Numerical Solution of Partial Differential Equations: Sheet 3 (of 4)

Section A [background material]

1. Suppose that we have discrete data {U;} defined on an infinite mesh z; = jAz, j = 0,+1,+2,....
Let 6 and p be the discrete differentiation and smoothing operators defined by

(6U);j = (Uj+1 — Uj-1)/(2Ax), (uU)j = (Ujr1 + Uj-1)/2.

We need to determine the functions dU, 6V, uU, pV for U = (...,1,-1,1,—1,1,—1,1,...) and
V=(..,1,0-1,01,0-10,...).

Clearly, 6U =0, pU = —U, (0V); = Vjq1/Az, pV = 0.

2. We need to determine what effect 0 and p have on the function U defined by U; = ehri j =

0,4+1,+2,..., where k is a real constant (the wave number).
Applying 6 to U; = eFIBT for a fixed wave number k gives
(6U); = ethAr _ g—ikAx _ 1sin(kAx)
7 2Azx 7 Az 7

Note that as Az — 0, the multiplying factor on the right converges to ¢k, which is the multiplying
factor one would get by applying the differential operator d/dz to the function e**?.

Now, applying p to the same function U gives

ezkAx 4 e—zkAx

(nU); = 5 Uj = cos(kAz)U;

This time the multiplying factor converges to 1 as Ax — 0.

3. By multiplying both sides of
Uk)=Az > e
j=—00
by %elk‘%x and integrating over k € [—m/Axz, w/Az], we deduce that

1 TAx .
— AT (k) dk = Uy,
2m w/Ax

as required.

Next,
g[\](k) _ A i efzkmj Uj+1 o U'ji1 —As i e—zkacj71 _ ezkachrl U,
N j=—oo 2A$ o e 2Ax J
zkAx _ fzkAa: k’Al‘) .
= £ % A ko, LSIRAT)
fvj_zooe A Uk)
Similarly,

uU (k) = cos(kAz)U (k) .
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Figure 2: Graphs of the Fourier multipliers corresponding to § and p, on the wave number interval k €

[-7/Ax,m/Az] for Ax =0.1.

Thus both § and p can be defined by the prescription: take the Fourier transform of U, multiply the
result pointwise (i.e., for each k independently) by a certain function, then inverse Fourier transform
back. This is why

U (k in(kA WU (k
E]( ) = sin(kAz) and MAU( ) = cos(kAx)
U(k) Az U(k)
are called Fourier multipliers. The graphs of these two Fourier multipliers are shown in the figures

below.

Applying y m times to U corresponds to multiplying the Fourier transform & — U (k) by (cos(kAxz))™.
To see this, let x(k) = cos(kAxz) and note that

U (k) = x(k)U (k);

therefore,

12U (k) = p(uU) (k) = x(k)uU (k) = x(k)x (k)T (k) = (x(k))* U (k).
Thus, by induction, o X
prU (k) = (x (k)™ U(K) -
As can be seen in Figure 3, for large m the function (cos(kAx))™ will be approximately zero on the
interval [—m/Ax, m/Az] except for k = 0 and k = +7/Ax. Clearly, (x(0))™ =1 for all m > 1 and
(x(xmw/Ax))™ = (—1)™. This is precisely the behaviour we would expect for k & 0; however, it is
unfortunate that the wave numbers k ~ £m/Axz are not eliminated as well.

This is due to the fact that when p is applied to the saw-tooth function W defined by W; = (—1)7,
it does not smooth it at all: it merely changes its sign. Therefore,

ptWo=(=1)"W,
which is no smoother than W however large m is.

Note: In order to obtain an operator g which has better smoothing properties than p, let us consider
X(k) == 3(1+ x(k)). We define /l/ﬁ(k) = (k)U(k). In other words, iU is defined as the semidiscrete
inverse Fourier transform of ¥(k)U(k). Figure 4 shows (y(k))™ on the interval [—7/Az, 7/A] with
Az = 0.1, for m = 155 and m = 156; clearly, the undesired lack of smoothing near k = +7/Ax has

now been eliminated.
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Figure 3: Graphs of (cos(kAz))™ on the interval [—m/Ax,w/Ax] with Az = 0.1, for various values of m:
(a) m =5; (b) m = 6; (¢c) m = 55; (d) m = 56; (e) m = 155; (f) m = 156.
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Figure 4: Graphs of (x(k))™ on the interval [—n/Az, 7/Az] with Az = 0.1, for various values of m: (a)
m = 155; (b) m = 156.

4. The proof is simple: using the definition of the semidiscrete Fourier transform U of U,

- /A ) m/Ax —
01 = [P [ 0w Tk
—7/Ax —n/Ax

w/Azx o

= / (Az)? Z e kT i ey, dke

—n/Azx j=—00 {=—00
w/Az

= > ) (A2)Uily / ethlee=ei) g
j=—00{l=—00 —n/Az

BRSNS 20 0 ifl#j

- Z ZZ (Az) UJU"{ o0 /Ax if €= j
J=—00 f=—00

o
= 2rAz > |U;? =2x||U]7,,

j=—o0

as required.

Section C [optional]

9. The consistency error of the scheme is

J At 2

tng1) —u(xg,ty) 1 Ax)? 1 Ax)?
™ — (@, tn1) — u(@j tn) _ (1— (Axt) () S2u(xj, tyt1) — 3 <1+ ( Aj;) C) Sou(wj, tn).

23



Upon Taylor series expansion,
T3 = ytng1y2) + 4(At)2uttt(xj’tn+1/2)

uy(;
_% < z)? g) (um(xj,th) + 112(Ax)2umm(9«"j7tn+1)>
(5

(A
At
N (Az)

+

1
14 (B (25260) + - (At a2, 1)
At ¢ | vz, tn 15 (B) Uawaa (Tj, n
+O((At)3 + (Aa:)4))
1
= w(wj,tpq1/2) + 24(At)2uttt($jatn+1/2)

(x
1 (
2

1
C) (uzr(-rjvthrl/Q) + iAtuxmt(fL‘ja tn+1/2)

Ax)?
At
1 2 1 2

E(Am) Ugzre(Tj, tri1/2) + ﬂ(A$) Atummt(xj,twrlp))
(Az)?

At

+

(1
+
1 1
3 (1 4) (uzx(xjvtn—i-l/Q) - §AtuxxtU(:cj,tn+1/2)
1 2 1 2
+E(A$) urmx(xj»thrl/Q) - ﬂ(Ax) Atummt(xjathrl/Q)
+O((At)? + (Az)?).

As (At)? = O((Az)?) and (Ax)2At = O((Ax)?), the last terms in lines 1, 3 and 5 on the right-hand
side can be absorbed into O((At)? + (Az)?). Further, w,zt = Uppes, S0 that

Tjn = (%7 n+1/2)

(Az)? 1
(1 N ¢ umm(xj7tn+l/2) + §Atumzxm($]’7tn+l/2)

(Ax)zux:rmm ($j7 tn+1/2>>
1 (Az)?

1
() (uxw(xjatn-i-l/Q) - EAtummx@jatn-&-lﬂ)
1
+E(Aa¢)2uxm(:¢j, tnﬂ/g)) + O((AH)? + (Az)h)
1 1
= w(j tng12) = Uaa(Tj, tngry2) + i(ACC) ¢— 5 Ugzza(Tj, tny1/2)

— (807 (¢ § ) teralaystaga) + O((A2) ),

Hence, we have the two required forms of the consistency error depending on whether ¢ # 1/6 or

¢=1/6.

10. The standard Crank-Nicolson scheme for this initial-value problem, with u, = At/(Az)? and p, =
At/(Ay)?, is

He o Hyco At n+l _ Hx o0 Hy 2 4 At n
1— —=07 — =9 1+ =94 —=4
( 2 2Y 2>U +2 J”—’—2 u T U

This can be rewritten as follows

_ Mz oo 2 n+l _ Ha oo 2
(2 At)(l Z—At(s 2—At6>U (2+At)( 2+A6 +2+At6>
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11.

We approximate the expressions in the brackets on the left- and right-hand sides by factorised ex-
pressions; thus, we arrive at

(2At)( 2At52> <1 2At52> Uit
= (24 At) (1 At52> ( + Atag) Uz
Let us introduce the intermediate level U1/ 2 and then rewrite the above as follows:
(2 - At) ( = At(s?) Uit = 2+ A (1 o At@i)
<1 - At52> 7;+1 _ (1 i At52> ZH/Q'

[Note that the factors 2 — At and 2 + At can be inserted at various places, so if they appear at a
different place in your solution than in mine that does not imply that your answer is incorrect!]

For this scheme to be meaningful, we need to suppose that A¢ £ 2. In the stability analysis below,
we can assume without loss of generality that At <1 (to simplify the algebra).

The scheme is supplemented by the initial condition
Uzg :uo(xi,yj), i,j EZQ.

Performing a Fourier analysis,

2 — At 2+ At — 4y, sin®(kAz/2) 2+ At — dpy sin?(ky Az /2)

U (g, hy) =
2+ At 2 — At + 4dpy sin®(kp Az /2) 2 — At + dpy, sin®(ky Az /2)

Un(/ix,/%y).

The first fraction is bounded in absolute value by 1. The second fraction is bounded in absolute value
by 14 2At for all k; € [—7/Az,7/Az]; this can be seen by noting that the absolute value of the
second fraction achieves its maximum either at K, = 0 or k; = +7/Ax, and for these three values of
k. the absolute value of the second fraction is bounded by 1 + 2At. Similarly, the absolute value of
the third fraction is bounded by 1 + 2At¢. Therefore,

U™ (kg 1) < (14 288)2 0" (i, iy )
for all (kg, ky), and therefore, by Parseval’s identity,

U™ ey < (14 280U |es.-
As (1 +2A¢%)% =1+ 4At + 4(At)?2 < 1+ 8At, we have

max [U"||e, < (14 8AL)||U°le,,
n>0

which means that the scheme is unconditionally von Neumann stable.

(a) To show the uniqueness of the solution to the initial-boundary-value problem, suppose that wu;
and ug are both solutions to the problem, and both have a continuous first partial derivative w.r.t.
t and a continuous second partial derivative with respect to . Then, u := u; — us has the same
smoothness as u; and wg, it satisfies homogeneous boundary and initial conditions, and

U — Uge = f(u1) — fug) on (0,1) x (0,7T).
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Multiplying this equality by u = u1 — ug, integrating over z for any fixed ¢t € (0,7, and performing
partial integration in the second term on the left-hand side yields

ae / fu(e, ) dz + / (e O do = [ (Fune) = Fuale,0)) (o) = ) de =

By dropping the (nonnegative) second and third terms from the left-hand side (recall that f is
monotonic nonincreasing), we deduce that

2z < T
2dt/|umt\dx 0 vVt e (0,7],
and therefore, upon integration over ¢ from ¢t = 0 to t = s € (0,T], we find the inequality
1 1
/ lu(z, s)|? dz < / lu(x,0)|*dz = 0 Vs e (0,T).
0 0
Therefore u = 0 on [0, 1] x [0, T], meaning that u; = ug on [0, 1] x [0,T].

(b) The implicit Euler finite difference approximation of the problem is:
U]m - Ujmil +pP—7rm m -
T_DszUj = f(U;") forj=1,....N—landm=1,..., M,
Uuir=0, Uy=0 form=1,..., M,
Uj():uo(xj) forj=1,...,N—1.
Here, D} V; := (Vj41 — Vj)/Az, j=0,...N —1and D;V; := (V; = V;_1)/Az, j =1,... N, for any
function V' defined at the mesh points z; = jAz, j =0,...,N

(c) Let V :={(0,V1,...,Vy_1,0)T € RN*L: (V4,..., Vy_1)T € RN=1}. Clearly, V, equipped with the
Euclidean norm of RV*! is an (N — 1)-dimensional vector space, which is isometrically isomorphic
to RV~ equipped with the Euclidean norm of RN~1. Consider the mapping F: V — V, defined by
F(V);:=V; = U = AtDF D,V — Atf(Vy), forj=1,...,N—1;
F(V)y=0, F(V)ny=0.

Our objective is to show the existence of a U™ = (0, U7",...,U% ,0)T such that F(U™) = 0 € RV+1,

Suppose that F(V) # 0 for all V € V with |V| < @ and all g > 0, where || - || is the Euclidean norm
on RV*! induced by the inner product (-, -) defined by (V, W) := VIW. Let B(0, 1) denote the ball
of radius p in RV*!. Then, the mapping G defined by

F(V)
MTE)I

is a continuous mapping from B(0, 1) to B(0, ). Thus, by Brouwer’s fixed point theorem there exists
a V e B(0, 1) such that G(V) =V, and therefore

G(V) = — Ve B(0, ),

. F(V)
V=- .
"IE@)
Hence, ||V|| = p, and
D o F(WV) W)
FV),V)=—-u|FV - = - F( 0. 9
(F(7),7) u( W), ”F(V)”> e = <l V)] < 0
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However, by letting f(V) € RV*! be the vector whose j-th component is f(f/]), we have that
(F(V),V) = (V,V) = (U™, V) = ADFDZV, V) = At(f(V), V).
By performing summation by parts in the third term on the right-hand side this implies that

N
(F(V),V)=(V,V) = (U™ V) + At [ Az |D; V2
Jj=1
— At(f(V) = f(0),V — 0) — At(f(0), V).

The third and the fourth term on the right-hand side are nonnegative. Therefore,
(F(V),V) = (V,V) = (U™, V) = At(f(0),V) = |[V[* = (U™ " + At£(0), V)
- m— - - 1 e 1, 4
> VI = U™+ AtV = VI = SIU™ =+ Atf0)]* = S[IV?

1. 1,
= SIVI2 = SIUmt + Atf )]

By fixing, in particular, p = |[|[U™ 14+ Atf(0)| and recalling that ||V|| = x, we have that (F(V),V) >
4% — 1p? = 0. But this contradicts (9).

Therefore our assumption that F'(V) # 0 for all V- € V with ||V < p and all g > 0 is false, meaning
that there exists a 4 > 0 and V € V with ||V|| < u such that F(V) = 0.

Note further that there is a unique such V. Supposing otherwise that V1, V2 € V satisfy F(V!) =0
and F(V?) = 0, we have, by writing V := V! — V2 and performing summation by parts that

0= (F(VY) = F(V}), V! = V) = |[V|? - AUDF DV, V) = A(f(V!) — f(V?), VI - V?)
N

= [VI?+ At { Az [DLVi | = A(F(VY) = f(VP), V! = V?).

Jj=1

The second and the third term on the right-hand side are both nonnegative. By dropping them, we
deduce that 0 > ||[V||2. Therefore V = 0, meaning that V! = V2. Thus there exists one and only
one V € V such that F(V) = 0. We denote this V by U™+,
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