Numerical Solution of Partial Differential Equations: Sheet 3 (of 4)

Section A [background material]

1. Suppose that we have discrete data $\{U_j\}$ defined on an infinite mesh $x_j = j\Delta x, j = 0, \pm 1, \pm 2, \dots$ Let δ and μ be the discrete differentiation and smoothing operators defined by

$$(\delta U)_j = (U_{j+1} - U_{j-1})/(2\Delta x), \qquad (\mu U)_j = (U_{j+1} + U_{j-1})/2.$$

We need to determine the functions δU , δV , μU , μV for U = (..., 1, -1, 1, -1, 1, -1, 1, ...) and V = (..., 1, 0, -1, 0, 1, 0, -1, 0, ...).

Clearly, $\delta U = 0$, $\mu U = -U$, $(\delta V)_i = V_{i+1}/\Delta x$, $\mu V = 0$.

2. We need to determine what effect δ and μ have on the function U defined by $U_j = e^{ikx_j}$, $j = 0, \pm 1, \pm 2, \ldots$, where k is a real constant (the wave number).

Applying δ to $U_j = e^{ikj\Delta x}$ for a fixed wave number k gives

$$(\delta U)_j = \frac{e^{\imath k \Delta x} - e^{-\imath k \Delta x}}{2\Delta x} U_j = \frac{\imath \sin(k \Delta x)}{\Delta x} U_j.$$

Note that as $\Delta x \to 0$, the multiplying factor on the right converges to ik, which is the multiplying factor one would get by applying the differential operator d/dx to the function e^{ikx} .

Now, applying μ to the same function U gives

$$(\mu U)_j = \frac{e^{ik\Delta x} + e^{-ik\Delta x}}{2} U_j = \cos(k\Delta x) U_j.$$

This time the multiplying factor converges to 1 as $\Delta x \to 0$.

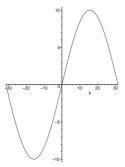
3. By multiplying both sides of

$$\hat{U}(k) = \Delta x \sum_{j=-\infty}^{\infty} e^{-ikx_j} U_j$$

by $\frac{1}{2\pi}e^{ik\ell\Delta x}$ and integrating over $k\in[-\pi/\Delta x,\pi/\Delta x]$, we deduce that

$$\frac{1}{2\pi} \int_{\pi/\Delta x}^{\pi\Delta x} e^{ik\ell\Delta x} \hat{U}(k) \, dk = U_{\ell},$$

as required.


Next,

$$\widehat{\delta U}(k) = \Delta x \sum_{j=-\infty}^{\infty} e^{-ikx_j} \frac{U_{j+1} - U_{j-1}}{2\Delta x} = \Delta x \sum_{j=-\infty}^{\infty} \frac{e^{-ikx_{j-1}} - e^{ikx_{j+1}}}{2\Delta x} U_j$$

$$= \frac{e^{ik\Delta x} - e^{-ik\Delta x}}{2\Delta x} \Delta x \sum_{j=-\infty}^{\infty} e^{-ikx_j} U_j = \frac{i\sin(k\Delta x)}{\Delta x} \hat{U}(k).$$

Similarly,

$$\widehat{\mu U}(k) = \cos(k\Delta x)\widehat{U}(k).$$

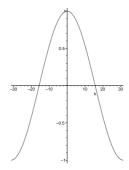


Figure 2: Graphs of the Fourier multipliers corresponding to δ and μ , on the wave number interval $k \in [-\pi/\Delta x, \pi/\Delta x]$ for $\Delta x = 0.1$.

Thus both δ and μ can be defined by the prescription: take the Fourier transform of U, multiply the result pointwise (i.e., for each k independently) by a certain function, then inverse Fourier transform back. This is why

$$\frac{\widehat{\delta U}(k)}{\hat{U}(k)} = \frac{\imath \sin(k\Delta x)}{\Delta x} \qquad \text{and} \qquad \frac{\widehat{\mu U}(k)}{\hat{U}(k)} = \cos(k\Delta x)$$

are called Fourier multipliers. The graphs of these two Fourier multipliers are shown in the figures below.

Applying μ m times to U corresponds to multiplying the Fourier transform $k \mapsto \hat{U}(k)$ by $(\cos(k\Delta x))^m$. To see this, let $\chi(k) = \cos(k\Delta x)$ and note that

$$\widehat{\mu U}(k) = \chi(k)\widehat{U}(k);$$

therefore,

$$\widehat{\mu^2 U}(k) = \widehat{\mu(\mu U)}(k) = \chi(k) \widehat{\mu U}(k) = \chi(k) \chi(k) \hat{U}(k) = (\chi(k))^2 \, \hat{U}(k) \,.$$

Thus, by induction,

$$\widehat{\mu^m U}(k) = (\chi(k))^m \, \hat{U}(k) \,.$$

As can be seen in Figure 3, for large m the function $(\cos(k\Delta x))^m$ will be approximately zero on the interval $[-\pi/\Delta x, \pi/\Delta x]$ except for $k \approx 0$ and $k \approx \pm \pi/\Delta x$. Clearly, $(\chi(0))^m = 1$ for all $m \geq 1$ and $(\chi(\pm \pi/\Delta x))^m = (-1)^m$. This is precisely the behaviour we would expect for $k \approx 0$; however, it is unfortunate that the wave numbers $k \approx \pm \pi/\Delta x$ are not eliminated as well.

This is due to the fact that when μ is applied to the saw-tooth function W defined by $W_j = (-1)^j$, it does not smooth it at all: it merely changes its sign. Therefore,

$$\mu^m W = (-1)^m W,$$

which is no smoother than W however large m is.

Note: In order to obtain an operator $\tilde{\mu}$ which has better smoothing properties than μ , let us consider $\tilde{\chi}(k) := \frac{1}{2}(1+\chi(k))$. We define $\widehat{\mu}U(k) = \tilde{\chi}(k)\hat{U}(k)$. In other words, $\tilde{\mu}U$ is defined as the semidiscrete inverse Fourier transform of $\tilde{\chi}(k)\hat{U}(k)$. Figure 4 shows $(\tilde{\chi}(k))^m$ on the interval $[-\pi/\Delta x, \pi/\Delta]$ with $\Delta x = 0.1$, for m = 155 and m = 156; clearly, the undesired lack of smoothing near $k = \pm \pi/\Delta x$ has now been eliminated.

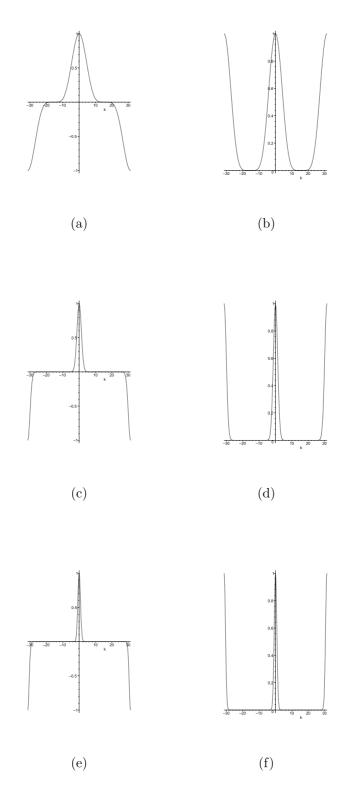


Figure 3: Graphs of $(\cos(k\Delta x))^m$ on the interval $[-\pi/\Delta x, \pi/\Delta x]$ with $\Delta x = 0.1$, for various values of m: (a) m = 5; (b) m = 6; (c) m = 55; (d) m = 56; (e) m = 155; (f) m = 156.

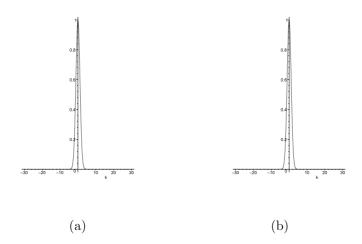


Figure 4: Graphs of $(\tilde{\chi}(k))^m$ on the interval $[-\pi/\Delta x, \pi/\Delta x]$ with $\Delta x = 0.1$, for various values of m: (a) m = 155; (b) m = 156.

4. The proof is simple: using the definition of the semidiscrete Fourier transform \hat{U} of U,

$$\|\hat{U}\|_{L_{2}}^{2} = \int_{-\pi/\Delta x}^{\pi/\Delta x} |\hat{U}(k)|^{2} dk = \int_{-\pi/\Delta x}^{\pi/\Delta x} \hat{U}(k) \,\overline{\hat{U}}(k) \,dk$$

$$= \int_{-\pi/\Delta x}^{\pi/\Delta x} (\Delta x)^{2} \sum_{j=-\infty}^{\infty} e^{-ikx_{j}} U_{j} \sum_{\ell=-\infty}^{\infty} e^{ikx_{\ell}} \bar{U}_{\ell} \,dk$$

$$= \sum_{j=-\infty}^{\infty} \sum_{\ell=-\infty}^{\infty} (\Delta x)^{2} U_{j} \bar{U}_{\ell} \int_{-\pi/\Delta x}^{\pi/\Delta x} e^{ik(x_{\ell}-x_{j})} \,dk$$

$$= \sum_{j=-\infty}^{\infty} \sum_{\ell=-\infty}^{\infty} (\Delta x)^{2} U_{j} \bar{U}_{\ell} \left\{ \begin{array}{c} 0 & \text{if } \ell \neq j \\ 2\pi/\Delta x & \text{if } \ell = j \end{array} \right.$$

$$= 2\pi \Delta x \sum_{j=-\infty}^{\infty} |U_{j}|^{2} = 2\pi \|U\|_{\ell_{2}}^{2},$$

as required.

Section C [optional]

9. The consistency error of the scheme is

$$T_{j}^{n} = \frac{u(x_{j}, t_{n+1}) - u(x_{j}, t_{n})}{\Delta t} - \frac{1}{2} \left(1 - \frac{(\Delta x)^{2}}{\Delta t} \zeta \right) \delta_{x}^{2} u(x_{j}, t_{n+1}) - \frac{1}{2} \left(1 + \frac{(\Delta x)^{2}}{\Delta t} \zeta \right) \delta_{x}^{2} u(x_{j}, t_{n}).$$

Upon Taylor series expansion,

$$\begin{split} T_j^n &= u_t(x_j, t_{n+1/2}) + \frac{1}{24} (\Delta t)^2 u_{ttt}(x_j, t_{n+1/2}) \\ &- \frac{1}{2} \left(1 - \frac{(\Delta x)^2}{\Delta t} \zeta \right) \left(u_{xx}(x_j, t_{n+1}) + \frac{1}{12} (\Delta x)^2 u_{xxxx}(x_j, t_{n+1}) \right) \\ &- \frac{1}{2} \left(1 + \frac{(\Delta x)^2}{\Delta t} \zeta \right) \left(u_{xx}(x_j, t_n) + \frac{1}{12} (\Delta x)^2 u_{xxxx}(x_j, t_n) \right) \\ &+ \mathcal{O}((\Delta t)^3 + (\Delta x)^4)) \\ &= u_t(x_j, t_{n+1/2}) + \frac{1}{24} (\Delta t)^2 u_{ttt}(x_j, t_{n+1/2}) \\ &- \frac{1}{2} \left(1 - \frac{(\Delta x)^2}{\Delta t} \zeta \right) \left(u_{xx}(x_j, t_{n+1/2}) + \frac{1}{2} \Delta t u_{xxt}(x_j, t_{n+1/2}) \right) \\ &+ \frac{1}{12} (\Delta x)^2 u_{xxxx}(x_j, t_{n+1/2}) + \frac{1}{24} (\Delta x)^2 \Delta t u_{xxxt}(x_j, t_{n+1/2}) \right) \\ &- \frac{1}{2} \left(1 + \frac{(\Delta x)^2}{\Delta t} \zeta \right) \left(u_{xx}(x_j, t_{n+1/2}) - \frac{1}{2} \Delta t u_{xxt} u(x_j, t_{n+1/2}) \right) \\ &+ \frac{1}{12} (\Delta x)^2 u_{xxxx}(x_j, t_{n+1/2}) - \frac{1}{24} (\Delta x)^2 \Delta t u_{xxxxt}(x_j, t_{n+1/2}) \right) \\ &+ \mathcal{O}((\Delta t)^2 + (\Delta x)^4)). \end{split}$$

As $(\Delta t)^2 = \mathcal{O}((\Delta x)^4)$ and $(\Delta x)^2 \Delta t = \mathcal{O}((\Delta x)^4)$, the last terms in lines 1, 3 and 5 on the right-hand side can be absorbed into $\mathcal{O}((\Delta t)^2 + (\Delta x)^4)$. Further, $u_{xxt} = u_{xxxx}$, so that

$$T_{j}^{n} = u_{t}(x_{j}, t_{n+1/2})$$

$$-\frac{1}{2} \left(1 - \frac{(\Delta x)^{2}}{\Delta t} \zeta \right) \left(u_{xx}(x_{j}, t_{n+1/2}) + \frac{1}{2} \Delta t u_{xxxx}(x_{j}, t_{n+1/2}) \right)$$

$$+ \frac{1}{12} (\Delta x)^{2} u_{xxxx}(x_{j}, t_{n+1/2})$$

$$-\frac{1}{2} \left(1 + \frac{(\Delta x)^{2}}{\Delta t} \zeta \right) \left(u_{xx}(x_{j}, t_{n+1/2}) - \frac{1}{2} \Delta t u_{xxxx}(x_{j}, t_{n+1/2}) \right)$$

$$+ \frac{1}{12} (\Delta x)^{2} u_{xxxx}(x_{j}, t_{n+1/2}) + \mathcal{O}((\Delta t)^{2} + (\Delta x)^{4}))$$

$$= u_{t}(x_{j}, t_{n+1/2}) - u_{xx}(x_{j}, t_{n+1/2}) + \frac{1}{2} (\Delta x)^{2} \left(\zeta - \frac{1}{6} \right) u_{xxxx}(x_{j}, t_{n+1/2})$$

$$= \frac{1}{2} (\Delta x)^{2} \left(\zeta - \frac{1}{6} \right) u_{xxxx}(x_{j}, t_{n+1/2}) + \mathcal{O}((\Delta x)^{4})).$$

Hence, we have the two required forms of the consistency error depending on whether $\zeta \neq 1/6$ or $\zeta = 1/6$.

10. The standard Crank–Nicolson scheme for this initial-value problem, with $\mu_x = \Delta t/(\Delta x)^2$ and $\mu_y = \Delta t/(\Delta y)^2$, is:

$$\left(1 - \frac{\mu_x}{2}\delta_x^2 - \frac{\mu_y}{2}\delta_y^2 - \frac{\Delta t}{2}\right)U_{ij}^{n+1} = \left(1 + \frac{\mu_x}{2}\delta_x^2 + \frac{\mu_y}{2}\delta_y^2 + \frac{\Delta t}{2}\right)U_{ij}^{n}.$$

This can be rewritten as follows

$$(2 - \Delta t) \left(1 - \frac{\mu_x}{2 - \Delta t} \delta_x^2 - \frac{\mu_y}{2 - \Delta t} \delta_y^2 \right) U_{ij}^{n+1} = (2 + \Delta t) \left(1 + \frac{\mu_x}{2 + \Delta t} \delta_x^2 + \frac{\mu_y}{2 + \Delta t} \delta_y^2 \right) U_{ij}^n.$$

We approximate the expressions in the brackets on the left- and right-hand sides by factorised expressions; thus, we arrive at

$$(2 - \Delta t) \left(1 - \frac{\mu_x}{2 - \Delta t} \delta_x^2 \right) \left(1 - \frac{\mu_y}{2 - \Delta t} \delta_y^2 \right) U_{ij}^{n+1}$$
$$= (2 + \Delta t) \left(1 + \frac{\mu_x}{2 + \Delta t} \delta_x^2 \right) \left(1 + \frac{\mu_y}{2 + \Delta t} \delta_y^2 \right) U_{ij}^n.$$

Let us introduce the intermediate level $U^{n+1/2}$, and then rewrite the above as follows:

$$(2 - \Delta t) \left(1 - \frac{\mu_x}{2 - \Delta t} \delta_x^2 \right) U_{ij}^{n+1/2} = (2 + \Delta t) \left(1 + \frac{\mu_y}{2 + \Delta t} \delta_y^2 \right) U_{ij}^n$$

$$\left(1 - \frac{\mu_y}{2 - \Delta t} \delta_y^2 \right) U_{ij}^{n+1} = \left(1 + \frac{\mu_x}{2 + \Delta t} \delta_x^2 \right) U_{ij}^{n+1/2}.$$

[Note that the factors $2 - \Delta t$ and $2 + \Delta t$ can be inserted at various places, so if they appear at a different place in your solution than in mine that does not imply that your answer is incorrect!]

For this scheme to be meaningful, we need to suppose that $\Delta t \neq 2$. In the stability analysis below, we can assume without loss of generality that $\Delta t \leq 1$ (to simplify the algebra).

The scheme is supplemented by the initial condition

$$U_{ij}^0 = u_0(x_i, y_j), \qquad i, j \in \mathbb{Z}^2.$$

Performing a Fourier analysis,

$$\hat{U}^{n+1}(\kappa_x,\kappa_y) = \frac{2-\Delta t}{2+\Delta t} \frac{2+\Delta t - 4\mu_x \sin^2(\kappa_x \Delta x/2)}{2-\Delta t + 4\mu_x \sin^2(\kappa_x \Delta x/2)} \frac{2+\Delta t - 4\mu_y \sin^2(\kappa_y \Delta x/2)}{2-\Delta t + 4\mu_y \sin^2(\kappa_y \Delta x/2)} \hat{U}^n(\kappa_x,\kappa_y).$$

The first fraction is bounded in absolute value by 1. The second fraction is bounded in absolute value by $1 + 2\Delta t$ for all $\kappa_x \in [-\pi/\Delta x, \pi/\Delta x]$; this can be seen by noting that the absolute value of the second fraction achieves its maximum either at $\kappa_x = 0$ or $\kappa_x = \pm \pi/\Delta x$, and for these three values of κ_x the absolute value of the second fraction is bounded by $1 + 2\Delta t$. Similarly, the absolute value of the third fraction is bounded by $1 + 2\Delta t$. Therefore,

$$|\hat{U}^{n+1}(\kappa_x, \kappa_y)| \le (1 + 2\Delta t)^2 |\hat{U}^n(\kappa_x, \kappa_y)|,$$

for all (κ_x, κ_y) , and therefore, by Parseval's identity,

$$||U^{n+1}||_{\ell_2} < (1 + 2\Delta t)^2 ||U^n||_{\ell_2}.$$

As
$$(1 + 2\Delta t)^2 = 1 + 4\Delta t + 4(\Delta t)^2 \le 1 + 8\Delta t$$
, we have

$$\max_{n>0} \|U^n\|_{\ell_2} \le (1 + 8\Delta t) \|U^0\|_{\ell_2},$$

which means that the scheme is unconditionally von Neumann stable.

11. (a) To show the uniqueness of the solution to the initial-boundary-value problem, suppose that u_1 and u_2 are both solutions to the problem, and both have a continuous first partial derivative w.r.t. t and a continuous second partial derivative with respect to x. Then, $u := u_1 - u_2$ has the same smoothness as u_1 and u_2 , it satisfies homogeneous boundary and initial conditions, and

$$u_t - u_{xx} = f(u_1) - f(u_2)$$
 on $(0, 1) \times (0, T]$.

Multiplying this equality by $u = u_1 - u_2$, integrating over x for any fixed $t \in (0, T]$, and performing partial integration in the second term on the left-hand side yields

$$\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}\int_0^1 |u(x,t)|^2 \,\mathrm{d}x + \int_0^1 |u_x(x,t)|^2 \,\mathrm{d}x - \int_0^1 (f(u_1(x,t)) - f(u_2(x,t)))(u_1(x,t) - u_2(x,t)) \,\mathrm{d}x = 0,$$

By dropping the (nonnegative) second and third terms from the left-hand side (recall that f is monotonic nonincreasing), we deduce that

$$\frac{1}{2} \frac{\mathrm{d}}{\mathrm{d}t} \int_0^1 |u(x,t)|^2 \, \mathrm{d}x \le 0 \qquad \forall t \in (0,T],$$

and therefore, upon integration over t from t=0 to $t=s\in(0,T]$, we find the inequality

$$\int_0^1 |u(x,s)|^2 dx \le \int_0^1 |u(x,0)|^2 dx = 0 \qquad \forall s \in (0,T].$$

Therefore $u \equiv 0$ on $[0,1] \times [0,T]$, meaning that $u_1 \equiv u_2$ on $[0,1] \times [0,T]$.

(b) The implicit Euler finite difference approximation of the problem is:

$$\frac{U_j^m - U_j^{m-1}}{\Delta t} - D_x^+ D_x^- U_j^m = f(U_j^m) \quad \text{for } j = 1, \dots, N-1 \text{ and } m = 1, \dots, M,$$

$$U_0^m = 0, \quad U_N^m = 0 \quad \text{for } m = 1, \dots, M,$$

$$U_i^0 = u_0(x_j) \quad \text{for } j = 1, \dots, N-1.$$

Here, $D_x^+V_j := (V_{j+1} - V_j)/\Delta x$, $j = 0, \dots N-1$ and $D_x^-V_j := (V_j - V_{j-1})/\Delta x$, $j = 1, \dots N$, for any function V defined at the mesh points $x_j = j\Delta x$, $j = 0, \dots, N$.

(c) Let $\mathcal{V} := \{(0, V_1, \dots, V_{N-1}, 0)^{\mathrm{T}} \in \mathbb{R}^{N+1} : (V_1, \dots, V_{N-1})^{\mathrm{T}} \in \mathbb{R}^{N-1}\}$. Clearly, \mathcal{V} , equipped with the Euclidean norm of \mathbb{R}^{N+1} , is an (N-1)-dimensional vector space, which is isometrically isomorphic to \mathbb{R}^{N-1} equipped with the Euclidean norm of \mathbb{R}^{N-1} . Consider the mapping $F : \mathcal{V} \to \mathcal{V}$, defined by

$$F(V)_j := V_j - U_j^{m-1} - \Delta t D_x^+ D_x^- V_j - \Delta t f(V_j), \quad \text{for } j = 1, \dots, N-1;$$

$$F(V)_0 = 0, \quad F(V)_N = 0.$$

Our objective is to show the existence of a $U^m = (0, U_1^m, \dots, U_{N-1}^m, 0)^T$ such that $F(U^m) = \mathbf{0} \in \mathbb{R}^{N+1}$. Suppose that $F(V) \neq 0$ for all $V \in \mathcal{V}$ with $||V|| \leq \mu$ and all $\mu > 0$, where $||\cdot||$ is the Euclidean norm on \mathbb{R}^{N+1} , induced by the inner product (\cdot, \cdot) defined by $(V, W) := V^T W$. Let $B(0, \mu)$ denote the ball of radius μ in \mathbb{R}^{N+1} . Then, the mapping G defined by

$$G(V) := -\mu \frac{F(V)}{\|F(V)\|}, \qquad V \in B(0, \mu),$$

is a continuous mapping from $B(0,\mu)$ to $B(0,\mu)$. Thus, by Brouwer's fixed point theorem there exists a $\hat{V} \in B(0,\mu)$ such that $G(\hat{V}) = \hat{V}$, and therefore

$$\hat{V} = -\mu \frac{F(\hat{V})}{\|F(\hat{V})\|}.$$

Hence, $\|\hat{V}\| = \mu$, and

$$(F(\hat{V}), \hat{V}) = -\mu \left(F(\hat{V}), \frac{F(\hat{V})}{\|F(\hat{V})\|} \right) = -\mu \frac{\|F(\hat{V})\|^2}{\|F(\hat{V})\|} = -\mu \|F(\hat{V})\| < 0.$$
 (9)

However, by letting $f(\hat{V}) \in \mathbb{R}^{N+1}$ be the vector whose j-th component is $f(\hat{V}_i)$, we have that

$$(F(\hat{V}), \hat{V}) = (\hat{V}, \hat{V}) - (U^{m-1}, \hat{V}) - \Delta t(D_x^+ D_x^- \hat{V}, \hat{V}) - \Delta t(f(\hat{V}), \hat{V}).$$

By performing summation by parts in the third term on the right-hand side this implies that

$$(F(\hat{V}), \hat{V}) = (\hat{V}, \hat{V}) - (U^{m-1}, \hat{V}) + \Delta t \left(\Delta x \sum_{j=1}^{N} |D_x^- \hat{V}_j|^2 \right) - \Delta t (f(\hat{V}) - f(\mathbf{0}), \hat{V} - \mathbf{0}) - \Delta t (f(\mathbf{0}), \hat{V}).$$

The third and the fourth term on the right-hand side are nonnegative. Therefore,

$$(F(\hat{V}), \hat{V}) \ge (\hat{V}, \hat{V}) - (U^{m-1}, \hat{V}) - \Delta t(f(\mathbf{0}), \hat{V}) = \|\hat{V}\|^2 - (U^{m-1} + \Delta t f(\mathbf{0}), \hat{V})$$

$$\ge \|\hat{V}\|^2 - \|U^{m-1} + \Delta t f(\mathbf{0})\| \|\hat{V}\| \ge \|\hat{V}\|^2 - \frac{1}{2} \|U^{m-1} + \Delta t f(\mathbf{0})\|^2 - \frac{1}{2} \|\hat{V}\|^2$$

$$= \frac{1}{2} \|\hat{V}\|^2 - \frac{1}{2} \|U^{m-1} + \Delta t f(\mathbf{0})\|^2.$$

By fixing, in particular, $\mu = ||U^{m-1} + \Delta t f(\mathbf{0})||$ and recalling that $||\hat{V}|| = \mu$, we have that $(F(\hat{V}), \hat{V}) \ge \frac{1}{2}\mu^2 - \frac{1}{2}\mu^2 = 0$. But this contradicts (9).

Therefore our assumption that $F(V) \neq 0$ for all $V \in \mathcal{V}$ with $||V|| \leq \mu$ and all $\mu > 0$ is false, meaning that there exists a $\mu > 0$ and $V \in \mathcal{V}$ with $||V|| \leq \mu$ such that $F(V) = \mathbf{0}$.

Note further that there is a unique such V. Supposing otherwise that $V^1, V^2 \in \mathcal{V}$ satisfy $F(V^1) = \mathbf{0}$ and $F(V^2) = \mathbf{0}$, we have, by writing $V := V^1 - V^2$ and performing summation by parts that

$$0 = (F(V^{1}) - F(V^{2}), V^{1} - V^{2}) = ||V||^{2} - \Delta t (D_{x}^{+} D_{x}^{-} V, V) - \Delta (f(V^{1}) - f(V^{2}), V^{1} - V^{2})$$

$$= ||V||^{2} + \Delta t \left(\Delta x \sum_{j=1}^{N} |D_{x}^{-} V_{j}|^{2} \right) - \Delta (f(V^{1}) - f(V^{2}), V^{1} - V^{2}).$$

The second and the third term on the right-hand side are both nonnegative. By dropping them, we deduce that $0 \ge ||V||^2$. Therefore $V = \mathbf{0}$, meaning that $V^1 = V^2$. Thus there exists one and only one $V \in \mathcal{V}$ such that $F(V) = \mathbf{0}$. We denote this V by U^{m+1} .