ti−1

(Bti −Bti−1)
2 − F 2

ti−1
(ti − ti−1)

)

= E
{
E
(
F 2
ti−1

(Bti −Bti−1)
2 − F 2

ti−1
(ti − ti−1)

∣∣∣F0
ti−1

)}

= E
{
F 2
ti−1

E
(
(Bti −Bti−1)

2 − F 2
ti−1

(ti − ti−1)
∣∣∣F0

ti−1

)}

= 0.

Itô’s integration theory can be established for continuous, square-integrable
martingales by the same approach. In fact, if M = (Mt)t≥0 is a continuous,
square-integrable martingale on a filtered probability space (Ω,F ,Ft, P ) and
F = (Ft)t≥0 is an adapted stochastic process, then

∫ t

0
FsdMs = lim

m(D)→0

n∑

l=1

Ftl−1
(Mtl −Mtl−1

)

exists under certain integrability conditions.
The Stratonovich integral

∫ t
0 Fs◦dMs, which was discovered later than

Itô’s, is defined on the other hand by

∫ t

0
Fs ◦ dMs = lim

m(D)→0

n∑

l=1

Ftl−1
+ Ftl

2
(Mtl −Mtl−1

)
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which in general is different from the Itô integral
∫ t
0 FsdMs.

An example to illustrate this is the following integral. Using the defini-
tion for the Itô integral

∫ t

0
MsdMs = lim

m(D)→0

n∑

l=1

Mtl−1
(Mtl −Mtl−1

)

= lim
m(D)→0

n∑

l=1

{
−1

2
(Mtl −Mtl−1

)2 +
1

2

(
M2

tl
−M2

tl−1

)}

= −1

2
lim

m(D)→0

n∑

l=1

(Mtl −Mtl−1
)2 +

1

2
lim

m(D)→0

n∑

l=1

(
M2

tl
−M2

tl−1

)

= −1

2
〈M〉t +

1

2
(M2

t −M2
0 ).

That is

M2
t −M2

0 = 2

∫ t

0
MsdMs + 〈M〉t.

On the other hand, for the Stratonovich integral

∫ t

0
Ms ◦ dMs = lim

m(D)→0

n∑

l=1

Mtl +Mtl−1

2
(Mtl −Mtl−1

)

=
1

2
lim

m(D)→0

n∑

l=1

(Mtl −Mtl−1
)2 + lim

m(D)→0

n∑

l=1

Mtl−1
(Mtl −Mtl−1

)

=
1

2
〈M〉t +

∫ t

0
MsdMs

=
1

2

(
M2

t −M2
0

)

so that

M2
t −M2

0 = 2

∫ t

0
Ms ◦ dMs.

If we compare this with classical calculus we see that the Stratonovich ver-
sion coincides with the fundamental theorem of standard calculus but the
Itô version has a correction term.

In general, we have

Lemma 5.1.1 Let N,M be two continuous, square-integrable martingales,
and Ft = Nt +At where At is an adapted process with finite variation. The
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Stratonovich integral of F against M is defined to be

∫ t

0
Fs ◦ dMs = lim

m(D)→0

∑

l

Ftl + Ftl−1

2
(Mtl −Mtl−1

)

Then ∫ t

0
Fs ◦ dMs =

∫ t

0
FsdMs +

1

2
〈N,M〉t

Indeed,

∫ t

0
Fs ◦ dMs = lim

m(D)→0

n∑

l=1

Ntl +Ntl−1

2
(Mtl −Mtl−1

)

+ lim
m(D)→0

n∑

l=1

Atl +Atl−1

2
(Mtl −Mtl−1

)

=
1

2
lim

m(D)→0

n∑

l=1

(
Ntl −Ntl−1

)
(Mtl −Mtl−1

)

+ lim
m(D)→0

n∑

l=1

Ftl−1
(Mtl −Mtl−1

)

+
1

2
lim

m(D)→0

n∑

l=1

(
Atl −Atl−1

)
(Mtl −Mtl−1

)

=
1

2
〈M,N〉t +

∫ t

0
FsdMs.

In particular, if F = (Ft)t≥0 is a process with finite variation, then

∫ t

0
Fs ◦ dMs =

∫ t

0
FsdMs.

From now on we will concentrate on Itô integrals only. The properties of
Stratonovich integrals can be deduced from the observations above.

5.2 Stochastic integrals for simple processes

An adapted stochastic process F = (Ft)t≥0 is called a simple process, if it
has a representation

Ft(ω) = f(ω)1{0}(t) +
∞∑

i=0

fi(ω)1(ti,ti+1](t) (5.3)
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where 0 = t0 < t1 < · · · < ti → ∞, so that for any finite time T ≥ 0, there
are only finite many ti ∈ [0, T ], each fi ∈ F0

ti (that is fi is measurable with
respect to F0

ti), f0 ∈ F0
0 , and F is a bounded process. The space of all simple

(adapted) stochastic processes will be denoted by L0. If F = (Ft)t≥0 ∈ L0,
then the Itô integral of F against Brownian motion B = (Bt)t≥0 is defined
as

I(F )t ≡
∞∑

i=0

fi(Bt∧ti+1 −Bt∧ti)

where the sum makes sense because only finitely many terms will not vanish.
It is obvious that I(F ) = (I(F )t)t≥0 is continuous, square-integrable, and
adapted to

(
F0
t

)
t≥0

.

Lemma 5.2.1 Let M = (Mt)t≥0 be a continuous, square-integrable martin-
gale, and s < t ≤ u < v, F ∈ F0

s , G ∈ F0
t . Then

E
(
G(Mv −Mu)(Mt −Ms)|F0

s

)
= 0

and
E
(
F (Mt −Ms)

2|F0
s

)
= E

(
F (〈M〉t − 〈M〉s) |F0

s

)
.

Proof. By the tower property of conditional expectations

E
(
G(Mv −Mu)(Mt −Ms)|F0

s

)

= E
{
E
(
G(Mv −Mu)(Mt −Ms)|F0

u

)
|F0

s

}

= E
{
G(Mt −Ms)E(Mv −Mu|F0

u)|F0
s

}

= 0.

The second equality is trivial as F ∈ F0
s and hence it can be moved out

from the conditional expectation.

Lemma 5.2.2 If F ∈ L0, then (I(F )t)t≥0 is a martingale

E
(
I(F )t − I(F )s|F0

s

)
= 0, ∀t > s.

Proof. Assume that tj < t ≤ tj+1, tk < s ≤ tk+1 for some k, j ∈ N.
Then k ≤ j and

I(F )t =

j−1∑

i=0

Fi(Bti+1 −Bti) + Fj(Bt −Btj );

I(F )s =
k−1∑

i=0

Fi(Bti+1 −Bti) + Fk(Bs −Btk).
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If k < j − 1, then

I(F )t − I(F )s =

j−1∑

i=k+1

Fi(Bti+1 −Bti)

+Fj(Bt −Btj ) + Fk(Btk+1
−Bs). (5.4)

If k + 1 ≤ i ≤ j − 1, s ≤ ti so that F0
s ⊂ F0

ti . Hence

E
(
Fi(Bti+1 −Bti)|F0

s

)

= E
{
E(
{
Fi(Bti+1 −Bti)|F0

ti

}
|F0

s

}

= E
{
FiE

{
Bti+1 −Bti |F0

ti

}
|F0

s

}

= 0.

The first equality follows from Fi ∈ F0
ti , and the second equality follows

from the fact that (Bt) is a martingale. Similarly

E
(
Fj(Bt −Btj )|F0

s

)
= 0, t > tj ≥ s, Fj ∈ F0

tj ,

E
(
Fk(Btk+1

−Bs)|F0
s

)
= 0, tk+1 ≥ s > tk, Fk ∈ F0

tk
⊂ F0

s .

Putting these equations together we obtain

E
(
I(F )t − I(F )s|F0

s

)
= 0.

If k = j − 1, then tj−1 < s ≤ tj < t ≤ tj+1 and

I(F )t − I(F )s = Fj−1(Btj −Bs) + Fj(Bt −Btj )

we thus again have
E
(
I(F )t − I(F )s|F0

s

)
= 0.

Lemma 5.2.3
(
I(F )2t −

∫ t
0 F

2
s ds
)

t≥0
is a martingale. Therefore I(F ) ∈

M2
0 and

〈I(F )〉t =
∫ t

0
F 2
s ds.

Proof. We want to prove that for any t ≥ s

E

(
I(F )2t −

∫ t

0
F 2
udu

∣∣∣∣F0
s

)
= I(F )2s −

∫ s

0
F 2
udu.
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In other words, we have to prove that

E

(
I(F )2t − I(F )2s −

∫ t

s
F 2
udu

∣∣∣∣F0
s

)
= 0.

Obviously

I(F )2t − I(F )2s = (I(F )t − I(F )s)
2 − 2I(F )tI(F )s − 2I(F )2s

= (I(F )t − I(F )s)
2 − 2(I(F )t − I(F )s)I(F )s,

and (I(F )t)t≥0 is a martingale, so that

E
(
I(F )t − I(F )s|F0

s

)
= 0.

While, I(F )s ∈ F0
s so that

E
{
I(F )s (I(F )t − I(F )s) |F0

s

}

= I(F )sE
{
I(F )t − I(F )s|F0

s

}
= 0.

We therefore only need to show

E

{
(I(F )t − I(F )s)

2 −
∫ t

s
F 2
udu

∣∣∣∣F0
s

}
= 0.

Now we use the same notation as in the proof of Lemma 5.2.2.
It is clear from eqn 5.4 that if k < j − 1, then

(I(F )t − I(F )s)
2 =

j−1∑

i,l=k+1

FiFl(Bti+1 −Bti)(Btl+1
−Btl)

+

j−1∑

i=1

FiFj(Bti+1 −Bti)(Bt −Btj )

+

j−1∑

i=1

FiFk(Bti+1 −Bti)(Btk+1
−Bs)

+F 2
j (Bt −Btj )

2 + F 2
k (Btk+1

−Bs)
2

+Fkfj(Bt −Bti)(Btk+1
−Bs).

Using Lemma 5.2.1 and the fact that both (Bt)t≥0 and (B2
t − t)t≥0 are

martingales, we get

E
{
(I(F )t − I(F )s)

2
∣∣F0

s

}

= E




j−1∑

j=k+1

F 2
i (ti+1 − ti) + F 2

j (t− tj) + F 2
k (tk+1 − s)

∣∣∣∣∣∣
F0
s
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so that

E
{
(I(F )t − I(F )s)

2|F0
s

}
= E

(∫ t

s
F 2
udu

∣∣∣∣F0
s

)
.

The final statement is just the Doob-Meyer decomposition of I(F )2.

Lemma 5.2.4 F → I(F ) is linear, and for any T ≥ 0

E
(
I(F )2T

)
= E

(∫ T

0
F 2
s ds

)
.

5.3 Stochastic integrals for adapted processes

In this section we extend the definition of the Itô integral to integrands which
are limits of simple processes. Obviously we only need to define Itô integrals
I(F )t for t ≤ T for arbitrary positive numbers T . Thus, throughout this
section, we are given an arbitrary but fixed time T > 0.

5.3.1 The space of square-integrable martingales

If F is a simple process, then the Ito integral I(F ) is a continuous, square-
integrable martingale with initial value zero, and its bracket process is given
by 〈I(F )〉t =

∫ t
0 F

2
s ds. In particular we have the Itô isometry

E|I(F )T |2 = E

∫ t

0
F 2
s ds

which allows us to extend the definition of the Itô integral to a larger class
of integrands.

Let T > 0 be a fixed but arbitrary number, and M2
0 be the vector space

of all continuous, square-integrable martingales up to time T on a probability
space (Ω,F , Ft, P ) (where (Ft) is a filtration (Ft)) with initial value zero,
endowed with the distance

d(M,N) =
√
E|MT −NT |2 for M,N ∈ M2

0.

By definition, a sequence of square-integrable martingales (M(k)t)t≥0 for
k = 1, 2, · · · converges to M in M2

0, if and only if

M(k)T →MT in L2(Ω,F , P )

as k → ∞. The following maximal inequality, which is the “martingale ver-
sion” of Chebychev’s inequality, allows us to show that (M2

0, d) is complete.
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Theorem 5.3.1 (Kolmogorov’s inequality) Let M ∈ M2
0. Then for any

λ > 0

P

{
sup

0≤t≤T
|Mt| ≥ λ

}
≤ 1

λ2
E
(
M2

T

)
.

Proof. Since (Mt)t≥0 is continuous

sup
0≤t≤T

|Mt| = sup
t∈D

|Mt|

for any countable dense subset D of [0, T ], and hence sup0≤t≤T |Mt| is a
random variable. For each n ∈ N, we may apply the discrete time martingale
version of the Kolmogorov inequality to {MTk/2n ;FTk/2n}k≥0 to obtain

P

{
sup

0≤k≤2n
|MTk/2n | ≥ λ

}
≤ 1

λ2
E
(
M2

T

)
.

However, since D = {Tk/2n : n, k ∈ N} is dense in [0, T ] we have that

sup
0≤k≤2n−1

|MTk/2n | ↑ sup
0≤t≤T

|Mt|

as n→ ∞. Therefore

P

{
sup

0≤t≤T
|Mt| ≥ λ

}
= lim

n→∞
P

{
sup

0≤k≤2n−1
|MTk/2n | ≥ λ

}

≤ 1

λ2
E
(
M2

T

)
.

Theorem 5.3.2 (M2
0, d) is a complete metric space.

Proof. Let M(k) ∈ M2
0 ( k = 1, 2, · · · ) be a Cauchy sequence in M2

0.
Then for the time T we must have

E|M(k)T −M(l)T |2 → 0, as k, l → ∞.

As L2 is complete there exists a limit random variable M ∈ L2 such that

lim
k→∞

M(k)T =M.
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From this we can define a martingale Mt = E(M |Ft). According to Kol-
mogorov’s inequality

P

{
sup

0≤t≤T
|M(k)t −Mt| ≥ λ

}
≤ 1

λ2
E|M(k)T −MT |2,

so that, M(k) uniformly converges to the limit M on [0, T ] in probability.
Therefore we have for M ≡ (Mt)

sup
0≤t≤T

|M(k)t −Mt| → 0 in prob.

Obviously (Mt)t≥0 is a continuous and square -integrable martingale (up to
time T ) as the uniform limit of a sequence of continuous martingales.

5.3.2 Stochastic integrals as martingales

If F = (Ft)t≥0 is a limit of simple processes in that

E

∫ T

0
|F (n)t − Ft|2dt→ 0

as n→ ∞ for a sequence of some simple processes {F (n) : n ∈ N}, then we
say F ∈ L2. The linearity of the Ito integral, together with Ito’s isometry,
imply that

d(I(F (n)), I(F (m))) = E|I(F (n))T − I(F (m))T |2

= E

∫ T

0
|F (n)t − F (m)t|2dt→ 0

as n,m→ ∞, i.e. {I(F (n)} is a Cauchy sequence in (M2
0, d). Since (M2

0, d)
is complete, so that limn→∞ I(F (n)) exists in (M2

0, d). We naturally define
I(F ) = limn→∞ I(F (n)), which we call the Itô integral of (Ft) against the
Brownian motion B. We often write I(F )t as

∫ t
0 FsdBs or F.Bt.

Remark 5.3.3 1) A process F = (Ft)t≤T in L2 is adapted to the Brownian
filtration and

E

∫ T

0
F 2
t dt <∞.

2) The map F → I(F ) is a linear isometry from L2 to M2
0, where L2 is

endowed with the norm

||F || =
√

E

∫ T

0
F 2
t dt.
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We note that M2
0 is a Hilbert space with norm ||M || =

√
E(M2

T ).

3) If F ∈ L2, then I(F ) is a continuous, square-integrable martingale
with initial value zero (up to time T ), and 〈I(F )〉t =

∫ t
0 F

2
s ds.

L2 is a very big space which includes many interesting stochastic pro-
cesses. For example

Lemma 5.3.4 Let F = (Ft)t≥0 be an adapted, left-continuous stochastic
process, satisfying

E

∫ T

0
F 2
s ds < +∞. (5.5)

Then F ∈ L2 and

I(F )t = lim
m(D)→0

∑

l

Ftl−1

(
Btl −Btl−1

)
in probability

where the limit is taken over all finite partitions of [0, t].

Proof. For n > 0, let

Dn ≡ {0 = tn0 < tn1 < · · · < tnnk
= T}

be a sequence of finite partitions of [0, T ] such that

m(Dn) = sup
j

|tnj − tnj−1| → 0 as n→ ∞.

Let

F (n)t = F01{0}(t) +
nk∑

l=1

Ftn
l−1

1(tn
l−1,t

n
l
](t) ; for t ≥ 0. (5.6)

Then each Fn is simple, and, since F is left-continuous F (n)t → Ft for each
t. Therefore

E

∫ T

0
|F (n)s − Fs|2ds→ 0 as n→ ∞.

By definition, F ∈ L2.

Remark 5.3.5 The condition that F = (Ft)t≥0 is adapted to the filtration
(Ft)t≥0 generated by the Brownian motion, i.e. each Ft is measurable with
respect to Ft, is essential in the definition of Itô integrals. On the other hand,
left-continuity of t → Ft is a technical one, which can be replaced by some
sort of Borel measurability (e.g.; right-continuous, continuous, measurable
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in (t, ω) etc.). Left-continuity becomes a crucial condition if one attempts
to define stochastic integrals of F = (Ft)t≥0 against martingales which may
have jumps. The reason is that the left-limit of F at time t “happens” before
time t, and if t → Ft is left-continuous, then, for any time t, the value Ft

can be “predicted” by the values taking place strictly before time t:

Ft = lim
s↑t

Fs.

Remark 5.3.6 We should point out that some kind of measurability of the
random function (t, ω) → Ft(ω) is necessary in order to ensure (5.5) makes
sense. Note that (5.5) may be written as

∫

Ω

∫ T

0
Fs(ω)

2dsP (dω) < +∞

so the natural measurability condition should be that the function

F (t, ω) ≡ Ft(ω)

is measurable with respect to B([0, T ])⊗FT for any T > 0, where B([0, T ]) is
the Borel σ-algebra generated by the open subsets in [0, T ], and B([0, T ])⊗
FT is the product σ-algebra on [0, T ]× Ω.

If X = (Xt)t≥0 is a continuous stochastic process adapted to (Ft)t≥0, f
is a Borel function, and

E

∫ T

0
f(Xt)

2dt <∞

then the stochastic process (f(Xt))t≥0 belongs to L2. In particular, for any
Borel measurable function f such that

E

∫ T

0
f(Bt)

2dt <∞ (5.7)

then (f(Bt))t≥0 is in L2. What does condition (5.7) mean? A direct com-
putation gives

E

∫ T

0
f(Bt)

2dt =

∫ T

0
Ef(Bt)

2dt

=

∫ T

0
Pt(f

2)(0)dt
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where

Pt(f
2)(0) =

1

(2πt)d/2

∫

Rd

f(x)2e−|x|2/2tdx

=
1

(2π)d/2

∫

Rd

f(
√
tx)2e−|x|2/2dx.

Therefore, if f is a polynomial, then f(Bt) is in L2, and for any constant
α the process (eαBt)t≥0 belongs to L2 as well. How about the stochastic

process Ft =eαB
2
t ? In this case

E

∫ T

0
F 2
t dt =

1

(2π)d/2

∫ T

0

∫

Rd

e2αtx
2
e−|x|2/2dx

and therefore

E

∫ T

0
F 2
t dt <∞ if α ≤ 0.

In the case α > 0, then

E

∫ T

0
F 2
t dt <∞ iff T <

1

4α
.

5.3.3 Summary of main properties

If F = (Ft)t≥0 ∈ L2, then both

∫ t

0
FsdBs and

(∫ t

0
FsdBs

)2

−
∫ t

0
F 2
s ds

are continuous martingales with initial value zero, and therefore 〈F.B〉t =∫ t
0 F

2
s ds. In general (by the use of the polarization identity xy = 1

4

(
(x+ y)2 − (x− y)2

)
)

〈F.B,G.B〉t =
∫ t

0
FsGsds ∀F,G ∈ L2.

In particular

E

[∫ T

0
FsdBs

]2
= E

(∫ T

0
F 2
s ds

)
.

and for any t ≥ s,

E

{(∫ t

s
FudBu

)2
∣∣∣∣∣Fs

}
= E

{∫ t

s
F 2
udu

∣∣∣∣Fs

}
.
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5.4 Itô’s integration for semi-martingales

We may apply the same procedure for defining Itô integrals against Brown-
ian motion to define Itô integrals against any continuous, square-integrable
martingale. Indeed, if M ∈ M2

0 and F = (Ft)t≥0 is a bounded, adapted,
simple process, so that

Ft = f1{0}(t) +
∑

i

fi1(ti,ti+1](t)

then we define the integral as

IM (F ) =
∞∑

i=0

fi · (Mt∧ti+1 −Mt∧ti).

As before, we have

1. IM (F ) ∈ M2
0.

2. The bracket process 〈IM (F )〉t =
∫ t
0 F

2
s d〈M〉s, i.e. IM (F )2t−

∫ t
0 Fsd〈M〉s

is a martingale.

3. (Itô’s isometry) For any T > 0, we have

E

(∫ T

0
FtdMt

)2

= E

∫ T

0
F 2
t d 〈M〉t .

Let T > 0 be a fixed time.

Definition 5.4.1 A stochastic process F = (Ft)t≥0 ∈ L2(M), if there is a
sequence {F (n)} of simple stochastic processes (F (n)) such that

E

{∫ T

0
F (n)2t d 〈M〉t

}
<∞

and

E

{∫ T

0
|F (n)t − Ft|2d 〈M〉t

}
→ 0 as n→ ∞.

In other words, L2(M) is the closure of all simple processes (up to time
T ) under the norm

||F || =
√

E

{∫ T

0
F (n)2td 〈M〉t

}
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(this norm of course depends on the running time T and the martingaleM ∈
M2

0), and thus L2(M) is a Banach space. Indeed, the above norm is induced
by a scalar product, so that L2(M) is a Hilbert space. If F ∈ L2(M), and
||F −F (n)|| → 0 for a sequence of simple processes, thanks to Ito’s isometry

E
{
IM (F )2T

}
= ||F ||,

it follows that

IM (F ) ≡ lim
n→∞

IM (Fn), in M2
0

exists. We use either F.M or
∫ t
0 FsdMs to denote IM (F ). According to the

definition, IM (F ) ∈ M2
0 and 〈IM (F )〉t =

∫ t
0 F

2
s d〈M〉s. By the use of the

polarization identity, if M , N ∈ M2
0 and F ∈ L2(M), G ∈ L2(N), then

〈F.M,G.N〉t =
∫ t

0
FsGsd 〈M,N〉s

and F.(G.M) = (FG).M , whenever these stochastic integrals make sense.
That is ∫ t

0
Fsd

(∫ s

0
GudMu

)

s

=

∫ t

0
FsGsdMs.

Itô integration may be extended to local martingales in the following
way. Suppose M = (Mt)t≥0 is a continuous, local martingale with initial
value zero, then we may choose a sequence {Tn} of stopping times such that
Tn ↑ ∞ a.s. and for each n, MTn = (Mt∧Tn)t≥0 is a continuous, square-
integrable martingale with initial value zero. In this case we may define

〈M〉t = 〈MTn〉t if t ≤ Tn

which is an adapted, continuous, increasing process with initial value zero
such that

M2
t − 〈M〉t

is a local martingale.

Let F = (Ft)t≥0 be a left-continuous, adapted process such that for each
T > 0 ∫ T

0
F 2
s d〈M〉s <∞ a.s. (5.8)

and define

Sn = inf

{
t ≥ 0 :

∫ t

0
F 2
s d〈M〉s ≥ n

}
∧ n
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which is a sequence of stopping times. Condition (5.8) ensures that Sn ↑ ∞.

Let T̃n = Tn ∧ Sn. Then T̃n ↑ ∞ almost surely, and for each n, M T̃n ∈ M2
0.

Let
F (n)t = Ft1{t≤T̃n}.

Then ∫ ∞

0
F (n)2sd〈M〉s =

∫ T̃n

0
F 2
s d〈M〉s ≤ n

so that F (n) ∈ L2(M
T̃n). We may define

(F.M)t =

∫ t

0
F (n)sd

(
M T̃n

)

s
if t ≤ T̃n ↑ ∞

for n = 1, 2, 3, · · · , which we call the Itô integral of F with respect to the
local martingale M . It can be shown that F.M does not depend on the
choice of stopping times Tn. By definition, both F.M and

(F.M)2t −
∫ t

0
F 2
s d〈M〉s

are continuous, local martingales with initial value zero.
Finally let us extend the theory of stochastic integrals to the most useful

class of (continuous) semimartingales. An adapted, continuous stochastic
process X = (Xt)t≥0 is a semimartingale if X possesses a decomposition

Xt =Mt + Vt

where (Mt)t≥0 is a continuous local martingale, and (Vt)t≥0 is stochastic
processes with finite variation on any finite time interval.

If f(t) is a function on [0, T ] with finite variation:

sup
D

∑

l

|f(tl)− f(tl−1)| < +∞

where D runs over all finite partitions of [0, t] (for any fixed t), then

∫ t

0
g(s)df(s)

is understood as the Lebesgue-Stieltjes integral. If in addition s → f(s) is
continuous, then

∫ t

0
g(s)df(s) = lim

m(D)→0

∑

l

g(tl−1)(f(tl)− f(tl−1)).
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Therefore, if V = (Vt)t≥0 is a continuous stochastic process with finite vari-
ation, then ∫ t

0
FsdVs

is a stochastic process defined pathwise by the Lebesgue-Stieltjes integral

∫ t

0
FsdVs(ω) ≡

∫ t

0
Fs(ω)dVs(ω)

= lim
m(D)→0

∑

l

Ftl−1
(ω)(Vtl(ω)− Vtl−1

(ω)).

The definition of the stochastic integral may be extended to any contin-
uous semi-martingale in an obvious way, namely

∫ t

0
FsdXs =

∫ t

0
FsdMs +

∫ t

0
FsdVs

where the first term on the right-hand side is the Itô integral with respect
to the local martingale M defined in the probabilistic sense, which is again
a local martingale, the second term is the usual Lebesgue-Stieltjes integral
which is defined pathwise. Moreover

∫ t

0
FsdXs = lim

m(D)→0

∑

l

Ftl−1

(
Xtl −Xtl−1

)
in probability.

5.5 Ito’s formula

Ito’s formula was established by Itô in 1944. Since Itô stated it as a lemma in
his seminal paper, Itô’s formula is also refereed to in the literature as Itô’s
Lemma. Itô’s Lemma is indeed the Fundamental Theorem in stochastic
calculus.

We have used on many occasions the following elementary formula

X2
tj −X2

tj−1
=
(
Xtj −Xtj−1

)2
+ 2Xtj−1

(
Xtj −Xtj−1

)
.

If in addition (Xt)t≥0 is a continuous square-integrable martingale, then, by
adding up the above identity over j = 1, · · · , n, where 0 = t0 < t1 < · · · <
tn = t is an arbitrary finite partition of the time interval [0, t], one obtains

X2
t −X2

0 = 2
n∑

j=1

Xtj−1

(
Xtj −Xtj−1

)
+

n∑

j=1

(
Xtj −Xtj−1

)2
.
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Letting m(D) → 0, we obtain

X2
t −X2

0 = 2

∫ t

0
XsdXs + 〈X〉t.

which is the Itô formula for the martingale (Xt)t≥0 applied to f(x) = x2. By
using polarization and localization, we can establish the following integration
by parts formula.

Corollary 5.5.1 (Integration by parts) Let X = M + A and Y = N +
B be continuous semimartingales. That is M and N are continuous local
martingales, and A,B are continuous, adapted processes of finite variation.
Then

XtYt −X0Y0 =

∫ t

0
XsdYs +

∫ t

0
YsdXs + 〈M,N〉t .

The following is the fundamental theorem in stochastic calculus.

Theorem 5.5.2 (Itô’s formula) Let X = (X1
t , · · · , Xd

t ) be a continuous
semi-martingale in Rd with decomposition Xi

t =M i
t+A

i
t, whereM

1
t , · · · ,Md

t

are continuous local martingales, and A1
t , · · · , Ad

t are continuous, locally in-
tegrable, adapted processes of finite variation. Let f ∈ C2(Rd,R). Then

f(Xt)− f(X0) =
d∑

i=1

∫ t

0

∂f

∂xi
(Xs)dX

i
s

+
1

2

d∑

i,j=1

∫ t

0

∂2f

∂xi∂xj
(Xs)d〈M i,M j〉s. (5.9)

The first term on the right-hand side of (5.9) can be decomposed into

d∑

j=1

∫ t

0

∂f

∂xi
(Xs)dM

j
s +

d∑

j=1

∫ t

0

∂f

∂xi
(Xs)dA

j
s

so that f(Xt) − f(X0) is again a semi-martingale with its martingale part
given by

Mf
t =

d∑

j=1

∫ t

0

∂f

∂xi
(Xs)dM

j
s .

It follows that

〈Mf ,Mg〉t =
∫ t

0

d∑

i,j=1

∂f

∂xi
(Xs)

∂g

∂xj
(Xs)d〈M i,M j〉s.
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5.5.1 Itô’s formula for BM

If B = (B1
t , · · · , Bd

t )t≥0 is Brownian motion in Rd, then, for f ∈ C2(Rd,R)

f(Bt)− f(B0) =

∫ t

0
∇f(Bs).dBs +

∫ t

0

1

2
∆f(Bs)ds.

Let

Mf
t = f(Bt)− f(B0)−

∫ t

0

1

2
∆f(Bs)ds.

Then Mf is a local martingale and

〈Mf ,Mg〉t =
∫ t

0
〈∇f,∇g〉(Bs)ds.

5.5.2 Proof of Itô’s formula.

Let us prove Itô’s formula in the one-dimensional case. By using the localiza-
tion technique, we only need to prove it for a continuous, square-integrable
martingale M = (Mt)t≥0. Thus we need to show

f(Mt)− f(M0) =

∫ t

0
f ′(Ms)dMs +

1

2

∫ t

0
f ′′(Ms)d〈M〉s. (5.10)

The formula is true for f(x) = x2 (f ′(x) = 2x and f ′′(x) = 2) as we have
already seen that

M2
t −M2

0 = 2

∫ t

0
MsdMs + 〈M〉t.

Suppose (5.10) is true for f(x) = xn, that is

Mn
t −Mn

0 = n

∫ t

0
Mn−1

s dMs +
n(n− 1)

2

∫ t

0
Mn−2

s d〈M〉s.

By applying the integration by parts formula to Mn and M , one obtains

Mn+1
t −Mn+1

0 =

∫ t

0
Mn

s dMs +

∫ t

0
MsdM

n
s + 〈M,Mn〉t

=

∫ t

0
Mn

s dMs +

∫ t

0
Msd

{
nMn−1

s dMs +
n(n− 1)

2
Mn−2

s d〈M〉s
}

+

∫ t

0
nMn−1

s d〈M〉s

= (n+ 1)

∫ t

0
Mn

s dMs +
(n+ 1)n

2

∫ t

0
Mn−1

s d〈M〉s
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which implies that (5.10) holds for power functions xn+1. By linearity Itô’s
formula holds for any polynomial. Now we can use Taylor expansions to
show that it must hold for any C2 function f .

5.6 Selected applications of Itô’s formula

In this section, we present several applications of Itô’s formula.

5.6.1 Lévy’s characterization of Brownian motion

Our first application is Lévy’s martingale characterization of Brownian mo-
tion. Let (Ω,F ,Ft, P ) be a filtered probability space satisfying the usual
condition.

Theorem 5.6.1 LetMt = (M1
t , · · · ,Md

t ) be an adapted, continuous stochas-
tic process on (Ω,F ,Ft, P ) taking values in Rd with initial value zero. Then
(Mt)t≥0 is a Brownian motion if and only if

1. Each M i
t is a continuous square-integrable martingale.

2. M i
tM

j
t − δijt is a martingale, that is,

〈
M i,M j

〉
t
= δijt for every pair

(i, j).

Proof. We have already established the martingale properties of BM in
Proposition 4.1.17, hence we only need to prove the sufficiency of the condi-
tions. Recall that by Theorem 4.1.18, under the assumption of adaptedness
and continuity, (Mt)t≥0 is a Brownian motion if and only if

E
(
e
√
−1〈ξ,Mt−Ms〉

∣∣∣Fs

)
= exp

{
−|ξ|2

2
(t− s)

}
(5.11)

for any t > s and ξ = (ξi) ∈ Rd. We thus consider the adapted process

Zt = exp

(
√
−1

d∑

i=1

ξiM
i
t +

|ξ|2
2
t

)

and we show it is a martingale. To this end, we apply Itô’s formula to
f(x) = ex (in this case f ′ = f ′′ = f) and semi-martingale

Xt =
√
−1

d∑

i=1

ξiM
i
t +

|ξ|2
2
t,



82 CHAPTER 5. ITÔ CALCULUS

and obtain

Zt = Z0 +

∫ t

0
Zsd

(
√
−1

d∑

i=1

ξiM
i
s +

|ξ|2
2
s

)

+
1

2

∫ t

0
Zsd〈

√
−1

d∑

i=1

ξiM
i〉s

= 1 +
√
−1

d∑

i=1

ξi

∫ t

0
ZsdM

i
s +

|ξ|2
2

∫ t

0
Zsds

−1

2

∫ t

0

d∑

i,j=1

ξiξjZsd〈M i,M j〉s

= 1 +
√
−1

d∑

i=1

ξi

∫ t

0
ZsdM

i
s

the last equality follows from

1

2

∫ t

0

d∑

i,j=1

ξiξjZsd〈M i,M j〉s =
1

2
|ξ|2

∫ t

0
Zsds.

due to the assumption that 〈M i,M j〉s = δijs. Since |Zs| = e|ξ|
2s/2, so that

for any T > 0

E

∫ T

0
|Zs|2ds =

∫ T

0
e|ξ|

2sds <∞

and therefore (Zt) ∈ L2(M i) for i = 1, · · · , d as 〈M i〉t = t. It follows that

∫ t

0
ZsdM

i
s ∈ M2

0.

That is, Zs is a continuous, square-integrable martingale with initial value
1. The equality (5.11) follows from the martingale property

E

(
ei〈ξ,Mt〉+ |ξ|2

2
t

∣∣∣∣Fs

)
= ei〈ξ,Ms〉+ |ξ|2

2
s

for t > s.
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5.6.2 Time-changes of Brownian motion

Theorem 5.6.2 (Dambis, Dubins and Schwarz) Let M = (Mt)t≥0 be a
continuous, local martingale on (Ω,F ,Ft, P ) with initial value zero satisfying
〈M〉∞ = ∞, and let

Tt = inf{s : 〈M〉s > t}.
Then Tt is a stopping time for each t ≥ 0, Bt = MTt is an (FTt)-Brownian
motion, and Mt = B〈M〉t .

Proof. The family T = (Tt)t≥0 is called a time-change, because each Tt
is a stopping time (exercise), and obviously t → Tt is increasing (another
exercise). Each Tt is finite P-a.e. because 〈M〉∞ = ∞ P -a.e. (exercise). By
continuity of 〈M〉t

〈M〉Tt
= t P -a.s.

Applying Doob’s optional stopping theorem to the square integrable mar-
tingale (Ms∧Tt)s≥0 and stopping times Tt ≥ Ts (t ≥ s), we obtain that

E (MTt |FTs) =MTs ,

That is Bt = MTt is an (FTt)-local martingale. By the same argument but
applied to the martingale (M2

s∧Tt
− 〈M〉s∧Tt

)s≥0 we have

E
(
M2

Tt
− 〈M〉Tt

|FTs

)
=M2

Ts
− 〈M〉Ts

.

Hence (B2
t − t) is an (FTt)-local martingale. We can prove that t → Bt is

continuous (exercise), so that B = (Bt)t≥0 is an (FTt) Brownian motion.

5.6.3 Stochastic exponentials

In this section we consider a simple stochastic differential equation

dZt = ZtdXt , Z0 = 1 (5.12)

where Xt = Mt + At is a continuous semi-martingale. The solution of (
5.12) is called the stochastic exponential of X. The equation (5.12) should
be understood as an integral equation

Zt = 1 +

∫ t

0
ZsdXs (5.13)

where the integral is taken as the Itô integral. To find the solution to (5.13)
we can look for solutions of the form

Zt = exp(Xt + Vt)
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where (Vt)t≥0, to be determined, is a “correction” term (which has finite
variation) due to Itô integration. Applying Itô’s formula we obtain

Zt = 1 +

∫ t

0
Zsd(Xs + Vs) +

1

2

∫ t

0
Zsd〈M〉s

and therefore, in order to match the equation (5.13) we must choose Vt =
−1

2〈M〉t.

Lemma 5.6.3 Let Xt =Mt+At (whereM is a continuous local martingale,
A is an adapted continuous process with finite total variation) with X0 = 0.
Then

E(X)t = exp

(
Xt −

1

2
〈M〉t

)

is the solution to (5.13).

E(X) is called the stochastic exponential of X = (Xt)t≥0.

Proposition 5.6.4 Let (Mt)t≥0 be a continuous local martingale withM0 =
0. Then the stochastic exponential E(M) is a continuous, non-negative local
martingale.

Remark 5.6.5 According to the definition of the Itô integral, if T > 0 is
such that

E

∫ T

0
e2Mt−〈M〉td〈M〉t <∞ (5.14)

then the stochastic exponential

E(M)t = exp

(
Mt −

1

2
〈M〉t

)

is a non-negative, continuous martingale.

Even if E(M) fails to be a martingale, it is nevertheless a super-martingale.

Lemma 5.6.6 Let X = (Xt)t≥0 be a non-negative, continuous local mar-
tingale. Then X = (Xt)t≥0 is a super-martingale: E(Xt|Fs) ≤ Xs for any
t < s. In particular t → EXt is decreasing, and therefore EXt ≤ EX0 for
any t > 0.
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Proof. Recall Fatou’s lemma: if {fn} is a sequence of non-negative,
integrable functions on a probability space (Ω,F , P ), such that

limn→∞E (fn) < +∞,

then limn→∞fn is integrable and

E (limn→∞fn|G) ≤ limn→∞E (fn|G)

for any sub σ-algebra G (see page 88, D. Williams: Probability with Mar-
tingales).

By definition, there is a sequence of finite stopping times Tn ↑ +∞ P -a.e.
such that XTn = (Xt∧Tn)t≥0 is a martingale for each n. Hence

E (Xt∧Tn |Fs) = Xs∧Tn , ∀t ≥ s, n = 1, 2, · · · .

In particular
E (Xt∧Tn) = EX0

so that, by Fatou’s lemma, Xt = limn→∞Xt∧Tn is integrable. Applying
Fatou’s lemma to Xt∧Tn and G = Fs for t > s we have

E(Xt|Fs) = E
(
lim
n→∞

Xt∧Tn |Fs

)

≤ limn→∞E(Xt∧Tn |Fs)

= limn→∞Xs∧Tn

= Xs

Thus we have shown that X = (Xt)t≥0 is a super-martingale.

Corollary 5.6.7 Let M = (Mt)t≥0 be a continuous local martingale with
M0 = 0. Then E(M) is a super-martingale. In particular,

E exp

(
Mt −

1

2
〈M〉t

)
≤ 1 for all t ≥ 0.

Clearly, a continuous super-martingale X = (Xt)t≥0 is a martingale if
and only if its expectation t→ E(Xt) is constant. Therefore

Corollary 5.6.8 Let M = (Mt)t≥0 be a continuous local martingale with
M0 = 0. Then E(M) is a martingale up to time T , if and only if

E exp

(
MT − 1

2
〈M〉T

)
= 1. (5.15)
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Stochastic exponentials of local martingales play an important rôle in
probability transformations. It is vital in many applications to know whether
the stochastic exponential of a given martingale M = (Mt)t≥0 is indeed a
martingale. A simple sufficient condition to ensure (5.15) is the so-called
Novikov condition stated in Theorem 5.6.9 below (A. A. Novikov: On mo-
ment inequalities and identities for stochastic integrals, Proc. second Japan-
USSR Symp. Prob. Theor., Lecture Notes in Math., 330, 333-339, Springer-
Verlag, Berlin 1973).

Theorem 5.6.9 (A. A. Novikov) Let M = (Mt)t≥0 be a continuous local
martingale with M0 = 0. If

E exp

(
1

2
〈M〉T

)
<∞, (5.16)

then E(M) is a martingale up to time T .

Proof. The following proof is due to J. A. Yan: Critères d’intégrabilité
uniforme des martingales exponentielles, Acta. Math. Sinica 23, 311-318
(1980). The idea is the following, first show that, under the Novikov condi-
tion (5.16), for any 0 < α < 1

E(αM)t ≡ exp

(
αMt −

1

2
α2 〈M〉t

)

is a uniformly integrable martingale up to time T . For any α, E(αM)t is
the stochastic exponential of the local martingale αMt, so that E(αM) is a
non-negative, continuous local martingale, E (E(αM)t) ≤ 1. We also have
the following scaling property

E(αM)t ≡ exp

{
α

(
Mt −

1

2
〈M〉t

)
− 1

2
α (α− 1) 〈M〉t

}

= (E(M)t)
α exp

{
1

2
α (1− α) 〈M〉t

}
.

For any finite stopping time S ≤ T and for any A ∈ FT

E (1AE(αM)S) = E

{
1A (E(M)S)

α exp

[
1

2
α (1− α) 〈M〉S

]}
. (5.17)
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Using Hölder’s inequality with 1
α > 1 and 1

1−α in (5.17) one obtains

E {1AE(αM)S} = E

{
(E(M)S)

α exp

[
1

2
α (1− α) 〈M〉S

]}

≤ {E (E(M)S)}α
{
E

[
1A exp

(
1

2
α 〈M〉S

)]}1−α

≤ {E (E(M)T )}α
{
E

[
1A exp

(
1

2
α 〈M〉T

)]}1−α

≤
{
E

[
1A exp

(
1

2
α 〈M〉T

)]}1−α

≤ E

{
1A exp

(
1

2
〈M〉T

)}
. (5.18)

This gives a uniform bound showing that

{E(αM)S : any stopping times S ≤ T}

is a uniformly integrable family of random variables. As a consequence
E(αM) must be a martingale on [0, T ]. Therefore

E (E(αM)T ) = E (E(αM)0) = 1, ∀α ∈ (0, 1).

Set A = Ω and S = t ≤ T in (5.18), the first inequality of (5.18) becomes

1 = E (E(αM)t)

≤ (E (E(M)t))
α

{
E

(
exp

(
1

2
〈M〉T

))}1−α

for every α ∈ (0, 1). Letting α ↑ 1 we thus obtain

E (E(M)t) ≥ 1

so that E (E(M)t) = 1 for any t ≤ T . It follows that E(M)t is a martingale
up to T .

Consider a standard Brownian motion B = (Bt)t≥0, and a process F =
(Ft)t≥0 ∈ L2. If

E exp

[
1

2

∫ T

0
F 2
t dt

]
<∞,

then

Xt = exp

{∫ t

0
FsdBs −

1

2

∫ t

0
F 2
s ds

}
(5.19)
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is a positive martingale on [0, T ]. For example, for any bounded process
F = (Ft)t≥0 ∈ L2: |Ft(ω)| ≤ C (for all t ≤ T and ω ∈ Ω), where C is a
constant, then

E

{
exp

(
1

2

∫ T

0
F 2
t dt

)}
≤ exp

(
1

2
C2T

)
<∞

so that, in this case, X = (Xt) defined by (5.19) is a martingale up to time
T .

Novikov’s condition is very nice, it is however not easy to verify in many
interesting cases. For example, consider the stochastic exponential of the
martingale

∫ t
0 BsdBs, the Novikov condition requires us to estimate the in-

tegral

E

{
exp

[
1

2

∫ T

0
B2

t dt

]}

which is already not an easy task.
An alternative condition for the stochastic exponential of a local mar-

tingale to be a martingale is provided by Kazamaki’s criterion.

Theorem 5.6.10 If M is a local martingale such that exp(M/2) is a uni-
formly integrable sub-martingale, then E(M) is a uniformly integrable mar-
tingale.

5.6.4 Exponential inequality

We are going to present three significant applications of stochastic exponen-
tials: a sharp improvement of Doob’s maximal inequality for martingales,
Girsanov’s theorem, and the martingale representation theorem. In this
section we improve the maximal inequality.

Recall that, according to Doob’s maximal inequality, if (Xt)t≥0 is a con-
tinuous super-martingale on [0, T ], then for any λ > 0

P

{
sup

t∈[0,T ]
|Xt| ≥ λ

}
≤ 1

λ

(
E(X0) + 2E(X−

T )
)

where x− = −x if x < 0 and = 0 if x ≥ 0. In particular, if (Xt)t≥0 is a
non-negative, continuous super-martingale on [0, T ], then

P

{
sup

t∈[0,T ]
Xt ≥ λ

}
≤ 1

λ
E(X0). (5.20)

This inequality has a significant improvement stated as follows.
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Theorem 5.6.11 Let M = (Mt)t≥0 be a continuous square-integrable mar-
tingale with M0 = 0. Suppose there is a (deterministic) continuous, increas-
ing function a = a(t) such that a(0) = 0, 〈M〉t ≤ a(t) for all t ∈ [0, T ].
Then

P

{
sup

t∈[0,T ]
Mt ≥ λa(T )

}
≤ e−

λ2

2
a(T ). (5.21)

Proof. For every α > 0 and t ≤ T

αMt −
α2

2
〈M〉t ≥ αMt −

α2

2
〈M〉T

≥ αMt −
α2

2
a(T )

so that

E(αM)t ≥ eαMt−α2

2
a(T ) for α > 0.

Hence, by applying Doob’s maximal inequality to the non-negative super-
martingale E(αM) we obtain

P

{
sup

t∈[0,T ]
Mt ≥ λa(T )

}
≤ P

{
sup

t∈[0,T ]
E(αM)t ≥ eαλa(T )−α2

2
a(T )

}

≤ e−αλa(T )+α2

2
a(T )E {E(αM)0}

= e−αλa(T )+α2

2
a(T )

for any α > 0. The exponential inequality follows by setting α = λ.
In particular, by applying the exponential inequality to a standard Brow-

nian motion B = (Bt)t≥0, we have

P

{
sup

t∈[0,T ]
Bt ≥ λT

}
≤ e−

λ2

2
T . (5.22)

By comparing with the exact distribution we can see that this estimate has
the correct exponential behaviour.

5.6.5 Girsanov’s theorem

Assume we are given a filtered probability space (Ω,F ,Ft, P ). Let T > 0,
and Q be a probability measure on (Ω,FT ) such that

dQ

dP

∣∣∣∣
FT

= ξ
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for some non-negative random variable ξ ∈ L1(Ω,FT , P ). By definition, for
any bounded FT -measurable random variable X

∫

Ω
X(ω)Q(dω) =

∫

Ω
X(ω)ξ(ω)P (dω),

which can also be written as

EQ(X) = EP (ξX).

If, however, X is Ft-measurable, t ≤ T , then

EQ(X) = EP (EP (ξX|Ft))

= EP (EP (ξ|Ft)X).

That is, for every t ≤ T

dQ

dP

∣∣∣∣
Ft

= EP (ξ|Ft)

which is a non-negative martingale up to T under the probability measure
P .

Conversely, if T > 0 and Z = (Zt)0≤t≤T is a continuous, positive martin-
gale up to time T , with Z0 = 1, on a filtered probability space (Ω,F ,Ft, P ).
We define a measure Q on (Ω,FT ) by

Q(A) = EP (ZT IA) if A ∈ FT . (5.23)

That is, dQ
dP

∣∣∣
FT

= ZT . Q is a probability measure on (Ω,FT ) as E (ZT ) = 1.

Since (Zt)t≤T is a martingale up to time T , so that dQ
dP

∣∣∣
Ft

= Zt for all t ≤ T .

If (Zt)t≥0 is a positive martingale with Z0 = 1, then there is a probability

measure Q on (Ω,F∞), where F∞ ≡ σ{Ft : t ≥ 0}, such that dQ
dP

∣∣∣
Ft

= Zt

for all t ≥ 0.
We are now in a position to prove Girsanov’s theorem.

Theorem 5.6.12 (Girsanov’s theorem) Let (Mt)t≥0 be a continuous local
martingale on (Ω,F ,Ft, P ) up to time T . Then

Xt =Mt −
∫ t

0

1

Zs
d 〈M,Z〉s

is a continuous local martingale on (Ω,F ,Ft, Q) up to time T .
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Proof. Using the localization technique, we may assume thatM,Z, 1/Z
are all bounded. In this case M and Z are bounded martingales. We want
to prove that X is a martingale under the probability Q:

EQ {Xt|Fs} = Xs for all s < t ≤ T ,

that is

EQ {1A (Xt −Xs)} = 0 for all s < t ≤ T , A ∈ Fs.

By definition

EQ {1A (Xt −Xs)} = EP {(ZtXt − ZsXs)1A}

thus we only need to show that (ZtXt) is a martingale up to time T under
the probability measure P . By use of the integration by parts formula of
Corollary 5.5.1, we have

ZtXt = Z0X0 +

∫ t

0
ZsdXs +

∫ t

0
XsdZs + 〈Z,X〉t

= Z0X0 +

∫ t

0
Zs

(
dMs −

1

Zs
d 〈M,Z〉s

)

+

∫ t

0
XsdZs + 〈Z,X〉t

= Z0X0 +

∫ t

0
ZsdMs +

∫ t

0
XsdZs

which is a local martingale as M and Z are P -martingales.
Since Zt > 0 is a positive martingale up to time T , we may apply the

Itô formula to logZt, to obtain

logZt − logZ0 =

∫ t

0

1

Zs
dZs −

∫ t

0

1

Z2
s

d〈Z〉s,

that is, Zt = E(N)t with

Nt =

∫ t

0

1

Zs
dZs

is a continuous local martingale. Hence Zt = E(N)t solves the Itô integral
equation

Zt = 1 +

∫ t

0
ZsdNs,
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and therefore

〈M,Z〉t = 〈
∫ t

0
dMs,

∫ t

0
ZsdNs〉 =

∫ t

0
Zsd〈N,M〉s.

It follows from this that
∫ t

0

1

Zs
d 〈M,Z〉s = 〈N,M〉t.

Corollary 5.6.13 Let Nt be a continuous local martingale on (Ω,F ,Ft, P ),
N0 = 0, such that its stochastic exponential E(N)t is a continuous martin-
gale up to time T . Define a probability measure Q on the measurable space
(Ω,FT ) by

dQ

dP

∣∣∣∣
Ft

= E(N)t for all t ≤ T .

If M = (Mt)t≥0 is a continuous local martingale under the probability P ,
then

Xt =Mt − 〈N,M〉t
is a continuous, local martingale under Q up to time T . (You should carefully
define the concept of a local martingale up to time T ).

In the next chapter we will give a version of this result for Brownian
motion.

5.7 The martingale representation theorem

The martingale representation theorem is a deep result about Brownian
motion. There is a natural version for multi-dimensional Brownian motion,
however, for simplicity, here we concentrate on one-dimensional Brownian
motion.

Let B = (Bt)t≥0 be a standard Brownian motion in R on a complete
probability space (Ω,F , P ), and (F0

t )t≥0 (together with F0
∞ = ∪F0

t ) be
the filtration generated by the Brownian motion (Bt)t≥0. Let Ft be the
completion, and F∞ = ∪Ft. Note that (Ft)t≥0 is continuous.

Theorem 5.7.1 Let M = (Mt)t≥0 be a square-integrable martingale on
(Ω,F ,Ft, P ). Then there is a stochastic process F = (Ft)t≥0 in L2, such
that

Mt = E(M0) +

∫ t

0
FsdBs a.s.
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for any t ≥ 0. In particular, any martingale with respect to the Brownian
filtration (Ft)t≥0 has a continuous version.

The proof of this theorem relies on two lemmas. Let T > 0 be any fixed
time.

Lemma 5.7.2 The following collection of random variables on (Ω,FT , P )

{
φ(Bt1 , · · · , Btk) : ∀k ∈ Z+, tj ∈ [0, T ] and φ ∈ C∞

0 (Rk)
}

is dense in L2(Ω,FT , P ).

Proof. If X ∈ L2(Ω,FT , P ), then, by definition, there is an F0
T -

measurable function (where by definition, F0
T = σ{Bt : t ≤ T}) which equals

X almost surely. Therefore, without loss of generality, we may assume that
X ∈ L2(Ω,F0

T , P ). LetD = Q∩[0, T ] be the set of all rational numbers in the
interval [0, T ]. Since D is dense in [0, T ], we have that F0

T = σ{Bt : t ∈ D}.
Moreover D is countable, so that we may write D = {t1, · · · , tn, · · · }. Let
Dn = {t1, · · · , tn} for each n, and Gn = σ {Bt1 , · · · , Btn}. Then {Gn} is
increasing, and Gn ↑ F0

T . Let Xn = E (X|Gn). Then (Xn)n≥1 is a square-
integrable martingale, and by the martingale convergence theorem we have

Xn → X almost surely.

Moreover Xn → X in L2. While, for each n, Xn is measurable with respect
to Gn, so that

Xn = fn(Bt1 , · · · , Btn)

for some Borel measurable function fn : Rn → R. Since Xn ∈ L2, we have
that fn ∈ L2(Rn, µ) where µ is a Gaussian measure such that

EX2
n =

∫

Rn

fn(x)
2µ(dx).

Since C∞
0 (Rn) is dense in L2(Rn, µ), for each n, there is a sequence {φnk}

in C∞
0 (Rn) such that φnk → fn in L2(Rn, µ). It follows that

φnn(Bt1 , · · · , Btn) → X

in L2.
If I ⊂ R is an interval, then we use L2(I) to denote the Hilbert space of

all functions h on I which are square-integrable.
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Lemma 5.7.3 Let T > 0. For any h ∈ L2([0, T ]), we define an associated
exponential martingale up to time T as

M(h)t = exp

{∫ t

0
h(s)dBs −

1

2

∫ t

0
h(s)2ds

}
; t ∈ [0, T ]. (5.24)

Then L =span{M(h)T : h ∈ L2([0, T ])} is dense in L2(Ω,FT , P ).

Proof. The conclusion will follow if we can prove the following: if
H ∈ L2(Ω,FT , P ) such that

∫

Ω
HΦdP = 0 for all Φ ∈ L,

then H = 0.
For any 0 = t0 < t1 < · · · < tn = T and ci ∈ R, consider a step function

h(t) = ci for t ∈ (ti, ti+1]. Then

M(h)T = exp

{
∑

i

ci(Bti+1 −Bti)−
1

2

∑

i

c2i (ti+1 − ti)

}
.

Since
∫
ΩHΦdP = 0 for any Φ ∈ L, so that

∫

Ω
H exp

{
∑

i

ci(Bti+1 −Bti)−
1

2

∑

i

c2i (ti+1 − ti)

}
dP = 0.

The deterministic, positive term e−
1
2

∑
i c

2
i (ti+1−ti) can be removed from the

integrand, and it follows therefore that

∫

Ω
H exp

{
∑

i

ci(Bti+1 −Bti)

}
dP = 0.

Since the ci are arbitrary constants,

∫

Ω
H exp

{
∑

i

ciBti

}
dP = 0

for any ci and ti ∈ [0, T ]. Since the left-hand side is analytic in ci, the
equality remains true for any complex numbers ci. If φ ∈ C∞

0 (Rn), then

φ(x) =
1

(2π)n/2

∫

Rn

φ̂(z)ei〈z,x〉dz
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where

φ̂(z) =
1

(2π)n/2

∫

Rn

φ(x)e−i〈z,x〉dx

is the Fourier transform of φ. Hence

∫

Ω
Hφ(Bt1 , · · · , Btn)dP =

1

(2π)n/2

∫

Ω



H

∫

Rn

φ̂(z) exp


i
∑

j

zjBtj






 dzdP

=
1

(2π)n/2

∫

Rn

{
φ̂(z)

∫

Ω
H exp

(
i
∑

i

ziBti

)
dP

}
dz

= 0.

Therefore, for any φ ∈ C∞
0 (Rn),
∫

Ω
Hφ(Bt1 , · · · , Btn)dP = 0. (5.25)

By Lemma 5.7.2, the collection of all functions of the form φ(Bt1 , · · · , Btn)
is dense in L2(Ω,FT , P ) , so that

∫

Ω
HGdP = 0 for any G ∈ L2(Ω,FT , P ).

In particular,
∫
ΩH

2dP = 0 so that H = 0.

Theorem 5.7.4 (Itô’s representation theorem) Let ξ ∈ L2(Ω,FT , P ). Then
there is a process F = (Ft)t≥0 ∈ L2, such that

ξ = E(ξ) +

∫ T

0
FtdBt.

Proof. By Lemma 5.7.3 we only need to show this result for ξ = X(h)T
(where h ∈ L2([0, T ])) defined by (5.24). As X(h)t is an exponential mar-
tingale it must satisfy the following integral equation

X(h)T = 1 +

∫ T

0
X(h)td

(∫ t

0
h(s)dBs

)

= E(X(h)T ) +

∫ T

0
X(h)th(t)dBt.

Therefore taking Ft = X(h)th(t) gives the representation.
The martingale representation theorem now follows easily from the mar-

tingale property and Itô’s representation theorem.
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Chapter 6

Stochastic differential

equations

The main goal of this chapter is to establish the basic existence and unique-
ness theory for a class of stochastic differential equations which are impor-
tant in applications.

6.1 Introduction

Stochastic differential equations (SDE) are ordinary differential equations
perturbed by noise. We will consider a simple class of noises modelled by
Brownian motion. Thus we consider the following type of equation

dXj
t =

n∑

i=1

f ji (t,Xt)dB
i
t + f j0 (t,Xt)dt , j = 1, · · · , N (6.1)

where Bt = (B1
t , · · · , Bn

t )t≥0 is a standard Brownian motion in Rn on a
filtered probability space (Ω,F ,Ft, P ), and

f ji : [0,+∞)× RN → RN

are Borel measurable functions. Of course, the differential equation (6.1)
should be interpreted as an integral equation using Itô’s integration theory.
More precisely, an adapted, continuous, RN -valued stochastic process Xt ≡
(X1

t , · · · , XN
t ) is a solution of (6.1), if

Xj
t = Xj

0 +
n∑

k=1

∫ t

0
f jk(s,Xs)dB

k
s +

∫ t

0
f j0 (s,Xs)ds (6.2)

97
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for j = 1, · · · , N . Since we are concerned only with the distribution deter-
mined by the solution (Xt)t≥0 of (6.1), we therefore expect that any solution
of the SDE (6.1) should have the same distribution for any Brownian motion
B = (Bt)t≥0. Thus we are led to different concepts of existence and unique-
ness of solutions: strong solutions and weak solutions, pathwise uniqueness
and uniqueness in law.

Definition 6.1.1 1) An adapted, continuous, RN -valued stochastic process
X = (Xt)t≥0 on (Ω,F ,Ft, P ) is a (weak) solution of (6.1), if there is a
Brownian motion W = (Wt)t≥0 in Rn, adapted to the filtration (Ft), such
that

Xj
t −Xj

0 =
n∑

l=1

∫ t

0
f jl (s,Xs)dW

l
s +

∫ t

0
f j0 (s,Xs)ds, j = 1, · · · , N .

In this case we also call the pair (X,W ) a (weak) solution of (6.1).
2) Given a standard Brownian motion B = (Bt)t≥0 in Rn on (Ω,F , P )

with its natural filtration (Ft)t≥0, an adapted, continuous stochastic process
X = (Xt)t≥0 on (Ω,F ,Ft, P ) is a strong solution of (6.1), if

Xj
t −Xj

0 =
n∑

i=1

∫ t

0
f ji (s,Xs)dB

i
s +

∫ t

0
f j0 (s,Xs)ds.

We also have different concepts of uniqueness.

Definition 6.1.2 Consider the SDE (6.1).

1. We say that pathwise uniqueness holds for (6.1), if whenever (X,B)
and (X̃, B) are two solutions defined on the same filtered space and
with the same Brownian motion B, and X0 = X̃0, then X = X̃.

2. It is said that uniqueness in law holds for (6.1), if (X,B) and (X̃, B̃)
are two solutions (with possibly different Brownian motions B and
B̃, which may even be defined on different probability spaces), and
X0 and X̃0 possess the same distribution, then X and X̃ have same
distribution.

We quote an important result connecting these different notions.

Theorem 6.1.3 (Yamada-Watanabe) Existence of weak solutions which are
pathwise unique implies the existence of strong solutions as well as unique-
ness in law.



6.2. SEVERAL EXAMPLES 99

The following is a simple example of an SDE which has no strong solu-
tion, but possesses weak solutions and uniqueness in law holds.

Example 6.1.4 (H. Tanaka) Consider the 1-dimensional stochastic differ-
ential equation:

Xt =

∫ t

0
sgn(Xs)dBs , 0 ≤ t <∞

where sgn(x) = 1 if x ≥ 0, and equals −1 for negative value of x.

1. Uniqueness in law holds, since X is a standard Brownian motion by
applying Lévy’s characterization of BM.

2. If (X,B) is a weak solution, then symmetry shows that (−X,B) is
also a weak solution.

3. There is a weak solution. Let Wt be a one-dimensional Brownian
motion, and let Bt =

∫ t
0 sgn(Ws)dWs. Then B is a one-dimensional

Brownian motion, and

Wt =

∫ t

0
sgn(Ws)dBs,

so that (W,B) is a weak solution.

4. Pathwise uniqueness does not hold by 2.

5. There is no strong solution.

6.2 Several examples

6.2.1 Linear-Gaussian diffusions

Linear stochastic differential equations can be solved explicitly. Consider

dXj
t =

n∑

i=1

σji dB
i
t +

N∑

k=1

βjkX
k
t dt (6.3)

(j = 1, · · · , N), where B is a Brownian motion in Rn, σ = (σji ) a constant

N ×n matrix, and β = (βjk) a constant N ×N matrix. (6.3) may be written
as

dXt = σdBt + βXtdt.
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Let

eβt =
∞∑

k=0

tk

k!
βk

be the exponential of the square matrix β. Using Itô’s formula, we have

e−βtXt −X0 =

∫ t

0
e−βsdXs −

∫ t

0
e−βsβXsds

=

∫ t

0
e−βs(dXs − βXsds)

=

∫ t

0
e−βsσdBs

so that

Xt = eβtX0 +

∫ t

0
eβ(t−s)σdBs.

In particular, if X0 = x, then Xt has a normal distribution with mean eβtx.
For example, if n = N = 1, then

Xt ∼ N(eβtx,
σ2

2

(
e2βt − 1

)
).

It can be shown that (Xt) is a diffusion process, and thus its distribution can
be described by its probability transition function Pt(x, dz). By definition

(Ptf)(x) ≡
∫

RN

f(z)Pt(x, dz)

= E (f(Xt)|X0 = x) ,

thus

(Ptf)(x) = E (f(Xt)|X0 = x)

=

∫

R

f(z)
1√

2π σ2

2 (e2βt − 1)
exp

(
− |z − eβtx|2

σ2

2 (e2βt − 1)

)
dz

=

∫

R

f(eβtx+

√
σ2

2
(e2βt − 1)z)

1√
2π

exp

(
−|z|2

2

)
dz

= Ef(eβtx+

√
σ2

2
(e2βt − 1)ξ)

where ξ has the standard normal distribution N(0, 1). From the second line
of the above formula, by comparison with the definition of Pt(x, dz), we can
conclude that

Pt(x, dz) = p(t, x, z)dz
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with

p(t, x, z) =
1√

2π σ2

2 (e2βt − 1)
exp

(
− |z − eβtx|2

σ2

2 (e2βt − 1)

)
.

p(t, x, z) is called the transition density of the diffusion process (Xt)t≥0. The
above formula, has a probabilistic representation

(Ptf)(x) = Ef(eβtx+

√
σ2

2
(e2βt − 1)ξ)

which is useful in some computations.

Remark 6.2.1 It is easy to see from the above representation that

d

dx
(Ptf) = eβtPt

(
d

dx
f

)
.

The distribution of (Xt) is determined by the transition density p(t, x, z).
Indeed, for any 0 < t1 < · · · < tk, the joint distribution of (Xt1 , · · · , Xtk) is
Gaussian, and its pdf is

p(t1, x, z1)p(t2 − t1, z1, z2) · · · p(tk − tk−1, zk−1, zk).

If B = (B1
t , · · · , Bn

t )t≥0 is a Brownian motion in Rn, then the solution
Xt of the SDE:

dXt = dBt − (AXt) dt

is called the Ornstein-Uhlenbeck process, where A ≥ 0 is a d × d matrix
called the drift matrix. Hence we have

Xt = e−AtX0 +

∫ t

0
e−(t−s)AdBs.

Exercise 6.2.2 If X0 = x ∈ Rn, compute Ef(Xt), where Xt is the Ornstein-
Uhlenbeck process with drift matrix A.

6.2.2 Geometric Brownian motion

The Black-Scholes model of Mathematical Finance satisfies the stochastic
differential equation

dSt = St (µdt+ σdBt) . (6.4)

By construction the solution to (6.4) is the stochastic exponential of

∫ t

0
µds+

∫ t

0
σdBs.
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Hence

St = S0 exp

(∫ t

0
σdBs +

∫ t

0

(
µ− 1

2
σ2
)
ds

)
.

In the case σ and µ are constants, then

St = S0 exp

(
σBt +

(
µ− 1

2
σ2
)
t

)

which is called geometric Brownian motion. If S0 = x > 0, then St remains
positive, and

logSt = log x+ σBt +

(
µ− 1

2
σ2
)
t

has a normal distribution with mean log x +
(
µ− 1

2σ
2
)
t and variance σ2.

Again, as a solution to the stochastic differential equation (6.4), (St)t≥0 is
a diffusion process, its distribution is determined by its transition function
Pt(x, dz) (unfortunately we have to use the same notation as in the last
sub-section), and according to the definition

∫

R

f(z)Pt(x, dz) = E (f(Xt)|X0 = x)

= E
(
f(xeσBt+(µ− 1

2
σ2)t)

)

=

∫

R

f(xeσz+(µ−
1
2
σ2)t)

1√
2πt

e−
z2

2πtdz

=

∫ ∞

0
f(y)

1√
2πt

1

σy
e−

1
2πt(

1
σ
log y

x
−(µ

σ
− 1

2
σ))

2

dy

where we assume that σ > 0 and have made the change of variables

xeσz+(µ−
1
2
σ2)t = y.

As usual, we define (Ptf)(x) =
∫
R
f(z)Pt(x, dz). By the third line of the

previous formula

(Ptf)(x) =

∫

R

f(xeσz+(µ−
1
2
σ2)t)

1√
2πt

e−
z2

2πtdz

=

∫

R

f(xeσ
√
ty+(µ− 1

2
σ2)t)

1√
2π
e−

y2

2π dy

= E
(
f(xeσ

√
tξ+(µ− 1

2
σ2)t)

)
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(we have made a change of variable z = sqrtty), where ξ ∼ N(0, 1). Com-
paring with the definition of Pt(x, dy) we have

Pt(x, dy) =
1√
2πt

1

σy
e−

1
2πt(

1
σ
log y

x
−(µ

σ
− 1

2
σ))

2

dy on (0,+∞)

That is, (St) has the transition density

p(t, x, y) =
1√
2πt

1

σy
e−

1
2πt(

1
σ
log y

x
−(µ

σ
− 1

2
σ))

2

on (0,+∞).

and, therefore, for geometric Brownian motion

(Ptf)(x) =

∫ ∞

0

1√
2πt

1

σy
e−

1
2πt(

1
σ
log y

x
−(µ

σ
− 1

2
σ))

2

f(y)dy

for any x > 0.

6.2.3 The Cameron-Martin formula

Consider a simple stochastic differential equation

dXt = dBt + b(t,Xt)dt (6.5)

where b(t, x) is a bounded, Borel measurable function on [0,+∞) × R. We
may solve (6.5) by the technique of change of probability measure.

Let (Wt)t≥0 be a standard Brownian motion on (Ω,F ,Ft, P ), and define
a probability measure Q on (Ω,F∞) by

dQ

dP

∣∣∣∣
Ft

= E(N)t for all t ≥ 0

where Nt =
∫ t
0 b(s,Ws)dWs is a martingale (under the probability measure

P ), with 〈N〉t =
∫ t
0 b(s,Ws)

2ds, which is bounded on any finite interval.
Hence

E(N)t = exp

(∫ t

0
b(s,Ws)dWs −

1

2

∫ t

0
b(s,Ws)

2ds

)

is a martingale. According to Girsanov’s theorem

Bt ≡Wt −W0 − 〈W,N〉t
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is a martingale under the probability measure Q, and 〈B〉t = 〈W 〉t = t.
By Lévy’s martingale characterization of Brownian motion, (Bt)t≥0 is a
Brownian motion. Moreover

〈W,N〉t = 〈
∫ t

0
dWs,

∫ t

0
b(s,Ws)dWs〉

=

∫ t

0
b(s,Ws)ds

and therefore

Wt −W0 −
∫ t

0
b(s,Ws)ds = Bt

is a standard Brownian motion on (Ω,F , Q). Thus

Wt =W0 +Bt +

∫ t

0
b(s,Ws)ds (6.6)

so that (Wt)t≥0 on (Ω,F∞, Q) is a solution of (6.5). The solution we have
just constructed is a weak solution of SDE (6.5).

Theorem 6.2.3 (Cameron-Martin formula) Let b(t, x) = (b1(t, x), · · · , bn(t, x))
be bounded, Borel measurable functions on [0,+∞)×Rn. LetWt = (W 1, · · · ,Wn

t )
be a standard Brownian motion on a filtered probability space (Ω,F ,Ft, P ),
and let F∞ = σ{Ft, t ≥ 0}. Define a probability measure Q on (Ω,F∞) by

dQ

dP

∣∣∣∣
Ft

= e
∑n

k=1

∫ t

0 bk(s,Ws)dBk
s− 1

2

∑n
k=1

∫ t

0 |bk(s,Ws)|2ds for t ≥ 0.

Then (Wt)t≥0 under the probability measure Q is a solution to

dXj
t = dBj

t + bj(t,Xt)dt (6.7)

for some Brownian motion (B1
t , · · · , Bn

t )t≥0 under the probability measure
Q.

On the other hand, if (Xt) is a solution of SDE (6.7) on some probability
space (Ω,F ,Ft, P ) and we define P̃ by

dP̃

dP

∣∣∣∣∣
Ft

= exp

{
−

n∑

k=1

∫ t

0
bk(s,Xs)dB

k
s − 1

2

n∑

k=1

∫ t

0

∣∣∣bk(s,Xs)
∣∣∣
2
ds

}
for t ≥ 0

we may show that (Xt)t≥0 under the probability measure P̃ is a Brown-
ian motion. Therefore the solution to the SDE (6.7) is unique in law: all
solutions have the same distribution.
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6.3 Existence and uniqueness

In this section we present a fundamental result on the existence and unique-
ness of strong solutions.

6.3.1 Strong solutions: existence and uniqueness

By definition, any strong solution is a weak solution. We next prove a basic
existence and uniqueness theorem for a stochastic differential equation under
a global Lipschitz condition. Our proof will rely on two inequalities: The
Gronwall inequality and Doob’s Lp-inequality (Theorem 3.2.5).

Lemma 6.3.1 (The Gronwall inequality) If a non-negative function g sat-
isfies the integral equation

g(t) ≤ h(t) + α

∫ t

0
g(s)ds, 0 ≤ t ≤ T

where α is a constant and h : [0, T ] → R is an integrable function, then

g(t) ≤ h(t) + α

∫ t

0
eα(t−s)h(s)ds , 0 ≤ t ≤ T .

Proof. Let F (t) =
∫ t
0 g(s)ds. Then F (0) = 0 and

F ′(t) ≤ h(t) + αF (t)

so that (
e−αtF (t)

)′ ≤ e−αth(t).

Integrating the differential inequality we obtain

∫ t

0

(
e−αsF (s)

)′
ds ≤

∫ t

0
e−αsh(s)ds

and therefore

F (t) ≤
∫ t

0
eα(t−s)h(s)ds

which yields Gronwall’s inequality.
Consider the following stochastic differential equation

dXj
t =

n∑

l=1

f jl (t,Xt)dB
l
t + f j0 (t,Xt)dt ; j = 1, · · · , N (6.8)
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where f jk(t, x) are Borel measurable functions on R+×RN , which are bounded
on any compact subset in RN . We are going to show the existence and
uniqueness of strong solutions by Picard iteration. The main ingredient in
the proof is a special case of Doob’s Lp- inequality: if (Mt)t≥0 is a square-
integrable, continuous martingale with M0 = 0, then for any t > 0

E

{
sup
s≤t

|Ms|2
}

≤ 4 sup
s≤t

E
(
|Ms|2

)
= 4E〈M〉t. (6.9)

Lemma 6.3.2 Let (Bt)t≥0 be a standard BM in R on (Ω,Ft,F , P ), and
(Zt)t≥0 and (Z̃t)t≥0 be two continuous, adapted processes. Let f(t, x) be a
Lipschitz function

|f(t, x)− f(t, y)| ≤ C|x− y| ; ∀t ≥ 0, x, y ∈ R

for some constant C.

1. Let

Mt =

∫ t

0
f(s, Zs)dBs −

∫ t

0
f(s, Z̃s)dBs ∀t ≥ 0.

Then

E sup
s≤t

|Ms|2 ≤ 4C2

∫ t

0
E
∣∣∣Zs − Z̃s

∣∣∣
2
ds

for all t ≥ 0.

2. If

Nt =

∫ t

0
f(s, Zs)ds−

∫ t

0
f(s, Z̃s)ds ∀t ≥ 0

then

E sup
s≤t

|Ns|2 ≤ C2t

∫ t

0
E
∣∣∣Zs − Z̃s

∣∣∣
2
ds ∀t ≥ 0.

Proof. To prove the first statement, we notice that

sup
s≤t

|Ms|2 = sup
s≤t

∣∣∣∣
∫ s

0

(
f(u, Zu)− f(u, Z̃u)

)
dBu

∣∣∣∣
2



6.3. EXISTENCE AND UNIQUENESS 107

so that, by Doob’s L2-inequality

E sup
s≤t

|Ms|2 = E sup
s≤t

∣∣∣∣
∫ s

0

(
f(u, Zu)− f(u, Z̃u)

)
dBu

∣∣∣∣
2

≤ 4E

∣∣∣∣
∫ t

0

(
f(s, Zs)− f(s, Z̃s)

)
dBs

∣∣∣∣
2

= 4E

∫ t

0

∣∣∣f(s, Zs)− f(s, Z̃s)
∣∣∣
2
ds

≤ 4C2

∫ t

0
E
∣∣∣Zs − Z̃s

∣∣∣
2
ds.

Next we prove the second claim. Indeed

sup
s≤t

|Ns|2 = sup
s≤t

∣∣∣∣
∫ s

0

(
f(u, Zu)− f(u, Z̃u)

)
du

∣∣∣∣
2

≤
(∫ t

0

∣∣∣f(s, Zs)− f(s, Z̃s)
∣∣∣ ds
)2

≤ t

∫ t

0

∣∣∣f(s, Zs)− f(s, Z̃s)
∣∣∣
2
ds

≤ C2t

∫ t

0

∣∣∣Zs − Z̃s

∣∣∣
2
ds

where the second inequality follows from the Schwartz inequality.

Theorem 6.3.3 Consider SDE (6.8). Suppose that f ji for i = 1, . . . , n, j =
1, . . . , N satisfy the Lipschitz condition:

∣∣∣f ji (t, x)− f ji (t, y)
∣∣∣ ≤ C|x− y| (6.10)

and the linear-growth condition:
∣∣∣f ji (t, x)

∣∣∣ ≤ C(1 + |x|) (6.11)

for t ∈ R+ and x, y ∈ RN . Then for any η ∈ L2(Ω,F0, P ) and a standard
Brownian motion Bt = (Bi

t) in Rn, there is a unique strong solution (Xt) of
(6.8) with X0 = η.

Proof. For simplicity, let us prove a special case of this important
theorem: the existence and uniqueness of solutions for the one-dimensional
stochastic differential equation

dXt = f(t,Xt)dBt , X0 = η,
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and leave the details of the proof for the general case as an exercise. As
in the case of ODEs, we construct an approximation solution via Picard
iteration. Let

Y0(t) = η

and set

Yn+1(t) = η +

∫ t

0
f(s, Yn(s))dBs,

for n = 0, 1, 2, · · · . We are going to show that, for every T > 0, the sequence
{Yn(t)} converges to a solution Y (t) uniformly on [0, T ] almost surely. Note
that every Yn is a continuous square-integrable martingale. Indeed

E sup
0≤s≤t

|Y1(s)− Y0(s)|2 ≤ E sup
0≤s≤t

(∫ s

0
|f(τ, η)|dBτ

)2

≤ 4E

∫ t

0
f(τ, η)2ds

≤ 8tC
(
1 + Eη2

)

and, for any t ≤ T ,

E sup
s≤t

|Yn+1(s)− Yn(s)|2 = E sup
s≤t

∣∣∣∣
∫ s

0
(f(r, Yn(r))− f(r, Yn−1(r))) dBr

∣∣∣∣
2

≤ 4E

∫ t

0
(f(s, Yn(s))− f(s, Yn−1(s)))

2 ds

where the second inequality follows from Kolmogorov’s inequality. As f is
Lipschitz continuous, we have that

∫ t

0
(f(s, Yn(s))− f(s, Yn−1(s)))

2 ds

≤ C2

∫ t

0
|Yn(s)− Yn−1(s)|2ds

≤ C2t sup
s≤t

|Yn(t)− Yn−1(t)|2 .

Combining this with the previous inequality, we obtain

E sup
s≤t

|Yn+1(s)− Yn(s)|2 ≤ 4C2tE sup
s≤t

|Yn(t)− Yn−1(t)|2

for any t ≤ T , and therefore

E sup
s≤t

|Yn+1(s)− Yn(s)|2 ≤
(
4C2

)n
tn

n!
E sup

s≤t
|Y1(t)− Y0(t)|2
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for all t ≤ T . In particular

E sup
s≤T

|Yn+1(t)− Yn(t)|2 ≤
(
4C2

)n
Tn

n!
E sup

s≤T
|Y1(t)− Y0(t)|2

so that

∞∑

n=0

E sup
s≤T

|Yn+1(t)− Yn(t)|2 ≤
∞∑

n=0

(
4C2

)n
Tn

n!
E sup

s≤T
|Y1(t)− Y0(t)|2

< ∞.

Hence {Yn : n ≥ 1} is a Cauchy sequence in M2, so that

Yn(t) → Xt uniformly on [0, T ], P -a.s.

It is easy to see that (Xt) is a strong solution of the stochastic differential
equation.

Next we prove the uniqueness. Let Y and Z be two solutions with the
same Brownian motion B. Then

Yt = η +

∫ t

0
f(s, Ys)dBs

and

Zt = η +

∫ t

0
f(s, Zs)dBs.

Then, as in the proof of the existence,

E
(
|Yt − Zt|2

)
≤ 4C2

∫ t

0
E|Ys − Zs|2ds

The Gronwall inequality implies thus that

E
(
|Yt − Zt|2

)
= 0,

giving the uniqueness.

Remark 6.3.4 The sequence of iterations Yn constructed in the proof of
Theorem 6.3.3 is a function of the Brownian motion B, and Yn(t) only
depends on η and Bs, 0 ≤ s ≤ t.
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6.3.2 Continuity in the initial conditions

Theorem 6.3.5 We make the same assumptions as in Theorem 6.3.3. Given
a BM B = (Bt)t≥0 in Rn on (Ω,F ,Ft, P ), let (X

x(t))t≥0 be the unique strong
solution of (6.8). Then x → Xx is uniformly continuous almost surely on
any finite interval [0, T ]:

lim
δ↓0

sup
|x−y|<δ

E

{
sup

0≤t≤T
|Xx(t)−Xy(t)|2

}
= 0. (6.12)

Proof. We only consider the 1-dimensional case. Thus

Xx(t) = x+

∫ t

0
f1(s,X

x(s))dBs +

∫ t

0
f0(s,X

x(s))ds

and

Xy(t) = y +

∫ t

0
f1(s,X

y(s))dBs +

∫ t

0
f0(s,X

y(s))ds.

Therefore, by Doob’s maximal inequality,

E

{
sup

0≤t≤T
|Xx(t)−Xy(t)|2

}
≤ 3|x− y|2

+3E

{
sup

0≤t≤T

∣∣∣∣
∫ t

0
(f1(s,X

x(s))− f1(s,X
y(s)))dBs

∣∣∣∣
2
}

+3E

{
sup

0≤t≤T

∣∣∣∣
∫ t

0
(f0(s,X

x(s))− f0(s,X
y(s)))ds

∣∣∣∣
2
}

≤ 3|x− y|2 + 12E

{∣∣∣∣
∫ T

0
(f1(s,X

x(s))− f1(s,X
y(s))) dBs

∣∣∣∣
2
}

+3TE

{∫ T

0
|f0(Xx(s))− f0(X

y(s))|2 ds
}

≤ 3|x− y|2 + 12E

{∫ T

0
|f1(s,Xx(s))− f1(s,X

y(s))|2 ds
}

+3TC2E

{∫ T

0
|Xx(s)−Xy(s)|2 ds

}

≤ 3|x− y|2 + 3C2(4 + T )

∫ T

0
E
(
|Xx(t)−Xy(t)|2

)
dt.



6.4. MARTINGALES AND WEAK SOLUTIONS 111

Setting

∆(t) = E

{
sup
0≤s≤t

|Xx(s)−Xy(s)|2
}
,

then we have

∆(T ) ≤ 3|x− y|2 + 3C2(4 + T )

∫ T

0
∆(t)dt

and therefore by Gronwall’s inequality

∆(T ) ≤ 6|x− y|2 exp(12C2 + 3TC2)

which yields (6.12).

6.4 Martingales and weak solutions

For simplicity, let us consider the following one-dimensional, homogenous
SDE

dXt = σ(Xt)dBt + b(Xt)dt (6.13)

where σ ∈ C∞(R) is a positive smooth function with at most linear growth,
and b ∈ C∞(R) has at most linear growth. Let X = (Xt)≥0 be the strong
solution with initial value X0 on a filtered probability space (Ω,F ,Ft, P ).
If f ∈ C2

b (R
N ,R), then by Itô’s formula

f(Xt)− f(X0) =

∫ t

0
f ′(Xs)dXs +

1

2

∫ t

0
f ′′(Xs)d〈X〉s

=

∫ t

0
f ′(Xs) (σ(Xs)dBs + b(Xs)ds)

+
1

2

∫ t

0
f ′′(Xs)σ

2(Xs)ds

=

∫ t

0
σ(Xs)f

′(Xs)dBs +

∫ t

0

{
1

2
σ2f ′′ + bf ′

}
(Xs)ds.

Let us introduce

L =
1

2
σ(x)2

d2

dx2
+ b(x)

d

dx
(6.14)

which is an elliptic differential operator of second-order. Then the previous
formula may be written as

f(Xt)− f(X0) =

∫ t

0
σ(Xs)f

′(Xs)dBs +

∫ t

0
(Lf)(Xs)ds.
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If we set

Mf
t = f(Xt)− f(X0)−

∫ t

0
(Lf)(Xs)dBs,

then

Mf
t =

∫ t

0
σ(Xs)f

′(Xs)dBs

is a continuous local martingale on (Ω,F ,Ft, P ), and

〈Mf ,Mg〉t =
∫ t

0
(σ2f ′)(Xs)ds.

Lemma 6.4.1 If (Xt)t≥0 is a strong solution to the SDE (6.13) on (Ω,F ,Ft, P )
(with a given Brownian motion) then for any f ∈ C2

b (R)

Mf
t = f(Xt)− f(X0)−

∫ t

0
(Lf)(Xs)ds

is a continuous local martingale under the probability measure P , where L
is defined by (6.14).

For example, if σ = 1 and b = 0 (in this case L = 1
2

d2

dx2 = 1
2∆), then

(Bt)t≥0 itself is a strong solution to

dXt = dBt

so that

Mf
t = f(Bt)− f(B0)−

1

2

∫ t

0
(∆f)(Bs)ds

is a martingale under P . On the other hand, Lévy’s martingale characteri-
zation shows that the previous property, that

f(Bt)− f(B0)−
1

2

∫ t

0
(∆f)(Bs)ds

is a martingale, which in particular implies that Xj
t and Xj

iX
i
t − δijt are

martingales, completely characterizes Brownian motion. Therefore we may
hope that the martingale property of all theMf should completely determine
the distribution of a solution (Xt)t≥0 to the SDE (6.13), and hence show the
existence of a weak solution to (6.13). Thus we give
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Definition 6.4.2 Let L be a linear operator on C∞(R). Let (Xt)t≥0 be) a
stochastic process on a filtered space (Ω,F ,Ft, P ). Then we say that (Xt)t≥0

together with the probability P is a solution to the L-martingale problem, if
for every f ∈ C∞

b (R)

Mf
t ≡ f(Xt)− f(X0)−

∫ t

0
Lf(Xs)ds

is a local martingale under the probability P .

Therefore a strong solution (Xt)t≥0 of SDE (6.13) on (Ω,F , P ) is a so-
lution to the L-martingale problem, where L is given by (6.14):

Mf
t = f(Xt)− f(X0)−

∫ t

0
Lf(Xs)ds

is a martingale under P . Moreover, since

L(fg)− f (Lg)− g (Lf) = σ2f ′

we thus have

〈Mf ,Mg〉t =
∫ t

0
{L(fg)− f (Lg)− g (Lf)} (Xs)ds.

Conversely, we can show that any solution to the L-martingale problem
is a weak solution to SDE.

Theorem 6.4.3 Let b, σ be Borel measurable functions on R which are
bounded on any compact subset, and with σ > 0. Let

L =
1

2
σ(x)2

d2

dx2
+ b(x)

d

dx
.

If (Xt)t≥0 on (Ω,F , P ) is a continuous process solving the L-martingale
problem: for any f ∈ C2

b (R)

Mf
t = f(Xt)− f(X0)−

∫ t

0
Lf(Xs)ds

is a continuous local martingale, then (Xt)t≥0 on (Ω,F , P ) is a weak solution
to the SDE

dXt = σ(Xt)dBt + b(Xt)dt. (6.15)
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We give an outline of the proof. To show (Xt)t≥0 on (Ω,F , P ) is a weak
solution, we need to construct a Brownian motion B = (Bt)t≥0 such that

Xt = X0 +

∫ t

0
σ(Xs)dBs +

∫ t

0
b(Xs)ds. (6.16)

The key to the proof is to compute 〈X〉t, and the result is

〈
Mf ,Mg

〉

t
=

∫ t

0
(L(fg)− fLg − gLf)(Xs)ds

=

∫ t

0

(
σ2
∂f

∂x

∂g

∂x

)
(Xs)ds.

In particular, if we choose f(x) = x the coordinate function (and write in
this case Mf as M), then

〈M〉t =
∫ t

0
(σ(Xs))

2 ds

so that

Bt =

∫ t

0

1

σ(Xs)
dMs

is a Brownian motion (by Lévy’s martingale characterization for Brownian
motion). It is then obvious that (Xt, Bt) satisfies the stochastic integral
equation (6.16), so that (Xt)t≥0 is a weak solution to (6.15).

For the one-dimensional case more precise results are available due to
Engelbert and Schmidt, see for instance Kallenberg.


