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0.0 Introduction

The aim of the a2 geometry course is to introduce the student to curves and surfaces and to
some elementary local aspects of theory.

Simplistically a curve or a surface is a space that ‘looks’ locally like a line or a plane.
More generally geometers consider higher dimensional ‘manifolds’ which locally resemble higher
dimensional Euclidean space. However high the dimension the fundamentals of local geometric
theory remain the same.

Saying that a space is locally Euclidean means that around each point we can introduce
some co-ordinates — one co-ordinate, such as arc-length, for a curve; two co-ordinates, like the
z and y co-ordinates in the plane, for a surface, and so on. With a notion of co-ordinates local
geometry on a curve or surface is then no more complicated than the usual study of Euclidean
space and boils down to the calculus of one or two variables.

All the above is classical differential geometry and appears in most of the standard texts.
For example:

Differential Geometry of Curves and Surfaces
M.P. do Carmo, Prentice Hall (1976).

Geometry of Surfaces
G. Segal, Mathematical Institute Notes (1986).

Whilst the above two texts are both excellent their aims are far grander and deeper than the
scope and syllabus of this brief introductory course and this is very much the motivation for
writing these notes. These notes discuss primarily the theory in the a2 geometry syllabus. They
are intended as a leisurely introduction to this theory and contain more examples and exercises
than most students may need. The notes also contain aspects of geometric theory which are not
explicitly mentioned in the syllabus. This is partly done to put the geometry into better context
and also to suggest further reading where appropriate. At these stages the relevant theorem,
definition etc. is marked by an asterisk.

I hope these notes prove useful to understanding the a2 course. For those interested in
geometry the b3 course (Geometry of Surfaces) is a natural sequel. I would also welcome any
comments on these notes and especially any suggestions on how they may be improved or
amended.

Richard Earl,
Mathematical Institute,
earl@maths.ox.ac.uk,
September 1998.



Chapter 1

Curves

1.1 Parametrised Curves
DEFINITION 1 A smooth parametrised curve in R® is a map v : I — R3 from an open
interval I C R such that

o 7y is smooth i.e. y(t) = (z(t),y(y), 2(t)) where z,y,z have derivatives of all orders,

o v: I —«(I) is a homeomorphism,

e Y(t)#0 forallte .

The requirement that v be a homeomorphism onto its image is somewhat unusual here. Some
authors will omit this requirement which allows the possibility of self-intersections, for the curve
crossing itself. Defining a smooth parametrised curve as above means that the curve has no
singular points and also mirrors the definition of a smooth parametrised surface (see §2.1).

A smooth parametrised curve 7 is a curve in R® with a preferred parametrisation. The
image of y is also the image of other smooth parametrised curves. Throughout these notes we
will need to check that definitions we make for curves and surfaces are independent of the choice
of parametrisation. For example, a simple application of the chain rule shows that the tangent
line to a curve and arc-length on a curve (as defined below) are independent of the choice of
parameter. Arc-length is a ‘natural’ parameter for a curve.

DEFINITION 2 Let v : I — R? be a smooth parametrised curve and let to € I. Then the
arc-length s(t) from y(to) to a point (t) is defined to be the integral,

(1) = /t Iy ()]

As 7' (1) v;é 0 for all ¢ then there is a well defined tangent line at each point of (I).

DEFINITION 8 Let v : I — R? be a smooth parametrised curve and let to € I. Then the
tangent line to vy at y(to) is the line containing the point y(to) in the direction '(ty). The unit
tangent vector is the tangent vector t = dry/ds.

Example 4 Q: Let v(t) = (ae® cost,ae’sint) for t € R and real constants a > 0 > b. Show
that v has finite arc-length in (ty, 00) for any ty € R.. ’

A: The tangent vector +/(t) equals
(ae” (bcost — sint), ae® (bsint + cost)),
and has magnitude

ae®y/((bcost — sint)? + (bsint + cos£)2) = ae®/ (2 + 1).
( ) )?)

So the arc-length from ~y(¢g) to lim¢—,s ¥(£) = (0,0) equals

[o0]
avl1l+b? / du = a1+ b2, 0O
to




Figure 1 — The Logarithmic Spiral (a = 1,b = —0.1)  Figure 2 — The Cycloid (r = 1)

Example 5 ): The tractrix is the curve given by
3
v(t) = (—(cost + log tan 5),sint) t € (0,7/2).

Show that the length of the tangent line from a point v(t) to where the tangent meets the z-azis
15 always 1.

A: Differentiating we find that 7/(t) equals

e
< o t,cost) , te(0,m/2).

sint
So the tangent from the curve at y(t) meets the z-axis at
v(t) + (cost, —sint),
a point distance 1 away. m

Example 6 Q: A circular disc of radius r in the zy-plane rolls without slipping along the z-
azis. The figure described by a point of the circumference of the disc is called a cycloid (see
Figure 2). Determine the arc-length of a section of the cycloid which corresponds to a complete
rotation of the disc.

A: Assume that the disc begins with its centre at (0,7). Consider the curve described by the
point (0, 0) as the disc rolls.
After the disc has rolled distance r8 then the point (0,0) has moved on to

(z(60),y(0)) = (r(6 — sinB), (1 — cos h)).
Thus z'(8)2 + y/(0)? = 2r?%(1 — cos 8) and so

2n 27
s-—-\/:?—r/ vl—cos9d9:2r/
0 0

sin %9} dé = 8r. O

1.2 The Serret-Frenet Formulae

DEFINITION 7 Let v: I — R3 be a smooth curve parametrised by arc-length s. Let
dy
t(s) = —
(s) ==
denote the unit tangent to y at s. For a smooth function z of s we shall write & for dz/ds.
(a) The curvature x(s) of v at s is defined to be



(b) If K(s) # 0 then the normal n(s) to v at s is the unit vector determined by the equation

t(s) = x(s)n(s).

If k(s) = 0 then n(s) is not defined.
(c) The plane in R® containing v(s) and the vectors t(s) and n(s) is called the osculating
plane to v at s.

(d) The binormal b(s) to v at s is the unit vector
b(s) = t(s) An(s).

The vectors {t(s),n(s),b(s)} form an orthonormal basis at (s) which varies with s. How this
basis varies with respect to s is reflected in the Serret-Frenet formulae (see Theorem 9). For
each s € I we may write the vectors t(s), n(s) and b(s) in terms of the basis {t(s),n(s),b(s)}.
We already have that

t(s) = K(s)n(s) (1.1)
and can consider similar equations for n(s) and b(s)
Firstly consider b(s). As b(s) is a unit vector b(s) is normal to b(s). Also

b(s) = t(s) An(s) + t(s) An(s) = t(s) A i(s).

Thus b(s) is also normal to t(s) and hence must be parallel to n(s).

DEFINITION 8 The torsion 7(s) of v at s is the value defined by the equation
b(s) = —7(s)n(s). (1.2)
Note that some authors, including Do Carmo, define the torsion to be —7(s) rather than 7(s).

Now consider the components of n(s) in t(s) and b(s). As t(s), n(s) and b(s) are orthonormal
we find .
B(s) t(s) = ~m(s)-i(s) = —n(s)
n(s)-b(s) = -n(s)-b(s) = 7(s).
Combining these equations with (1.1) and (1.2) we obtain

THEOREM 9 (Serret-Frenet) Letvy: I — R3 be a smooth curve parametrised by arc-length.
Let k > 0 and T be the curvature and torsion of v at a point s. Let t,n,b denote the tangent,
normal and binormal vectors of v at s. Then

t = Kn
n = -—xt +7b
b = —Tn

Remark 10 These formulae are often referred to simply as Frenet’s formulae. They were
first obtained by Frenet in a 1847 dissertation, part of which was published in 1852. Serret
independently obtained the equations in 1851 — after Frenet’s dissertation but before Frenet’s
results were widely known.

Geometrically the curvature is a measure of how quickly a curve is bending away from the
tangent line; the torsion is a measure of how the curve is twisting away from the osculating
plane. In particular we have the following special cases:

PROPOSITION 11 Let v : I — R3 be a smooth parametrised curve with curvature x and
torsion T.

(a) k = 0 if and only if v is part of a line,

(b) 7 =0 if and only if vy is planar,

(c) =0 and k = a1 > 0 if and only if v is part of a circle of radius a.




PROOF:

(a) If & = 0 then 4 = 0 and so y(s) = us+v for some vectors u,v € R3. This is the equation
of a line in R3.

(b) If 7 = 0 then b is constant. Further

d
ds
Hence - b is constant which is the equation of a plane — the osculating plane in fact.

(c) From (b) we know that «y is planar. Further consider the vector ¢ = v + an. Note from
the Serret-Frenet formulae that

(y'b)=t-b+~-b=0.

c=t—arkt=0
and hence that c is constant. Thus v — ¢ is of constant length a as required. O

PROPOSITION 12 Let v: I — R3 be a smooth curve parametrised by t € I which need not
be arc-length. Then the curvature k and the torsion T are given by

Y A"
w= (1.3)
and ! 1 I
(YA -y 14
T= ''A 1|2 ( . )
v A

where ! denotes differentiation with respect to t.
PROOF: Let s denote arc-length. From the chain rule we have that v’ = s't and that

" ="t + s't' = 5"t + (s')%kn.
Thus

7 A" = (s')’kb = |7/|*kb

and equation (1.3) follows. Now

" b = (s')kn’ - b = (s')3kT.
Hence

(' A" A" = 1 PR

and substituting in equation (1.3) we obtain the required expression for . 0O

The next theorem is not on the a2 geometry syllabus and will not be proved. However
knowing the theorem justifies further the notions of curvature and torsion. A proof can be

found in Do Carmo pp. 309-311 but relies more on the theory of differential equations rather
than on geometry.

THEOREM 13 (*) :(The Fundamental Theorem of the Local Theory of Curves).

Given differential functions k(s) > 0 and 7(s), s € I, there exists a smooth parametrised curve
v : I = R3such that s is the arc-length, & is the curvature and T is the torsion of . Further, a
second curve o satisfying the same conditions differs from v only by a rigid motion of R3.

So the curvature and torsion of a curve in R? determine the curve save for its position in space.
This really should be no surprise. Changes in the Serret-Frenet trihedron {t,n,b} of a curve
are decided by curvature and torsion through the Serret-Frenet formulae. Given some initial
conditions for this trihedron and functions x, 7 which dictate how it varies, then {t,n, b}, and
hence the curve are uniquely determined.

The theory of space curves generalises to curves in R™. In these cases there are n — 1
curvature functions, a moving Serret-Frenet basis containing n vectors and relations similar
to the Serret-Frenet formulae above determining changes in this basis. Again given functions
K1,y Kp—1 With K1, ..., kp—o > 0 there is a unique curve with curvature functions k1, ..., kp_1.
For n = 3, k1 = k and kg = 7. (See Klingenberg A Course in Differential Geometry, pp. 13-14).

For a brief survey of certain aspects of the global theory of curves, there really is no better
introduction than Do Carmo §1.7.



Example 14 Q: Find the curvature and torsion at each point of the curve given parametrically
by
ﬂﬂ:(mJa%ﬁy
A: We have
r'(t) =(2,2t,%), r(t)=(0,2,2t), r"(t)=(0,0,2).
Thus
') = t*+2,

Ir'(t) A" (2)] (267, ~4t,4)| = 2(¢° + 2),
(@) AL(t) " (t) = 8.

Substituting these values into equations (1.3) and (1.4) we obtain

2 2

/ﬁl(t) = m, T(t) = m

The forces acting on the segment of chain
between (0,0) and C(s) are:

the weight of the chain = —psj,
the tension at C(s) = T(s)t(s),
the tension at (0,0) = —Tpi.

Figure 3 (k =1)

Example 15 Q: An infinite uniform chain C hangs under its own weight in the zy-plane with
lowest point (0,0). The chain has density p and the tension at (0,0) is Ty. Find the equation of
the chain.

A: Parametrise the curve s — C(s) by arc-length from (0,0). We shall denote the angle between
the curve at C(s) and the z-axis by 1(s) and the tension in the chain at C(s) by T(s). The
forces acting on the length of chain between (0,0) and C(s) (see Figure 3) are in equilibrium
giving:

T(s)t(s) = Toi + psj.

Taking components in the direction of n(s) = (—sin, cos 1) we find
Ty sin1) = ps cos .

Hence
s = ktany where k =Ty/p. O (1.5)

Remark 16 Equation (1.5) is the equation of the chain in the co-ordinates (s,) which are
known as intrinsic co-ordinates. We can find the equation of C in Cartesian co-ordinates using
the Fundamental Theorem and a little inspection.
In intrinsic co-ordinates the tangent to a given curve equals t = (cos 9, sin) and so
dt dep

kn = — = (—sin, cosP)=—.

ds ds




Hence

K(s) = %

So the curvature of the chain C is given by

k(s) = ad; <tan“1 (%)) = ?-'{%

By the Fundamental Theorem any curve in the zy-plane with this curvature and a minimum at
(0,0) must coincide with the chain. This is left as an exercise for the reader.

SER

has curvature x(s) = k/(s? + k?), where s is arc-length, and a minimum at (0,0). This curve is
known as a catenary, from the Latin word ‘catena’ meaning ‘chain’.

Exercise 17 Show that the curve

1.3 Exercises

Exercise 18 An epicycloid is obtained as the locus of a point on the circumference of a circle
of radius 7 which rolls without slipping on a circle of the same radius. Find the length of the
epicycloid.

Exercise 19 Find the curvature and torsion of the elliptical heliz
(acost,bsint,ct) a,b,c>0,t€R.

Exercise 20 Calculate &, 7,t,n and b for the curve

(%(1 +5)%2, %(1 —5)3/2, %) , —l<s<l.

Exercise 21 Let y(s) be a curve parametrised by arc-length with nowhere vanishing curvature
x and torsion 7. Show that - lies on a sphere if and only if

T_d ( 1 dlﬁ)
k  ds \7k2ds/’
Exercise 22 Let 7 : [a,b] = S be a smooth closed curve parametrised by arc-length with

torsion 7(s) lying on a sphere S. (That is: 7|(,y) : (a,b) = S is a smooth parametrised curve
with y(a) = (b) and +'(a) = /(b).) Show that ffT(s) ds is zero.

Exercise 23 A smooth curve v is called a heliz if the unit tangent t has constant angle § with
some fixed unit vector u. i.e. t-u = cosé at each point of the curve.

Let v be a smooth curve with nowhere vanishing curvature. Show that v is a helix if and
only if 7/k is constant. [Hint: Consider the vector

u = cos ft +sinfb
where 8 satisfies cot 0 = 7/k.]
Exercise 24 Show that the curve
y1(t) = (t + V/3sint, 2 cost, V3t — sint)

is a helix by computing its curvature and torsion. Find a helix 5 of the form (acost, asint, bt)
and a rigid motion T of R2 such that Ty; = 7,.

Exercise 25 Find two rigid motions of R® carrying the parabola (1/2t,1%,0) to the parabola
(“ta t, t2)



Chapter 2

Surfaces

2.1 Parametrised Surfaces

Just as the curves we have studied are images of the real line twisted and stretched into new
shapes in Euclidean space, then surfaces are essentially twisted and stretched images of R?. We
defined a curve to be given by a function r : R — R3. Only one parametrisation was needed and
such curves are all homeomorphic to the real line. Without mentioning it, we omitted curves
such as the circle and ellipse and other closed curves.

Within the limits of this course we shall discuss ‘parametrised surfaces’ and I shall take
this to mean a surface with a single given parametrisation. We will again have to omit such
examples as spheres, tori and cylinders say. There is no hope of parametrising a sphere or a
torus with a single set of co-ordinates because these (compact) surfaces are not homeomorphic
to the (non-compact) plane. More generally a surface is defined as a space that looks locally
like R? and is covered with several, possibly infinitely many co-ordinate systems. This aspect
of surface theory is a little beyond the scope of the course and is covered in more detail in §2.5.

This restriction to parametrised surfaces is a small one as we are studying local properties
of surfaces. Also while surfaces such as tori and spheres cannot be parametrised entirely by a
single parametrisation, we may parametrise open dense subsets and so we can calculate certain
global properties (e.g. area) of these surfaces. '

DEFINITION 26 A smooth parametrised surface is a map, known as a chart,
r:U— R®: (u,v) = (z(u,v), y(u,v), 2(u,v))
from an open subset U C R? to R such that
e 1 is smooth i.e. x,y,2z have continuous partial derivatives of all orders,
e r:U —r(U) is a homeomorphism,

e at each point of r(U) the vectors

or _Or
ou ov

are linearly independent.

Our definition above of a parametrised surface differs with that of Do Carmo (p.78) in
that we require r to be a homeomorphism onto its image. Without this requirement then self-
intersections may occur, whereas a parametrised surface (by the above definition) is a genuine
example of a smooth surface (Do Carmo p.52). The difference between the two definitions is
only slight — without the requirement that r : U — r(U) is a homeomorphism, it is still true
that around each p € U there is a neighbourhood V' C U such that r : V' — r(V') is a smooth
parametrised surface (see Do Carmo p.79).




Figure 4
The Graph of sin(3uv)
(0<u,v<3)

DEFINITION 27 Let r(U) be a smooth parametrised surface and let p = r(ug,v9). The
tangent plane to r(U) at p is the vector space spanned by the vectors

ry(u0,v0) and ry(ug,vo).

The tangent plane to r(U) at p is denoted by T, (r(U)) and elements of Tp(r(U)) are called
tangent vectors to r(U) at p. It is easy to check that the tangent plane at p is the plane spanned
by the tangent vectors to all curves in r(U') which pass through p (see Do Carmo p.83).

DEFINITION 28 Let r(U) be a smooth parametrised surface in R3. A normal vector to r(U)
at the point p is any (non-zero) vector orthogonal to Tp(r(U)).

The normal vectors are non-zero scalar multiples of r, A r, where A denotes the cross or vector

product in R3. The two unit vectors
r, Ary

[Ty A x|

are known as the unit normal vectors to r(U) at p.

Note that a parametrised surface is a surface in R3 with a preferred choice of co-ordinates.
The image X = r(U) in R3 of a given chart is also the image of other charts. Each such chart
gives a different parametrised surface but we would hope that any questions asked of X (simply
as a subspace of R3) such as, “what is the area of X?” and “what is the length of a curve in
X7, will yield the same answers, irrespective of what chart we use. This will be an important
consideration in all future definitions — that any new definitions are chart independent.

Before we discuss any of the theory of surfaces it seems best to introduce some of the more
important examples. Due to the nature of this course I have kept the following examples simple
and brief, but I hope they prove sufficiently various to interest the reader. Further examples
can be found in any standard text on surfaces.

Example 29 The Sphere
Consider the map r : (—m,7) X (0,7) — R? (see Figure 5) given by
ri : (u,v) — (cosusinv,sinusinv, cos v).

It is easy to check that the image of this map is contained in $2, the unit sphere centred at the
origin. In fact the image is the whole sphere save for half a great circle. The parameter u is
the angle between the projection of ri(u,v) onto the zy-plane and the z-axis and v is the angle
between r;(u,v) and the z-axis.

Consider also the map ry : R2 — R3 defined by

ro: (u,v) — (

2u 2v 1—u2—9?
w424+ 1w+ 02+ 1 w2402 41/

10



This again is a chart of the unit sphere. The map ry is in fact stereographic projection (see
Figure 6) from the ‘south pole’ S = (0,0, —1); that is a point of (u,v) € R? is mapped to the
intersection of the sphere with the line joining (u,v) and S. In this case the image of the sphere
is the whole sphere minus S.

Figure 5 — Spherical Co-ordinates Figure 6 — Stereographic Projection
Example 30 Graphs

Amongst the simplest examples of parametrised surfaces are graphs. Let f(z,y) be a smooth
function defined on an open set U C R2. Then the graph of f is the surface z = f(z,y) and
may be parametrised by

r(u,v) = (u,v, f(u,v)) (u,v) € U.

These graphs seem almost too simple a family of surfaces to be of interest. One point of
importance though is that any smooth surface in R? is, locally at least, a graph. That is (Do
Carmo p.63):

e About any point of a smooth surface there is an open neighbourhood U such that U is a
graph of the form z = f(z,y) or y = f(z,2) or z = f(y, z) for some smooth function f.

Exercise 31 Express the cylinder 2 + y% = a? for a # 0 as the union of parametrised surfaces
which are graphs.

Example 32 The Cone

The punctured cone z2 + y? = 22, (z > 0) in R® may be smoothly parametrised by
r(u,v) = (u,v, Vu2 +v2)  wu,v € R,u? +v2 #0.

Note that the two sheeted cone 22+y? = 2? is not the image of any chart as no neighbourhood
of the cone about (0,0,0) is homeomorphic to an open subset of R?. (Why is this?)

Consider now the one sheeted cone C given by 22 + 4% = 22, (2 > 0). This certainly is
the image of a chart s : R? — C, but for no such chart is C smooth at the point (0,0,0). To
prove this we assume that the cone may be locally parametrised about (0,0,0) as the graph of
a smooth function. The only possibility (from z = f(z,y) or y = f(z,2) or z = f(y,2)) is a
graph of the form z = f(z,y) and by the definition of C we see that

f(z,y) = /22 + 4%

As f is not differentiable at (0, 0) then (0,0, 0) is not a smooth point of C for any parametrisation.
Such points on a surface are called singular points.

11




Example 33 Surfaces of Revolution

Surfaces may also be formed by taking a curve in R? and using this curve to generate a surface.
Two such families are surfaces of revolution and (below) ruled surfaces. A surface of revolution
is formed by rotating a smooth curve in (say) the zz-plane about the z-axis. For example the
cylinder in the above exercise is a surface of revolution.

Assume the curve has equation z = f(z). Then the surface of revolution generated has

equation z2 + y? = f(2)2. The surface cannot entirely be parametrised with one co-ordinate
system but the map

r(0,z) = (f(z)cosb, f(z)sinh,2) 60€(0,2r),z€ R

parametrises all of the surface except for the original generating curve. The curves of the form
0 = const. are called meridians and those with equations z = const. are parallels.

Figure 7 — A Surface of Revolution Figure 8 — A Hyperboloid of One Sheet

Example 34 Ruled Surfaces

Let v : I — R3 be a smooth curve in R? and let w : I — R? — {0} be a second non-vanishing
vector function on I. Then the parametrised surface given by

r(u,v) =v(u)+vw(u) vel,veR

is an example of a ruled surface. The curve v is known as the directriz and the lines in the
surface given by u = constant are known as rulings.

Note that the chart r above need not be a homeomorphism onto its image and so such a
ruled surface may have self-intersections, although these may be avoided by limiting the domain
of the co-ordinate v. For example the image of the map

r(u,v) = (vcosu,vsinu,v) u € (0,27),v € R,

is all of the two sheeted cone except for two rays (two halves of the line z = z). The map r is
not a chart as (0,0,0) is a self-intersection. However the restriction of r to (0,27) X (0,00) is a
chart for the one sheeted cone except for a single ruling.

Exercise 35 Show that the hyperbolic paraboloid z = zy and the hyperboloid of one sheet
22 4+ 92 = 22 + 1 in R? are ruled surfaces.

To conclude this section we briefly discuss smooth maps between parametrised surfaces. We
say that a map f : U — R2, from an open subset U C R? is smooth on U if all partial derivatives
of f of all orders exist at all points of U. As a parametrised surface is a space endowed with

co-ordinates from R? then we may extend this to the idea of smooth maps between parametrised
surfaces.

12



DEFINITION 36 Letr:U — R3 and s : V — R3 be smooth parametrised surfaces in R3.
We say that a map f :r(U) — s(V) is smooth if the map

slofor:U—>V

has partial derivatives of all orders. A map f between parametrised surfaces which is smooth
and has a smooth inverse is known as a diffeomorphism.

zr(u) 2 G(V)
5

Z

AL.

LS

-3

i » U . I
Figure 9

Put into this context a parametrised surface (as given in Definition 26) is a subspace of
R? which is diffeomorphic to R? and we see that all parametrised surfaces are diffeomorphic
to one another. Therefore the notion of a diffecomorphism is a rather limited concept when
dealing simply with smooth parametrised surfaces — from a differential geometric point of view,
parametrised surfaces are all equivalent, although this is far from true in the larger class of
smooth surfaces (see §2.5). For most of this course we will be interested in the local intrinsic
geometry of surfaces i.e. the metric properties of the surface.

Exercise 837 Let X denote the paraboloid z = 22442 in R3. Give a parametrisation for X and
prove, for this parametrised surface, that rotations of X about the z-axis are diffeomorphisms.

2.2 The First Fundamental Form:
Lengths, Areas and Isometries

Let U C R? be an open subset of the plane and r : U — R?® be a chart of a smooth surface X.
Let

v I = X () =r(u(t),v(t))
be a smooth curve lying in X.

DEFINITION 38 We define the length of v to be

d'r
L
M=/l5
Using the chain rule it is easy to see that the length of « does not depend on the choice of
parameter t.
Now

dt. (2.1)

dy _du or dvdr
it " dou  dow
or written more concisely
¥ = Ury + Ory.

So the length of vy equals

/ VEW? + 2Fiun + G2 dt (2.2)
I

where
E=r,-r,, F=ry-r,, G=1, 1y
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DEFINITION 39 The quadratic form

ary + fBry = Ea? + 2Faf + GF?
on the tangent plane T, X is called the first fundamental form of X.

What does this actually mean? The first fundamental form is the quadratic form on the tangent
plane to X at the point r(u,v) given by

x - |x|?

where x is a tangent vector to the surface. Now {r, Iy} is a basis for the tangent plane and with
respect to this basis the first fundamental form has coefficients E,2F and G. Geometrically it
can be thought of as the square of the element of arc-length and one often writes

ds? = Edu? + 2Fdudv + Gdv2.

Precisely what ‘du’ and ‘dv’ mean is explained in further detail in §2.5 for interested readers.
However one thinks about the first fundamental form, remember that the form is associated
with the surface. If one changes parameters this element of arc-length will not change, nor the
quadratic form on the tangent plane; however the expression for the first fundamental form will
generally look different in terms of the new variables.

Exampie 40 Q: Find the first fundamental form of the plane using (i) Cartesian co-ordinates
and (%) polar co-ordinates.

A: Using Cartesian co-ordinates we find
r(u,v) = (y,v), u,v€R
and with polar co-ordinates
R(r,0) = (rcosf,rsinf), r>0,0c (0,2m).
So
r, = (1,0), r, = (0,1),
R, = (cos,sind), Ry = (—rsind,rcosb).
With respect to the two co-ordinate systems the first fundamental form is:
du? + dv? and dr?+r%d9%. O

How might one now calculate the area of a region of X? Let V C U be an open subset of
U; we wish to calculate the area of r(V'). Consider a small parallelogram with vertices

r(u,v), r(u+du,v), r(u,v+dv), r(u+du,v+v).

Now
r(u + 6u,v) — r(u,v) = ry(u,v)6u + O(du?)

and there is a similar expression for varying v. So the area of the parallelogram is, ignoring
higher order terms,

[Ty ATy du dv.

It thus seems reasonable to define:

DEFINITION 41 The area of r(V) equals

/V Ity Ary|dudo. (2.3)
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Now

ru Aty = (ryAry)- (ry Ary)
= (ru - ry)(ry - To) = (ry - 1) (ry - o)
= EG-F~

Thus the expression (2.3) for the area of r(V') can be rewritten as
/ VEG — F? dudv. (2.4)
v

Exercise 42 Show that the definition of area given above is independent of the choice of para-
metrisation. (You will need to use the change of variables formula for double integrals — see
Apostol, Mathematical Analysis p.421.)

Example 43 Q: Show that the area of a sphere of radius a equals 4wa?.
A: We may parametrise the sphere by setting

r(u,v) = (acosusinv,asinusinv,acosv) wu € (~m,7), v € (0,7),
omitting only half a great circle. Then

r, = (—asinusinv,acosusinv,0),

r, = (acosucosv,asinucosv,—asinv).
Thus (with respect to the co-ordinates u and v) the first fundamental form is given by
E =a’sin’v, F=0, G=ad?

and the area is given by
T w ™ 9
/ / a?|sinv| dudv = 27ra2/ sinvdv = 4ma
0 J—m 0

as required. O

Example 44 Q: The tractoid (see Figure 12) is the surface of revolution formed by rotating
the curve

z(t) = —(cost + log tan %), y(t) =sint, t€(0,7/2)

(known as the tractrix) about the z-azis. Show that when the tractriz is parametrised by arc-
length s the first fundamental form of the tractoid is

ds? + e25d62. (2.5)
Show that the area of the tractoid equals 2.
A: We may parametrise the tractoid by writing
r(t,0) = (z(t),y(t) cos 0,y(t)sinh), te (0,00), 8 € (0,2x),
omitting only the original tractrix. Differentiating with respect to ¢ and 6 we find that

ry = (—costcott,costcosb,costsinb),

rg = (0,—sintsin@,sintcosb).
Thus the first fundamental form is given by

cot? t d¢® + sin® ¢ dg>. (2.6)
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Now

(8= ()" () - (220) e

at) ~ \at dt) ~ \'sme¢ ) T TTOME

As s is decreasing with respect to ¢ then ds/dt = — cot t and hence s = —logsint. Substituting
these expressions into (2.6) we obtain (2.5).

The area of the tractoid is then given by the integral

e’} 27
/ / e*dfds = 2r. O
0 0

Properties of surfaces which depend solely on the first fundamental such as length and area
(and geodesics and Gaussian curvature — see later) are called intrinsic. Maps between surfaces
which preserve the intrinsic geometry are called isometries.

DEFINITION 45 Anisometry between two surfaces X andY is a diffeomorphism f : X - Y
which maps curves in X to curves in'Y of the same length. X and Y are then said to be isometric.

As the first fundamental form represents an element of arc-length then the following theorem
should be intuitively clear.

THEOREM 46 Two surfaces X and Y are isometric if and only if there ezist an open subset
U C R? and parametrisations

r:U—=X  s:U—Y,
such that the first fundamental forms of X and Y are the same.

PROOF: Sufficiency is easy. Suppose two such parametrisations r and s exist with the same
fundamental forms — I claim f = sr™! : X — Y is the required isometry. Let C' be a smooth
curve in U. The lengths of r(C) and s(C) = f(r(C)) are identical as they are given by the same
integral (2.2).

Suppose now that f : X — Y is an isometry of two surfaces and suppose that r : U — X
is a parametrisation of X. Let s = fr: U — Y. We shall write E,2F,G and E,2F, G for the
coefficients of X and Y with respect to r and s. As f is an isometry we have that

/ VEZ 1 2Fis + Gotdt = / VB2 + 2Pis + G2 dt @2.7)
I I

for all smooth curves (u(t),v(t)), t € I in U. Firstly we choose part of a co-ordinate curve,
namely: u(t) = up + ¢ and v(t) = vy for t € (0,¢) and for some point (up,v9) € U. By the
continuity of F and E and applying (2.7) above we find

1 €
E(ug,v0) = li_l)%;/g  E(uo +t,v0) dt
1 6\/~——' =
= 2%—6—/0 E(ug + t,vg) dt = 1/ E(ug,vo),

and hence E = E. By similar arguments using the curves

u(t) =uo, v(t) =vo+t, te€(0,¢),
u(t) =up+1t, v(t)=vo+t, te(0,¢),

we may conclude that G = G and that F = F. a

Example 47 Q: The catenoid (with a meridian removed) and helicoid are respectively para-
metrised by

r(u,v) = (u, coshu cos v, coshu sinv), u € R,v € (0,2m),
s(t,0) = (&, U cos 4, Usind), ue€R,7€R.

Show that the catenoid is isometric to part of the helicoid, in such a way that meridians of the
catenoid map to rulings of the helicoid.
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A: The first fundamental form of the catenoid equals
cosh?u du? + cosh?u dv?
and the first fundamental form of the helicoid equals
(1 + ) da? + o2 (2.8)
Now consider the map
r(u,v) — s(v, sinhu) for u € R,v € (0,2~) (2.9)

between the catenoid and the helicoid. Under the substitution % = v and ¥ = sinhu then the
form (2.8) becomes

(1 + sinh?u) du? 4 d(sinhu)? = cosh®u du? + cosh®u dv?

which is the first fundamental form of the catenoid. Thus the map (2.9) is indeed an isometry.
The meridians of the catenoid are given by the equations v = constant. Under the above

isometry the meridians map to the curves on the helicoid given by % = constant —i.e. the rulings.
D L s

b
“‘Q%‘sglll"(
WIS
&
<N
S ot

Figure 10 — The Catenoid Figﬁre 11 — The Helicoid

Remark 48 (*) What follows in the remainder of this section is not on the syllabus of the a2
course. It is an attempt to motivate the definitions for length and area (2.2), (2.4) we have
introduced above and also a digression on abstract geometric surfaces. Whilst the discussion is
not self-contained those parts of the notes that refer back to it likewise carry an asterisk.

Thus far we have not made any calculations of lengths and areas which couldn’t have been
done as easily with the old expressions (2.1), (2.3) as with the new expressions (2.2), (2.4) which
are in terms of coefficients of the first fundamental form. The calculations in the following
examples however can only be done using the new definitions of length and area.

Example 49 Q: The flat torus T is the surface in R* given by
T ={(z,y,2,t) 1 2® +y> =22+ =1},
Show that T is locally isometric to R? and calculate the area of T.
A: We may parametrise (a dense open subset of) T by the chart
r(u,v) = (cosu,sinu, cosv,sinv),  u,v € (0,27).

Then the first fundamental form of T is du? + dv? and we see that T is locally isometric to the
plane. T is certainly not globally isometric to R? since T is homeomorphic to a torus which is
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compact and R? is non-compact. (In fact the flat torus is isometric to no surface in R3)) The

area of T is easily seen using (2.4) to equal 472 but as the vector product is not defined in R*
then our original definition (2.3) is not applicable. m|

So far we have only considered examples where the metric structure of the surface is precisely
that induced on the surface by the Euclidean space in which the surface lies. There is no reason
why we should limit ourselves to these cases — in fact there are good reasons not to.

From Example 44 the tractoid (with the original tractrix removed) has first fundamental
form

ds® +e 2 dg?, s>0,0€ (0, 27),

when the tractrix is parametrised by arc-length s. The map f from the tractoid to (0,27)x (1, 00)
which sends the point on the tractoid with co-ordinates (s, 8) to (,e®) is a diffeomorphism but
is not an isometry. We could however ask:

Example 50 Q: In terms of the co-ordinates z andy find the first fundamental form on (0, 27) x
(1,00) for which f is an isometry.

A: The co-ordinates z and y are related to s and 6 by
z=40, and y=¢’.

For f to be an isometry we need to endow (0,27) x (1,00) with the first fundamental form

_ 1 dz? + dy?
ds? + e % do? = d(logy)? + Fdﬁ == D
Hendians
YUn o Edeoid.
U, O Tarallals
§ of Tractold
l
{
1
!
|
| 1
- X
6] o

Figure 12 — The Tractoid and Hyperbolic Plane

What we have shown above is that the tractoid (without a meridian) is isometric to part of H,
the hyperbolic plane. H is the surface created by endowing the upper half plane {(z,) : y > 0}
with the first fundamental form

dz? + dy?
v
H is of interest because it was the first model for a non-Euclidean geometry.

Whilst the infinite rectangle (0, 2m) x (1, 00) with the first fundamental form (2.10) is isomet-
ric to a surface in R?, the hyperbolic plane is not. We could isometrically embed H in a higher
dimensional Euclidean space, although the isometry may be a little complicated, but there is no
need. From our formulas (2.2),(2.4) we may find the length and area of curves and regions in H
without having to be working in a particular Euclidean space. Indeed we could create a surface

by endowing any open subset of R? with any first fundamental form Edz? + 2Fdzdy + Gdy?
provided that E, F, G are smooth functions and

(2.10)

E>0, G>0, EG-F?>0.

Conversely any parametrised surface which is diffeomorphic to an open subset of R? would be
isometric to one of these surfaces.
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Example 51 Q: Find the length of the curve y(t) = (0,t) for 1 <t < 2 in H.

A: We have E = G =y 2 and F = 0. Substituting these into (2.2) we find

2
E(’Y)Z/ \/tlzdtz[logt]%zlogz m]
1

Exercise 52 Show that the surfaces created by endowing (0, @) x (0,00) with the first funda-
mental form (2.10) are isometric for any o > 0.

2.3 Curvature and the Weingarten Map

Let X be a surface in R3 parametrised by a chart r: U — X and let

Ty Ary,
|ty A ry|

denote a choice of unit normal. We have already studied the curvature of curves in R®. When
7v(s) is a curve parametrised by arc-length then the curvature x(s) of v at the point y(s) is
simply the magnitude of #4(s).
When looking at a curve in the surface X the vector 4(s) has two natural components,
a tangential component and a normal component. As 4(s) is a unit vector for all s we may
decompose ¥(s) in the form:
¥ = knpn + kg(n A ). (2.11)

DEFINITION 53 (a) kyn(s) is known as the normal curvature of v at y(s).

(b) ky(s) is known as the geodesic curvature of v at v(s).

(¢) The tangent vectors of those curves passing through a point p € X which have the mazimal
and minimal normal curvatures are called principal directions and their normal curvatures are
known as principal curvatures. A curve whose tangent vectors are all principal directions is
called a line of curvature.

(d) (*) A curve in X whose normal curvature is everywhere zero is called an asymptotic
curve.

(e) A curve in X whose geodesic curvature is everywhere zero is called a geodesic.

We shall consider for the moment the normal curvature of curves and we shall use this to define
a second quadratic form on the tangent plane at a point of X. As we shall see later in §2.4 and
Exercise 120 that the geodesics of a surface and the geodesic curvature of a curve at a point
depends only on the first fundamental form of the surface and the direction of the curve.
The normal curvature k, of vy equals 4 - n. By the chain rule we know
Y = Ury, + Ury,

and applying the chain rule again we find

§ = diry + Ty + 2 ryy + 200y + 02Ty
Hence the normal curvature &k, = % - n equals

kn = Lu? + 2M1u0 + No?,

where
L = ryy-n=-ry- ny,
M = ry,-n=-ry -n,=—-ry, n,, (2.12)
N = r, -n=-r, n,.

Note that the alternative expressions for L, M, N come from the differentiating the equations

ry, n=0=r, n
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DEFINITION 54 The quadratic form

ary + Bry — Lo? + 2Maf + NgG?
on the tangent plane T, X is called the second fundamental form of X.

Note that many authors including Do Carmo use e, f, g instead of L, M, N for the coefficients
of the second fundamental form.

Just as a curve is effectively determined by its curvature and torsion a surface is determined
by its first and second fundamental forms. Although the proof of this theorem is far beyond the
scope of this course I include a (rough) statement of:

THEOREM 55 (*): The Fundamental Theorem of the Local Theory of Surfaces.
Let E,F,G,L,M,N be differentiable functions on an open set U C R? which satisfy

(i) E>0,G > 0,EG — F? >0,

(it) certain compatibility equations (Do Carmo p.235).
Then for each p € U there is an open set V C U containing p and a smooth parametrisation r(V)
of a surface in R® with E,2F,G and L,2M, N as the coefficients of the first and second funda-
mental forms. Further a second surface ¥(V) in R3 with the same first and second fundamental
forms differs from (V) only by a rigid motion of R3.

In order to define the curvature of the surface at a point we need to introduce the Weingarten
map. The Weingarten map is the differential (see §2.5) of the normal map and consequently is
written as dn, in some texts. Curvature, for a curve, is a measure of how quickly the tangent
is varying. Similarly for a surface we need to investigate how quickly the tangent plane, or
equivalently the normal to the surface is varying. Note that as n-n =1 then

n-n, =0=n-n,.
Thus n, and n, are tangents vectors to the surface.

DEFINITION 56 The Weingarten map at the point p is the linear map Wp : T, X — T, X
defined by

Wpry = n,, Wpry, = n,. (2.13)

PROPOSITION 57 The Weingarten map Wp : T,X — Tp,X is a self-adjoint linear map

independent of the choice of parameters u and v. In particular as Wy, is self-adjoint it is diag-
onalisable.

PROOF: Let s(i, 7) be a second chart for X with s(&,9) = r(u,v). Then by the chain rule we
have

s~—6ur —i—@—]r s~——8ur +§2r
Yot au T T
Hence by the above definition of the Weingarten map (2.13) and the chain rule we have

ou v Ou v
WpSﬂ = %nu -+ b—ﬂn“ = N, WPS{, = 5511“ =+ %nv = ng.

It is also easy to check that W, is a self-adjoint linear map — that is
(Wpx) -y =x- (Wpy) (2.14)
for any two tangent vectors x,y € T, X. We note from equation (2.12) that
Wyry -Ty =Dy " Ty = Ny -1y = Wpry - 1.

Equation (2.14) then follows for all tangent vectors x,y by linearity. 0.
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In order to work out the eigenvalues and eigenvectors of Wy, let v be a curve in X with
v(0) = p. Then

W(v'(0)) - 7/ (0)

n'(7(0)) - /' (0)
= —n-9"(0) = —k,.
Thus the eigenvalues of W), are —k; and —k; where k; and ky are the principal curvatures of X

at p and the eigenvectors of W), are the principal directions (see Definition 53).
We make the following definitions:

DEFINITION 58 (a) The Gaussian curvature K (p) at the point p is the product of the prin-
cipal curvatures or equivalently det Wp.

(b) (*) The average of the principal curvatures is known as the mean curvature at p or
equivalently — —%traceWp .

The tangent vectors ry, and r, form a basis for the tangent plane T,X and W, : T,X — T, X is
a linear map. So what is the matrix for W, with respect to this basis?
Let us suppose that the matrix for W, with respect to the basis {ry,ry} is

(65)

Wyry =n, = Ary,+ Cry, (2.15)
Wpry =n, = Br,+ Dr,. (2.16)

Then

Dotting equation (2.15) with r, and with r, we find
—-L=AE+CF, —-M=AF+CQG.
Doing the same for equation (2.16) we obtain
—-M=BE+DF, —N=BF+ DG.

Putting these equations into matrix form gives

(% ¥)-(F&)(52)

and hence with respect to the basis {r,,r,}

W = 1 -G F L M
P EG-F2\ F -E M N |-
COROLLARY 59 The Gaussian curvature K(p) at p, which equals detW,, is given by the
formula
LN — M?
Ko = Fe—7

Despite the above expression for K which is in terms of the coefficients of the first and second
fundamental forms, the Gaussian curvature may be written solely in terms of the coefficients of
the first fundamental form and is invariant under isometries. This is a theorem due to Gauss
and known as the Theorema Egregium (Segal §10).

Gauss originally did not define K by the above formula but rather as the following more
intuitive limit. Let U be a small open subset of X about the point p. Then if we let the area of
U tend to zero (Segal p.71)

A
K|= lm 2xea®l)
Area)o Area(U)
The more ‘curved’ the surface at a point, the greater the variety in the normal vectors about
the point.
We end this section with two worked examples:
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Example 60 Q: The connected smooth parametrised surface r(u,v) has first and second fun-
damental forms related by the equations

L=hE, M=hF, N=hG (2.17)

where h(u,v) is a smooth function. Show that h is constant and that the surface is part of a
plane or a sphere.

A: Let n be the unit normal to the surface. Recall that

E=ry ry, F=ry-r,, G=ry -1y,
and
L=-r,-ny, M=-ry -n,=-ry,-n,, N=—-r,-n,.

Thus the equations (2.17) may be rewritten as

(hry +mny) -1y, =0, (hry+ny) -1, =0,

(hry +1ny) -1, =0, (hr,+n,)-r, =0.
As r, and r, form a basis for the tangent plane then

hry, +n, = 0 = hr, + n,. (2.18)

If we differentiate the left equation with respect to v and the right with respect to u and subtract
the resulting equations then we obtain

hyry — hyry, = 0.

Asr, and r, are independent then h, = h, = 0 and since surface is connected then h is constant.
Putting this back into equations (2.18) gives

(hr +n), = 0 = (hr + n),

and so hr +n equals some constant vector ¢. If h = 0 then the normal vector n is constant and
so the surface is part of a plane. If h # 0 then

c n
r——=——
h h

and so the surface is part of a sphere, centre ¢/h and radius 1/|h|. O

Example 61 Q: Consider the parametrised surface (Enneper’s Surface — see Figure 13),

ud v3
r(u,v) = u—?+uv2,v-?+’uu2,u2—v2 , u,v€R.

Find the first and second fundamental forms. Show that the lines of curvature are the co-ordinate
curves and that the principal curvatures are ky = 2(1 +u2 +v?)~2 and ko = —2(1 + u? +v%)~2,.

-5 0 5

Figure 13 — Enneper’s Surface
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Remark 62 For an analysis of the self-intersections of Enneper’s surface, see Do Carmo p.206.

A: We see
ry = (1 —u? + 9% 2uv,2u) and r, = (2uv,1 —v? + 42, —2),
giving
E=(1+u*+4)?, F=0, G=01+u?+v2)%
We further find that

ry ATy = (1 +u? + %) x (=2u, 20,1 — u? — v?)
which has magnitude (1 + u? + v2)%. Now
Tyw = (—2u,20,2), Ty = (2v,20,0), 1y = (2u, —2v,—2),

and hence
L=2 M=0, N-=-2

The Weingarten map at the point r(u,v) equals

1 -2 0
(14 u? + v2)2 0o 2 /)

which has eigenvalues £2(1 + u? + v2)~2 and eigenvectors ry,r, as required.

Notice that the mean curvature of the surface is everywhere zero — such surfaces are known
as minimal surfaces. As the name suggests when a minimal surface is perturbed slightly then
families of surfaces are produced with greater areas. (See Segal §9.) The catenoid and helicoid
(see Example 47) are also examples of minimal surfaces. o

2.4 Geodesics

We gave in the previous section the definition of a geodesic curve (see (2.11)). Namely a geodesic
is a curve with zero geodesic curvature or equivalently:

DEFINITION 63 A curvey: I — X, parametrised by arc-length on a surface X, is a geodesic
if for all s € I the vector (s) is normal to the surface at the point ¥(s).

Geodesics are also the curves of shortest length on a surface — at least ‘locally’. This means
that given a geodesic between two points on a surface, varying the geodesic slightly will produce
curves of greater length. For example, given two points on a sphere the great circle containing
these two points is a geodesic. If the points are not antipodal then the arcs of the great circle
connecting them will be of different lengths. However both arcs are geodesics and locally are
the shortest paths between the points.

Unlike asymptotic curves, which are solutions to a differential equation involving the second
fundamental form, geodesics are determined by the first fundamental form. Consequently an
isometry between two surfaces will map geodesics in the first surface to geodesics in the second.

THEOREM 64 Let X be a smooth parametrised surface and y be a smooth curve on X para-
metrised by arc-length s. Then <y is a geodesic if and only the parameters (u(s),v(s)) of v(s)
satisfy

a‘is(Eu + F9) = %(Euiﬂ + 2F, 00 + Gyo?)

1
%(Fﬂ +GY) = 5(E,,u2 + 2F, it + Gyo?) (2.19)
for all s, where Edu? + 2F dudv + Gdv? is the first fundamental form of X.
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PROOF: As ry and r, are independent tangent vectors then #(s) is normal to the surface if
and only if %(s) - r, = 0 and ¥(s) - r, = 0. Now

¥(s) = ury + ory,.

Thus
0 = §ru= () - iR
_ %(Ea + Fi) — (kg + 0ry) - (Tauth + Tuy?)
- %(Eu + F9) = ((Puu - 1u)® + (Fyu - Xy + Puy - L) + (Tu - 14)9%)
- (-%(Ea + i) — (B + 2Py + G,
as required. The second geodesic equation follows similarly. O

Given two points on a surface there need not be a geodesic connecting the two points. For
example in R? the geodesics are line segments. So in the punctured plane R? — {0} there is no
geodesic connecting (1,0) and (—1,0). Also if a geodesic exists between two points it need not

be unique (see the examples of the sphere and cylinder below.) However geodesics always exist
locally (Do Carmo p.255):

THEOREM 65 Given a point p € X and a non-zero vector v € TpX then there exists ¢ > 0

and a unique geodesic v : (—e€,€) = X parametrised by arc-length such that v(0) = p and
!

7(0) =v.

Example 66 (: Determine all the geodesics of a sphere. By solving the geodesic equations
above find all the geodesics on the cylinder 2 + y? = a® in R?, (a #0).

A: Without loss of generality assume that the sphere has centre the origin and radius a. Certainly
any great circle v is a geodesic as a?j(s) = —y(s) = —n(y(s)). We now know from Theorem 65
that these are all the geodesics. Alternatively we can argue as follows. Let v be a geodesic on
the sphere so that

0=4(s) An(r(s)) = 5(s) Arls) = - (3(s) A (s).

Hence ¥(s) A y(s) = c for some constant vector ¢. Then y(s) - ¢ = 0 and so « lies in a plane
through the origin — that is -y is part of a great circle.

We may parametrise the cylinder by setting
r(z,0) = (acosf,asinf,z), z¢€R,0¢€(0,2n).

The first fundamental form is then d2? + a?d#? and hence the geodesic equations are = 0 = 6.
So

z(s)=as+b, 0(s)=cs+d

for some a, b, c,d where a and ¢ are not both zero. The three cases are then:

(i) @ = 0: z is constant, and the geodesic is part of a circle,

(ii) ¢ = 0: 0 is constant, and the geodesic is part of a meridian,

(iii) @ # 0, ¢ # 0: the geodesic is part of a helix.

Note that there are infinitely many geodesics between two points on the cylinder which lie on
different latitudes. a
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Figure 14 — Geodesics on The Cylinder and Surfaces of Revolution

Example 67 @:
(i) Prove that a meridian on a surface of revolution is a geodesic.
(i) When is a parallel of latitude a geodesic on such a surface?
(111) Prove that along a geodesic v on a surface of revolution the product fsint is constant,
where [ is the distance of v(s) from the azis of the surface, and 1 is the angle between ¥(s) and
the meridian through ~v(s). This is called Clairaut’s relation.
(iv) Prove that on the ellipsoid
22 g2 2
a_2+§+b_2:1 (2.20)

every geodesic which is not a meridian remains always between two parallels of latitude.

A: Suppose that the surface of revolution is generated by rotating the curve y = f(z) about the
z-axis and parametrise it as

r(z,0) = (z, f(z) cos b, f(z)sinf) =z € R,0€ (—n, 7).
The first fundamental form equals
(14 (f")?)dz? + f2d6?
and the geodesic equations are
) = JUE 1),
%( %0 = o.

(i) Along a meridian § = 0 and & = (1 + (f')2)~!/2. The second equation is then trivially
true and substituting into the first equation we find

d

flf/l
S+ () =

T (f,)2 — flf”i‘2

. d n2y1/2 _
b (14 (7)) =
as required.

(11) A parallel is given by the equation & = 0. Thus the two geodesic equations now read as
Ff'02=0and 20 = 0. As f > 0 and 0 # 0 then the equations hold if and only if f' = 0.

(iii) From the second geodesic equation we can see that f29 is constant along a geodesic.
Without any loss of generality suppose that § = 0 at the point v(s). So the meridian through

v(s) is given by (z, f(z),0) and so the tangent vector to this meridian equals

- (e i)
VIH(E VIH(E )
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Further _ .
Y(s) = @ry + Oy = (z, f'i, £6).

Thus
sing = |y(s) At| =

1 e .
Tﬁ_wy(-ffo,fo,oﬂ = f4.
Hence fsint is constant as required.

(iv) Let -y be a geodesic on the ellipsoid (2.20), which is a surface of revolution as two of
the ellipsoid’s axes are equal, and let h equal the constant value of fsint on . If v passes
through either pole then h = 0; at any point of y other than a pole ¢ = 0 and hence ~ is a
meridian. If A # 0 then f > |fsint| = |h| > 0. Hence -y is bounded between two parallels. o

We end with a theorem proving an earlier comment on geodesics namely that they are locally
curves of least length. That is, however a geodesic between two points is perturbed we produce
families of curves of greater length.

THEOREM 68 Let v:[a,b] - X be a smooth geodesic in X. Let vs (s € (—¢,¢€)) be a family
of smooth curves

Y5t [a,b] > X s € (—¢,€)

with o = v and vs(a) = v(a),vs(b) = Y(b) for all s € (—¢,¢€) and let L(s) = L(y;). Then
L'(0) =0.

PROOF: Let R(s,t) = Eu? + 2Fuv + G9? where v,(t) = r(u(s, t),v(s,t)) and the dot denotes
differentiation with respect to t. Then

£(s) =/ab\/1_%dt

giving
d
/ e pe—
L£(0) = o

di.
s=0

b b
/ VRdt = agﬁ
a a S

1 %1 6R
dt:—/—————
2Ja VR Os

5=0 s=0

Now
QE
Js

o
= (B, +2F,u0 + Guq')?}b—g

0
+ {Byi? + 2F, 00 + Gvi;?}-a—z
ou o0
R + 2( U+GU)83
As v = 7p is a geodesic then substituting in the geodesic equations (2.19)

oR
Js

+ 2(Eu+ F)

d, .. .\ Ou ) . Ou
= Z[a—t—(Eu+FU)b—S—+(Eu+FU)5§
d, . . Ov . NG5
+ E(FU + GU)Z}; + (Fu+ Gv)b—s-} o
d ) .. Ou v
= Za {(EU+F’U) 75|y ER s:O}.

We may assume without loss of generality that v = ~ is parametrised by arc-length so that

R(0,t) = 1. Hence
ov
+ (Fi+gv) — }dt
s=0 ( g ) ds s=0

§=0

0
+ (Fi + gv) =

£'(0) = /ab% {(Eu+Fo) g—z

which equals

N 1 N 1 B L
[(Eu + F) 55 o + (F1 + gv) 5 520} -

8

However u(s,a),u(s,b),v(s,a) and v(s,b) are all constant giving du/8s = dv/0s = 0 when t = a
and ¢ = b and hence £/(0) =0. O
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2.5 Further Topics (*)

2.5.1 Atlases

Everything covered in this closing section is beyond the scope of the a2 course. These topics
largely concern moves towards the global geometry of surfaces (we have previously only been
concerned with local properties) and abstract surfaces.

Thus far we have only considered surfaces in R3 which are diffeomorphic to R2. This excludes
surfaces such as the sphere or cylinder; in these cases we were satisfied to parametrise dense
open subsets and this was satisfactory while we were solely concerned with their local geometry.

To consider the global geometry of a surface we need to be able to parametrise the entire
surface ~ to do this we simply use more parametrisations, the union of whose images is the entire
surface. Such a collection of charts is called an atlas for the surface.

DEFINITION 69 A subspace X C R? is a smooth surface if about every p € X there is an
open neighbourhood V. C X and a chart r : U — V from an open subset U C R? such that
r:U — V is a smooth parametrised surface.

Throughout these notes we have shown that such properties of the surface as smoothness,
curvature, etc. are independent of the choice of parametrisation. Consequently, though a point
of the surface X may lie in the image of two charts, we may discuss (for example) the curvature
of a surface at a point without reference to a specific chart.

Example 70 Q: Find an atlas for the unit sphere £? +y? + 2% = 1.

A: We will find six charts for the sphere whose images are the six hemispheres which lie to either
side of the zy-, yz- and zz-planes. So define:

ri(u,v) = (w,0,V1—u2—v2) Ww2+0?2<1,
ro(u,v) (w0, —V1—u2—v2) w?+0? <1,
r3(u,v) = (u, m, v)  w?4? <1,
ra(u,v) = (u,—vV1—u2—v2v) ud+o?<l,

r5(u,v) = (V1I—-u2—22,u0) u?2+0?<1,
ro(u,v) = (—V1-u2—v2uv) uw2+0v?2<]1.

We can easily check that each of the maps above is a smooth parametrised surface and so the
sphere is indeed a smooth surface. O

Exercise 71 Find atlases for the following surfaces:
(a) The cylinder z2 + y? = a? where a > 0.
(b) The hyperboloid of two sheets z? + 32 + 1 = 22,
(c) The flat torus {(z,y,2,t) e R*: 2?2 + 2 = 22 + 12 = 1}.

We discussed earlier in §2.1 the notions of smooth maps between parametrised surfaces and
of diffeomorphisms. As a smooth surface can locally be parametrised then we may extend our
notion of smooth maps between parametrised surfaces more generally to smooth surfaces.

DEFINITION 72 Let X and Y be smooth surfaces in R3 with respective atlases
{ra :Us > VaCX,a€ A}, {i5:U3>V3CY,5¢€B}.
Then we say that a map f: X — Y is smooth if
f'b‘l ofor,

15 smooth whenever f(V,) N f/'ﬂ #0. A map f: X =Y which is smooth with a smooth inverse
15 called o diffeomorphism.
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We noted earlier that all parametrised surfaces are diffeomorphic to one another. This is
certainly no longer the case with smooth surfaces ~ no pair of the sphere, torus, cylinder, plane
are diffeomorphic because no such pair is homeomorphic.

Exercise 73 Construct a diffeomorphism between the sphere 22 +y? 4+ 22 = 1 and the ellipsoid
z%/a? + y?/b? + 22/c* = 1 where a,b,c > 0.

Exercise 74 Let X be a surface of revolution. Show that a rotation of X about its axis is a
diffeomorphism of X.

Now that we have defined what is meant by an atlas of a surface and have co-ordinate
systems over entire smooth surfaces we can introduce our first example of a global property of
surfaces. The plane R? has more ‘structure’ than simply that of a smooth surface — it has a
metric structure and also a notion of sense, i.e. we think about the vectors {i,j} (in that order)
as being a right-handed basis and we have notions of clockwise/anti-clockwise. We can define
for a particular co-ordinate system on a parametrised surface these notions as well. In order
to be able to do this for a general smooth surface we need to have consistent notions of sense
between the different charts of the atlas. Consequently we are interested in the transition maps
of an atlas.

DEFINITION 75 Let X be a smooth surface and let
{ro :Us = Vo C X, € 4},
be an atlas for this surface. Then the transition maps (see Figure 15) of the atlas are those maps
(£8) ™ o xa ¢ (ra) ™ (Ve N V) = (xg) ™ (Ve N V)
which are defined whenever Vo, NVp # 0.

The transition maps of a smooth surface in R? are diffeomorphisms (Do Carmo p.70) and this
is because the smooth structure of the surface is consistent between charts. If we want to have
a consistent notion of ‘sense’ or orientation then we will require that the transition maps are
orientation preserving.

Let f : R? — R? be a diffeomorphism. Then f maps the z-axis and y-axis to smooth curves
in R2. The tangent vectors to the z- and y-axes at (0,0) are i,j and the tangent vectors to their
images under f (which meet at f(0,0)) are

(%(0,0) 6f2(o,0)), (%(0,0),%(070))

Oz ey dy Ay
where f = (f1, f2). These two vectors will have the same sense as i,j if
20,00 2io,0)
det | 9% > 0. (2.21)
%(O 0) Q(O 0)
oz oy

DEFINITION 76 A diffeomorphism f : R? — R? is said to be orientation preserving at (0, 0)
(or similarly at any other point p € R?) if the determinant (2.21) is strictly positive. f is said
to be orientation preserving if it is orientation preserving at every point of R2.

DEFINITION 77 A smooth surface X C R3 is orientable if there ezists an atlas for X with
orientation preserving transition maps.

Not all surfaces are orientable. The projective plane P described in the next section is not
(though we shall not prove this). Clearly every parametrised surface is orientable — as there is
only one chart and hence no transition maps in its atlas. Also all compact surfaces in R3 are
orientable. For a surface in R? orientability may be rephrased in terms of the normal map. A
smooth surface X C R? is orientable if there is a smooth map n : X — S? such that n(p) is
normal to X at p for each p € X. That is, X is orientable if we can smoothly define a choice of
unit normal over the entire surface X.
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Exercise 78 Show that the transition maps for the atlas of the sphere in Example 70 are
orientation preserving.

Figure 16 — An Orientation Preserving Map Figure 17 — An Orientation Reversing Map

2.5.2 Abstract and Geometric Surfaces

In the examples we have considered so far we have generally limited ourselves to examples of
surfaces lying in Euclidean space. For such surfaces their smooth structure is endowed straight
from the ambient Euclidean space. In the example of the hyperbolic plane (see the end of §2.2)
we introduced a metric structure to the plane which differed from that of the ambient space.
Similarly we can introduce smooth structures that differ from that of the ambient space or even
introduce them where no notion of smoothness previously existed.

Example 79 Q: The real projective plane P = S2/{£1} is the space formed by identifying
antipodal points on the sphere. Find an atlas for P.

A: Each equivalence class of points in $2/{£1} has a representative in one (or more) of the
images of the charts ry,rs,rs (see Example 70). Let

T:5% =Pz {£z}
denote the natural map and then the maps
S =mory, S3=mWOrg, S5=TOTrs, (2.22)

form an atlas for P. O

Does the example above really make any sense? We have found co-ordinate systems which
cover the whole of P but one of the requirements for (2.22) to form an atlas is that these maps
be smooth. How can we make any sense of that when P only exists as a topological space, rather
than as a subspace of some Euclidean space?
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The way around this problem is to define the maps (2.22) to be smooth. Given a topological
space X and a homeomorphism r : U — X from an open set U C R? we may give X a smooth
structure by requiring r to be a diffeomorphism so that r transfers both the topological structure
and smooth structure of U to X.

There is a problem of consistency with this approach. If we require r : U — X to be a
diffeomorphism then we may define

f:X—=R

to be a smooth function if for : U — R is smooth. However in our atlas some points belong in
the images of two charts — might not a function be smooth at a point with respect to one chart,
but not with respect to another? This situation will not arise if the transition maps of the atlas
are smooth. The transition maps for our atlas of P are the maps

(s1)7'oss, (s3)"loss, (ss)losy,

and their inverses. If the transition maps of an atlas are smooth then there is agreement as to
what functions are smooth at points which lie in the images of two or more charts. Previously
when we were considering smooth surfaces in a Euclidean space then the smoothness of the
transition maps was automatic because of the ambient space. As we have not actually embedded
P in a Euclidean space we will need to check that they are smooth. The transition maps above
are quite complicated, for example,

(s1)~! o 85(u, v) = (u, V1 —u2 —v?), v >0,
a (—u,—v1—u? —2?), v<0,

but nonetheless these maps are smooth. A smooth abstract surface or smooth 2-manifold is a
space with an atlas of charts whose transition maps are all smooth — the smooth structure of
the space is then transferred consistently from R? by these charts.

DEFINITION 80 A smooth abstract surface is a Hausdorff topological space X together with
homeomorphisms ¢q : Uy — Vo between open sets U, C R? and open sets V,, C X such that
(a) Uy Vo = X,
(b) when Vo NV3 # 0 then

(d’a)_l o g : (¢ﬂ)_1(Va NVg) — (¢a)_1(Va NVg)

18 smooth.

So P above is our first example of a smooth abstract surface.
We know already that we can go further and endow a metric structure on an abstract surface.

We introduced in §2.2 the hyperbolic plane H as the upper half plane {(z,y) : ¥ > 0} endowed

with the first fundamental form 21 a2
éf% (2.23)
Yy

So the smooth structure of H is no different from that of R? but we have introduced a different
metric structure to the upper half plane. As the atlas for H consists of only one chart we need
not for the moment worry about the consistency of a metric structure on an abstract surface.
Having defined the first fundamental form then we are free to ask questions concerning the
intrinsic geometry of H.

Example 81 Q: What are the geodesics in H?
A1l: If we substitute E = G = y~2 and F = 0 into the geodesic equations (2.19) then we find

d(:i:) d(y> —(z% + 9?)
— — 0’ —_— =} = ———
ds \y? ds \y? y3

The first equation yields & = cy? for some constant c. Hence the half-lines £ = const. are
geodesics corresponding to ¢ = 0. Assume that ¢ # 0. The second equation may be rewritten as
jy—y* _ —i?

Y2

b

_y2
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or equivalently

d <£> -
ds \y )

Integrating we find that § = (b — cx)y for some constant b. Now

dy_g'__b~c:1;
dz & ey

?

and solving this differential equation gives

1
50(.’172 +9?) — bz = q,

for some constant a, which is the equation of a semicircle in H which cuts the z-axis orthogonally.

A2: Alternatively we could consider what the isometries of H might be and use the fact that
geodesics are mapped to other geodesics by isometries. For ease of notation we now introduce
a complex variable z = z + 4y so that the first fundamental form (2.23) on H is now given by

~4|dz|?
(z—2)*
Then I claim the map
az+b
cz+d’
where a,b,c,d are real numbers satisfying ad — bc = 1, is an isometry of H. From standard
theorems concerning Mobius transformations we can see that w maps the upper half plane onto

the upper half plane. To check w is an isometry we need to prove that H when parametrised
by w and z has the same first fundamental form. Firstly note

w: 2z

_ dz
(cz +d)?
So
—4|dz|?
—4|dw|? lez + d|* _ ~4|dz|?
(w—w)?2  faz+b aZ+b\2 ((ez+b)(cZ+d) - (cz+d)(az+b))?’
(cz +d cz+ d)

The denominator in the final expression above factorises as (ad — bc)?(z — 2)? showing that

—4ldw|?  —4|dz|?
(w—m)? " (z-2)*

and consequently w is an isometry.

Note now that z = 0,y = e™° is a solution to the geodesic equations for H and so the positive
imaginary axis is a geodesic. Using a Mobius transformation such as w we may map the positive
imaginary axis to any other half line or semicircle orthogonal to the real axis, and so these too
are examples of geodesics. From Theorem 65 we know that these are all the geodesics of H. O

The hyperbolic plane H is of interest because it is an example of a non-Euclidean geometry.
A Euclidean geometry is one that satisfies certain axioms including the aziom of parallels which

states that:

e given a line [ and a point p not on I then there is a unique line through p (known as a
parallel) which does not meet [.
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Figure 18 — The Geodesics of The Hyperbolic Plane

If we read ‘geodesic’ for ‘line’ in the above then we see that given a line [ in H and a point
p not on the line then there are infinitely many lines through p not meeting I.

For centuries mathematicians had been trying to deduce the axiom of parallels from Euclid’s
other axioms. It was a revolution in geometry when a model for the hyperbolic plane was found

(due to Poincaré) which showed that a non-Euclidean geometry existed just as consistent as
Euclidean geometry.

In our example of the hyperbolic plane there is only one chart and so the question of the
consistency of a metric structure has not been raised. When we were concerned with consistent
notions of smoothness, orientation, etc. then we required the transition maps to be diffeomorph-
isms, orientation preserving etc. Now that we are interested in a consistent metric structure we

require these transition maps to be isometries. Hence an abstract geometric surface is defined
as:

DEFINITION 82 A smooth geometric surface or smooth Riemannian 2-manifold is a Haus-
dorff topological space X together with
(1) homeomorphisms ¢q : Uy — V,, between open sets U, C R? and open sets V, C X,

(ii) first fundamental forms Eodz? + 2F,dxdy + Gody? on U, where E,, F,, Go are smooth
functions satisfying

Ey>0, Go>0, E,Go—(F,)%>0,

such that

((l) Ua VOL = XI
(b) when Vo, N Vg # 0 then

(@)™ 0 g+ (dp) " (Va N Vp) = ($a) " (Va N Vp)

18 an isometry.

Example 83 Q: Let D denote the unit disc {(u,v) : u>+v? < 1}. Find first fundamental forms
on s1(D),s3(D),ss5(D) such that the natural map 7 : §* — P is a local isometry.

A: The chart ry : D — S? is defined by
ri(u,v) = (u,v, V1 —u2 —v?).
So the first fundamental form of ry (D) is

(1 — v?)du? + 2uvdudv + (1 — u?)dv?
1—u2 -2 '

We need to endow s;(D) with the above first fundamental form for m : S2 — P to be a local

isometry. By symmetry we must similarly endow s3{D) and s5(D) with formally the same first
fundamental form. O
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Exercise 84 Prove that the transition maps of the above atlas are isometries.

"The projective plane endowed with the above first fundamental form is known as the elliptic
plane and is a further example of a non-Euclidean geometry. As 7 is a local isometry then the
geodesics of the elliptic plane are the images of the great circles. So any two lines of the elliptic
plane meet in a unique point — this time no parallels exist.

2.5.3 Differentiability in R"

We end with a brief discussion of what is meant by the differential of a smooth map between
two surfaces.

DEFINITION 85 Let f : R™ — R™ be a smooth map, (i.e. all partial derivatives of f of all

orders exist everywhere.) Let p,v € R™ and let v : (—¢,€) = R™ be a smooth curve in R™ such
that

7(0) = p and ¥'(0) =

Then f o7y is a smooth curve in R™. The differential of f at p is the linear map dfp : R -+ R™
defined by

dfp(v) = dfp(')’( )) = (f27)(0).
PROPOSITION 86 df,(v) is independent of the choice of curve v.

PROOF: For ease of notation we shall consider the case when m = n = 2. Write f = (g)
and v = (7). Then

)
| L0+ o
Yok + %—;v;(m
0f 0h
or 0 v
~ | ok ?_Jé (vl)
ox Oy

As the partial derivatives in the above matrix depend only on the function f and the point p
then df, (which we see has the Jacobian as its matrix) is independent of the choice of 7. O

The definition of the differential of a map f : R? — R2 extends to maps between paramet-
rised surfaces in an obvious way. Let X and Y be smooth parametrised surfaces and let p € X.
Let f: X — Y be a smooth map. Then the differential of f at p is the linear map

dfp 1 TpX = Ty (Y)
defined as follows. Let v € T, X and let v : (—¢,€) = X be a smooth curve such that
7(0) =pand ' (0) =v
Then f o+ is a smooth curve in Y and as before we define
dfp(v) = dfp(7'(0)) = (f 07)'(0).

We have already met examples of differentials. The Weingarten map (see §2.3) is the differ-
ential of the normal map. Also this notion of a differential explains the notation du and dv in

the first fundamental forms we have studied. Let X = r(U) be a smooth parametrised surface.
Let

u:r(u,v) = uand v:r(u,v) = o
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denote the co-ordinate maps. For p = r(ug,vg) consider the differentials dup,dv, : T, X — R.
We define two curves along the co-ordinate curves through p. Set

'Y(t) = I‘(’u,o + t7'U0)7 te ("'67 6)7
I'(t) = r(up,vo +1t), t € (—e¢,€).

Note that v'(0) = r,(p) and I'(0) = r,(p). So

dup(ry) = dup(v'(0)) = (w o) (0) = (t = uo +t)'(0) = 1,
dup(ry) = duy(I'(0)) = (uoT)(0) = (¢ = up)'(0) = 0.

Similarly dvp(r,) = 0 and duy(r,) = 1. So dup and dv, are elements of the dual of the tangent
plane T, X and are the dual basis of {ry(p),r(p)}. So Eduj+2Fdu,dv,+Gdv? is the quadratic
form on T, X given by

ary + Bry = Eo? + 2Faff + GB2.

Example 87 Q: Let V denote the space of n X n real matrices regarded as identified with R™.
Show that the determinant function X +— det X from V to R is differentiable, and prove that
its derivative at the identity matriz I is the map X — trace X.
For each X € V let
o0 Xm
expX =1+ Z

-
m=1 m.:

[You may assume that the series converges for all V. € X.] Find the derivative of the map
Xr—expX at X =0.
For a fited A€V let
¢(t) = det(exp(tA)).

Obtain and solve a differential equation for ¢(t), and hence show that
det(exp A) = exp(trace A).

[You may use without proof the fact that exp(X +Y) = exp(X) exp(Y) for commuting matrices
X,YeV,)

A: det is clearly a smooth function as it is a polynomial of degree n in n? variables. Let
X €V and note that

det(I + hX) = 1+ htrace X + O(h?).
Define y(h) = I + hX for h € R. Then v is a curve in V with v(0) = I and 4/(0) = X. Hence

d(det)(X) = (detv)'(0) = lim det(I + hX) — det(I)

= 1 X.
h—0 h race

Similarly I'(h) = X for h € R is a curve in V with y(0) = 0 and 7/(0) = X. Hence

Alexp)o(X) = (exp )/ (0) = Jimy ORAXD DO _ iy §5 FX"_
We define ¢(t) = det(exp(£A)). Then —
60 = tim det(exp((t + h)A)) — det(exp(tA))
= det(exp(t4) lim CHERPAN ZL_ 4y,

which has solution ¢(t) = ¢(0) exp(¢'(0)t).
Now ¢(0) = I and by the chain rule (see Exercise 133)

#'(0) = d(det); o d(exp)o(A) = trace A.

Setting ¢ = 1 we obtain
det(exp A) = exp(trace A). O
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2.6 Exercises

Parametrised Surfaces

Exercise 88 Find smooth parametrisations for dense open subsets of the following surfaces:
(a) The paraboloid {(z,y,2) : z = 2% + ¢?},
(b) The ellipsoid {(x,y, 2) : z2/a? + y?/b% + 22 /c? =1},
(c) The helicoid {(z,y, 2) : ysinz = zcos z}.
For each of your parametrisations r(U) find the image of the normal map n(r(U)) in the unit
sphere.

Exercise 89 Show that if all the normals to a connected surface pass through a fixed point
then the surface is contained in a sphere. Show that if all the normals to a connected surface
meet a fixed line then the surface is contained in a surface of revolution.

Exercise 90 Let a, b, c be real non-zero constants. Show that the surfaces given by
w2+y2+z2=ax, x2+y2+z2=by, 22 +9? + 22 = ez,
all intersect orthogonally.

Exercise 91 The equation 22 + y? = 1 defines a surface X in C2. Show that the surface may
be parametrised by setting

14+ w? 1—w?
= = f .
T o Y o orwe C,w#0

Find a homeomorphism from X to the cylinder
{(z,y,2) 12 +9* = 1}
in R3,
Exercise 92 Show that for every A € R the straight line with equations
z—z=Ml-y), Mz+2)=1+y

lies on the hyperboloid z? + y? = 1 + 2%. Find another family of lines on this hyperboloid and
show that lines of the same family do not intersect, but that each line of the first family meets
each line of the second.

Exercise 93 Let V = R* be the space of polynomials p(z) = 22 + az + b where a,b € C. Let
X CV be the set of polynomials with coincident roots.

(a) Find a chart r : R? — X for X.

(b) Let o € C. Show that the tangent plane to X at (z — «)? is precisely those polynomials
p € V satisfying p(a) = 0.

Exercise 94 Let {(z,y,0) : z,y € R} be identified with C by setting = + iy = (z,%,0). Let
N =(0,0,1) and let 7y : S> — N — C denote stereographic projection from the north pole N.
Let P: C — C be a polynomial with complex coefficients. Show that the map

Ty oPormy:S?-N 58— N
is smooth. If we extend 7r;,1 o Pomy to all of S? by setting,
o Pony(N)=N

is 7@1 o Pomy smooth at N? How can we make sense of this question when N is not in the
domain of wp?
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Exercise 95 When C U N is identified with S? as above show that the map z — 1 [z is a
diffeomorphism of $2. Hence show that the Mébius transformation

az+b
—

m, ad 7é bC,

is a diffeomorphism of S2.

Exercise 96 (*) Let f : R® — R be a smooth function. We say that p € R3 is a critical point

of f if
of _of _of _,

dr  dy 0z
at p and f(p) is said to be a critical value of f. Find the critical points and values of the following
functions.

(a) f(z,y,2) =2 + ¢ + 22,
(b) f(I, yaz) = 5152 +y2 — COSh2Z,
(©) f(z,y,2) = (2 +y?) /(1 + 22).

Given that if f : R® — R is a smooth function and a € R is not a critical value of f then
f7(a) is a smooth surface in R3, (Do Carmo p. 59). Deduce that the sets

{(z,9,2) eR*: 2® + 9% + 27 =1},
{(z,y,2) € R3:2? + y2 = coshzz},
{(z,y,2) e R®: 2 + 9% — 2 =1},

are all smooth surfaces.
The First Fundamental Form
Exercise 97 Find the area of the torus in R3 given by
r(u,v) = ((a + bcosv) cos u, (a + bcosv) sinu, bsinv)
for u,v € (0,27) and a > b > 0.

Exercise 98 Let S be a surface of revolution and C a generating curve. Let s denote arc-length
on C and let p(s) denote the distance from the axis of rotation to the point of C' with parameter
s. Show that the area of S equals

2 /0 l p(s)ds
where [ is the length of C.
Exercise 99 Show that a smooth surface of revolution may be parametrised so that
E=Ew), F=0, G=1

Exercise 100 Let r : (u,v) = r(u,v) be a smooth chart. Show that the solutions to the
differential equation

Au? 4+ 2Bud + C? =0,
all meet orthogonally if and only if

EC—-2FB+GA=0.

Exercise 101 Let v : [a,0] — R® be a curve parametrised by arc-length. For each u € [a, b] let
1L, denote the plane through v(u) normal to the curve, and let S denote the surface swept out,
as u varies, by the circle in II,, of centre y(u) and constant radius 7.

(i) Explain why the surface S can be parametrised by

r(u,v) = y(u) + r(n(v) cos v + b(u) sinv),
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where n and b are the unit normal and binormal vectors to 7.
(ii) Show that the unit normal vector to S at the point parametrised by (u,v) is

N(u,v) = —(n(u) cos v + b(u) sinv).
(iii) Show that the first fundamental form of S is
((1 + &7 cosv)? + r272)du? + 2r?rdudv + ridv?,

where x and 7 are the curvature and torsion of the original curve . Hence prove that the area
of S is equal to 27r times the length of .

Exercise 102 Two curves on the same smooth parametrised surface are given parametrically by
t = (u(t),v(t)) and t — (a(t),9(t)). Suppose that the curves intersect at t=0. (i.e. u(0) = i(0)
and v(0) = ©(0).) Prove that the angle of intersection  is given by

B4t + F(46 + o) + Gov

cosf = ) - %)
V(Eu? + 2F 00 + Gu?)/(Eu” + 2Fuv + Go )

Deduce that a chart is conformal if and only if the first fundamental form satisfies E = G and
F = 0 everywhere.

Exercise 103 A diffeomorphism between surfaces X and Y is said to be conformal if the angle
between any two intersecting curves on X equals the angle between their images on Yand is
said to be area-preserving if each subset of X is mapped to a subset of Y of equal area. Show
that a diffeomorphism is an isometry if and only if it is area-preserving and conformal.

Exercise 104 Show that the normal maps from both the catenoid
2% + y? = cosh?z

and the helicoid
Tsinz = ycosz

to the sphere are conformal.
Exercise 105 Let G : R® — R? be a map such that

|G(p) — G(g)| = |p— 4

for all p,g € R3. G is said to be a distance preserving map. Prove that there is a linear
orthogonal map F : R? — R3 and py € R3 such that

G(p) = F(p) + po

for all p € R3.

Let S be a surface in R3 such that G(S) € S. Show that the restriction of G to S is an
isometry. Find an example of a surface S and an isometry H : § — S which is not the restriction
to S of a distance preserving map G : R® — R3.

Curvature and the Weingarten Map

Exercise 106 Find the lines of curvature and the principal curvatures on a surface of revolution
in terms of the distance p of the generating curve from the axis. Show that the Gaussian
curvature K equals k cos ¢/p where & is the curvature of the generating curve and ¢ is the angle
between the axis and the tangent line to the curve.

Exercise 107 Find the second fundamental form, the principal curvatures and the Gaussian
curvature of the catenoid and helicoid (see Example 47). Show that the isometry between the
catenoid and the helicoid in Example 47 leaves the value of the Gaussian curvature unchanged.
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Exercise 108 A smooth curve C in the zz-plane is parametrised by arc-length by
(f(s),9(s)), —m/2<s<m)2,

and C meets the z-axis only orthogonally at z = +1, when s = +7/2. Let S be the surface of
revolution parametrised by

(f(s)cost, f(s)sint, g(s)).

Show that at any point of § with s # £x/2 the principal directions are tangent to the co-ordinate
curves and the Gaussian curvature is

(fg—3af)g/f.
Show that for the unit sphere in R? the Gaussian curvature is constant. Prove that if the
Gaussian curvature of the above surface S is constant then S is the unit sphere.

Exercise 109 Suppose that a smooth surface 3 contains the origin and lies entirely in the
half-space {(z,y,2) € R?: z > 0}. Show that, if the principal curvatures of ¥ at the origin are
not zero, then they have the same sign.

Now suppose that, for some positive R, the surface 3 is contained in the ball

{(z,y,2) 2 + % + (z— R)? = R2}.

Show that the absolute value of each principal curvature of ¥ at the origin is not less than RL.

Hence deduce that the Gaussian curvature of a compact smooth surface in R? is positive at
some point.

Exercise 110 Let X and Y be the surfaces in R? given by

x(u,v) = (ucosv,usinv,v) wu,v € (0,2m)

y(u,v) = (vsinu,vcosu,logv) wu,v € (0,2m)

respectively. Find the principal curvatures for both surfaces. Show that there is a bijection
between X and Y which preserves the Gaussian curvature K but which is not an isometry.
(Gauss’ Theorema Egregium states that Gaussian curvature is invariant under isometries. We
can see from the above example that the converse of the Theorema Egregium does not hold.)

Exercise 111 A ruled surface X is a surface of the form r(u,v) = a(u) + vw(u) where a is
a smooth curve in R3, known as the directriz, and |w(u)| = 1 for all u. X is said to be non-
cylindrical if w'(u) # 0 for all u.

a) Let X be a non-cylindrical ruled surface as above. Show that there is a curve of the form
B(u) = afu) + v(u)w(u) such that B - w' = 0. Show that B is independent of the choice of
directrix. 3 is known as the line of striction.

b)Note that 8'(u) Aw(u) = A(u)w’(u) for some A(u). By taking the line of striction as directrix
show that any singular points of the ruled surface (i.e. where ry Ar, = 0) lie on the line of
striction.

c) Show that the Gaussian curvature is given by K = —)\2(\? 4 v2)~2,

Exercise 112 (*) Let X be a smooth compact surface in R3, let S? denote the sphere of radius
one with centre the origin in R3, and let N : X — $2 denote the mapping defined by assigning to
each point of X the outward-pointing unit normal vector to X. Suppose that the restriction of
N to a connected open subset U of X is a bijection onto N(U) and that the Gaussian curvature
K is nowhere zero on U.

(a) Show that the area of N(U) equals the absolute value of f;; K dA.

(b) Deduce that if X is a torus of revolution then [, K dA = 0.

Exercise 113 (*) Determine explicitly the smooth functions p for which the surface of revolu-
tion
r(u,v) = (p(u) cos v, p(u) sinv, u)

has mean curvature identically zero.
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Exercise 114 Let X be a smooth parametrised surface, v a smooth curve in X and t, the unit
tangent to v at p € y. Then v is said to be asymptotic if Wyty - t, = 0 for each p € v. Show
that the normal n, of an asymptotic curve (where defined) is tangent to X. By expressing W,
as a matrix relative to the basis {t;,n,} for T, X, or otherwise, deduce that the torsion 7 of an
asymptotic curve is given by 72 = — K.

Exercise 115 Show that on the helicoid S parametrised by
(scosu,ssinu,u) s,u€R,

each curve Cy, given by s = k (where k is constant) is asymptotic.
Now suppose that a smooth curve C' in the zy-plane is parametrised by arc-length by

(F(s),g(s)) 0<s<1,
and that C' meets the y-axis only when s = 0. Consider the surface S’ parametrised by
(f(s)cosu, f(s)sinu,g(s) +u), 0<s<1, wueR.

Prove that each curve Cj on S’ given by s = k (where k is constant, 0 < k < 1) is asymptotic
then S’ is isometric to part of S.

Exercise 116 (*) Let X be a surface in R® whose Gaussian curvature is zero everywhere, but
whose mean curvature is nowhere zero. You may assume that in the neighbourhood of any point
of X there is a parametrisation r(u,v) for ¥ such that the first and second fundamental forms
can be expressed as

Edu? + Gdv? and Ldu?,

. : .. 0 . :
respectively. Show that the normal n and its derivative 52 are independent of the co-ordinate
U
On

v. By considering the vector product n x T or otherwise, show that
0,6, 0Or
—(p=—) =0,
v ¥ v )

for some non-vanishing function 1, and deduce that ¥ is ruled (that is, each point of X is
contained in a straight line segment which lies in £). Let v : R — R3 be a smooth curve with
|7'(t)| = 1, and such that 4" is nowhere zero. Let ¥ be the surface with parametrisation

r(t,v) = () + vy ().
Show that the first fundamental form of I is
ds? = dv? + 2dvdt + (1 + v2|y"(t)|?)d¢>.

By considering a suitable plane curve, show that there is an open set in ¥ which is isometric to
an open set in R?.

Exercise 117 (*) Let U be the rectangle
{(u,v) : —r <u<m 0<v<2}
endowed with the first fundamental form
(1 +v?)du? + dv?.
The surface X is then formed by identifying the point (—,v) with (w,v) for each 0 < v < 2.

Decide which of the following statements about X are true, which false. Justify your answers.
(a) The map r : X — R3 given by

r(u,v) = (V14 v2cosu, V1 + v2sinu, sinh o)
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for -7 <u <, 0 <v < 2is an isometry from X onto r(X).
(b) The curves given by v =1+ u and v = 1 — u meet at right angles in X.
(c) Let 0 < k < 27r. The maps ¢y, and 1), defined by:

¢(uv)_ (U+k,’l)) —T< u <w—k,
RELE) = (u+k—-2mv) 7n—k<u<m,
and
¢(Ua U) = (—'LL,’U),

are isometries of X.

Geodesics

Exercise 118 Show that a curve of constant geodesic curvature ¢ on the unit sphere is a planar
circle of length 27/v/1 + c2.

Exercise 119 Let r : (u,v) + r(u,v) be a smooth chart. Write each of the following in terms
of the coefficients of the first fundamental form E, F, G and their derivatives:

Yyu *Tyuy; Tyy Ty; Tyy Ty, Tyy Ty, Tyy Ty, Tyy- Ty

Exercise 120 Let U be an open subset of R? and let r : U — R? be a parametrisation of r(U),

a smooth patch of surface in R3. Let vy be a smooth curve in r(U) parametrised by arc-length

and let  ruAr

o [Ty Ay

be a choice of unit normal. The geodesic curvature of 7 is defined to be
kg =4-(nA7j).
Suppose now that the first fundamental form of r(U) is Edu®? + Gdv?. Prove that

n/\’y—uﬂ—rv ”

Show further that the geodesic curvature of v equals
VEG (4 — vil) + P43 + Qu?0 + Ruv® + Sod

where P, Q, R, S may be written in terms of E, G and their derivatives and write P explicitly
in this way. (You may assume, without proof, the result of the previous exercise.)

Exercise 121 Write down the differential equations determining the geodesics on the graph
z = f(z,y).

Exercise 122 Define what is meant by a geodesic on a surface X C R3. The curve r(t) =
(z(t),y(t), 2(t)) lies on the surface X given by the equation f(z,y,z) = 0 where 8f/dz,df /dy,

and Of /0z vanish nowhere on X. Show that the curve is a geodesic if and only if

af dy [of a2 /of

dt2 az  diZ2/ oy de2/ 5z

Show that the surface X is a surface of revolution if and only if there is a line L such that all
planes through L meet X in geodesics.

Exercise 123 Let S denote the surface 22 + y? — 2% = 1 and let y be a geodesic in S. Then
h = psin® is constant by Clairaut’s relation where p(t) is the distance from ~(t) to the axis of
rotation and 1(t) is the angle between 7'(t) and the meridian through ().

Show that if |h| > 1 then v remains in one of the half-spaces z > 0 or z < 0, while if |h| < 1
v passes through the z = 0 plane. What happens if h = £+17?
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Exercise 124 A surface S has first fundamental form
E(u,v) = Gu,v) =U(u) +V(v), F=0.
Show that on a geodesic in S
Usin®? 0 — V cos? 8

is constant, where 6 is the angle the geodesic makes with the curve v = constant. Explain how
this is a generalisation of Clairaut’s relation.

Exercise 125 Starting from any property which characterises a geodesic, obtain the differential
equations satisfied by the geodesics on a surface with the metric

ds® = Edu? + 2Fdudv + Gdv?.
Show that the curves u = constant are all geodesics if and only if
GGy + FGy, = 2GF,

for all u,v.
Hence or otherwise prove that on the surface of revolution

z = f(u)cosv, y=f(u)cosv, =z=u,

the curves v = constant are always geodesics but the circles u = constant are all geodesics if
and only if the surface is a cylinder.

Exercise 126 (*) Show that the geodesic equations of the plane when endowed with the first
fundamental form du? + e**dv? may be written as

=co, 0% =ce 2,
for some constant ¢ > 0, and hence find the geodesics of this first fundamental form.
Show that the map from R? to the upper half plane given by ¢ : (u,v) — (v,e™%) is a
diffeomorphism. For what first fundamental form on the upper half plane is ¢ an isometry?

Further Topics

Exercise 127 (*) Let ¥ denote the tractoid (see Example 44) with one meridian removed.
Using the fact that ¥ is isometric to part of the hyperbolic plane show that for each point P
of ¥ there is a geodesic segment which begins at P and returns to P after passing once around
Y. Show that if P = (z(t),y(t),0) the angle between the initial and final tangent vectors of the
geodesic segment is 2tan™! (7 sint).

Exercise 128 (*) The hyperbolic plane can be defined as the unit disc D = {z € C: |2| < 1}
endowed with the first fundamental form

4|dz|?
(1—|2%)?

where z = = + iy and |dz|? = dz? + dy?. Write down the equations which must be satisfied in
order for a curve parametrised by arc-length to be a geodesic in D, and verify that the real axis
with the parametrisation z = tanh(s/2) € (—1,1),y = 0, is one.

For each a € D and 6 € [0,27), define f, ¢ on D by

_ 2" a
fa,()(z) =€ 1 — Tz
and show that f, g is an isometry of D onto itself. Deduce, or prove otherwise, that any two
points a,b € D lie on a geodesic, along which they are separated by arc-length
b—a

9 -1
tanh T

41




Exercise 129 (*) Show that the function

b—a

d(a,b) = 2tanh™! -

for a,b € D defines a metric on D.

Exercise 130 (*) Prove that a hyperbolic circle is simply an ordinary circle in D, but that its
hyperbolic centre is usually not its ordinary centre. Prove that a hyperbolic circle of radius a
has circumference 27sinha and area 47sinh?(a/2).

Exercise 131 (*) The real projective plane P is the quotient space

_R—{0}

Let [z : y : 2] denote the homogeneous co-ordinate of the line through 0 and (z,y, 2); i.e. the
ratio = : y : z common to all points on that line. Show that the charts ¢; : R? — P defined by

pu(zy)=[l:z:y], dalzy)=[z:1:y], ¢s(z,y)=[z:y:1],

form a smooth atlas for P. Are the transition maps of this atlas orientation-preserving?
The map F : R? — {0} — R* is defined by

1 1
(z2 + y2 + 22) (5(1122 - y2)1 my,mz,yz).

F(z,y,2) =
Show that F' induces a map F on P. This map is an embedding of P in R*. [You are not asked

to prove this.] Show that the area of F(P) is less than 27. Let 7 denote the natural map from
the unit sphere 52 to P. Is F o 7 a local isometry?

Exercise 132 (*) Let S? denote the unit sphere. The map f : R? — R is given by

Lo o 1 2

=(z° —y°), —=(1 — 32°)).

502 =17 (1= 32%)

(i) Show that f(p) = f(q) for p,q € R? if and only if p = +q.

(ii) Show that the restriction of f to S? is a local isometry. So f induces an isometric embedding
of the elliptic plane in RS.

f(m?y) z) = (yz7 zx7$y7

Exercise 133 (*) Let f : R™ — R"™ be a function and z € R™. Then f is said to be
differentiable at z if there is a linear map D f(z) : R™ — R™ such that

f(z +h) = f(z) + Df(z)(h) + o(h)

for all vectors h € R™. (o(h) represents any function r : R™ — R" such that |r(h)|/|h| = 0 as
h—0.)

(i) Show that Df(z) may be represented by a matrix whose entries are the partial derivatives
of the components of the map f.

(ii) Prove the chain rule. That is, show for differentiable maps f : R™ — R™ and g:R" = RP,
that

D(g e f)(z) = Dg(f(x)) o Df(z).
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