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Introduction

These notes are slightly different in spirit from
most parts of undergraduate pure mathematics. Surfaces are
things which everyone can see, and the questions we ask about
them are very natural and interesting ones, which - roughly
at least - are easily explained to a layman. From the point
of view of the foundations of mathematics, however, a smooth
surface is a concept of a much higher order of complexity
and sophistication than, say, a group or a ring. A geometer
is no more concerned with this conceptual sophistication
than is a cook with biochemistry. He cannot completely
ignore the foundations of the subject without becoming
hopelessly imprecise and inaccurate; but if he is to do
geometry rather than something else he has to keep the
foundations firmly in the background. In a course of the
length of this one it would be very easy to devote the whole
space to the careful definition of smooth surfaces and smooth
maps, and not get to geometry at all. To avoid that I have
decided resolutely not to follow the prevailing style of
undergraduate exposition, which amounts to spelling out
explicitly every idea that is intended to pass through the
reader's mind. Although I realize that many students find
such a style reassuring I am not convinced that it is healthy,
or even that it serves the purpose of making the subject
clear and "easy"; I believe that questions of light and shade,
and perspective, are essential for real understanding. Thus
in these notes I never discuss such points as whether the

composite of smooth maps is smooth, and I have put the inverse




and implicit function theorems at the end in an appendix

to emphasize that they are not themselves geometry. My
feeling is that if a reader is perceptive enough to be
disturbed when I define a smooth function on an open interval
and later speak of smooth functions on closed intervals
without commenting on one-sided derivatives, then he will be
able to provide his own remedy; and if he does not notice

the point I think it is best to economize his powers by not

directing them to diversionary issues.

Another feature of my style which some may not like is
that I have frequently mentioned results which are not proved
in the course but which I think readers should be aware of:
the fact, for example, that every surface can be covered by

conformal charts.

The essential part of these notes consists of the
local differential geometry of surfaces. Nevertheless I have
devoted the first four sections entirely to topology. A
number of motives influenced me to do this. One was to show
the interplay between local and global properties, which I
regard as the most interesting aspect of differential
geometry, and which is beautifully exemplified in the
Gauss-Bonnet theorem relating the topology of a surface to
its curvature. But a more basic motive was just to emphasize
that a topological space is an extemely natural concept. I
feel sure that the idea of a topology on a sef comes as
readily to the mind as the idea of a set itself. Anyone who
is happy with the set of all colours - I mean colours as one

finds them on colour charts in paint shops - will know what



..3._
is meant by saying that a colour is changing continuously
or discontinuously. It has been one of the triumphs of
mathematical formalization to see that the intuitively
clear but nevertheless elusive idea of a topology on a set
amounts to the knowledge of when a subset is a "neighbour-
hood" of one of its points, or - less illuminatingly still -
the knowledge of which subsets are "open"; but experience
has shown me that the formal definition does the opposite of
giving undergraduates the right idea. I hope that thinking
explicitly about the topology of surfaces will do something

to redress the balance.

Considerations of the same kind led me to spend some
time discussing "abstract" surfaces - those which do not
arise as subsets of 123. The fact that abstractly defined
sets often have a significant geometry is, I believe, one
of the most valuable ideas that mathematics has to offer;
and at the same time it seems one of the hardest to make

clear. (Its importance has been shown most strikingly in

recent particle physics.)

In short, readers of these notes who want to do the
minimum for the sake of examinatibns can pass fleetingly over
§§1-5, and can ignore "abstract" surfaces and everything
concerned with complex numbers completely. The contents of
these sections are hardly referred to in the sequel. I hope,
all the same, that many readers will find them interesting

and profitable.

Finally, what is the position of the theory of surfaces

in present-day mathematics? Most geometrical research
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nowadays is concerned with manifolds of dimension greéter
than two. From that point of view the role of the theory
of surfaces is as a useful simple prototype. But there are
a number of questions concerning surfaces in which interest
is still very alive. One such is the theory of minimal
surfaces (i.e. surfaces of minimal area spanning a given
curve in space). Another is concerned with the "ergodic"
aspects of geodesics: on many closed surfaces, but not on
all, almost all geodesics eventually pass arbitrarily close
to every point of the surface. The most important area of
active research, however, is concerned with the study of
the totality of possible metrics which a given surface can
have: it turns out that this reduces to studying the
surfaces from a holomorphic point of view, i.e. considering

them as Riemann surfaces.

There are many books about the classical differential
geometry of surfaces, all covering much the same ground.
An excellent account, which is very thorough and goes far
beyond the material here, can be found in

M.P. do Carmo, Differential Geometry of Curves and Surfaces
(Prentice Hall)

It contains in particular a very good supply of suitable

exercises.

I am most grateful to Glenys Luke and Wilson Sutherland

for helpful comments on the manuscript of these notes.



§1 The definition of a surface, and some examples

Definition (1.1) A surface is a Hausdorff topological

space which is locally homeomorphic to Iiz.

This definition requires some comments. First, to

say that a space X is locally homeomorphic to 122 means

that each point x€ X is contained in an open set U which is

homeomorphic to an open set V of Iiz.

We ask for the space to be Hausdorff to eliminate
perverse examples which do not resemble our intuition of a
surface. A space whose topology is defined by a metric is
automatically Hausdorff. 1In all the examples of interest
to us the topology can be defined by a metric. But we
prefer to define a surface as a topological space rather
than as a metric space because for many purposes the metric
igs irrelevant, and often there is no natural choice. (A

good illustration is provided by Example (1.2) below.)

According to our definition, the following are

surfaces (cf. Ex. 1.1):

2

(1) R “ itself

(ii) any open set of 122

(1ii) the sphere {(x, vy, z)€2R3 s x2 4 y2 v 22 = 1}, a
subspace of 113,

(iv) the surface of a cube in 123, and

(v) the cone {(x, y, 2)€ 123 : x2 + y2 = 22 and z > 0} .




The following, on the other hand, are not surfaces.

(1) the closed disc {(x, y) € I{Z : x2 + y2 < 1}, and

(ii) the double cone {(x, y, z) € 123 : x2 + y2,= 22};

for no neighbourhood of a boundary point of the disc, or

of the vertex of the double cone, is homeomorphic to an
2

open set of R “. (These facts are not so easy to prove. Cf. Ex.1.2)

So far we have mentioned only subsets of ordinary
Euclidean space I{3. But many examples of surfaces -
probably the most important ones in the end - arise more

abstractly.

Example (1.2)

Let X be the set of all straight lines in the plane
R.z. Intuitively it is clear that X is a topological
space : we have no doubts deciding whether a moving line
is moving continuously or not, and we feel sure that the
function X - R which associates to a line its distance
from the origin is continuous, whereas the function X - R

which associates to a line its slope (regarded as an angle in

the half-open interval (—g ’ % 1) is discontinuous.

Let us try to make a picture of the space of lines.
If we were content to leave out all the vertical lines then
the task would be easy. Let XO be the set of non-vertical
lines. An element of XO is specified by its slope
8 € (—%-,E-) and its signed distance from the origin 0 -

2

taken positive if the line passes above 0, and negative if



it passes below 0. Thus it is very natural to identify X
with the open subset (-g-,g-) x R of Ilz. We now want to
add the vertical lines, with slope ig-, to the picture. We
can add them as the left-hand edge %—%} x R or as the
right-hand edge {%} x R , or (preferably) as both, like
the International Date Line on a conventional map of the
world. But which point of {—-g } x R or {-% } x R

should correspond to which vertical line? We can decide

as follows.

Consider the sequence of lines A, B, C, ... J,
e D
F‘

G

—/\

all at unit distance from the origin, and all belonging to

Xo‘ They are represented in L-% ,% ) x R by
O I S T T I et de
A B c D E
-T2 <— slope —> Ta. X distance  Hrom

or{%'m

e e e e e e mm mm e e me e e e e e = = =

F G H I J




Thus the vertical line "between” E and F should be
represented by either ( %, 1) or by (—-E, -1) on the
picture, and the vertical line between A and J should be
represented by ( %, -1) or (- %, 1). For any y€ R the
points (-%, v) and (-%, -y) represent the same vertical
line. To get a proper picture of X we must take

p—%, %] X R and attach the boundary lines to each other
so that (-’21, -y) is identified with (3, y) for all

Yy € R. This gives us not a cylinder but a M8bius band.

So far our discussion has been heuristic. But we can
now see how to define a topdlogy on the set X so that it is
indeed a surface. The preceding discussion showed us how to
define a .bijection a ¢ : X > (-% ,125) x R. Let X, be the
set of lines which are not horizontal. We can define a
bijection ¢1 : X1 + (0,7) x R in the same way that we’

defined ¢O. We now make the definition that a subset U of

X is open if ¢O(UﬂXO) is an open subset of (-g_,%;) x IR and
¢1(Unx1) an open subset of (0,7) x R . We leave it to the
reader (Ex. 1.3) to check that this does define a topology
which makes X a surface. This topology can be defined by a
metric, but not in a very natural way. (Ex. 1.4)

Surfaces in 123

The most obvious surfaces are those defined by a

single equation in 123, i.e. those of the form

X = {(x, y, z) € R3S f(x, v, z) = 0},



where f : I{3 + R 1s a continuously differentiable map.

Not every f gives rise to a surface. We shall see in §5
that a sufficient condition for it to do so is that f and

grad f do not vanish simultaneously.

Example
The three kinds of central quadric in I{3 are
2 2
ellipsoids, with equation X +y +z_-1=0,
2 2 2
a b- ¢
. 2 2 2
hyperboloids of one sheet, X +Y -2 ~-1=0,
2 2 2
a b c
. 2 2 2
hyperboloids of two sheets, X .y -2° -1 =o0.
2 2
b c

Where f and grad f do vanish simultaneously we
expect X to behave badly. Thus if f = x2 + y2 + 22 then £
and grad £ both vanish at the origin, and X consists of

2

the origin alone, and is not a surface. If f = x" + y2 - 22

then f and grad f again vanish at the origin, and the

surface is a double cone.

Two classes of surfaces that will be useful for

illustrating results in differential geometry are

(i) Surfaces of revolution, obtained by taking a curve Yy

in the XZ plane and rotating it about the Z axis. (One
must choose a curve vy which either does not meet the Z-axis
or else is symmetric about it.) An important case is the

torus, got by rotating the circle

(x—b)2 + 22 = a2

with centre (b,0) and radius a, where b > a.
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(ii) Ruled surfaces, which are swept out by a straight

line moving in 123. The hyperboloid of one sheet is of
this kind; in fact it is a ruled surface in two different
ways, and is the only surface with that propertyf*)(Cf.

Exercises 1.5, 1.6, 1.7.)

An important subclass of the ruled surfaces are the

developables, which are swept out by the tangent line to a

curve in space. We shall see in §7 that these are the most
general surfaces which can be obtained from a piece of a

plane by bending it without stretching it.

Note One usually has to exclude some "bad" set from the

locus of a moving line to obtain a surface. Thus the double
cone x2 + y2 = 22 is swept out by a line, but is a surface
only if one omits the origin. The developable surface

swept out by the tangents to a curve vy has a sharp edge

(called a "cuspidal edge") along vy itself, and one must

exclude that to have a surface.

Complex algebraic curves

A complex algebraic curve in Ez is a set of the form

X = {(x, y)€ 032 : f(x, y) = 0},

where f is a polynomial in two variables with complex
coefficients. Because f = 0 amounts to two real equations
in four real variables we expect X to be a surface. That
is true providing f and grad f do not vanish simultaneously.

(See the Appendix.)

(*) Apart from the hyperbolic paraboloid (e.g. z = xy), which
is a limiting case of the hyperboloid.
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Example (1.3)

The equation x2 + y2 = 1 defines a surface X in Ez.
If we write the complex vector C;) as u + iv, where u

and v belong to 122, then the equation becomes the pair of

equations
1 2 ~ 2
lul = = vl = =1
<u, v> = 0
(Thus u # 0.) BEach solution of these equations can be

written in the form

o
1l

£ cosh t

gl sinh t, (1.4)

<
Il

where & is the unit vector u/”u” in 122, El is the vector
obtained by rotating & through "/2, and £t € R . Conversely,
for each £ on the unit circle in 122 and each t € R the
formulae (1.4) define a point of X. Thus X is topologically
a cylinder, the cartesian product of the circle lel =1

and the line R .

Another way to see the topological type is to

parametrize X by

X = 1+w2 ’ y = 1—w2 ’
2w 2iw
where w = (x+iy)_1 € C - {0} . This shows that X is

homeomorphic to € - {0} , which is topologically a cylinder
because each w € € - {0} can be written uniquely

efu witht € R , uec, and |u| = 1.
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The following rather vague remark is designed to
help introduce some future‘ideas. In complex variable
theory it is often convenient to adjoin to the complex plane
one extra point called « : the set € U {»} is called the

Riemann sphere. In the same way it is natural to adjoin

two "points at infinity" to the surface X. We can call them

P, = (», i®» ) and P, = (» , =i= ). They correspond to the

parameter values w = « and w = 0. Thus X U {P1,P2} is in
1-1 correspondence with the Riemann sphere. Geometrically

P1 and P2 are the "ends" of the two asymptotes x + iy = 0

of the complex curve x2 + y2 = 1 : these asymptotes are

exactly analogous to the usual real asymptotes x x y = 0

of the hyperbola x2 - y2 = 1 in 122. If x2 + y2

1t

1 and x|

is large then y = £\x2—1 is either very close to ix or very

close to -ix.

Exercises

1.1 Prove that the examples (iii), (iv), (v) of surfaces
on page 5 really are surfaces.

[In case (iv) it is helpful to begin by proving the
following lemma. If a space X is the union of a finite
number of closed subsets Xi’ then amap £ : X >~ Y is
continuous if the restriction of f to Xi is continuous

for each i.]

1.2 Prove that the double cone

2
3 2 2}

X ={(x, y,2) e R : x* + y° =2z is not a surface.

[Observe that X becomes disconnected if the origin is deleted.]
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1.3 Prove that the definition of open sets given on page
8 does define a topology on the set of lines in Izz, and

makes it a surface.

1.4 (a) Find a metric on the set X of lines in 112 which
defines its topology.

(b) Prove that there is no metric d on X which
defines its topology and has the property that
d(z1,£2) =d(T(£1), T(ﬂz)) for all 21, 22 G.X and every

rigid motion T : 122 - 1{2. [If such a metric existed then

the distance between two lines which intersect at an angle
6 would depend only on 6. Call the distance f(0). Prove
£(6) - 0 as 6 » 0. Then contradict the triangle inequality
by considering a pair of parallel lines and a third line

which intersects them both at a small angle.]

1.5. Show that for every non-zero A e¢ R the straight line with
equations x-z = A(1-y),  X*2 = A_1(1+y) lies on the
hyperboloid x2 + y2 - 22 = 1. Deduce that every hyperboloid

of one sheet is a ruled surface. Find another family of

lines on x2 + y2 - 22 = 1, and show that lines of the same
family do not intersect, but that each line of the first

family meets each line of the second.
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1.6 Prove that if a straight line isg rotated rigidly about

a line not in the same plane, then it sweeps out a hyperboloig

of one sheet.

1.7. Let 21, 22, 23 be three lines in 123, no two
coplanar. Prove that through each point P of 23 there
is a unique line QP which meets both 21 and 22. Prove
that as P varies on 23 the line KP sweeps out a
hyperboloid of one sheet. Deduce that this surface is
the only surface which is ruled in two different ways.
[It requires ingenuity to do this question from first
principles. We shall encounter better methods in the
second half of this course. The equation of any line in
123 can be written in the form a x r = b. Prove that

a x r = b intersects ¢ x r = d if and only if

<a,d> + <b,c> = 0. Deduce that there is a line cxr =d
through r which meets each of a;* r =b, for i =1, 2, 3

if and only if the scalar triple product

[a,xr - b a.xXr - b2,~ a

1 ' 2 Xro = bl

3

vanishes. Show that this is the equation of a quadric

surface,necessarilya.hyperboloid of one sheet.]

1.8 A ruled surface X is swept out by the line through
the point y(t) in the direction of the unit vector a(t),
where yand a are continuously differentiable maps

(¢, B) — I{3. Assuming that a = da/dt does not vanish
for t € (a,B), prove that X is developable if and only

if the scalar triple product <§, a x a> is zero.

[The problem is to find a curve p(t) = y(t) + f(t)a(t) on X

such that the tangent 5 is parallel to a. If p = ga

one must find f and g from ga = & + fa + fa.]



§2 Abstract surfaces

The surfaces which are important in mathematics mostly
do not appear as objects in space. 1In this section, we shall
give some examples of ways in which surfaces arise
abstractly. Nothing in this section is essential to the
course, and it will not be referred to again, so readers who

find it confusing can simply omit it.

A. The torus and the Klein bottle as guotient spaces.

A typical way in which a torus arises is as the set of
positions of the hands of a clock. A position of the hands
is a pair (x,y), where each of x and y is a real number
modulo 12. Thus the set X of positions is obtained from
the plane 312 by introducing the equivalence relation o such

that (x1,y1)¢v(x2,y2) if and only if

x, + 12.n

%9 2

for some integers n,m. (2.1)

Y1 Yy t 12.m

We want to think of the set of positions as a topological
space. We know the topology of Izz, and there is an obvious
map 1{2 + X which assigns to each (x,y) € I{Z its equivalence
class in X. We define an open set of X as one whose inverse-
image in 122 is open. A little reflection convinces one

that this agrees with our intuitive idea of what an open set
in X ought to be. We can now prove that X is homeomorphic

to a standard torus in E{3. (Ex. 2.1)




Wihat we have just described is a method which gives
us a topology on any set which is the set of equivalence
classes of an equivalence relation on another topological

space. The topology constructed is called the quotient

topology.

Now let us consider a more subtle equivalence relation

on 122. We define (x1,y1)'v (x2,y2) if and only if

X, = X, +n
for some integers n, m. (2.2)

Y1

[t}
N
L<

[\

+

=}

Then every point of Ilz is equivalent to a point in the square

[0,1] x [0,1], and no two points of the square are equivalent

except that

(x, 0) ~ (x, 1) for 0 € x £ 1, and

(0, v) ~ (1, 1-vy) for 0 £y £ 1.

The space of equivalence classes X = }22/4' is easily

checked to be a surface. (Ex. 2.2) It is called the
Klein bottle. (*) Unlike the torus it cannot be realized
as a surface in I{3, although we can find a map £ : X » 123

which is locally a homeomorphism on to f(X) but which is
not quite 1-1 : the space f(X) is the usual picture of the

Klein bottle, complete with "self-intersection”.

(*) It is not hard to envisage a contrivance whose set of
positions is Ehis surface. Suppose a device consists of a
plane I in R~ free to rotate about the Z-axis, together
with a line % through the origin constrained to lie in the
plane 1II. Then the positions of (II,%) form a Klein bottle.



B. The projective plane

A very important abstract surface is the projective
plane, which will be studied in detail in the second half of
the course. The idea of its construction is as follows.
Imagine one is at the origin in 123, looking at the plane I
whose equation is z = 1. There is almost a 1-1 correspondence
between the points of the plane II and the rays to one's eye,
i.e. between II and the set of lines through the origin in
113. But the correspondence is not perfect, because lines
parallel to 1, i.e. those in the XY-plane, do not meet I .
As a ray becomes more nearly parallel to II its point of
intersection moves away "towards infinity". It is therefore
tempting to adjoin to II a set II  of "ideal" points "at

infinity", one for each ray in the XY plane. The combined

set I = TUIN_ is called the projective plane.

The idea of introducing "points at infinity" originates
in perspective drawing, when one makes a picture of a plane
I in I{3 on another plane II' which is not parallel to it.
Then the "points at infinity" of II are depicted by ordinary

points of II' - so-called "vanishing points" of families of




parallel lines in II.

—

—

Line at

—_

—_—

in'g""i“jinv \‘\\\
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If we add the "points at infinity" to both II and II' then

there is an exact 1-1 correspondence between them.

The formal definition of the projective plane is

psychologically unilluminating.

Definition (2.3) The projective plane is the set of lines

through the origin in 113.

A line through the origin is determined by giving a
single non-zero vector v on it; and v and v' determine the
same line if and only if v' = Av for some non-zero scalar

A. Thus we can reformulate the definition as follows.

Definition (2.4) The projective plane is the set of

equivalence classes of 1{3 - {0} for the equivalence relation

defined by

v vl <= v' = Av for some A %2 0 in R .
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An advantage of the second version of the definition
is that it makes clear that the projective plane is a

topological space.

According to the second definition, a point of the

projective plane T is described by homogeneous coordinates

(x, y, 2), not all zero, subject to the convention that

(x, v, z) and (Ax, Ay, Az) describe the same point if A # 0.
To prove that ﬁ really is a surface we shall show that it is
the union of three open sets U1, U2, U3 each of which is
homeomorphic to Izz. We define U1 as the set of all points
whose homogeneous coordinates (x, y, 2) satisfy x = 0.
Similarly U2 and U3 consist of points such that y # 0 and

z # 0 respectively. We have already agreed to identify U3

with the plane z = 1 by

(x, v, 2) <—> (X Y 1),
Z Z ’

14 14

and one can check that this is a homeomorphism. (Ex. 2.3)
Similarly U1 and U2 can be identified with the planes x = 1

and v = 1.

To visualize the projective plane it is best to start
from another topological description of it, whose validity

we leave as an exercise. (Ex. 2.4)

Theorem (2.5) The projective plane is the quotient space of

the disc {(x,y) € 122 : %%+ y2 < 1} by the equivalence

relation which identifies opposite points of the boundary:

(2x,y) & (x",y') <=> x =x' and y = y'

or x = -x', y=-y', and x° +y° = 1.
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Like the Klein bottle, the projective plane cannot be
realized as a surface in 113 without self-intersections.
Notice that the shaded part in the diagram ia a M8bius band.
The unshaded part fits together to form a disc; thus  is the

union of a disc and a M8bius band.

Yz

D ? c A""A:
/ R~ B
/ cn~c'
Z
/
=

c’ ? pY;
c

e

AI

N

One possible self-intersecting representation of I

in 123 is as a heptahedron, which is made from three squares

with unit sides intersecting perpendicularly along their
diagonals by adding four equilateral triangles also with unit
sides. The most beautiful representation of the projective

plane, however, is as Boy's surface.

HQ,F'tO\LLQkaVL ’80\3)5 surfoce
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C. Riemann surfaces

Our last class of examples of abstract surfaces is

the hardest to motivate, but is ultimately the most important.

In complex analysis one constantly encounters
"many-valued functions" such as log z and \/1—22. The most
elementary way of dealing with them is to restrict oneself
to an open set V of the complex plane in which one can define
a single-valued holomorphic function which at each point takes
"one of the values" of the ill-defined function one is
interested in. 1In the case of log 2z, for example, one can
take V to be € with the negative real axis removed, and in {

one can define

0

16) = log r + el ,

log (re.
with -1 < 8 < w. This approach is adequate for many purposes,
but it has some disadvantages. One is that the choice of V
is rather arbitrary - we could have made the cut along the
negative imaginary axis, for example - and log z behaves
just as well or as badly at any point of € - {0} as at any

other.

A simple example which shows the beginnings of the idea
of a Riemann surface is the following. The quickest way to

evaluate

(2]

dx - 213
1+x3 9
o)

is to integrate the function log z / (1+z3) around the




"key-hole" contour Y :

‘Reaﬂ O%tS

C\"'C—‘E V? V{r\s Qo.r%e v‘a.oLc,.«.\_:

We take the definition of log z, everywhere except on the
positive real axis, to be loglzl + i arg z , with 0 < arg z < 2w,
But the contour involves integrating twice along the real axis,
once using the real values log Izl , and once using loglzl + 27i.
We can avoid the problem by displacing the contour slightly

away from the cut and taking a limit, but that introduces an
unnecessary complication. A better, though more sophisticated,

approach is to introduce the Riemann surface on which the

function log z / (1+z3) is defined. We take a stack {Xk} of
copies of the complex plane, each cut along the positive real
axis. Then we attack the lower lip of the cut in Xk to the
upper lip of the cut in Xk+1 for each k, so as to obtain a
surface X which is like an infinite spiral staircase squashed
flat. The function log z /(1+23) is a genuine function on

X : on Xk we have

27k € Im(log z) < 2m(k+1).
The contour y lies naturally on X : the two transits of the

real axis lie on distinct sheets of X.

Now let us consider the Riemann surface for the function
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1—22. Generically the function is two-valued, so we take
two copies x" and X~ of T, each cut from -1 to +1. Then we
attach the upper lip of X' to the lower lip of X and the

lower lip of X' to the upper lip of X . We define 1-z° on

X = X+LJX- so that Im'"\/1--z2 2z 0 for zEZX+ and Im V1—22 <0

for z€ X . (Notice that _Vq-zz is real only if zEI[—1(1]).
In this case, unlike that of log z, the function 1-22 takes
the Well—defined value 0 at each of the branch-points z = %1,
so one can add these two points to X. The surface X is at
first hard to visualize, but it is homeomorphic to € - {0} by
the map which takes g€ € - {0} to %(c+;-1) € x" if lcl =2 1,

and to %(c+a'1) € X if {z} £ 1. (See Ex. 2.5.)

The abstract surface which we call the Riemann surface
of the multivalued function f is the same thing as the graph
of £, i.e. the set of all pairs (z,w) € E2 such that w is one
of the values of f(z). Thus the Riemann surface of,91--z2 is
the same thing as the complex algebraic curve x2 + y2 = 1 which
we described in §1. It is a matter of taste whether one
prefers to regard it as a subset of Ez or as a collapsed
parachute lying on the complex plane, but it can be useful to

move between the two pictures in one's mind. We shall meet

an illustration of this at the end of §4.

Exercises

In doing the following exercises it is useful to
remember the following obvious principle: to define a
continuous map £ : X * Y, where the topological space X is

defined as the quotient space of a space X by an equivalence
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relation~, it is enough to define a continuous map

f : X > Y which is compatible with the equivalence relation,
i.e. is such that f(x) = f(x') whenever x ~ x'.
2

2.1 If X is the quotient space of R~ by the equivalence
relation (2.1), prove that X is homeomorphic to a standard
torus Y in 1{3, and also homeomorphic to

{(21,22)6 E2 : |z1I = lzzl = 1}

[Define a continuous map Ilz -+ ¥ which induces a continuous
map £ : X » Y by the principle above. Prove that f is a
bijection. Prove that X is compact because it is the image
of a compact subspace of 122. Finally, use the theorem
that a continuous bijection from a compact space to a
Hausdorff space is a homeomorphism.]

2.2 If X is the quotient space of I{2 by the equivalence
relation (2.2), prove that X is a surface.

[If x € X is the equivalence class of v € Eiz, and

vV = {v' € I{Z : Ilv'-vl < 1}, prove that the obvious map

V - X is a homeomorphism between V and a neighbourhood of x.]

2.3 If U3 is the subset of the projective plane  described

on page 19, prove that U, is an open subset of ﬁ, and that

3
the map (x, y, 2) v¥—> (x/z, y/z) defines a homeomorphism
2
.+
U3 R .
[Define the inverse map as a composite : 112 - 123 - {0} ~» ﬁ.]

2.4 Prove Theorem (2.5).
[Begin with the continuous map {(x,y)E€ 122 : x2 + y2 <1}~ T
defined by (x,y) +—> (x, y, 1 = x2 - y2), and proceed as in

Ex. 2.1.]
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2.5 Justify the assertion on page 23 that the Riemann
surface X is homeomorphic to € - {0} by showing
that ¢ +—> 3 (¢ +§_1) is a bijection from {gzea : Igl>1}
to X' which takes the semicircle ct= {tec : Igl=1and Img 2 0}
to the upper lip of the cut and the semicircle c = E+ to the
lower lip of the cut; while the same map is also a bijection
from {z€C : 0 < Izl < 1} to X which takes ct to the lower

and C~ to the upper lip of the cut.
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§3 Charts, atlases, orientability

If X is a surface, a homeomorphism ¢ : U - V from
an open set U of X to an open set V of the plane 1{2 is

called a chart (or coordinate system) for X. A collection of

charts {¢u : Ua_*vu} such that the sets Ua cover X is called
an atlas for X. By definition, every surface possesses an

atlas.

If X is a surface in 113, the most obvious way to produce

charts for it is by projection on to the coordinate planes

of 113. Thus if X is the unit sphere in EQB, and U is the open
hemisphere defined by z > 0, the map (x, y, z) + (x, y) from

U to the open unit disc in 112 is a chart, and X has an atlas

consisting of six such charts, each covering an open

hemisphere.

Charts defined by projection are seldom the ones
which are useful in practice. Thus for the sphere the best
known chart is the one given by longitude and latitude. It
is defined on the open set U got by removing the International
Date Line from the sphere, and it is a homeomorphism between
U and the open set (=-m,wm) x (-m, m) of R 2. Even this chart,
however, is not usually found in i geographical atlas.
Granted that one cannot make a chart for a region of the
earth which is exactly to scale (*) geographers want charts
which have some useful but weaker property. Three such
properties are (i) conformality, i.e. preserving angles,

(ii) preserving areas, and (iii) representing great circles
(which are the shortest routes on the sphere) by straight

lines. Let us mention examples of each kind.

(*) Although this is well knownh, we shall not be able to prove it
before §10.



(i) Stereographic projection is the chart ¢ : U » V given

by projection from the north pole on to the equatorial plane.

N

Q

Thus, for the unit sphere x2 + y2 + 22 = 1, the domain U

is X - {(0,0,1)}, and V is R %, and

¢(XI Y, z) = (_§_ ' __Y_)'

This is a conformal chart (Ex. 3.3}, as is well-known in

complex variable theory.

Mercator's projection is defined on the complement of the

Date Line. It takes the point with longitude ¢ and latitude
8 to
(¢, log tan( 6 + m)) € (-m,7) X R.
2 4
This is conformal (Ex. 3.4), and was especially useful

for navigation, and for depicting the British Empire in the

days of its glory.

(ii) The most obvious area-preserving chart (Ex. 3.5) takes
(¢,0) to (¢, sinB). (Here (¢,6) are longitude and latitude

again).)




_.28_

A more popular one is Mollweide's projection, which takes

(¢,0) to (¢cos Y(B), 3m sin Y(6)) , where ¢ : [- 1> 1 ]

[T}

g -r,T
2 2 2

is the bijection defined by

y(e) + 3 sin 29 (9) it sin 9.

(iii) Essentially the only chart which takes great circles
to straight lines is projection from the centre of the earth
on to a tangent plane. Thus we can map the open northern

hemisphere to Ilz by

(¢6,0) ¥> (cot O cosd , cot 6 sin ¢).

Orientability

It is a basic fact of nature that homeomorphisms
f : V> V' from one connected open set of 122 to another come
in two kinds: orientation—preserving and orientation-reversing.
The first kind take clockwise simple closed curves to clockwise
ones, the second kind take clockwise curves to anticlockwise
ones. For the moment we shall simply accept the existence

of this dichotomy. (Cf. §5.)

We can now divide surfaces into two classes, orientable
and non=-orientable. To do this, first observe that if ¢ : U » V
and ¢': U' » V' are two charts for the same surface then we

have a homeomorphism.

¢'°¢'1 : ¢ (UNU') > ¢'(UNU")

between the two open sets of Iiz which are the maps of UNU'.

This homeomorphism is called the transition map from the first

chart to the second.
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Definition (3.1) A surface is orientable if it possesses

an atlas for which all the transition maps are orientation-

preserving. (%)

Of the surfaces we have encountered so far, all are
orientable except the M8bius band, the Klein bottle, and the
projective plane. To prove the negative statements it is
enough to consider the M8bius band, for an open set of an
orientable surface is obviously orientable, and the Klein
bottle and the projective plane each contain M8bius bands.

For the M8bius band see Ex. 3.7.

The question of orientability is very clesely connected
with whether the surface has one or two sides. But the latter
question refers to a surface embedded in 123 in a definite way,
whereas orientability is an intrinsic property of the surface
as a topological space. We shall discuss one- and two-sidedness

in §5.

The definition of a surface by means of an atlas

The Riemann sphere I is the set of complex numbers
together with another element which is called «. Thus
vy - {o} = €, and there is also a bijection ¢ : £ - {0} » C

given by

zZ \—> z if z # o,

o t~—> 0.

(*) A map between open sets of 122 is called orientation-
preserving if it is orientation-preserving on each connected
component.
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We define the topology of I by saying that U is an open set
of £ if both U - {»} and ¢(U - {¢}) are open sets of T. It
is then easy to prove that I is homeomorphic to the unit

sphere 1in 123 by stereographic projection.

It will be seen that we have here a general method for

defining surfaces. (We have already used it for the M8bius
band in §1.) If X is a set which is the union of a family of
subsets {Ua} , and for each o we are given a bijection

¢a : Uu > Va’ where Vu is an open set in Izz, then we can

always define a toplogy on X by prescribing
U is open <=> ¢u(UnUa) is open for all o.

Then X is a surface (see Ex. 3.9) providing

-1

(a) each transition map ¢B° ¢a

¢, (U N Ug) - ¢g (U NTR)
is a homeomorphism, and

(b) {(x,x) : x € UunUB} is a closed subset of Uu><UB'

The classification of surfaces

A surface which is a compact topological space is
called a closed surface. It is a remarkable theorem that
there are very few of them. We have already met the sphere
and the torus, and it is easy to imagine a torus with g holes,

for any integer g =2 0:



(We regard a sphere as a torus with 0 holes.)

Theorem (3.2) Any orientable closed surface is homeomorphic

to a torus with g holes, for some g 2 0.

Among non-orientable closed surfaces we have met the
projective plane and the Klein bottle. A general method for
constructing a non-orientable surface is the following.
Observe that a M8bius band is a surface bounded by a single
circle, just as a disc is. Then take a sphere, remove from
it k disjoint discs, and replace each disc with a M8bius

band. The resulting surface is called a sphere with k cross-

caps.

Theorem (3,3) Any non-orientable closed surface is

homeomorphic to a sphere with k cross-caps, for some k = 1.

The case k = 1 is the projective plane, as we have
seen. The Klein bottle is the case k = 2. To see that,

imagine the bottle made from a square by identifying edges:




The hatched part is a M8bius band; the dotted part is another
M8bius band; and the remainder is a cylinder, i.e. a sphere

with two discs removed.

We shall not prove Theorems (3.2) and (3.3) in the

course.

It is much more complicated to classify non-closed
surfaces. In particular it is not true that every surface
is homeomorphic to an open set of a closed surface: consider,

for instance, an infinite ladder made of tubular steel.

An atlas for the complex curve <0+ yn = 1

Even the simplest functions of complex variables lead
to surprisingly complicated surfaces. We shall take as an
example the surface X in EZ defined by the equation "+ yn =1,
where n is a positive integer. In §4 we shall prove (using
Theorem (3.2)) the striking result that this surface, together
with its n "points at infinity" is a torus with %(n-1) (n-2)
holes. We shall now define an atlas for the surface: this is
fairly complicated, and readers who find it confusing can
ignore it. We use 2n charts to cover X itself, and n more to

include the points at infinity.
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For each x in the complex plane (except for the n

2mik/n

roots of unity e ) there are n points (x,y) on X, for

n
y can be any of the values of “V1—xn. In order to define

n .
.W/1—xn as a continuous function we have to cut the x-plane:
we let V be the complex plane cut radially outwards from

each of the nth roots of unity to «, i.e.

V==C€-{x:x>€eR and x"* > 1}.

If x € V then 1-x" is not on the negative real axis, so we

can define a holomorphic function £, = V =+ € by the
conditions

£, ()" = 1-x"
and

-r/n < arg £,(x) < 7/n.

"
We can also define the other branches of “v1—xn, namely

fk : V » C, where fk(x) = e2ﬂlk/n f,(x), for o £ k < n.
Let Uk be the graph of the function fk , 1.e. the
set
2 .
{(x, fk(x) € ¢° : x€ VI.

This is a subset of X, and there is a homeomorphism

U, » V defined by ¢k(x,fk(x)) = x. Every point (x,y)

b * Yk

of X such that x €V belongs to one of the sets Uk’ and we
therefore have n charts which cover most of X. We must now
produce another n charts which cover the cracks. That is

. n n n n
easy to do, for if x +y = 1 then x and y cannot both be

real and > 1, i.e. at least one of x and y belongs to V. So

we define
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2
Uy = {(fk(y), y) € €7 : y € V},

and a homeomorphism ¢£ : Ui + V by ¢£(fk(y),y) =vy.

We now have an atlas for X.

Finally, we add the points at infinity. If (x,y)€ X

and x| is large then y is very near to w,x, for some k,

k

where w1,...,wn are the nth roots of -1. (For
Yy = (-x" )"
174 .
= 0" x (1= Yon)

‘/VL.

(_\)l/n'x. (\-— (/Y\X" + ... >

Thus X has n asymptotes, given by y = w, %X, and it is

k

reasonable to adjoin n points P1,..., Pn "at infinity",
one at the end of each asymptote. (We think of Pk as
"(w,wkw)".) Let X = XLJ{P1,... Pn} , and let

U" = {p }Uu{(x, x££ (x ) :x"ev

k k ! k ' :
(Note that (x, xfk(x—1)) does belong to X.) We have a
homeomorphism

¢y : uto- {p )} — vV - {o}
which takes (x,xfk(x_1)) to x—1. We define a bijection

" - " : : n _ . .

¢k : IJk + V by prescribing (%{(Pk) = 0. This gives

us an atlas for %, and it is easy to check that the two
conditions on page 30 are satisfied, so that X acquires

a topology which makes it a surface. It is also easy to
check that the topology induced on the subset X by the atlas

is the same as its topology as a subset of Ez.
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Exercises

1. Find an atlas of two charts for the torus, regarded as
a surface of revolution in 123. What is the transition map

between the charts?

2. Find a single chart which covers the whole hyperboloid

of one sheet x2 + y2 - 22 = 1,

3. Prove that stereographic projection 82 - {north pole} - Eiz

is conformal.

4, (i) Prove that a smooth orientation-preserving
homeomorphism £ from one open set of R2 to another is
conformal if and only if the matrix of derivatives Df
satisfies the Cauchy-Riemann equations, i.e. if and only if

f is holomorphic when 1{2 is identified with C.

(ii) Deduce the conformality of Mercator's projection

from that of stereographic projection.

5. Prove that the chart (¢,0) > (¢, sin 9 ) for the unit

sphere ( see page 27 ) is area-preserving.

6. Consider the atlas for the projective plane described in
§2, consisting of three charts ¢i : Ui-+ Izz. Find the
transition maps between them, and check that they satisfy the
conditions (a) and (b) on page 30.

7. Define the M8bius band as the space X of lines in Iiz,
with the topology given by the atlas of two charts described

in §1. What is the transition map? Is it orientation-preserving?
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Let {¢a : U, > Va} be an arbitrary atlas for X.
Show that there is a continuous map (s,t) ——> ys(t) from

[0,7m] x [0,2m] to X such that

(i) for each s € [0,7] the map t +——> ys(t) is a simple
closed curve in X which is completely contained in at least

one of the sets Ua’ and

(ii) the curves Yy, and Y, are the same but described in

opposite senses, i.e. vy (t) = Yﬂ(zﬂ—t).
Deduce that X is not orientable.

[Take Yg to be a circle of small radius £ on X with centre
at the point (s, 0) in the standard chart. Assume that if
(s,t) +—s ?S(t) is a continuous map [a,b] x [0, 27] - 122
such that ?s is a simple closed curve for all s € [a,b], then
?a and 7b are either both clockwise or both anticlockwise.]
8. If a topology is defined on the set £ = CU{~} by means
of the two charts described on page 29, prove that the
resulting space is homeomorphic to the unit sphere S in I{3.

[Define a bijection S > I by stereographic projection, and

prove it and its inverse are continuous.]

9. If a topology is defined on a set X by means of an atlas
{¢u : U, ~ Vu}’ prove that X is a surface if the conditions
(a) and (b) on page 30 are satisfied.

[Show that (a) &> (X is locally homeomorphic to 122),and

(b) € (X is Hausdorff).]
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10. Describe the Riemann surface of the function p(z)%,
where p is a polynomial of degree 2n with 2n distinct real
roots. Explain in general terms why the complex curve

y2 = p(x), together with its two points at infinity, is a

torus with n-1 holes.
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84 Subdivisions and the Euler number

A polyhedron, e.g. a cube or a pyramid, is a solid
object bounded by plane faces. Each face is a closed subset
of the surface of the polyhedron, and is homeomorphic to a
closed disc in the plane. If two faces intersect then they
intersect in an edge, which is homeomorphic to the closed
unit interval [0,1]. If two edges intersect then they
intersect in a single point, called a vertex. If V, E, and
F are the number of vertices, edges, and faces of the

polyhedron then the number
X = V-E+F

is called the Euler number of the polyhedron. It is well

known that for a convex polyhedron yx = 2.

Let us now consider a generalization of this situation.
Suppose that X is a closed surface. We shall define an edge

on X as the image of any continuous map.
£ : [0,1] - X

which is 1-1 except that possibly £(0) = £(1). The points

£f(0) and £(1) are called the ends of the edge.

Suppose we are given a finite set of points of X which
we shall call vertices, and also a finite set of edges. We

shall say that these constitute a subdivision of X if

(i) each edge begins and ends in a vertex, and passes

through no other vertices,
(ii) two edges intersect at most at their ends, and

(iii) if T is the union of the edges then each connected
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component of X-T is homeomorphic to an open disc in 122.

The closure of a connected component of X-T is then

called a face.

Examples

The following are examples of subdivisions of a sphere.

(a) 1 vertex at the north pole.
0 edges

1 face

(b) 1 vertex on the equator
1 edge, the equator

2 faces, the hemispheres
(c) 2 vertices at the poles
1 edge, the Greenwich meridian
1 face
(d) 2 vertices at the poles
2 edges, both meridians

2 faces

(e) the usual subdivision into octants, with 6 vertices, 12

edges, and 8 faces.
Notice that in each case V - E + F = 2.

It is a remarkable theorem that for any surface the
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Euler number ¥ = V = E + F of a subdivision depends only on
the surface as a topological space and not on the subdivision.
In fact ¥ = 2 for a sphere, x = 0 for a torus, ¥ = 2 - 29

for a torus with g holes, and ¥ = 2 - k for a sphere with k

Cross—caps.

’

\/::l) E=2 s F:(

V=1, E=3, F=1

V-E+ F =0 V- E+ F =0

We shall not prove this theorem in full generality in this
course, but we shall sketch below an argument which applies
to any subdivision of the sphere, and in §10 we shall give a
proof which applies to all smooth subdivisions of any

surface.

Because the Euler number determines the topological type
of a surface (providing we know whether it is orientable or
not) it arises in very many situations. We shall mention three

here.

(1) Given a smooth function £ : X + R with isolated
non-degenerate critical points (the terminology will be
explained in §10) let Max, Min and Sad denote the number of

local maxima, local minima, and saddle-points of f£. Then

Max - Sad + Min = Y.
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Examples

In each case the function f is the height above some

fixed plane.

Max
Moy
Man
Max
Mki:g)gGA=2,M/CV\ =\‘ . 5 MKX=\) Cod = 2, W\,‘-:\
K22 0x - Y = V- x+ | = O
(ii) Suppose that a fluid is flowing on the surface.

Then the number of stationary points of the flow (counted

with multiplicities) is ¥.
We shall return to these questions in §11.

(iii) "Fermat's last theorem" is the still unproved

assertion that if n is an integer greater than two then one

n n

cannot find integers x, y, z such that x + yn = 7z . This

is equivalent to the statement that the algebraic curve

<7+ yn = 1 contains no points (x,y) with both coordinates
rational. One of the most important mathematical achievements
of the last few years has been the theorem of Faltings (1983)
which asserts that if f(x,y) is a polynomial with rational
coefficients then the algebraic curve f(x,y) = 0 has at most
finitely many points with rational coordinates providing the
corresponding complex equation f(x,y) = 0 defines a surface
for which x is negative. We shall see presently that when

fix,y) = x4 yn - 1 we get a surface with = n(3-n). So
X
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Faltings's theorem tells us that when n > 3 there are at most

finitely many counterexamples to Fermat's theorem.

Sketch of proof that y = 2 for a sphere

The proof is by induction on the number E of edges in
the subdivision. If E = 0 then we must have VvV = F = 1, for
a sphere with a finite number V of points removed is always
connected, and is homeomorphic to an open disc only if
V = 1. The inductive step is carried out by observing that
given any subdivision we can reduce E by one of the following

steps:

(i) if there is a vertex contained in only one edge,

remove it and the edge;

(ii) if there is an edge contained in a closed cycle of

edges, remove 1it.

In both cases the simplification does not change
V- E + F. In filling in the details of this argument it
will be found that the essential ingredient is the Jordan

curve theorem, which asserts that the complement of a simple

closed curve on the sphere has exactly two connected
components. A complete proof, however, is quite long and
difficult.

We should mention that the relation Vv - E + F = 2
for a subdivision of the sphere is a basic tool in graph

theory. As an example of its use, let us prove

Theorem (4.1) Given five points in a plane it is impossible

to connect each pair by paths which do not cross.
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Proof: We may as well replace the plane by a sphere. If we
could connect the points we should have a subdivision with

V =5 and E = 10. Each face would be bounded by at least
three edges, and each edge would belong to exactly two faces.

Hence 2E » 3F. So F <6, and V - E + F < 1, a contradiction.

The complex curve x4 yn = 1

We return to the surface X defined by the equation

x™ o+ yn = 1 over the complex numbers, together with its n
points P at infinity. (Cf. the end of §3.) We shall prove
that its Euler number is n(3-n). It is orientable (Ex. 5.4 ),

so by Theorem (3.2) it must be a torus with i(n-1) (n-2)

holes.

N

The curve X

X U {P1,...,Pn} maps continuously to

the Riemann sphere S by

(x,y) > x

Pk —p ©

The inverse-image of each point of S, except for the n

e27rik/n

branch points Bk = , consists of exactly n points

of ﬁ.

Now let us subdivide the sphere S by taking the points
Bk as vertices, and connecting them cyclically to form a
polygon. For the subdivision we have V =n, E = n, F = 2.
(Notice that n - n + 2 = 2.) The inverse-images in X of the

vertices and edges of the polygon in S provide a subdivision

of ﬁ, which has V = n (for there is only one point of X
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above Bk), E = n2, and F = 2n. So the Euler number is

n - n2 + 2n = n{(3-n).

Exercises

1. Prove that a surface X is connected if and only if it
is path-connected, i.e. for every pair of points x, y in X

there is a path in X from x to y.

[Write x ~y if there is a path from x to y. Show that this
is an equivalence relation, and consider its equivalence

classes.]

2. Let T be a connected subset of I{2 which is the union
of a finite number E of closed segments of straight lines
which intersect only at common end-points. Let V be the
total number of end-points. Use the method of the sketch
proof on page 42 to give a complete proof that the number

of connected components of 122 - T is E - V + 2.

3. Prove that on a connected surface any two points can be

joined by a path which is an injective map.

[Proceed as in Ex. 1.]

4, Let A A2, A3; B1, B2, B3 be six points on a sphere.

17
Prove that one cannot find nine paths on the sphere which
link Ai to Bj for each i, j and intersect only at their

end-points.
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5. Use the method employed for <7+ yn = 1 to show that

the Riemann surface associated to the curve y~ = p(x),
where p is a polynomial of degree 2n with distinct roots,

is a torus with n-1 holes. (Cf. Ex. 3.10.)
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§5 Smooth surfaces

Up to this point in the course we have been
concerned with topology. Thus in §1 we mentioned the
sphere and the cube as examples of surfaces; but topologically
they are identical. From now on we shall be studying the
more traditional geometrical questions for which the
difference between a sphere and a cube is crucial. We must

therefore introduce the concept of a smooth surface. There

are two different ways of approaching this: we can think
either in terms of abstract surfaces or in terms of surfaces
contained in E{3. We shall describe both approaches, as in

the end both are needed.

Definition (5.1) A smooth surface is a surface together

with a smooth atlas, a smooth atlas being one all of whose

transition maps are smooth.

We shall regard two smooth atlases for the same
surface as equivalent if each transition map from a chart of

the one to a chart of the other is smooth.

Note Our terminology is that a map f : V1ﬁ- V2 from an
open set of R"” to an open set of r™ is smooth if all its
partial derivatives of all orders exist and are continuous.
We shall always think of elements of R™ and R™ as column
vectors, and shall write Df(v), for v € V1, for the

derivative of £, i.e. the mxn matrix whose ith column is

the ith partial derivative Dif(v) of £ at v.



- 47 -

The important thing about a smooth surface X as
defined in (5.1) is that we know what we mean by a smooth
function £ : X » R . By definition, f is smooth if for
each chart ¢a : Ua-+ Vd the composite map f°¢;1 : Vd+-IR
is smooth. We also know what we mean by, say, a smooth curve
in X: amap Y : (a,b) - X is smooth if for each chart the
map ¢uoy from Y—1(Uu) to Va is smooth. (Similarly, it

should be clear how to define a smooth map from one smooth

surface to another.)

For smooth surfaces the question of orientability is

easier that for topological surfaces in general. 1In fact a
smooth homeomorphism £ : V1-> V2 from one connected open set
of 1{2 to another, with inverse g : V2—+ V1, is orientation-—
preserving or reversing according as the Jacobian det Df (v)
is positive or negative for all v € V1. (The Jacobian
cannot vanish, because the matrix Df(v) is invertible with
inverse Dg(w), where w = f£(v).) We shall not prove this
theorem. Instead, as we shall only be interested in smooth

homeomorphisms from now on, we shall take the positivity of

the Jacobian as the definition of an orientation-preserving

map.

Now let us turn to concrete surfaces in I{3.

Definition (5.2} A subset X of 113 is a smooth surface if

for each x€ X there is an open neighbourhood W of x in
123, and a smooth map £ : W > R such that

-1

(1) Xnw=£f "(0) , and

(1i) Df(w) does not vanish for we X n W.
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Evidently the definition needs to be justified by
a proof that such a subset X has an (essentially canonical)

smooth atlas. That amounts to the implicit function theorem.

Theorem (5.3) Let £ : W > R be a smooth map, where W is

an open set in 113. Suppose that w, = (x_ , y,, z,) € W is
such that f(w, ) = 0 and D3f(w°) # 0. Then there is a
neighbourhood V of (x_, y,) in Iiz, and a smooth map

g : V> R, such that
f(x, v, g(x,y)}) =0 for all (x,y) € V.

Furthermore there is a neighbourhood W, of w, in W such
that

(x,v,2z) € f_1(0)n W. <=> 2z = g(x,y) for some (x,y)€ V.

Here D3f denotes the partial derivative of f with
respect to its third variable. Of course there are equivalent
versions of Theorem (5.3) with the roles of the variables

(x, y, 2) permuted.

The proof of the theorem is given in the Appendix.

Using Theorem (5.3), let us show that a subset X of
123 satisfying the conditions of (5.2) possesses a smooth

atlas.

For any w, € X the definition gives us a neighbourhood

Wof w and a map £ : W + R such that (Df)(w,) = 0. Then

Dif(wo) # 0 for i 1, 2, or 3. Suppose D3f(w°) # 0, and

choose V, g, and W, as in Theorem (5.3). Let U = XnW,,
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and define ¢ : U > V by ¢(x, y, 2) = (x, y). Then
¢ :+ U~V is a homeomorphism, with inverse given by

¢_1(x, y) = (x, v, 9(x,¥)).

The charts defined in this way clearly form an atlas
for X, and it is smooth, for if 5 : U+ V is another such

chart (got by projecting on to one of the three coordinate

planes) then

N -1

o9 (x, y) = (y, 9(x,y)) or
(x, glx,y)) or
(x, y).

~ny —

In each case the transition map ¢°¢ L is smooth

At this point it is useful to introduce some more
terminology. If X is a smooth surface in 113 we shall say
that a chart ¢ : U » V for X is allowable if the inverse map

r = ¢-1 is a smooth map from V to IQB, and in addition the

derivative Dr(v) has rank 2 for all veV. (I.e. the two
vectors D1r(v) and Dzr(v) in R are linearly independent.)
We shall call the inverse map r of an allowable chart an

allowable parametrization. The charts introduced in the

preceding proof were allowable: we had

Dr(v) = 1 0
0 1
D1g(V) D,g(v)

The set of the allowable charts is a smooth atlas for

X : a proof is given in the appendix. This atlas does not

depend on any choices.
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The tangent plane

If v : (a, b) » 123 is a smooth curve in space, its

tangent vector at the point y(t) is v' (t).

Now suppose that X is a smooth surface in I{3, and

that x € X.

Definition (5.4) The tangent space to X at x is the set of

all tangent vectors at x to all smooth curves in 113 which

pass through x and are contained in X.

The tangent space is in fact a plane, a two-dimensional

vector subspace of 113. That follows from

Theorem (5.5) Let ¢ : U~V be an allowable chart for X

such that x€ U, and r : V->Il3 the associated parametrization.
Then the tangent space at x is the image space of the linear
transformation Dr(v), where v = ¢(x); in other words it is

the plane spanned by the vectors D1r(v) and D2r(v).

3

Proof: Let y : (a,b) >R~ be a curve lying on X such that
v(t) = x. We may as well suppose that y((a,b)) < U. Then
Y = rsf , where B = ¢oy : (a,b)> V is a curve in V such that
B(t) = v. By the chain rule the vector vy '(t) is the matrix
product

y'(t) = Dr(v).g'(t),

i.e. y'(t) € image (Dr(v)).

Conversely, an element of the image of Dr(v) is of
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the form Dr(v) ., where £ is a vector in Iiz, Consider

the curve B in V given by
t > v + tg

for Itl < €. Then .y = roB is a curve in X such that

y(0) = x, and Y'(0) = Dr(v).g'(0) = Dr(v).g.

Normals and orientability

If X is a smooth surface in I§3, and Hx is its tangent
plane at x, then the vectors in I{3 which are perpendicular
to II_ are called normals to X at x. Thus X has two unit
normal vectors at each point. If we have an allowable chart
¢ : U~ V with x€ U then we can pick out one of the unit
normals as the positive one, namely the vector n such that

{D1r(v), D2r(v), n} forms a right-handed frame. (Here

r : V- 113 is the parametrization inverse to ¢, and

L]

v ¢(x).) In other words, the positive normal is the unit

vector in the direction of the vector product D1r(v)x D2r(v).

Now suppose that x also belongs to another chart

~ o —

6 : U™ V, with ¢ V2 % ana ¥ = $(x). Let the transition

$° ¢_1. Then r = Eof, so that

map between the charts be £

by the chain rule

D,r(v) = a D,r(V) + y D,r(v)
Dyr(v) = 8 DiT(V) + § D,T(V),
where < 3 E) = Df (v). Thﬁs
Dir(v) x Dyr(v) = (a8 -gy) DEW) x D21~f(\~7).

Because o6 - By= det Df(v), we have proved




Theorem (5.6) Two charts containing x define the same

positive normal vector at x if and only if the transition

map is orientation-preserving.

Corollary (5.7) If X is an orientable smooth surface in

123 there is a smooth map n : X - 123 such that n(x) is the

positive unit normal to X at X.

In particular, X is two-sided.

Definition (5.8) The unit normal map n : X -~ 123 of (5.7)

is called the Gauss map of X.
We shall return to the Gauss map in §7.

Conversely, if one can choose a unit normal vector
n(x) at each point x of X which varies continuousiy with
% then X is orientable, for we can restrict ourselves to
allowable charts such that the frame (D1r(v), Dzr(v), n(x))
is right-handed, and these form an oriented atlas for X.

In other words

Theorem (5.9) A smooth surface in 123 is orientable if and

only if it is two-sided.

Exercises

1. Let {¢a : U~ Va} and {5@ : U ~» Vd} be two smooth

o o4

atlases for a surface X. Let F and F denote the sets of

smooth maps X - R defined using the first and second
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atlases respectively. Prove that F = F if the atlases are

equivalent.

[In fact the converse result is also true. Thus a smooth
surface is completely described by giving X and F instead

of X and an atlas. Evén more is true: F is obviously a ring
under pointwise addition and multiplication, and the
topological space X is completely determined by the ring F

alone.]

2. Let X be a smooth surface in 1{3. If two different
atlases are constructed for X by the method used on page 49,

prove that they are equivalent.

3. Let X and Y be smooth surfaces. What should be the

definition of a smooth map £ : X - ¥Y? If Y is a smooth

surface in 1{3 prove that £ : X -~ Y is smooth if and only
3

if dief : X > R is smooth, where i : Y =~ 123 is the

inclusion.

4, Let f : V1 - V2 be a homeomorphism between open sets
of R 2 which is holomorphic when R 2 is identified with C.

Prove that f is orientation-preserving.

Prove that the transition maps of the atlas constructed
in 83 for the complex curve x™ 4 yn = 1, and of the atlas
constructed in Ex. 3.10 for the curve y2 = p(x), are

holomorphic, and deduce that these surfaces are orientable.

5. Let X be a smooth surface in 123, and let £ + X -+ R

be a smooth function. Show that at each point x € X there
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is a unique tangent vector to X, denoted by (grade)(x),

such that
< (grad,f) (x) Yy'(t) > = e {£(y())}
g‘X r ac Y
for all smooth curves vy on X such that v(t) = x. Deduce
that (gradxf)(x) = 0 if £ has a local maximum or minimum
at x.

[The uniqueness holds because every vector in the tangent
plane HX at x is of the form v'(t) for some y. For the
existence, let r : V » 123 be an allowable parametrization
of X in a neighbourhood of x, and let g = for : V - R .

Then gradxf = D,g. e, + Dyg. €,, where {e1,e2} is the basis
of HX such that <Dir ’ ej> = Sij.]

6. Let X be a smooth surface in E{3, and let F : I{3 +~ R
be a smooth function. Let £ = F|X. Prove that (gradX f) (x)

is the projection of (grad F) (x) on to the tangent plane

I. to X at x.
X

Deduce "Lagrange's method of undetermined multipliers",
i.e. that statement that (grad F) (x) is normal to X if
f has a local maximum or minimum at x. (If X = g_1(0), for
3

some smooth function g : R~ » R, then grad F is normal to

X if and only if grad F = X\ grad g for some ).)
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§6 The first fundamental form

For the next five sections we shall be studying the
geometry of a smooth surface X in Ii3 which is covered by a
single chart ¢: X - V, where V is an open set in Iiz. Thus

X = r(V), where

r «: V » 113

is an injective smooth map such that the vectors D1r(v) and

D2r(v) are linearly independent for each v € V.

For brevity we shall use the phrase "X is a patch of

surface" to refer to this situation.

Notation

We shall usually abbreviate the tangent vectors
Dir(v) to ri(v), and shall usually write just ry when it is
obvious which point of the surface we have in mind. The
same convention will also be used with other functions

defined in V.

We shall systematically write (u,v) for the coordinates
of a point of V : this conflicts, of course, with our previous

use of v for a point of V,

Finally, when we are being precise, a point of V is a
column vector CE] . But for typographical convenience we

mostly write it (u,v) all the same.
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Lengths of curves

A smooth curve y on X is a map of the form
t v y(t) = r(ult), v(tv)),

where t v (u(t), v(t)) is a’smooth map [a,b] —> V.
length of y is defined as
b
L) = [ Iy(e)l  at,
a

where v (t) denotes d /dt. By the chain rule

Y(t) = u(t) r, o+ v (t) Ty
SO
b 02 e e .2 1
Liy) = i {Eu® + 2F uv + Gv°}? 4t ,
a
where
E = <r1,r1> , B o= <r1,r2> and G = <r2,r2>

The

(6.1)

are three functions V - R which in the formula (6.1) are

understood to be evalﬁated at (u(t), v(t)) € V. These

functions depend only on the surface X and its parametrization,

and not on the particular curve : if we are given E,F,G

then we have all the information about the surface which we

need to calculate the length of any curve on it.
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Definition (6.2) The quadratic form

Eau2 + 2 F dudv + G av?

is called the first fundamental form of the surface. (*)

Examples
(i} The unit sphere in I{3 with one meridian removed can

be parametrized

u cos u Ccos Vv
v = cos u sin v
sin u

where u and v. are latitude and longitude. Then

r1 = -sin u COSs V r2 = -cos u sin v
-gin u sin v ’ cos u COs Vv
cos u o)

The first fundamental form is du2 + coszu dv2 .

(ii) The surface of revolution formed by rotating the curve

x = f£(z) in the XZ plane about the Z-axis can be parametrized

(u) f(u) cos v
v) ! : f(u) sin v
u .

The first fundamental form is

(1 + £'(W?2) au? + £(w)? av’.

(*) The first fundamental form is simply a way of writing down
the three functions E,F,G and at the same time reminding:
the reader of the formula (6.1). Thus du and dv are
formal symbols which are not meant to have any independent
"meaning". What we are really talking about is the
quadratic form on the tangent plane to X at the point
r (u,v) which to the tangent vector gr1 + nr, assigns its
length

IlF,r1 + nr2H2 = E gz + 2FPEn + -G n2.




- 58 -

The information contained in the first fundamental
form is partly about the surface and partly about the chart.
Thus the chart is conformal (i.e. angle-preserving) if and
only if F = 0 and E = G everywhere (see Ex. (6.4 )); and we
shall see presently that the chart is area-preserving if

EG - F2 = 1. All surfaces possess conformal charts and

area-preserving charts. One of our main tasks is to extract
from the first fundamental form the information which depends

only on the surface and not on the chart.

The first fundamental form does not change if the
surface is bent without stretching it. It is useful to

introduce the following terminology.

Definition (6.3) Two surfaces X, X in 1{3 are isometric

if there is a smooth homeomorphism £ : X - X which takes each

curve to a curve of the same length.

Then we can state, for the moment without proof, the

basic fact about the first fundamental form.

Theorem (6.4) Two smooth patches of surface X and X in
1{3 are isometric if and only if they can be parametrized
r : V-~ 123 and r : V - I{3

so that they have the same first fundamental form.

Example

The upper half of the cone x2 + y2 = 22 , slit along

the line x = -z, v = 0, can be parametrized
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(V32 u cos v, V2 u sin v, V2 u)
with (u,v) € (0;0) x (=7,m). The first fundamental form is
du2 + 2u2 dv2.

This is the same as the first fundamental form of the wedge-

shaped piece of 122, with angle 2n//2 parametrized

(u cos (V2 v), u sin (V2 v)) .

Theorem (6.4) gives us a way in principle of deciding
when surfaces are isometric. But it is not very practical,
for it does not help us to decide when we can reparametrize
a surface so as to obtain a desired first fundamental form.
The most obvious question is when a given patch of surface
is isometric to part of a plane, i.e. when it possesses a
chart which is exactly to scale. The only surfaces for which
this is obviously true are pieces of cylinders and cones. In

fact there is another class: the developable surfaces (cf. §1),

which are swept out by the tangent line to a curve in space.
We shall prove this now by using Theorem (6.4). 1In 8§87 we shall
prove the more difficult result that no other surfaces besides

cones, cylinders, and developables are isometric to the plane.

Suppose that y is a curve in I{3 parametrized by

arc-length. (*) The associated developable surface X can be

(*) A curve u +>vy(u) in I{3 is said to be parametrized by
arc-length if the length of the curve from y(0) to
Y(@) is u. The condition for this is clearly that
ldy/dull = 1. It is also obvious that any smooth curve
can be parametrized by arc-length.
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parametrized with
r(u,v) = y(u) + vy(u,

where y(u) = dy/du. Then r, = Y + v¥, and r, = Y. We have
<§,§> = 1, so that <§,V> = 0. Recall that ¥l is the

curvature k of vy.

The first fundamental form is

2 2

(1 + v KZ) du2 + 2 du dv + dv

Now let us choose a plane curve ur>p(u) = (x(u),y(u)),
again parametrized by arc-length, whose curvature is the same
function k(u) as for vy. (We can find p by solving the system

of two linear differential equations

k(u)y

3
¥ =—k(u)x.)
Then part of I{Z can be parametrized
(u,v) = p(u) + vp(u),
and it will have the same first fundamental form as the

" developable surface X.

Proof of Theorem (6.4)

The "if" half of the theorem is obvious. Conversely,
if X is parametrized by r : V » 123, and f : X » X is a smooth
isometry, then we can define ¥ : V - I{3 by ¥ = for. It

follows from the smoothness of f that r is a smooth map

(cf. Ex.5.3) so we have
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1 ~ e ~ o ~ e 1
2 4t = jb{Eu2 + 2Fav + GVP)7 at

(P{Ea? + 2FOV + av?)
a a

for all smooth curves (u(t), v(t)) in V, where E = <i1,f1>,

etc. Let us apply this to the curve given by u(t) = u, + t
and v(t) = v, for o<t < €, where (u,,v,) is some point of V.
We find
£ £ ~ 1
IC E(u +t, Vo)%dt = IO E(u +t, v_)*dt.
Because
o(u) = lim 1 [° ¢(u, + t) dt
e+0 ¢ 0

for any continuous function ¢, we conclude that

E(uo, Vo) = E(uo, vo). Similarly we can show that
G(u_, v,) = é(uo, v, ). Then we consider the curve
u(t) =u + t, v(t) = vt t. The same argument shows that
1 ~ NIt
(E + 2F + G)? = (E + 2F + G)?
at (u,, v,), and hence that F(u,, v,) = ﬁ(uo, v,). To

complete the proof of the theorem we need only to show that
¥ is an allowable parametrization, i.e. to show that the
vectors f1 and fz are linearly independent. But that is so
because the equations E = ﬁ, F = ﬁ, G =G imply that the
angle between f1 and fz is the same as that between r, and
ry-

Areas

Apart from the lengths of curves on the surface the

first fundamental form also enables us to calculate areas.
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Heuristically at least, the infinitesimal parallelogram on
X spanned by the tangent vectors r, du and r, dv has area

Ilr1 X r2H dudv. Using the vector identity
<a x b, a x b> = <a,a><b,b> - <a,b>2
we find

lr. x r. Il = (EG - F2)Z. (6.5)

We therefore make

Definition (6.6) The area of the part of X = r(V) corresponding

to V,c V 1is

1
[ (EG - F2)? dudv.
Vo

For this to be a sensible definition we need to know
that it does not depend on the parametrization. Suppose that
X is described both by r : V =+ R > and by ¥ : V » 123, with
corresponding first fundamental forms E du2 + ZF dudv + G dv2
E an® + 2F duav + & avl. Then there is a smooth bijection

f : v—=V, which we write
(u, v) > (4(u,v), V(u, v)),

~

such that ¥(d, v) = r(u, v) . We have

=
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SO

X1
(EG - F7)* = lr, X% r2H

~~ ~2 1
det Df , (EG - F7) 2% .

Thus by the standard theorem about change of variables in

multiple integrals we have

1 o ~2. 1
[ (EG - r%)? qudv = | (EG - #2)% ai av .
v, £(V,)
The question of realization
It is natural to ask the following question. If we

are given an open set V in E&z and three smooth functions
E, F, G : V> R, can we find a patch of surface r : V 123
whose first fundamental form is Edu2 + 2F dudv + G dv2? If

so, then

E>0, G>0, and EG - F2 > 0. (6.7)

(In other words, the first fundamental form is positive definite.)

If these conditions are satisfied the answer to the question is:

locally yes, but globally no. Given E, F, G and a point P€V

we can find a neighbourhood V, of P and a map r : V, > 113

which leads to the desired E, F, G in V, . But usually we
cannot extend r to all of V. We shall not prove these

statements.

Let us notice, however, that if E, F, G are given

satisfying (6.7) then we can assign a "length" X (y) to every
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curve Yy in V by the formula (6.1), and then we can define

a metric on V by
a®, Q) = inf {&L(y) : v is a curve in V from P to Q}:

In §12 we shall study a very important example of a metric
defined in this way : the Poincaré metric on the unit disc in

122. It cannot be realized (except in little patches) as the

natural metric of a surface in I{3.

Exercises

1. The catenary is the plane curve with equation y = cosh x.
Why is it so called? The catenoid is the surface of revolution
obtained by rotating the catenary about the x-axis. Parametrize

it and find its first fundamental form.

2. The helicoid is the ruled surface swept out by a straight
line which moves like an aeroplane's propeller : the line is
always perpendicular to the z-axis, and at time t it passes
through the point (0, 0, t) and makes an angle t with the
x—-axis. Parametrize the helicoid and find its first

fundamental form.

3. If one meridian is removed from the catenoid prove that
the resulting surface is isometric to part of the helicoid,
in such a way that meridians of the catenoid map to rulings
on the helicoid. What curve on the helicoid corresponds to
the "waist" of the catenoid? [We shall in Ex./19.4 that there is

essentially only one possible isometry between these surfaces.]
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4. Two curves on the same patch of surface are given
parametrically by t +—= (u(t), v(t)) and t > ({d(t), V(t)).
Suppose that the curves intersect when t = 0, i.e. that

u(0) = 4(0) and v(0) = V(0). Prove that the angle of

intersection 6 is given by
Eul + F(4¥ + Vi) + G v¥
cos 0 =

. .o . &9 i i 1
{(E u2 + 2F uv + G v2)(E u“ + 2 Fuv + G vz)}z.

Deduce that a chart is conformal if and only if the first

fundamental form satisfies E = G and F = 0 everywhere.

5. Let vy : [a, b] - 113 be a curve parametrized by
arc-length. Its curvature and torsion at vY(u) are denoted

by k(u) and t(u); we suppose that both are non-vanishing.

Let Hu be the plane through y(u) normal to the curve, and let
Cu be the circle in Hu with centre y(u) and radius e. Let

X be the surface swept out by Cu' Prove that when X is

suitably parametrized its first fundamental form is

((1-xe cos v )2 + 82 12) du2 + 2 ezfrdu dv + 52 dv2 .

Prove that the area of X is 27me times the length of Y.
1

[Why is this question not sensible unless € < Min x(u) 2]

6. Notice that the first fundamental form can be defined

for a patch of surface given by r : V » R” for any value

of n. The torus {(21,22) € E2 : lz1l = lzzl = 1} - see Ex.
2.1 - cah be parametrized (u, v) —> (elu ’ elv)

E2 with 124 in the usual way, prove that the corresponding

first fundamental form is du2 + dvz.

. Identifying

[We shall see in 8§10 that a closed surface in 123 can never

have the first fundamental form du2 + dv2.]
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§7 The curvature of a surface in R

We shall continue to study a patch of surface X in
113, given by a smooth map r : V =+ 123. Near a point
x = r(u, v) the surface is approximated by its tangent
plane HX at x, which is the plane spanned by the vectors
r1(u, v) and rz(u, v). The curvatﬁre of X at x is the way

in which X diverges from I, - We use Taylor's series o

expand r(u',v') when (u',v') is near (u, v):

r(u',v') = r(u,v) + {r1(u,v) Au + r,(a,v) Av}
+ % {r11(u,v) Au2 + 2r12(u,v)AuAv + r22(u,v)Av2}

+ { third-order terms },

where Au = u'-u and Av = v'=v. If we neglect the third-order
terms then the distance of r(u',v') from the tangent plane
Hx is <n, r(u'v') - r(u,v)> =

L {<n, r, > Au2 + 2<n,r sz , (7.1)

11 > AuAv + <n,r

12 227

where n = n(u,v) is the positive unit normal to X at Xx.

The quadratic form (7.1), without the %, is called the

second fundamental form of the surface X. It is traditional

to write it as

2

L du® + 2 M dudv + N dv2,

where L = <n,r M = <n,r12>, and N = <n,r,,> are real-valued

1177 22

functions of (u,v) € V.

We shall now show that knowledge of the first and second

fundamental forms enables one to calculate the curvature of
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any curve on X. (In fact much more is true : the two
fundamental forms determine X completely up to a rigid

motion of 123. See Ex. 7.6)

Let v : (a,b) - 1{3 be a curve on X parametrized by

arc-length. We shall write y(t) = r(u(t), v(t)) as usual.
The curvature k of y at y(t) is, by definition, the length

of the vector Y(t). This vector can be decomposed

st (3] (3}

Y = Ytgt * Y_L

into a component vtgt in the tangent plane and a component
Vl normal to the surface. The length of vtgt is called the

geodesic curvature Kg of y - for we shall see in §8 that

Vtgt = 0 if and only if y is a geodesic - and the length of
?l is called the normal curvature k, of v. Thus we have

K- = Kg ok, (7.2)
We give signs to Ky and Ky by defining
Kg = <Y ,yxn> and K = <¥,n> .

The important thing about K is that at any point it
depends only on the direction of y at that point, i.e. on

the unit tangent vector ? = ur, + Qrz.

Theorem (7.3) If vy is a curve on X parametrized by arc-

length, then its normal curvature is given by

Ky = La% + 2 MOV + NV2.

The geodesic curvature, on the other hand, depends on

u, Q, u, v and the first fundamental form, but not on L, M, N.

(See Ex. 7.05)
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Proof of (7.3) By definition Ky = <n,¥ >. But

4 L]

= 4 (ﬁr + Vr2)

dt 1
= (Ur, + Vr,) + (ﬁzr + 2Uvr + Gzr )
1 27 . 11 12 22°°
This gives the desired formula, as <n,r1> = <n,r2> = 0.

From (7.2) we see that of all the curves on X passing

through a point x = r(u,v) in the direction gr1 + nr, the

minimal possible curvature Kn is that of the normal section,

i.e. the curve of intersection of X with the plane through

x spanned by n and the tangent vector £r1 + nr Let us

o
now consider how Kn varies if we rotate the unit vector

£r1 + nr, in the tangent plane at a fixed point. In other
words we consider the values of Ky = ng + 2MEn + Nn2 subject
to the constraint that ng1 + nr2H2 = Egz + 2FEn + an is 1.
If we change from {r1,r2}to an orthonormal basis {e1,e2} in
the tangent plane, then the quadratic form L£2 + 2MEn + an
will become, say, Agz + 2BEn + an ’ while'the constraint
becomes 52 + n2 = 1. We can then rotate the basis {e1,e2}

so that the form A£2‘+ 2BEn + an becomes diagonal, say

As £ and n vary subject to 52 + n2 = 1 the normal curvature

varies between K4 and Koy If Ky # Ky the eigendirections
{e1,e2} are uniquely determined.

We now introduce some standard terminology.

Definition (7.4)

(i) The extreme wvalues Kqr Ko of the normal curvature at
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a point of a surface are called the principal curvatures

at that point.

(ii) The directions of the curves with curvatures K1,K2

are called the principal directions at the point.

(iii) The product K = KqKo is called the Gaussian curvature

of the surface.

(iv) The average %(K1 + K2) is called the mean curvature

of the surface. (*)

Remarks

(i) The principal directions are not defined at a point
where Ky = Ko but they are perpendicular whenever they are
defined. (A point with Kq= K, is called an "umbilic".)

(iii) If K, and K, have the same sign - i.e. K > 0 - then
the surface looks convex or concave, i.e. it stays on one
side of its tangent plane. If K and K, have opposite
signs - i.e. K < 0 - the surface looks like a saddle, and

crosses its tangent plane.

Our next main task is to explain the geometric
significance of the Gaussian curvature and the mean curvature.

But first let us point out that the change of basis

(]
1]

L P LI B

(]
1

g T 0pTq * ByTy

in the tangent plane which converts the fundamental forms

ge2 + 2PEn + Gn2 and LEZ + 2MEn + Nn? 2

K1EZ + K2n2 can be done in one step. For

to 52 + n~ and

(*) Many books define the mean curvature as K, + K,.
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(i1) e (32)

2

are the relative eigenvectors of the two forms, i.e. the

vectors such that

B0 - = (EDED,

normalized so that Eai + 2FociBi + GB? = 1. So we have
Theorem (7.5) (i) The principal curvatures Kqrk, are the
roots of the quadratic equation
det Y/ MY - « (E F)E = 0.
M N F G
(ii) The Gaussian curvature 1is K = (LN—MZ)/(EG—FZ).

(iii) The mean curvature is

LG - 2MF + NE

EG—F2

e

Interpretation of the Gaussian curvature

For a plane curve the curvature is defined as the
rate of change of direction per unit length, i.e. as dy/ds
where { is the angle between the tangent and a fixed
direction. We can equally well take { to be the angle
between the normal and a fixed direction. The analogous
procedure for a surface is to define the curvature as the
rate at which the normal sweeps out solid angle per unit

£*3
area of the surface. We shall now see that this is the

Gaussian curvature.



_7‘]_

Recall from §5 that for an oriented surface X in
113 the Gauss map n : X > S is the map from X to the unit
sphere in I23 which assigns to x€ X the unit normal vector

n(x) at x. Let U be a small neighbourhood of x in X. We

shall consider the limit as U contracts to x of

area n (U) (7.6)

4
area U

where the area of the piece n(U) of S corresponding to U is
taken to be positive or negative according as the map n

preserves or reverses orientation.

Theorem (7.7) The limit (7.6) exists, and is the Gaussian

curvature at x.

Proof: Suppose that X is parametrized near x by r(u,v) in

the usual way, and that U r(V). The area of U is

1
5 f (EG-F?)? dudv.

f Iz, x r I dudv
\% \%

The corresponding area on S is | In, x n,I dudv. But the
’ \Y

vector ng x n, is in the direction of n, and when we take

the sign into account we have

area n(U) = { <n,n, x n,> dudv.
\Y
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Now <n, n1><n2> <r1x r2, n1><n2>

llr,l X rzll

<r

,n1><r2,n2> - <r

ll r, X r, [

1 1,n2><r2,n1>

_IN-M’

2 1
(EG-F7)* ,

I

because <r1,n1> = —<r11, n> = =L, etc.

Thus as U shrinks to a point the ratio of areas

becomes

LN-M2 _

—_7—K'

EG-TF
as we want.
Corollary (7.8) For a convex closed surface X in 123 we
have

[ Kda = i ,

X

where dA is the element of area of X.

Proof: For a convex surface the Gauss map n : X > S is a
bijection, and we have just proved that KdA is the area of

n{(da) .

In §10 we shall prove that for any closed surface X

one has

[ Rda = 2wy,
X

where y is the Euler number of X.

Two other possible definitions of the Gaussian curvature

are given in Ex. 10.5.
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Flat surfaces

A surface is called flat if its Gaussian curvature
vanishes. 1In §10 we shall prove that a surface is flat if
and only if it is locally isometric to a plane. It is a
different matter, however, to decide which concrete surfaces
in space are flat. Planes, cones, and cylinders are
easily seen to be flat, and so are developable ruled surfaces.
We shall now show that these are essentially the only ones.
This is slightly vague. The most general flat surface is a
patchwork of pieces of planes, cones, cylinders, and
developables, all meeting each other along straight lines.

To avoid such messy statements we shall here prove only

Theorem (7.9) Let X be a flat surface. Then in the

neighbourhood of a point x where the mean curvature does
not vanish X is a piece of a cone, a cylinder, or a

developable.

Proof: At each point in some neighbourhood of x one
principal curvature vanishes and the other does not, so there
are two well-defined principal directions, corresponding to
orthogonal unit tangent vectors  qr €y - We shall suppose

that e. is the direction in which the principal curvature

2

vanishes. We can reparametrize X in a neighbourhood of x so

that r, and r, are parallel to e, and e, respectively. (See
Appendix.) The first and second fundamental forms then
2 2 2

reduce to Edu” + Gdv~ and Ldu".

We shall first show that the curves u = constant are

striaght lines, i.e. that X is a ruled surface, and then we
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shall show that a ruled surface is flat if and only if it
is developable. For the first, it is enough to show that
e, is constant when u is constant, i.e. that the partial

derivative e2 > vanishes.
4

We begin with the derivatives of the unit normal n.

We have
-4
n1 = - B Lel and
n, = 0,
_ -1 _ g }
for <n1 ,e1> = Hr1ﬂ <n1 ,r1> = -E °<n ,r11> = -E °’L, etc.
Hence
-1
_ _ 2
<e2,2 ’ e1> = E °L <e2’2 ’ n1>
-1
= 2 >
E L <e2 r o (because <e2 ’ n1> = 0)
= 0.
Furthermore <e2 5 e2> = 0 because e, is a unit vector,
¥
and <e2,2 , D> = - <e2 ’ n2> = 0. So e2’2 = 0, as we want,
3

Now let us consider the general ruled surface in R
swept out by the line through y(u) in the direction of the
unit vector a(u), where vy is a curve in 1{3 parametrized by

arc-length. The surface is parametrized by
r(u, v) = y(u) + wval(u),

so that r11 =Yy + va, r12 = a, and r22 = 0. Thus in the

0, and the Gaussian curvature

second fundamental form N

vanishes if and only if M 0, i.e. if and only if

<r1 X Ty g a> = 0. But
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<(y+va)xa , a>

n

<r, X r2 , a>

<§ ; ax a>.

We have seen (Ex. 1.8) that <§,a><é>= 0 is the condition

that the surface is developable.

Exercises

1. Find the first and second fundamental forms for the
helicoid given parametrically by (u cos v, u sin v, v).
Find the principal directions and the principal curvatures

at each point.

2. Find the principal directions and the principal curvatures
at a point on a surface of revolution in terms of the
curvature k of the generating curve, the distance p from the
axis, and the angle ¢ between the axis and the tangent line

through the point. Prove that the Gaussian curvature is

K cos ¢/p.

Prove that the isometry found in Ex. 6.3 between the
catenoid and the helicoid takes each point to a point where
the Gaussian curvature has the same value. [In §10 we shall

prove that this is true for any isometry.]

3. A tractrix is the path of a heavy object which begins
at the point (0,1) in Iiz and is dragged slowly by a rope of
length 1 held by a person who begins at the origin in 122

and walks with unit speed along the x-axis. Prove that the

tractrix can be described parametrically by
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x = —-(cos u + log tan 3 u), y = sin u.

The surface obtained by rotating the tractrix about the
X—-axis 1is called the tractoid. Prove that its Gaussian
curvature is everywhere -1. Prove that the area of the

complete surface is 27.

Prove that when the tractrix is parametrized by
arc-length the first fundamental form of the tractoid is

du2 + e—2u dvz_

4. For a surface parametrized in the usual way, express
the six quantities <ri, rjk>’ where i, j, k = 1, 2, in terms

of B, F, G.

5. If £t += (u(t), v(t)) describes a curve parametrized by
arc-length on a patch of surface, prove that its geodesic

curvature is given by

Py voe an o L4 . [ e 3 .
(EG - FZ)2 (OV - uv) + (p a3+ q 0%V o+ r uV2 + 8 V3),

where p, 4, ¥, s can be expressed in terms of E, F, G.

-1
2

Prove that p = (EG -F°) ¢ (EF, - } EE, - } FE

2 1)'

6. For a surface X parametrized in the usual way let P

be the (3 x 3)-matrix-valued function of (u, v) given by
P = (r1, Ty n). Prove that the function P determines X
up to a translation in E13. Prove also that P satisfies

the differential equations

9P/3u = PA , oP/3v = PB ,

1 1

where A = C 'D and B = C_ E, and
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EFO 2111 3921 7B 2112 3122
¢ ={Feo b 2211 %221 M E 2212 %222

001/, L M o0/, ‘M N
and aijk = <ri, rjk>' Deduce that X is determined by the

first and second fundamental forms up to a rigid motion of

R,

[To obtain the differential equations, notice that

PtP = C. PFor the last part, observe that each row Et of P
satisfies the differential equations 3f/au = AtE and
3E/ov = Bt £ . Use the fact that a first order system

of linear ordinary differential equations possesses a

unique solution with a given initial condition.]

-M
~N

0
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§8 Geodesics

Roughly speaking, a geodesic on a smooth surface X
is a smooth curve vy : [a, b] - X such that the length £ (y)
of vy is minimal among all smooth curves on X joining y(a) to
v(b). But we shall adopt a weaker definition, partly just
for convenience, and partly because we want, for example, to
count any segment of a great circle on a sphere as a geodesic,

even one which goes more than half-way round the sphere.

Definition (8.1) A smooth curve vy : [a,b] - X is a geodesic

if for every family {ys} of smooth curves in X such that

Yo = v and, for all s, y (a) = vy (a) and Yg{b) = y(b), we
have

§£(YS)| = 0.

ds S=0

Here a "family of smooth curves" means that Ys : [a,b] - X
is a curve for each s in an interval (-e,e¢), and that

(s,t) r— ys(t) is a smooth map from (-e£,¢) x [a,b] to X.

In this section we shall derive the equations for a
geodesic by the standard method of th;mcalculus of variations.
The equations are intrinsic to the surface, in the sense that
they involve only the first fundamental form : obviously the
geodesics do not change if one bends the surface. But we
shall find that geodesics can also be characterized in a
completely different non-intrinsic way. This is intuitively
obvious : a geodesic is a curve on X whose direction changes

as little as possible, i1.e. one such that the derivative of
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its unit tangent vector is normal to the surface.

To derive the equations we can assume that X is a
parametrized patch of surface, for any segment of a geodesic
is a geodesic. Let us assume that Yg is given parametrically by
tv+—> (u(s,t), vis,t)), and differentiate the expression

(6.1) for £(ys) with respect to s.

L (YS) = j R® dt ,
a
where R = Eﬁz + 2FUV + GGZ , and u and v denote u and oV .
ot ot
Thus
.b 1
d £y = %IRz?_Bdt.
ds a d9s
But
_ -2 * . 02 .2 .
3R = (E. u° + 2F, uv + G, v°) du + (E,u“ + 2F uv + G,V) 3v
— 1 1 1 — 2 2 =2
s s s

+ 2 (Ea + Fv) du + 2(FQ + Gv) 3v .
Js os

Integrating by parts, and observing that

du = 3v = 0 when t = a,b, we find
ds 9s
b
dfy = J{P du + Q av} dt , (8.2)
ds' g=¢ 9s 9s
a
where
—.]: .2 LN ] .2 —!‘- [ ] * .
p =1 R 2(E,u° + 2F,uv + G, v°) - 3 {R %(Eu + Fv)}
1 1 1 €
_% 02 ) !2 —% . O
and Q = ¥ R ?(E,u” + 2F,uv + G ) = 93 {R *(Fu + Gv)!}
2 2 2 3
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In (8.2) the functioné P and Q are evaluated at
s = 0. They are then fundtions of t which depend only on
the original curve y and not on the family {ys} . The curve
vy is a geodesic if and only if the derivative given by
(8.2) vanishes for every family of curves containing Y.
The necessary and sufficient condition for this is that
P =Q=0. AThe sufficiency is obvious; the necessity is
proved by the following argument. Suppose, for example,
that P does not vanish for t = t_, where a < t_ < b. If
P(to) > 0 then we can find an interval (t - ¢ , t_  + §)
in which P(t) > % P(t,) > 0. Choose a smooth positive-valued
function ¢ : [a, b] » R such that ¢(t_ ) = 1 but ¢(t) =0
when t is outside the interval (t,- §, t, + §). Then consider

the family of curves given by

u(s, t) = u(t) + so¢(t)
vi{s, t) = v(t)
for Isl < g. The expression (8.2) takes the value
b
[ P(t) ¢(r)at > $P(t,) jbcb(t)dt > 0,
a a
a contradiction. So P = 0; and similarly Q = 0.

To put the result in more manageable form we can assume
that v is parametrized by arc-length, so that R = 1. (Note
that for the preceding argument to work we must not assume
that the curves Yg of the family are parametrized by arc-length
for s # 0, for then 3u/3s and 3v/9s could not be arbitrary

functions of t .)
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Theorem (8.3) If vy is parametrized by arc-length then it

is a geodesic if and only if

d . . _ 1 02 .o .2
&E(Eu + Fv) = 3 (E1 u” 4+ 2F1 uv + G1 v7™) and
d . . 1 ¢2 ) '2
Ji(Fu + Gv) = 3 (E2 u- o+ 2F2 uv + G2 vy).

From these equations we can deduce the non-intrinsic

description of a geodesic.

Corollary (8.4) A curve on X is a geodesic if and only if

the derivative of its unit tangent vector is normal to X at

each point.

Proof of (8.4) Let ¥y be a curve on X. We can assume it is

parametrized by arc-length. Its unit tangent vector is

v = ar, + Yr,. Thus Y is normal to X if and only if

d ’ . .
< 3t (ur1 + vr2) r Ty >=0 for i =1,2.

But these are precisely the equations of Theorem (8.3). For
< d (ﬁr + %r ) f > = d < Ur, + vr r,> - <ur, + vr,,dr /dt >
dt 1 277 71 dt 1 27 ™1 1 27771

= d L L[] .2 LN
Ei(Eu + Fv) {u®< riTqq> + uv(<r1,r12> + <r2,r11>)

2

+ v <r2,r12>}

+ \'72G1);

d L] . - _l .2 . @
J (Eu + Fv) 1(u E1 + 2uv F1

and similarly for the other equation.

Corollary (8.4) tells us that the geodesics on X are the
trajectories of particles which move freely on X, subject to no

forces except the constraint of remaining on X. This gives us
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a practical way of finding the geodesics on many surfaces.
(Cf. especially Bx. (8.3 ) It also explains why the length
of the component V in the tangent plane is called the
"geodesic curvature": this component measures the extent

to which vy fails to be a geodesic.

Because the determinant EG—F2 is non-zero the equations

for a geodesic can be rewritten in the form

Afu, v; 1, V)

[orks
1l

B{u, v; u, v),

<
1l

where A and B are gquadratic forms in U and v whose

coefficients are functions of u and v. The theory of ordinary
differential equations tells us that if u(8), v(0), u(0), and
v(0) are given then the equations have a solution (ult), v(t))
defined for t in a neighbourhood of 0. In other words, there
is always a geodesic passing through a given point in a given
direction. In fact if X is complete as a metric space the
geodesic can always be extended indefinitely in both directions
(i.e. y(t) is defined for all t € R ), but we shall not prove

that here.

For the present we shall make only one application of
the existence of geodesics. It is to construct a very useful
local parametrization of an arbitrary surface X in the

neighbourhood of a chosen point x,. We begin by choosing a
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geodesic segment Yy, parametrized by arc-length, such that
Y(0) = X Then for all small v we construct a geodesic Yoo
again parametrized by arc-length, orthogonal to y and such
that YV(O) = y(v). Let r(u,v) = Yv(u). Then r1(0,0) and
r2(0,0) are orthogonal unit vectors, so r is an allowable

parametrization.

ILet us calculate the first fundamental form in this
parametrization. We have E = 1 because the curves v = constant
are parametrized by arc-length; and because these curves are
geodesics we find that F, = 0 from the equations (8.3).

Thus F is independent of u. But F = 0 when u = 0 because Yy
meets y orthogonally. So F = 0 everywhere, and the first

fundamental form is

aw?  + G, v) av. (8.5)

Example

If we carry out the preceding construction at a point
of the equator of the unit sphere, taking y to be the equator,
then u is latitude and v is longitude, and the first

fundamental form is

du2 + coszu dvz.




In this section we have only scratched the surface
of the theory of geodesics. We have not mentioned the

following natural questions.

Is there a geodesic joining any two points of the

surface?

When is there more than one?

When is a geodesic the shortest path between two of
its points?
What can be said about the existence of closed

geodesics on a surface?

When does a pencil of geodesics emanating from one

point come to a focus at another?

In fact the theory of geodesics is one of the most

beautiful and well worked-out parts of differential geometry.

Exercises

1. What are the geodesics on a cylinder? Verify directly
that the principal normal to a geodesic is normal to the

cylinder.

[Preferably do not assume that the base of the cylinder is

a circle.]

2. Prove that a meridian on a surface of revolution is a
geodesic. When is a parallel of latitude a geodesic on such

a surface?



- 85 =

3. Prove that along a geodesic y on a surface of revolution
the product p sin ¢y is constant, where p is the distance
of yv(t) from the axis of the surface, and ¢ is the angle
between &(t) and the meridian through y(t). This is called

Clairault's relation. What does it have to do with the

conservation of angular momentum in mechanics?

Prove that on a spheroid (i.e. the curve obtained by
rotating an ellipse about one of its axes) every geodesic
which is not a meridian remains always between two parallels

of latitude.

4. Let X be the hyperboloid of one sheet x2 + y2 - 22 =1,
and let y : R - X be a geodesic parametrized by arc-length.
Let h be the constant value of the "angular momentum" p sin ¥
along y. (See Ex. 3.) Prove that unless y is either a
meridian or the "waist" of X (i.e. the curve z = 0) then

y(t) is asymptotic to either a meridian or the waist as

t - + «, and that the latter case occurs if and only if

h = +1. Prove that y remains completely in either the top
half or the bottom haif of the hyperboloid if [hl > 1, while
if lhl < 1 it goes right through.

[Describe y in cylindrical polar coordinates (p, 6, z). Show
that p2é = h. Show that z cannot vanish unless o = lhl.
Consider what can be said about p and 6 if z~+ L as t -+ + «.]
5. Let X be an ellipsoid in 1{3. If vy is a geodesic on X
let d(t) be the length of the diameter of X parallel to v(t),
and let p(t) be the distance of the tangent plane at y(t) from

the centre of the ellipsoid. Prove that the curvature of ¥y
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is p(t)/d(t)?, and that the product p(t)d(t) is independent

of t.

6. Let P be a point on a patch of surface X in 113, and

let e be a tangent vector to X at P. Let Yo be the geodesic
on X parametrized by arc-length such that ye(O) = P and
&e(O) makes the angle 6 with e. Let r(u,8) = ye(u). Assume
that (u,8)v+—=> r(u,0) is an allowable parametrization of X
for 0 < u < Rand 0 < § < 2n. (This is called the

geodesic polar coordinate system on X at 0.) Prove that the

corresponding first fundamental form is du2 + u2 a(u,e)2 d62,

where a : (-R, R) x R - R ia a smooth function such that
a(0,6) = 1 and a(-u,9) = a(u, 6+7). Let Cp and Ap denote
the circumference and area of the geodesic circle on X with

centre P and radius p (i.e. the circle u = p). Prove that

Cp = 27p (1+1/2kp2 + O(p4)) , and
A = mo? (1 + ¥kp? + 0(p%)),
where
2m
k = '%E & a;, (0,0) de.

0

(In Ex. 10.5 we shall see that -6k is the Gaussian curvature

of X at P.)

[Observe that (u,6)v—> r(u,6) is actually a smooth map defined

for (u,8) € (-R,R) x R and satisfying r(0,6) = P and

r(-u,8) = r(u, 6 + 7). Thus r, (0,8) = 0. Observe also

2

that Hrz1 (c,e)ll = 1.1



- 87 -

§9 Mean curvature and minimal surfaces

In this section we shall explain the geometrical
significance of the mean curvature. Suppose that a patch
of surface is described by r : V » 113, where V is an open

2

set of R ™. Let R be a compact region inside V. The

area of r{(R) is given by

= Al 1
A = S I r, x r, | dudv = J’(EG—F?‘)2 dudv.
R N
Now suppose that the surface is moving in such a way
that each point travels with unit speed in a direction

normal to the surface. We shall prove that the rate of

change of A is

. _]_'~
A = 25 C. (EG-F)? auav,
R
where C is the mean curvature. If we consider a very small

region R in which the mean curvature is roughly constant,
this means that the proportional rate of change of area

1

AT'A is roughly C; and letting R contract to a point we have

exactly

Theorem (9.1) The mean curvature at a point of a surface

is half the rate of change of area, per unit area, at

that point when the surface moves perpendicularly to

itself with unit speed.

We shall actually prove a slightly more géneral
result. Suppose that we have a one-parameter family of

patches of surface, parametrized by t € (-e,e). The
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surface at time t is given by
(u,v) > r(u,v:t),

where ¥ = V X (~g,e) ~ R3 is a smooth map. We shall
suppose that the motion is perpendicular to the surface,
i.e. that r = D3r is orthogonal to ry = D1r and r, = Dzr
at each point. Let A(t) denote the area at time t. We

have

Theorem (9.2) A(t) = 25[!%II.C.(EG—F2)% dudv.
o ,

Here all the quantities in the integral refer to the

surface at time t.

Proof: By definition

A(t) 5 I r, X r2|| dudv

S‘<n,r1 x r2> dudv,

so we must show that

%t <n,ry x ry> = lrl.lr, x r,l.cC.
But %t<n,r1x r,> = <ﬁ,r1x r2> + <n,f1x r2> + <n,r1x f2>.
Now <ﬁ,r1x r,> = Hr1x r2H <ﬁ,n> = 0 because n is
a unit vector, and

lr, xr,l <n,fy xr,> = <r,xr,, LqxT,>

. .
= <Ly T ><r,,r,> - <Ly, Ty><Ey Ty>.
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Because r = Irln we have
r. = (a3 lrh)y n + lzln,,
1 = 1
ou
so that <r1,f1> = Izl <r,n.> = - Lizl,
and <r2,r1> = HrH<r2p1> = =M Il .
Thus
Hr1x r2H N, T, X r,> = icl (MF-LG),
and similarly
Hr1><r2H <n, rgx r,> = Il (MF-NE)
Putting everything together we have
. 2 1
9 <n,r,xr,> = lrll (2MF - LG - NE)/(EG-F“)?
5% 1 2

2 1

= 2lrl.C. (EG-F°) 2

by Theorem (7.5).

The importance of Theorem (9.2) is in connection
with minimal surfaces. The problem of finding a surface of
minimal area with a prescribed boundary curve is called

Plateau's problem, and a solution is called a minimal surface.

The best example is a soap film spanning a curve of wire.

A minimal surface must have the property that its area is
stationary to first order when one makes displacements of
the surface which vanish at the boundary. Theorem

(9.2) tells us that a necessary and sufficient condition for
this is that the mean curvature vanishes everywhere. (There
is no loss of generality in considering only displacements
normal to the surface, for any family of surfaces can be
parametrized in such a way that the displacement is normal:

one defines the point r(u,v;t) to be the point obtained
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from r (u,v;0) by travelling from the surface at time 0
to the surface at time t along a trajectory which is

orthogonal to the family of surfaces.)

Alongside soap films one can study soap bubbles, which
are films separating regions of space in which the pressure
takes different constant values. If we assume that the
surface-tension energy possessed by a film is proportional
to its area then Theorem (9.2) tells us that the pressure-
difference across a film is proportional to its mean
curvature, for the change in energy caused by a small
displacement is equal to the work done by the pressure. We

conclude that a soap bubble is a surface of constant mean

curvature.

Exercises

1. Prove that the catenoid (see Ex. 6.1) is a minimal surface,
and that it is the only surface of revolution which is a

minimal surface.

2. Prove that the helicoid (see Ex. 6.2) is a minimal surface.
[In fact it is the only ruled minimal surface: to prove that

is a possible but not so easy exercise for the reader.]

3. Suppose that r : V » 123 is a conformal parametrization
of a patch of surface X (i.e. E =G and F = 0 : cf. Ex. 6.3 )
Prove that X is a minimal surface if and only if r is harmonic,

i.e- r11 + r22 = O‘
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4, If r : \7~42R:3 is a conformal parametrization of a

minimal surface X prove that r is the real part of a
holomorphic map £ : V » ¢3 such that lldf/dzll2 = 0 for all

z eV,

3 2

- . 2 _ 2 2
[For & = (£, &y, &3) € €7 we write el = g,7 + £, + £57 .
Recall that a real-valued harmonic function on V is always

the real part of a holomorphic function.]

If X is the catenoid, prove that Im(f) is a parametrization

of the helicoid.

5. Conversely, if £ : V > E3 is a holomorphic map such that
Hf'(z)H2 = 0 for all z €V, prove that Re(f) is a conformal

parametrization of a ruled surface.

Deduce from Exercises 1 and 4 a new proof that the

helicoid is a minimal surface.
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§10 Gauss's "theorema egregium"

In this section we shall prove the fundamental
theorem that the Gaussian curvature is an intrinsic property
of a surface, i.e. that it can be expressed in terms of the
first fundamental form alone, and is therefore invariant
under bending. More concretely expressed, however one
bends a patch of surface the solid angle swept out by its
normals does not change. Gauss called this result a
"remarkable theorem" - "theorema egregium" - and the name

has remained popular.

We suppose as usual that a patch of surface is defined
by r : V~€>123. Let us choose at each point of the surface
an orthonormal basis eqre, for the tangent plane, in such
a way that e and e, are smooth maps V - I{3. One way to
choose e rey is to apply the Gram-Schmidt procedure to the
standard basis r1,r2 of the tangent plane: we shall do this

in detail presently. Then €1s€5/1 is an orthonormal basis

for I{3, and we can express the partial derivatives

Djei = ei,j in terms of it. We write
1,1 © apey * o Agm
e1,2 ase, + Azn
2,1 7 ™% o+ ugn
©2,2 7 %< T HMpfty

where Oqr Onr A1, kz, My U, are all real-valued functions
on V.
(We have used the facts that <e, "”ei> = 0 because e, is

a unit vector, and <e1 i e2> = - <e2’i, e1> because

14
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<e1,e2> =0.)

The crucial step towards Gauss's theorem is

Lemma (10.1) <e1,1, e2,2> - <e1,2, e2’1>
= MMy T Ay
= %q,2 T % 4

(LN-M?) / (EG-F?2) ?

Proof: The first equality is immediate from the definitions.

For the second, we have

u1,2 - a2’1 = 3 <e1, e2,2> - g <e1, e2,1>
9 v
= Keqp ey 7 v feys ey oy
- <e1,2, e2’1> - <e1, e2,12>
= <e1,1 ' e2’2> - <e1,2, e2,1> .

To obtain the third equality, recall that we proved

1
on page 7.6 that (LN-—MZ)/(EG—FZ)2 = <IH X n n >. But

2’

n = X e SO
€17 €y v

n>

{n,xXn

1 o <n1x Ny, €4 x e2>

<n1, e1> <n2, e2>—<n1,e2><n2,e1>

> =<n,e ><n,e >

= <n,e1,1><n,e 1,2

2,2 2,1

1M2 2Mqe

To deduce from the lemma tha; the Gaussian curvature (LN—MZ)/(EG—Fz)

can be expressed in terms of E, F, G we have only to show that
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,e2} is suitably chosen the quantities 04

and o, can be expressed in terms of E,F,G. Let us construct
{e1,e2} from {r1,r2} by the Gram-Schmidt process. Then
e, = ar,
e, = br1 + Cry,
where a, b, ¢ can be expressed in terms of E, F, G. (In
-1 -1 -1 1.1
fact a = E %, b=-E °FA ?, and ¢ = E*A ?, where A = EG—FZ.)
So
Gy = <Cq,qr €7
= a<r11, e2> + a1<r1, e2>
= ab<r11, r1> + ac<r11, r2>
= 1 -
sab E1 + ac(F1 <r1, r21>)
= 1ab E1 + ac(F1 - %Ez),
while
o, = <e1+2, e2>
= acr.,, e,> + a2<r1, e,>
= ab<r12, r1> + ac<r12, r2>
= iab E2 + % ac G1.
These formulae are messy, but they prove Gauss's theorem.
The formulae are much more manageable when F=0, i.e.

when the parameter

In that case a = E
E
a1 = -1 mz
v EG

Substituting this in the formula (o

lines on the surface are orthogonal.

-1
2

M=

, b =0, and ¢ = G ?, so that we have
G
and @2 = 1 _l .
vEG
-3
1,2 ~ a2,1)(EG) for

the Gaussian curvature gives us
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Theorem (10.2) If F = 0 then the Gaussian curvature is

given by

- R () o2 ()

This is still rather complicated. But when the first
fundamental form takes the especially nice form
du2 + G dv2 - which we discussed in §8 - it becomes much

simpler.

Corollary (10.3) If E=1and F = 0 then

K=-G

i
2

(3/3u) % G2.

(S

From this last version of the theorem we can deduce
some very important geometrical facts about surfaces with
constant Gaussian curvature. 1In §8 we showed that any
surface possesses a local parametrization for which the
first fundamental form is du2 + G dvz. Indeed we showed a
little more, for the parametrization we found had the
additionalproperty“tﬁat the curve u = 0 was a geodesic
parametrized by arc-length. From Theorem (8.3) we find that

this implies that G(0, v) = 1 and G1(0, v) = 0 for all v.

We can now prove

Theorem (10.4) (i) A surface with Gaussian curvature zero

is locally isometric to a plane.
(ii) A surface with constant positive (resp. negative)
Gaussian curvature is locally isometric to a sphere (resp.

to a tractoid).
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(N

Proof: (i) Write g = G'. If K = 0 then 4°g/3u’ = 0
from (10.3), so that g(u, v) is of the form A(v)u + B(Vv).
But we have the boundary conditions that G(QJ, v) = 1 and
G1(0,v) = 0. So g(u, v) = 1, and the first fundamental
form is du2 + dvz, which proves that the surface is

locally isometric to a plane.

(ii) In the same way, if K = a2 > 0 then

82g/8u2 = —azg,
so that g(u, v) = A(v) cos au + B(v) sin au. This time the
boundary conditions show that A(v) = 1 and B(v) = 0, so that

the first fundamental form is
du2 + cos2 au.dv2

This is the first fundamental form of a sphere of radius a,

with au = latitude and av = longitude.
Finally, if K = —a2 < 0 the same argument leads to
du2 + coshzau; dvz.

This is the first fundamental form of the spool-shaped

surface obtained by rotating the curve (f(u) , cosh au) ,

1 1 -1

where u < a 'sinh 'a ', about the x-axis, where

u
’

_ 2 . .2 3
f(u) = .5 {1 - a° sinh® at } ? dt.
0

We shall see in Ex. 12.10 that this surface is locally

isometric to the tractoid.



Exercises

1. If the first fundamental form of a surface is
ezf(du2 + dv2), prove that the Gaussian curvature is
-2f
- e (f11 + f22).

2. If the situation of Ex. 1 prove that the second fundamental

form satisfies the Mainardi-Codazzi relations

L, - M, = £, (L + Ny -
M2 -_ N'1 = —fl(L + N) .
_ —f ' s -
[Take e, = e ry, and express the condition ei'12 = ei,21.]

3. Prove that no torus in 1{3 is isometric to the torus

lz, | = |22| = 1 in EZ. (See Ex. 6.6.)

4. Let X be the catenoid with one meridian removed, and
let Y be the helicoid. (See Ex. 6.3.) Prove that any two
isometries X - Y differ by a rigid screwing movement of the

helicoid along itself.

5. Let Cp and Ap denote the length and the area of the
geodesic circle with centre P and radius p on a surface X.
Prove that the Gaussian curvature K of X at P is equal to

each of the following two limits as p ~+ 0O:

. 3 . 3
(i) K = - = lim (Cp - Zﬂp)/p ,
(ii) K = —-%? lim (Ap - ﬂpz)/p4.

[Use geodesic polar coordinates as in Ex. 8.6.]
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§11 The Gauss-Bonnet theorem

The most striking and beautiful theorem about
surfaces is the Gauss-Bonnet theorem. In this course,
however, we cannot explain its true importance, which is as
the prototype of a whole class of theorems which apply in

more general higher-dimensional situations.

There are several versions of the theorem. We shall

begin with

Theorem (11.1) Let Y be a smooth simple closed curve on

a patch of surface X, enclosing a region R. Then

S Kg ds = 2m - g Kda,

Y R

where Kg is the geodesic curvature of y, ds is the element
of arc-length of y, K is the Gaussian curvature of X, and
dA is the element of area of X. The curve y is supposed

to be described anticlockwise.

Examples

(1) If X is the plane then Kg is the usual curvature
d¥/ds (where ¥ is the slope of y), and we have the obvious

fact that .y(dw/ds)ds = 27.

(ii) On the unit sphere K = 1, so j%KdA is just the area
of R. If v is the equator then Kg = 0, and the theorem

tells us that the area of the northern hemisphere is 2.

iii) Any simple closed curve on the unit sphere can be

regarded as the boundary of either of two regions, but Kg
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changes sign when one changes one's point of view.
Applying (11.1) to each region and adding, we find that

the area of the sphere is 4m.

Proof of (11.1) Let us recall Green's theorem, which

asserts that if P, Q : V - R are two smooth functions
defined in an open set V of 122, and y is a piecewise-

smooth simple closed curve in V bounding a region S, then

J‘(Pdu + Qdv) = j‘(Q1 - P2) dudv.
Y S

Now suppose that X is parametrized by r : V -+ 123,

and, as in §10, choose smooth tangent vector fields
Vv + R3 such that {e1, e2} is an orthonormal basis

e e

17 72
for the tangent space at each point. We shall apply Green's

theorem to the line integral
I = S< e1l é2> ds,
g

where B is the curve in V such that y = roB. (We can

assume that y is parametrized by arc-length.) Then

e, = ue2,1 + ve2,2,

e > and Q = <e1,e and

2,27 7

> - <e e >,

Qr =Py = <&y 41 S35 1,27 ©2,1

1
which, by Lemma (10.1) , is  (LN-M%)/(EG-F2%)?. Thus

I = S KdA.

R
On the other hand, let 6(s) be the angle between the

unit tangent vector §(s) to vy and the unit vector e, at the

same point y(s). Thus
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e

= e1 cosf + e, sinf.

Let n n x Q be the unit vector in the tangent plane

which is perpendicular to ?. Then
no= ey sinf + e, cosb

and

; = B+ é1 cosb + éz sinb.

The geodesic curvature is therefore given by

K = <n , v>
g no.y
= 8 - <e . é2> ) (11.2)
So I = S 6 - < )ds, which completes the proof of (11.1)
for Sé = 2T

If the curve Yy in Theorem (11.1) is only piecewise
smooth, i.e. R is a curvilinear polygon, then we can still
apply Green's theorem. The only difference is that the
function 6 has a jump discontinuity at each corner of
the polygon, the jump Si at the ith corner being the

external angle of the polygon there. Instead of

g 3] = 21 in the preceding proof we have
Sé = 27 - I68..
i
In terms of the internal angles ui = T - di of the

polygon, this gives us

Theorem (11.3) If y is the boundary of a smooth curvilinear
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polygon with n sides and (internal) angles Oqreees0 ON

a smooth surface, then

o, = (n=2)m + f Kda + S‘Kg ds.
R Y

In particular, if the polygon is bounded by geodesics
then Zui exceeds (n-2)m by S\KdA. We recall that the sum

of the angles of a plane n-gon is (n=-2)mw .

Example

The sum of the angles of a spherical triangle
exceeds m by the area of the triangle. Thus an octant

has three angles of /2, and area 7/2.

Let us now consider a closed surface X which is
subdivided by smooth curves into curvilinear polygons, in
the sense explained in §4. We apply Theorem (11.3) to each
polygon, and add the resulting equations. The sum of all:
the angles of all the polygons is 27V, where V is the
number of vertices, for the angles at any vertex add to
21. Because each edge belongs to two polygons, the sum of
the contributions "(n-2)7" is 27w (E-F), where E and F are
the numbers of edges and faces respectively. The sum of
the contributions of the geodesic curvatures is zero, for
each edge occurs twice in opposite senses, and Kg changes
sign 1if we reverse the direction of the curve. (See
remark (iii) below.) As x =V - E + F 1is the Euler

number of X, we have proved
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Theorem (11.4) If X is a smooth closed surface, then

S Kda = 27y,
X

where ¥ 1is the Euler number of X.

Remarks

(i) We proved the result for a convex surface by a much
more obvious argument in §7.

(ii) We are accepting without proof that every smooth
surface does possess a suitable subdivision.

(iii) The proof we have given applies only to orientable
surfaces. For if the surface is not orientable the
contributions to the sum from j\Kgds do not occur in
opposite pairs. But in fact the theorem is true in all
cases, as one can see by subdividing the surface by edges
which are piecewise geodesics.

(iv) The proof was given for a surface in 123. The
statement, however, only involves the first fundamental
form, i.e. the metric of the surface. The theorem is
really a statement about an abstract surface with a metric,
and the proof we have given, when properly interpreted,

applies to that situation.

Flows on a closed surface

Suppose that we are given a tangent vector Ex at
each point x of a smooth closed surface X in 123. We can
think of EX as the velocity at x of some fluid which is

flowing on the surface. A point where EX vanishes is a
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stationary point of the flow. It is well known that on

a sphere, for example, any flow has at least one stationary

point. We shall now prove

Theorem (11.5) If the flow £ on X has only a finite

number of stationary points then the number of stationary
points, when they are counted with their appropriate

multiplicities, is the Euler number of X.

The crucial idea here is the definition of the
multiplicity of a stationary point. If x € X is a
stationary point of £ then we can find a small neighbour-
hood U of x in X such that g&(y) # 0 for y € U-{x}.

Now let n be another smooth tangent vector field defined,

and nowhere-vanishing, in U. (Think of n as providing a
reference-direction in U, e.g. n = ry if U is parametrized
in the usual way.) Let y be a small simple closed curve in

U which encircles x anticlockwise. Then £ and n are both
non-vanishing on y , and we define the multiplicity as the
winding-number of £ with respect to n as y is transversed

once, i.e.

multiplicity ='j_ ¥ gs,
27 ds
Y
where {y 1is the angle between § and n at y(s). (Note that

although ¢y is indeterminate up to multiples of 2w, the
derivative dy/ds is well-defined.) We leave it to the
reader to show that the multiplicity is independent of the

choice of n.
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Examples

The most common types of stationary points are
sources, sinks, vortices, and bifurcations. Their

multiplicities are

S et sy
D S SN R
‘ ~ < =~ /’/;
LN IS NS N/
cource @ A sinle 1 44 vocter : + 1 \oibuvedtion : =)

A "dipole-like" flow has a stationary point of

multiplicity + 2.

—_
-~

?ﬁ¢d

¢ {9y
O >
—>

SPLQNz wll | source | sink sphewe TL 2 vorlices

2 \o(-@wrcﬁj,\_,o;\ P oS D»Jl\j) x:—?..,
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Proof of Theorem (11.5)

Let {xi} be the stationary points. Choose a small
simple closed curve Y, around each X, . Let Ri be the small
region enclosed by Y, and let Y be the part of X outside

all the curves Y-

At each point y € Y we can choose an orthonormal
basis {e1(y), ez(y)} for the tangent plane so that e1(y)
is'ih the direction of £(y). Applying the argument of
the proof of Theorem (11.1) to the region Y bounded by
the curves Yy gives

\g Rda = -;Z S‘ <e1,é2> ds (11.6)
Y e 1

(The minus sign is because the boundary of Y consists of

the Yy oriented clockwise.)

Now let us choose a similar orthonormal basis

{f1,f2} for the tangent planes at the points of the regions

R.. We find

1
S KdA = S <f1,%2> ds. (11.7)
Ry Y.

Adding (11.6) and (11.7) gives
S KdA = > (<f£,,f.> - <e,,e.,>) ds.
« = 1752 172
Ye

But from (11.2) we have

> = é -K and
°)

where 6 and ¢ are the angles between Q and e, and f1

respectively. Thus
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1 < _ 1 .
o X\X Kda = ('Z 2T S‘ yds,

where § is the angle between e, and £ i.e. between

1I
and f1. This proves Theorem (11.5), for the left-hand

side is the Euler number by (11.4), while the right-hand
side is the sum of the multiplicities of the stationary

points.

Critical points

Suppose that X is a smooth surface in 1{3, and
f +: X+ R is a smooth function. We say that f has a

critical point at x€ X if the gradient of the composite

map g = £ °r vanishes at v, where r : V » 113 is an
allowable parametrization of X such that r(v) = x. It is
easy to check that the definition of a critical point does
not depend on the chosen parametrization: in fact x is a
critical point of f if and only if the gradient

(gradX f) (x) vanishes. (See Ex. 5.5 and Ex. 11.6.)
Clearly any point at which £ has a local maximum or

minimum is a critical point.

A critical point is called nondegenerate if the

symmetric 2 x 2 matrix of second derivatives (Ding(v)) is
nonsingular. If this matrix is positive-definite or
negative-definite then f has a local minimum or maximum

If it is nonsingular but indefinite then f has a

saddle-point. At points of these three kinds the tangent

vector field gradxf has a source, a sink, and a bifurcation



- 107 -

respectively. This is intuitively obvious, but we shall
not give a detailed proof. If we accept it then we can

state

Theorem (11.8) Let £ : X-—> R be a smooth function on a

closed surface X of Euler number;t. Suppose that f has

only a finite number of critical points, all nondegenerate.

Then
Max - Sad + Min = X,

where Max, Sad, and Min are the numbers of local maxima,

saddle-points, and local minima respectively.

Exercises

1. Calculate
j Kgds and f Kda
Y R

directly when vy is the Soundary of the region R of a
surface of revolution bounded by two parallels of latitude.
Can you guess a generalization of Theorem (11.1) which
applies to an arbitrary region on a surface bounded by a

smooth curve?

2. Verify Theorem (11.4) by explicit calculation for the

2

torus in ZR3 obtained by rotating the circle (x—a)2 + y© = b2

about the y=-axis.

3. Prove that the definition of the multiplicity of a
stationary point of a tangent vector field € given on

page 103 does not depend on the auxiliary vector field 1.

[If B is another vector field in U, and Y is the angle

between 1 and n, then 4dj§/ds = —(1—f2)_2 f, where

f = cos @. This can be expressed as PO+ Q%, where
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P2 = Q1.
4. (1) Draw a diagram.of the vector field £ on Ilz given
by £(x,y) = (x2 - y2, -2xy). What is the multiplicity

of the stationary point at the origin?

2
(ii) Do the same for the vector field (x3 - 3xy°, y3 - 3x2y).

5. Prove that the definitions of a critical point and of a
nondegenerate critical point of a function on a surface do
not depend on the chart which is used.

6. Suppose that a patch of surface X is given by r : V » 123
in the usual way, and that r(v) = x. If f : X > R is a

smooth function, prove that

*
Dr(v) {(grad,f)(x)} = (grad g)(v),
*
where g = f°r, and Dr(v) 1is the adjoint of the
isomorphism Dr(v): 1{2 - HX. (Here HX is the tangent

plane to X at x.)

Deduce that f has a critical point at x if and only

if (gradxf)(x) = 0.
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§ 12 The hyperbolic plane

In this section we shall define a metric, called the

Poincare metric, on the open unit disc in the plane. The

resulting metric space is called the hyperbolic plane. Its

geometry resembles Euclidean plane geometry, with
geodesics playing the role of straight lines. 1In fact all
of Euclid's axioms hold except the so-called "parallel
postulate" - the assertion that if a point P is not on a
line ¢ there is a unique line through P which does not
meet £. The hyperbolic plane was of importance historic-
ally, as its discovery ended many centuries of attempts

to deduce the parallel postulate from the other axioms,
and, more significantly, because it provided the first

example of an interesting geometry different from Euclid's.

Euclid's starting point in developing plane geometry
was a collection of axioms about the possibility of
moving things around. Thus the basis of the definition
of length is that the distance AB is equal to the distance
A'B' if "when we apply the line AB to the line A'B' so
that A falls on A' then the point B falls on B'". 1In
modern language, we assume we are given a group of
transformations of the plane which will take any point to
any other point and any given line through the first
point to a desired line through the second point; and then
we prove that the plane possesses a unique metric which is

invariant under these transformations.

We shall build up Poincaré's model of the hyperbolic
plane in exactly the same way. As our set of points we

take the open unit disc D = {z€ € : |z| <1 }. We observe
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that there is a natural three-parameter group of
transformations of D which will take any point to any
other and any given direction at the first point to a
desired direction at the second. This group is the group

G of all holomorphic bijections £ : D + D. It is

familiar from complex variable theory that for any a€D

the map

- (12.1)
1-3z

is a bijection D +- D which takes a to 0; and the most
general element of G which takes a to 0 is got by

following (12.1) by a rotation:

z ela z:a,
1-az
for some o € [0,271). It is natural, therefore, to look for

a-metric d on D which is invariant under G, i.e. is such

that d(a,b) = d(f(a),f(b)) for all £ € G,

If such a metric exists, then the distance d(0,a)
depends only on |a|, for we can take the pair {0,a} to
{0, |a|} by an element of G. Let us write d(0,a)=p(lal).
Then we must have

b—a[

d(a,b) = p |1—ab1'

for any a, b € D, as the map (12.1) takes {a, b} to

{Ol (b_a)/1_éb) }-

We can determine the function p if we add the
requirement that distance is to be additive along

geodesics. It is reasonable to guess that the real axis
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in D will turn out to be a geodesic, so we try to find
p so that if a and b are real, with o<a<b<1, we have

pla) + p(222) = p(b).

Differentiating this with respect to b and then putting

b=a gives
p'(a) = p'(0)/(1-a%).

We can take any value we like for p'(9), for it makes no
essential difference if all distances are multiplied by a
constant, but the choice p'{(0) = 2 is traditional, and leads
to the simplest formulas. Then

pla) = 2 tanh_1a.

We adopt

Definition (12.2) For a, b € D, let

d(a, b) = 2 tanh_1 C LE;EL )i
| 1-ab|
Thus d(a, b) is a positive symmetric function of a
and b which vanishes only if a = b. To justify the
definition we must prove that d satisfies the triangle
inequality. Because it was constructed to be invariant
under the action of G (see Ex 12.1, 12.2) it is enough to

prove

Theorem (12.3) iIf a, b € D then

a, a) +d(, b) » d(a, b),

with equality if and only if a/b is real and negative.
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This, in turn, follows from "the cosine rule for

hyperbolic triangles":

Theorem (12.4) If a, b € Dand a = d4(C, a),
B = d(o, b), y = d(a, b), then

cosh vy = cosh a cosh B - sinh o sinh B cos 8,
where 0 = arg(b/a).

This theorem is called the "cosine rule" because when
o, B, Yy are small, and we use the approximations sinh o = o
cosh a = 1 + % az, etc., the formula becomes the usual
cosine rule for a Euclidean triangle:

y2 = az + 62 - 20B cos 9,

Furthermore (12.4) implies (12.3) because cos 6 > - 1,

so that

cosh y < cosh a cosh 8 + sinh o sinh B

cosh (a + BR),

with equality only if 6 = 7 .

Proof -of Theorem (12.4) By the G-invariance of d we can

assume that a is real and positive, so that a = tanh % a and
i0

b =e tanh 23 . Then
coshqg = 1T + |a and coshf =1 + |b 2 .
1 - |a]? 1 - |b|?
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By definition tanh } y = |b-a|/[1-abl, so

l1—£b|2 + |b--a|2

cosh y =
|1-3b|? - |b-al?
2 2 - =
= (1 + |al®) (1 + [b|%) - 2 (ab + ab)
(1-1al®) (1 - |p])
= cosh o cosh B = sinh o sin B cos 0 .
Geodesics

In any metric space X the length of a continuous

curve y: [a, b] » X 1is defined as the supremum of
n
i=i

when a = a < a; < ... <a = b runs through all

partitions of the interval [a, b]. It follows that y is

a geodesic if its length is equal to d(y(a), y(b)).

For the metric defined on D by (12.2) we conclude
from (12.3) that any segment of the real axis is a
geodesic, and also is the only curve of minimal length
joining any two of its points. But we can move any two
points of D on to the real axis by an element of G, so we

have proved

Theorem (12.5) There is a unique geodesic joining any

two points of D.
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Let us now recall from complex variable theory that

M8bius transformations

(1) take straight lines and circles to straight lines

or circles, and

(ii) are conformal, i.e. preserve the angles of inter-

section of curves.

Hence we have

Theorem (12.6) The geodesics in D are the diameters of

D and the segments of circles which intersect the boundary

of D at right angles.

We have already said that if we take "line" to
mean "geodesic" then the geometry of D satisfies all the
axioms of Euclidean plane geometry except for the parallel
postulate. In particular we can define the angle between
two lines, which (because all the isometries of D are
conformal maps in the usual sense) turns out to have the
Fuclidean meaning. (*) To investigate the parallel postulate

we consider the following situation.

Let £ be a line (i.e. geodesic) in D, and P a
point not on £. There is a unique point O on { whose
distance a from P is minimal, and the line OP meets { at
right angles. (To see this, it is enough to consider the
case when £ is the real axis and P is on the imaginary
axis.)

(¥*) It is clear from "symmetry" that angles at the centre
of D must have their usual values; but any point can

be moved to the centre without changing either the
hyperbolic or the usual angles.
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0 Q
Let us calculate the angle 6 between the lines PO and
PQ, where Q is a variable point of £ at a distance X
from O. By the sine rule (See Ex. 3 ) for the triangle
POQ we have sin 6 = sinh x / sinh b, where b = o(P,Q).
But cosh b = cosh a cosh x by the cosine rule, so that

sin 8 = {coshza coth2 X - cosech2 x } .

N

As x - © we have coth x - 1 and cosech x -~ O, so

sin 6 - sech a < 1. We have proved

Theorem (12.7) A line through P meets £ if and only

if its angle with PO is less than sin_1 sech a.

The angle sin_1 sech a is sometimes called the

"angle of parallelism at distance a".

Lengths of curves

If two points z and z + Az of D are very close,
i.e. if |Az| is very small, then the Poincaré distance

d(z,z + Az) is approximately

2 Az[

1- |z|?




- 116 -

So if y: [a,b] » D is a smooth curve the Poincaré length

of vy is

b b

. . N
Loy = | 2]y at = 2(u2 + V2)2 at
2 2 2
,1_|YI 1‘11—V [/
a

where y(t) = u(t) + iv(t). Thus IL(y) is given by our
standard formula (6.1), where for the first fundamental

form we take

4(au? + av?)

(1—u2 - v2)

(12.8)

This is an abstract first fundamental form which, as far
as we know at this point, does not come from any embedding

r : D~ 123 of D as a surface in space. If it did come

from a surface in 113 we could calculate its Gaussian
curvature K by Theorem (10.2). In the case when E = G

and F = O the formula of (10.2) simplifies to

A(log E),

where A is the Laplace operator (B/Bu)2 + (a/av)z. For

the form (12.8) we have E = 4(1—u2—v2)2, and one readily
checks that K = -1.
In §10 we proved that any surface with K = -1 is

locally isometric to a tractoid. It can be shown (see

Ex. 9 ) that the shaded region
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is isometric to the complete tractoid, except that the
boundary curves B and y become the same meridian on the

tractoid. The boundary curve o becomes the cuspidal edge
of the tractoid. It can be proved that the whole of D
cannot be realized by a surface in 113: any attempt leads

to a surface which "curls up" in some way.

The upper half-plane

The map zv> i is a holomorphic bijection

T+z

D —> U, where U is the half-plane {z€C : 1Im(z)> O0}. It
is often convenient to use this map to identify the
hyperbolic plane with U. The geodesics are then the
circles orthogonal to the real axis together with all

vertical straight lines, and the metric is given by

d (a, b) = 2 tanh ' |b-a
|-z

The first fundamental form is

The group G of isometries in this realization is the

group of all M8bius transformations
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z+>» (az+b)/ (cz+d)

with a, b, ¢, d real. We leave the verification of all

the preceding facts as exercises.

Areas.

With the first fundamental form (12.8) in mind,

we define the hyperbolic area of a region R in D as

4 dudv

(1—u2—v2)2
In this section we shall calculate the areas of hyperbolic

triangles in D.

As well as triangles proper one can also consider
triangles which have one or more vertices at infinity, i.e.

on the boundary of D. Such triangles are called asymptotic,

biasymptotic, or triasymptotic, according to the number of

vertices at infinity.

Any two triasymptotic triangles are congruent, for
the group of isometries G will move any three points of
the circle |z| = 1 to any other two points. Two
biasymptotic triangles are congruent if they have the same
angle (at their one genuine vertex), for by an isometry
we can move any two lines meeting at an angle o to any
other two lines meeting at the same angle. Surprisingly
enough, the areas of all these infinite "triangles" are

finite. We shall prove
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Theorem (12.10)

(i) The area of a triasymptotic triangle is 7.

(ii) The area of a biasymptotic triangle with angle a
is m-a.

(iii) The area of a triangle with angles o,B,y is

T=0=PB~7Y.

Remark

All three results follow from the Gauss-Bonnet theorem;

but we have proved that theorem only for surfaces in 123.

Proof: We shall prove that (i) = (ii) = . (iii), and

then we shall prove (i) by direct calculation.

;

4
-l

Fﬁg.(a) Fig. () Flg. ()

Let Aa be the area of a biasymptotic triangle with
angle o. From Fig.(a) we see that Au is a decreasing

function of a. From fig.(b) we see that

assuming that the area of a triasymptotic triangle is m.

If F(a) = ﬂ—Au it follows that
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F(a) + F(B) = F(a+B).

Because F is increasing and additive we conclude that
F(a) = Aa for some A > 0 which does not depend on a,
and hence that Aa = m-Aa. But fig.(c) shows that

Aa + Aﬂ—u = 7, and from this it follows that A = 1, as

desired.

To prove that (ii) = (iii) we consider fig. (d)

Cc
Fig. (d)
We see that
area (ABC) + area(A'CB') + area (A'B'C') = area(AB'C') + area (A'BC').
So
area (ABC) + (m=(m=y)) + 7w = (m=a) + (m-B),
and

area (ABC) = @wm-a -8B -vY .

Finally, to calculate the area of a triasymptotic
triangle it is easiest to work in the upper half-plane.

Consider the triangle



I
-

\\\\\
NN

~
A

bounded by y = -1, y = +1, and the semicircle %%+ y2= 1.

From the first fundamental form (dx2

+ dyz)/y2 we see that
the element of area is dxdy/yz. So the triasymptotic

triangle has area

1 o
dx dy
y2
-1 V1-x2
1
= ax = T .
2
_1 1—X
Exercises
1. (a) Prove that any M8bius transformation which preserves the
circle |z| = 1 and its interior 48 of the form stated on page 110.

(b) Prove by direct calculation that any such
transformation f is an isometry of the Poincare metric,

i . that d(f(a),f()) = d(a,b) for all a, b € D.

- (c) Prove the same result without calculation by using
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the facts that (i) the transformations f form a group G,

and (ii) the only elements of G which leave 0 fixed are of

i
the form z \—»e O‘zc.

2. Prove that any isometry of the Poincaré metric is
either a M8bius transformation or else a M8bius transformation

followed by complex conjugation.

[Prove that the only isometries which preserve the origin and

also the positive real axis are z +—> z and z > z.]
3. Let ABC be a triangle in the hyperbolic plane which has
a right angle at C. Prove the "sine rule"

sin A . sinh ¢ = sinh a,

where a = 4(B,C) and ¢ = d(A,B).

[Apply the cosine rule to ABC in two different ways.]

4., Deduce the sine rule
sin A - sin B _ sin C
sinh a sinh b sinh c¢

for an arbitrary hyperbolic triangle from the result of Ex. 3.

5. If a, B, Y are positive, and o +B8 +y < m , prove that
there is a hyperbolic triangle with angles a, B, Y.
6. In the situation of Ex. 3 prove that

sinh2a + sinh2b < sinhzc ’

and deduce that A + B < 3 m. Use this to prove that the
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sum of the angles of any hyperbolic triangle is less than

’Tr.

7. Prove that a hyperbolic circle is simply an ordinary
circle in D, but that its hyperbolic centre is usually not
its ordinary centre. Prove that a hyperbolic circle of

. . . L, 2
radius a has circumference 27 sinh a and area 4m sinh ia.

8. Use Theorem (8.3) to determine the geodesics of the

first fundamental form (dx2 + dyz)/y2 on the upper half-plane.

9. Let X be the open set {x + iy € € : -1 < x < m and y > 1}

of the upper half-plane. Observe that X corresponds to the

part of D depicted on page 117. Find a smooth bijection
u : (1,»)—~—> (0,37) such that
X + iy | m—d
( -cos uly) + log cot 3uly) , sin uly) cos x , sin u(y) sin x )

is an isometry between X with the Poincaré metric and the
tractoid described in Ex. 7.3, with one meridian of the tractoid

removed.

10. Let X be the open set
{zer « 1< lzl < e2Tr and im - o < arg z < 3m + al
of the upper half-plane. Prove that for suitable a the map

(u, V) +—> eV (tanh u + i sech u)

defines an isometry from the spool-shaped surface described

on page 96 (with the parametrization used there) to X with
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the Poincare metric.

[In particular the tractoid is locally isometric to the

spool-shaped surface.]
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Appendix

In this appendix we shall first recall some definitions
and basic facts of differential calculus, then we shall prove
the inverse and implicit function theorems, and finally we
shall consider four situations in the preceding notes where

the theorems were used.

Preliminaries

Let £ : U~> R" be a map defined in an open set U of R ™.

We shall say that f is continuously differentiable if each

partial derivative Dif (x) exists and is continuous for all
X € U. The mxn matrix Df(x) whose ith column is the vector

Dif (x) is called the derivative of £ at x.

Let us recall the "chain rule", which asserts that if
f : U~+>Vand g : V > I{k are continuously differentiable maps,
where U and V are open sets of R"™ and R™ respectively, then

g o £ is continuously differentiable, and
D(ge° f)(x) = Dg(f(x)).Df(x)
for all x € U.

The derivative Df (x) is a linear map R » R™. rLet
us recall that the norm of a linear transformation A : 1R -+~ R

is defined by

lal = sup{lagl : Mgl = 1}.
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Then IAEIl < IAI.IEI for all € € R™®. Notice that

ial < % (A,.l , where A.. is the (i,j)th entry of A.
i,j +

The mean value theorem asserts that if f is continuously

differentiable then we have
l£(x+h) - f(x)! < K Inl,

where K = sup { IDf(x+6h)l : 0 <8 < 1}. This is proved

by applying the single-variable mean value theorem to the

function F : [0, 1] - R defined by
F(t) = < u, f(x + th) >,
where u is a unit vector parallel to f(x+h) - f(x), and

observing that

F'(t) = < u, Df(x+th).h>,

so that I1F'(t)! < K Ihnl.

The inverse function theorem

We now suppose that £ : U - R” is a continuously
differentiable map, where U is an open set of I{n. We
shall prove that locally f is a bijection providing that the

linear transformation Df(x) is invertible. More precisely,

Theorem Suppose that Df(a) is invertible for some a € U. Then
there is a neighbourhood V of b = f£(a) in Izn, and a

continuously differentiable map g : V - U such that
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(1) g(b) = a,
(ii) f(gly)) =y for all yev,

(iii) g(Vv) is a neighbourhood of a in r".
In particular, f is a bijection in a neighbourhood of a.
Proof: Without loss of generality we can assume that

a =b =0, and also that Df(0) = 1. (For we can replace f by

X k—%»Afo(x), where A = Df(0).) Because Df is continuous we

can choose ¢ > 0 so that IDEf(x) - 1l < 3% when Ixll <€ ¢.
Let us define X = { x € R" : Il x I < ¢ }

n 1 :
and v= {ye R : 'y I < % e }.

For a fixed y€ V we define ¢ : U > R by

® (x) x +y - £(x).

N

Notice that f(x) = y &> ¢ (x) = x. Furthermore IDO(x)I <

for all x€ X, so P (X) < X.

Define a sequence {Xk} in X by x_ = 0 and
Xy = @(xk_1). By the mean value theorem we have
- < 1 -
lx, =% | < 3l g -x_,0,

so that { Xy } is a Cauchy sequence. Let its limit be called
g(y) € X. Thus g is a map V -~ X. From X, = @(xk_1) we obtain

gly) = &(g(y)), and hence
flg(y)) =vy.
It is obvious that g(0) = 0.

To prove that g is continuously differentiable let us
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write g(y) = x and g(y+k) = x + h, so that

f(x+h) - f£(x) = k,

and

+
b
I
=
1
=

f(x+h) - (x+h) - f(x)

N

Because IDf(x+6h) - 1 I < this gives

'k = h | <

N

Ihi. (1)

We shall now prove that

I g(y+k) - gly) - DE(x) " .klI/Ikl - 0 (2)

as k - 0. Applying this when k = tei, Where ey is the ith

basis vector of E{n, we find that Dig(y) exists and is the

ith column of Df(x)-1. Thus g is continuously differentiable,

and Dg(y) = Df(x)_1.

To prove (2) we observe

1 1

gly+k) - gly) - Df(x) '.k = =-Df(x) . {f(x+h) - f£(x) - Df(x).h}.

So, applying the mean value theorem to the function
t /> f(x + th) - t Df(x).h

on the interval [0,1] we find

1 1

I g(y+k) - gl(y) - Df(x) .k I < I DE(x) ' Il .lhl. R(h),

where R(h) = sup {l Df(x+th) - DE(x)I : 0<t<1}.

But R(h) -~ 0 as h - 0 because Df is continuous, and

thi < 20kl from (1), so (2) is proved.
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Finally, the restriction of £ to X is injective, for

if f(x) = £(x') with x # x' then
(f(x) - x) - (E(x') - x") = -(x-x'),
which contradicts the fact that | Df - 1 | < i, It follows

that g(Vv) = an—1(v), which is a neighbourhood of the origin.

The implicit function theorem

We now suppose that F : U » R™ is a continuously
differentiable map, where U is an open set of I{n, and

K x R ™. Suppose that

n=%k+m>m. We identify R" with R
F(a, b) = c, where a € I{k and b,c € R™. The implicit
function theorem gives a condition under which one can solve

the equation F(x, y) = z for y as a function of x and z for

(x,z) in a neighbourhood of (a,c).

Theorem In the preceding situation, suppose that the
derivative at b of the map y +—=> F(a,y) is invertible. Then
there is a neighbourhood A of a in E{k, and a neighbourhood C
of ¢ in,I{m, and a continuously differentiable map

¢+ A X C =~ R™ such that d(a,c) = b, and

(x, ®(x,2z)) € U for all (x,z) € A x C, and
F(x, ¢(x,z) = z.
Furthermore there is a neighbourhood W of (a,b) in
k+m

R such that if (x,y) € W and z€ C and F(x,y) = z, then

y = ¢o(x,2).

Proof: Consider the map £ : U + R defined by
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f (x, v) = (x, F(x, v)).

The derivative Df(a, b) is the (k + m) X (k ¥m) matrix

[ 0 >
(F1(a,b) F,(a,b)/ ,

where F1(a,b) is the derivative of x —> F(x, b) at a, and

Fz(a,b) is the derivative of y = F(a, y) at b. The

hypotheses imply that Df(a, b) is invertible. By the inverse
function theorem we can find a neighbourhood of f(a,b) = (a,c) ,
which we can suppose to be of the form AXx C, and a continuously

differential map g : AxC »+ U, such that f° g is the identity.

If g(x,2z) = (8(x,z), ¢(x, z)) then
f(g(x,2)) = (6(x,2), F(6(x,2), ¢(x,2))). Sob6(x,z) = x,
and I'(x, ¢(x,2z)) = z.

Finally, £ is injective in a neighbourhocod W of (a, b) ,
so in this neighbourhood there can be at most one solution y

of F(x,y) = z, and it must be y = ¢(x, 2z)

Applications

1. Complex algebraic curves (See page 10)

We were given a polynomial function of £ : € » C,
and we wanted to solve f(z,w) = 0 for w as a function of z.

Let us write

z = z, + iz
1 27

w = w, + iw
1 27



- 131-

with Zir Zos Wiy Moy f1, f2 all real. The implicit function

theorem tells us the condition we used is that the matrix

3f1/aw1 8f1/3w2

sz/aw1 afz/aw2

‘is invertible. But the Cauchy-Riemann conditions tell us that
8f1/8w2 = - sz/aw1 and 8f2/8w2 = 8f1/3w1. So the determinant

of the matrix is
(3£, /3w) 2 + (3F./0w,) % = 13£/owl?,
1 1 2 1 : :
Thus the condition is simply that 3f/3w # 0, looking just

like the real case.

2. Allowable parametrizations (See page 49)

Suppose that r : V » E{3 and ¥ : V - I13 are allowable

parametrizations of a smooth surface X in 1{3. This means

that r and ¥ are smooth maps, and that Dr(v) and D¥(¥) have

rank 2 for VEV and V€ V. We wish to prove that the transition

1

map r '°% is smooth in the open subset of V where it is

defined: this implies that the allowable charts form an atlas

for X.

It is enough to prove that r~ Yo% is smooth in a
neighbourhood of each relevant point T ev. Suppose that

x = r(v) = r(v). Because the linear transformation

Dr(v) : 122 > 123 has rank 2, the composite P ° Dr(v) is

ibvertible when P : 113 - Ilz is the projection on to one of

the coordinate planes. From the inverse function theorem we

conclude that the map P o r has a smooth inverse (P o r)_1
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defined in a neighbourhood of Px. But then

-1

r"1of = (P r) '¢ Pef in a neighbourhood of ¥, and so it

is smooth.

3. The parametrization of a surface by lines of curvature

(See page 73)

We suppose that at each point of a patch of surface
X = r(V) in I{B there are two well-defined principal directions,
corresponding to orthogonal unit tangent vectors {e1,e2}. We
wish to reparametrize the surface locally so that r, is
parallel to e, and r, to e,. A curve on X whose tangent vector
at each point is in a principal direction is called a line of
curvature. It is intuitively obvious that one can find a chart

such that the coordinate curves are lines of curvature, but

the detailed argument we shall give is surprisingly cumbersome.

Let us first observe that when a smooth tangent vector
field {£(x)} is given on a surface X then one can find a curve
Yy : (-e,€e) = X, with any desired starting point vy(0) = x, €X,
such that y'(t) = £(y(t)) for all t. For if § is expressed in

terms of the basis {r1,r2} by
(r(u, v)) = a(u, v) r, (u,v) + b(u, v) r, (u, v) ,

and y is described parametrically by (u(t), v (t), then finding

vy is equivalent to solving the differential equations

a = afl(u,v) | v = b(u, v)

with a given initial condition (u(0), v(0). Locally such

equations can always be solved, and the solution depends
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smoothly on (u(0), v(0) ; t).

To construct the desired chart in a neighbourhood of

X, = r(u ,v ), first choose a curve 0 on X such that
a(0) = x, and a = e, - Then for each small s choose a curve
t > o(s, t) such that a(s,0) = a(s) and do./dt = e,- Thus

(s, t) —> oa(s, t) is a smooth map defined in a neighbourhood
of the origin in 122, and at the origin we have a, = ey and

o, = € Define (u, v) as functions of (s, t) = r (u,vVv) .

2 2°
Then the derivative of (s, t) +——> (u,v) at the origin is

)

where
e1 = ar1 + br2
= +
e, cr1 dr2
at x . Because this matrix is invertible we can use the

inverse function theorem to express (s, t) in terms of (u, v)

locally, and so (s, t) is an allowable parametrization of the
surface. It has the property that 0y ='e2 everywhere, but

oc1=é:e1 only when t = O.

Now let us define a curve s +—> B (s, t) such that
B(O,t) = a(0,t) and 81 = ey everywhere. Just as before we
find that (s, t) v—> B(s, t) is an allowable parametrization,
and we can define a smooth map (u, v) V> (o,7) in a

neighbourhood of (u,,v,) by B8(5,T) = r(u,v) .

The parametrization we want is the one that takes (s, t)

to the point of intersection of the curve n +> a(s,n) and




- 134 -

and the curve £ +—> B(&, t) . To obtain it, consider the map
(u, v) +—> (s,17) , where r(u,v) =a((s,t) = B(oc,T) . At

(ug, vo) the derivative of this map is the invertible matrix

a c -1
b d ’

so as usual we can express (u,v) locally in terms of (s, 1) ,
and (s, T) +—=> r(u, v) is an allowable parametrization.

Furthermore from r{(u,v) = B(o, 1) we obtain

9r/3ds

(Bo/as)B1 = (Bo/as)e1

by regarding ¢ as a function of s and 1 ; and similarly

dr/dT (Bt/ar)ou2 = (at/at)ez.

This is what we want.

4., 'Geodesic polar coordinates (See page 86)

At a point r(uo,vo) of a surface let us define a
geodesic (u(t), v(t)) by solving the equations (8.3) with the

initial conditions

u(0)

u, v(0)

1
<

(o) = ¢ v (0)

]
3

(The equations (8.3) were derived for a geodesic parametrized
by arc-length. They imply. however, that Eﬁz + 2Fuv + GGZ is
constant, and so any curve which satisfies them is automatically

parametrized proportionally to arc-length, and is a geodesic.

Notice also that if (u(t), v{t)) is a solution then so is

(u(ct), v(ct)) for any constant c.)
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Having found the geodesic (u(t), v(t)), let us regard
the point (u(1), v(1)) = (u(1;&,n), v(1;&,n) as a function
of (£, n) . The derivative of (&, n) = (u(1), v(1)) at the

origin is the identity matrix, for

u(g; 1, 0),

[}
—
—
~e
\aat
~
(o]
~—
1i

u(1; 0, n) ul{n; 0, 1),

and similarly for v. Thus (£, n) —= (u(1), v(1)) is an
allowable parametrization when (£, n) is in a suitable

neighbourhood of the origin.

Geodesic polar coordinates are obtained from the chart
just found by choosing an orthonormal basis {e1,e27-for the
tangent plane at r(u,, v,) and composing the previous map

with the map (p, 0) > (&, n) , where

p.(e1 cos 6 + e, sin o) = Er1 + nr,.







