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2 Elementary steady solutions

2.1 Isotropic expansion

As a first example, suppose

u =
α

3
x, (2.1)

where α is a constant scalar, which must be small for linear elasticity to be valid. When α > 0,
this corresponds to a uniform isotropic expansion of the medium so that, as illustrated in
Figure 2.1(a), a unit cube is transformed to a cube with sides of length 1 + α/3.

The strain and stress tensors corresponding to this displacement field are given by

eij =
α

3
δij and τij =

(
λ+

2

3
µ

)
αδij . (2.2)

This is a so-called hydrostatic situation, in which the stress is characterised by a scalar
isotropic pressure p, and τij = −pδij . The pressure is related to the relative volume change
by p = −Kα, where

K = λ+
2

3
µ (2.3)

measures the solid’s resistance to expansion/compression and is called the bulk modulus or
modulus of compression.

2.2 Simple shear

As our next example, suppose

u =

uv
w

 =

αy0
0

 , (2.4)

where α is again a constant scalar. This corresponds to a simple shear of the solid in the
x-direction, as illustrated in Figure 2.1(b). The strain and stress tensors are now given by

E =
α

2

0 1 0
1 0 0
0 0 0

 , τ = αµ

0 1 0
1 0 0
0 0 0

 . (2.5)

Note that λ does not affect the stress, so the solid’s response to shear is accounted for entirely
by µ which is, therefore, called the shear modulus.
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Figure 2.1: A unit cube undergoing (a) uniform expansion, (2.1), (b) one-dimension
shear, (2.4), (c) uniaxial stretching, (2.6).

2.3 Uniaxial stretching

Our next example is uniaxial stretching in which, as shown in Figure 2.1(c), the solid is
stretched by a factor α in (say) the x-direction. We suppose, for reasons that will emerge
shortly, that the solid simultaneously shrinks by a factor να in the other two directions. The
corresponding displacement, strain and stress are

u = α

 x
−νy
−νz

 , E = α

1 0 0
0 −ν 0
0 0 −ν

 , (2.6)

τ = α

(1− 2ν)λ+ 2µ 0 0
0 (1− 2ν)λ− 2νµ 0
0 0 (1− 2ν)λ− 2νµ

 . (2.7)

This simple solution may be used to describe a uniform elastic bar that is stretched in
the x-direction under a tensile force T . Notice that, since the bar is assumed not to vary in
the x-direction, the outward normal n to the lateral boundary always lies in the (y, z)-plane.
If the curved surface of the bar is stress-free, then the resulting boundary condition τn = 0
may be satisfied identically by ensuring that τyy = τzz = 0, which occurs if

ν =
λ

2 (λ+ µ)
. (2.8)

Hence the bar, while stretching by a factor α in the x-direction, must shrink by a factor να
in the two transverse directions; if ν happened to be negative, this would correspond to an
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Figure 2.2: Schematic of a plate being strained under tensions Txx, Tyy and shear forces Txy,
Tyx.

expansion. The ratio ν between lateral contraction and longitudinal extension is Poisson’s
ratio.

With ν given by (2.8), the stress tensor has just one nonzero element, namely

τxx = Eα, (2.9)

where

E =
µ(3λ+ 2µ)

λ+ µ
(2.10)

is Young’s modulus. If the cross-section of the bar has area A, then the tensile force T applied
to the bar is related to the stress by

T = Aτxx = AEα. (2.11)

By measuring T , the corresponding extensional strain α and transverse contraction να, one
may thus infer the values of E and ν for a particular solid from a bar-stretching experiment.
The Lamé constants may then be evaluated using

λ =
νE

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)
. (2.12)

2.4 Biaxial strain

Next consider an elastic plate strained in the (x, y)-plane as illustrated in Figure 2.2. Suppose
the plate experiences a linear in-plane distortion while shrinking by a factor γ in the z-
direction, so the displacement is given by

u =

uv
w

 =

ax+ by
cx+ dy
−γz

 , (2.13)

and, as in §2.3, the stress and strain tensors are both constant. Here we choose γ to satisfy
the condition τzz = 0 required on the traction-free upper and lower surfaces of the plate, so
that

γ =

(
λ

λ+ 2µ

)
(a+ d) =

(
ν

1− ν

)
(a+ d), (2.14)
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where ν again denotes Poisson’s ratio. With this choice, and with E again denoting the
Young’s modulus, the only nonzero stress components are

τxx =
E(a+ νd)

1− ν2
, τxy =

E(b+ c)

2(1 + ν)
, τyy =

E(νa+ d)

1− ν2
. (2.15)

We denote the net in-plane tensions and shear stresses applied to the plate by Tij = hτij ,
as illustrated in Figure 2.2. We can use (2.15) to relate these to the in-plane strain components
by

Txx =
Eh

1− ν2
(exx + νeyy) , (2.16a)

Txy = Tyx =
Eh

1 + ν
exy, (2.16b)

Tyy =
Eh

1− ν2
(νexx + eyy) . (2.16c)

These will provide useful evidence when constructing more general models for the deformation
of plates.

If no force is applied in the y-direction, that is Txy = Tyy = 0, then (2.16) reproduces the
results of uniaxial stretching, with d = −νa and Txx = Eha. On the other hand, it is possible
for the displacement to be purely in the (x, z)-plane, with

b = c = d = 0, τyy =
Eνa

1− ν2
, τxx =

Ea

1− ν2
. (2.17)

Thus a transverse stress τyy must be applied to prevent the plate from contracting in the y-
direction when we stretch it in the x-direction. Notice also that the effective elastic modulus
E/(1− ν2) is larger than E whenever ν is nonzero, which shows that purely two-dimensional
stretching is always more strenuous than uniaxial stretching.

2.5 One-dimensional bending of a beam

The displacement field

u =
κ

2

 −2xz
2νyz

x2 − νy2 + νz2

 (2.18)

gives rise to a stress tensor in which the only nonzero component is

τxx = −Eκz. (2.19)

This describes bending of a beam aligned with the x-axis; the traction-free conditions on the
curved surface of the beam are identically satisfied. The net bending moment applied about
the y-axis is

M =

∫∫
A
τxxz dydz = −Eκ

∫∫
A
z2 dydz, (2.20)

where A is the region of the (y, z)-plane occupied by the bar cross-section. Hence we have
discovered a constitutive relation between the bending moment M applied to a beam and its
curvature κ = ∂2w/∂x2, namely

M = −EI ∂
2w

∂x2
, (2.21)
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where

I =

∫∫
A
z2 dydz (2.22)

is the moment of inertia of the cross-section about the y-axis. The constant of proportionality
EI is known as the bending stiffness of the beam.


