## 2 Elementary steady solutions

### 2.1 Isotropic expansion

As a first example, suppose

$$
\begin{equation*}
\boldsymbol{u}=\frac{\alpha}{3} \boldsymbol{x} \tag{2.1}
\end{equation*}
$$

where $\alpha$ is a constant scalar, which must be small for linear elasticity to be valid. When $\alpha>0$, this corresponds to a uniform isotropic expansion of the medium so that, as illustrated in Figure 2.1(a), a unit cube is transformed to a cube with sides of length $1+\alpha / 3$.

The strain and stress tensors corresponding to this displacement field are given by

$$
\begin{equation*}
e_{i j}=\frac{\alpha}{3} \delta_{i j} \quad \text { and } \quad \tau_{i j}=\left(\lambda+\frac{2}{3} \mu\right) \alpha \delta_{i j} . \tag{2.2}
\end{equation*}
$$

This is a so-called hydrostatic situation, in which the stress is characterised by a scalar isotropic pressure $p$, and $\tau_{i j}=-p \delta_{i j}$. The pressure is related to the relative volume change by $p=-K \alpha$, where

$$
\begin{equation*}
K=\lambda+\frac{2}{3} \mu \tag{2.3}
\end{equation*}
$$

measures the solid's resistance to expansion/compression and is called the bulk modulus or modulus of compression.

### 2.2 Simple shear

As our next example, suppose

$$
\boldsymbol{u}=\left(\begin{array}{c}
u  \tag{2.4}\\
v \\
w
\end{array}\right)=\left(\begin{array}{c}
\alpha y \\
0 \\
0
\end{array}\right)
$$

where $\alpha$ is again a constant scalar. This corresponds to a simple shear of the solid in the $x$-direction, as illustrated in Figure 2.1(b). The strain and stress tensors are now given by

$$
\mathcal{E}=\frac{\alpha}{2}\left(\begin{array}{lll}
0 & 1 & 0  \tag{2.5}\\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \quad \tau=\alpha \mu\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) .
$$

Note that $\lambda$ does not affect the stress, so the solid's response to shear is accounted for entirely by $\mu$ which is, therefore, called the shear modulus.


Figure 2.1: A unit cube undergoing (a) uniform expansion, (2.1), (b) one-dimension shear, (2.4), (c) uniaxial stretching, (2.6).

### 2.3 Uniaxial stretching

Our next example is uniaxial stretching in which, as shown in Figure 2.1(c), the solid is stretched by a factor $\alpha$ in (say) the $x$-direction. We suppose, for reasons that will emerge shortly, that the solid simultaneously shrinks by a factor $\nu \alpha$ in the other two directions. The corresponding displacement, strain and stress are

$$
\left.\begin{array}{c}
\boldsymbol{u}=\alpha\left(\begin{array}{c}
x \\
-\nu y \\
-\nu z
\end{array}\right), \\
\tau=\alpha\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -\nu & 0 \\
0 & 0 & -\nu
\end{array}\right),  \tag{2.7}\\
(1-2 \nu) \lambda+2 \mu
\end{array} \begin{array}{ccc}
(1-2 \nu) \lambda-2 \nu \mu & 0 \\
0 & 0 & (1-2 \nu) \lambda-2 \nu \mu
\end{array}\right) . ~ . ~ . ~(1-2)
$$

This simple solution may be used to describe a uniform elastic bar that is stretched in the $x$-direction under a tensile force $T$. Notice that, since the bar is assumed not to vary in the $x$-direction, the outward normal $\boldsymbol{n}$ to the lateral boundary always lies in the $(y, z)$-plane. If the curved surface of the bar is stress-free, then the resulting boundary condition $\tau \boldsymbol{n}=\mathbf{0}$ may be satisfied identically by ensuring that $\tau_{y y}=\tau_{z z}=0$, which occurs if

$$
\begin{equation*}
\nu=\frac{\lambda}{2(\lambda+\mu)} . \tag{2.8}
\end{equation*}
$$

Hence the bar, while stretching by a factor $\alpha$ in the $x$-direction, must shrink by a factor $\nu \alpha$ in the two transverse directions; if $\nu$ happened to be negative, this would correspond to an


Figure 2.2: Schematic of a plate being strained under tensions $T_{x x}, T_{y y}$ and shear forces $T_{x y}$, $T_{y x}$.
expansion. The ratio $\nu$ between lateral contraction and longitudinal extension is Poisson's ratio.

With $\nu$ given by (2.8), the stress tensor has just one nonzero element, namely

$$
\begin{equation*}
\tau_{x x}=E \alpha, \tag{2.9}
\end{equation*}
$$

where

$$
\begin{equation*}
E=\frac{\mu(3 \lambda+2 \mu)}{\lambda+\mu} \tag{2.10}
\end{equation*}
$$

is Young's modulus. If the cross-section of the bar has area $A$, then the tensile force $T$ applied to the bar is related to the stress by

$$
\begin{equation*}
T=A \tau_{x x}=A E \alpha \tag{2.11}
\end{equation*}
$$

By measuring $T$, the corresponding extensional strain $\alpha$ and transverse contraction $\nu \alpha$, one may thus infer the values of $E$ and $\nu$ for a particular solid from a bar-stretching experiment. The Lamé constants may then be evaluated using

$$
\begin{equation*}
\lambda=\frac{\nu E}{(1+\nu)(1-2 \nu)}, \quad \mu=\frac{E}{2(1+\nu)} . \tag{2.12}
\end{equation*}
$$

### 2.4 Biaxial strain

Next consider an elastic plate strained in the ( $x, y$ )-plane as illustrated in Figure 2.2. Suppose the plate experiences a linear in-plane distortion while shrinking by a factor $\gamma$ in the $z$ direction, so the displacement is given by

$$
\boldsymbol{u}=\left(\begin{array}{c}
u  \tag{2.13}\\
v \\
w
\end{array}\right)=\left(\begin{array}{c}
a x+b y \\
c x+d y \\
-\gamma z
\end{array}\right),
$$

and, as in $\S 2.3$, the stress and strain tensors are both constant. Here we choose $\gamma$ to satisfy the condition $\tau_{z z}=0$ required on the traction-free upper and lower surfaces of the plate, so that

$$
\begin{equation*}
\gamma=\left(\frac{\lambda}{\lambda+2 \mu}\right)(a+d)=\left(\frac{\nu}{1-\nu}\right)(a+d) \tag{2.14}
\end{equation*}
$$

where $\nu$ again denotes Poisson's ratio. With this choice, and with $E$ again denoting the Young's modulus, the only nonzero stress components are

$$
\begin{equation*}
\tau_{x x}=\frac{E(a+\nu d)}{1-\nu^{2}}, \quad \quad \tau_{x y}=\frac{E(b+c)}{2(1+\nu)}, \quad \quad \tau_{y y}=\frac{E(\nu a+d)}{1-\nu^{2}} \tag{2.15}
\end{equation*}
$$

We denote the net in-plane tensions and shear stresses applied to the plate by $T_{i j}=h \tau_{i j}$, as illustrated in Figure 2.2. We can use (2.15) to relate these to the in-plane strain components by

$$
\begin{align*}
T_{x x} & =\frac{E h}{1-\nu^{2}}\left(e_{x x}+\nu e_{y y}\right)  \tag{2.16a}\\
T_{x y}=T_{y x} & =\frac{E h}{1+\nu} e_{x y}  \tag{2.16b}\\
T_{y y} & =\frac{E h}{1-\nu^{2}}\left(\nu e_{x x}+e_{y y}\right) \tag{2.16c}
\end{align*}
$$

These will provide useful evidence when constructing more general models for the deformation of plates.

If no force is applied in the $y$-direction, that is $T_{x y}=T_{y y}=0$, then (2.16) reproduces the results of uniaxial stretching, with $d=-\nu a$ and $T_{x x}=E h a$. On the other hand, it is possible for the displacement to be purely in the $(x, z)$-plane, with

$$
\begin{equation*}
b=c=d=0, \quad \tau_{y y}=\frac{E \nu a}{1-\nu^{2}}, \quad \tau_{x x}=\frac{E a}{1-\nu^{2}} \tag{2.17}
\end{equation*}
$$

Thus a transverse stress $\tau_{y y}$ must be applied to prevent the plate from contracting in the $y$ direction when we stretch it in the $x$-direction. Notice also that the effective elastic modulus $E /\left(1-\nu^{2}\right)$ is larger than $E$ whenever $\nu$ is nonzero, which shows that purely two-dimensional stretching is always more strenuous than uniaxial stretching.

### 2.5 One-dimensional bending of a beam

The displacement field

$$
\boldsymbol{u}=\frac{\kappa}{2}\left(\begin{array}{c}
-2 x z  \tag{2.18}\\
2 \nu y z \\
x^{2}-\nu y^{2}+\nu z^{2}
\end{array}\right)
$$

gives rise to a stress tensor in which the only nonzero component is

$$
\begin{equation*}
\tau_{x x}=-E \kappa z \tag{2.19}
\end{equation*}
$$

This describes bending of a beam aligned with the $x$-axis; the traction-free conditions on the curved surface of the beam are identically satisfied. The net bending moment applied about the $y$-axis is

$$
\begin{equation*}
M=\iint_{A} \tau_{x x} z \mathrm{~d} y \mathrm{~d} z=-E \kappa \iint_{A} z^{2} \mathrm{~d} y \mathrm{~d} z \tag{2.20}
\end{equation*}
$$

where $A$ is the region of the $(y, z)$-plane occupied by the bar cross-section. Hence we have discovered a constitutive relation between the bending moment $M$ applied to a beam and its curvature $\kappa=\partial^{2} w / \partial x^{2}$, namely

$$
\begin{equation*}
M=-E I \frac{\partial^{2} w}{\partial x^{2}} \tag{2.21}
\end{equation*}
$$

where

$$
\begin{equation*}
I=\iint_{A} z^{2} \mathrm{~d} y \mathrm{~d} z \tag{2.22}
\end{equation*}
$$

is the moment of inertia of the cross-section about the $y$-axis. The constant of proportionality $E I$ is known as the bending stiffness of the beam.

