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2 Elementary steady solutions

2.1 Isotropic expansion

As a first example, suppose

u=—x, (2.1)
where « is a constant scalar, which must be small for linear elasticity to be valid. When a > 0,
this corresponds to a uniform isotropic exrpansion of the medium so that, as illustrated in

Figure 2.1(a), a unit cube is transformed to a cube with sides of length 1 + «/3.
The strain and stress tensors corresponding to this displacement field are given by

2
€ij = %5“ and Tij = ()\ + 3M> 0551']'- (2'2)

This is a so-called hydrostatic situation, in which the stress is characterised by a scalar
isotropic pressure p, and 7;; = —pd;j. The pressure is related to the relative volume change
by p = —Ka, where

2

measures the solid’s resistance to expansion/compression and is called the bulk modulus or
modulus of compression.

2.2 Simple shear

As our next example, suppose

u ay
u=\|v|=1(0], (2.4)
w 0

where « is again a constant scalar. This corresponds to a simple shear of the solid in the
x-direction, as illustrated in Figure 2.1(b). The strain and stress tensors are now given by

o 010 010
E= £ 1 0 0}, T=au|l 0 O0]. (2.5)
0 00 0 00

Note that A does not affect the stress, so the solid’s response to shear is accounted for entirely
by wp which is, therefore, called the shear modulus.
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Figure 2.1: A unit cube undergoing (a) uniform expansion, (2.1), (b) one-dimension
shear, (2.4), (c) uniaxial stretching, (2.6).

2.3 Uniaxial stretching

Our next example is uniaxial stretching in which, as shown in Figure 2.1(c), the solid is
stretched by a factor « in (say) the z-direction. We suppose, for reasons that will emerge
shortly, that the solid simultaneously shrinks by a factor v« in the other two directions. The
corresponding displacement, strain and stress are

x 1 0 0
u=oa|-vy]|, E=al|l0 —v 0], (2.6)
—vz 0 0 -—v
(1 - 20)A + 2 0 0
T=a 0 (1—-2v)\—2vpu 0 . (2.7)
0 0 (1 —=2v)\—2vp

This simple solution may be used to describe a uniform elastic bar that is stretched in
the z-direction under a tensile force T. Notice that, since the bar is assumed not to vary in
the z-direction, the outward normal n to the lateral boundary always lies in the (y, z)-plane.
If the curved surface of the bar is stress-free, then the resulting boundary condition 7n = 0
may be satisfied identically by ensuring that 7, = 7.. = 0, which occurs if

LA
S 2(A+ )’

Hence the bar, while stretching by a factor « in the z-direction, must shrink by a factor va
in the two transverse directions; if ¥ happened to be negative, this would correspond to an

(2.8)
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Figure 2.2: Schematic of a plate being strained under tensions 7%, Ty, and shear forces T,
Tye-
yx

expansion. The ratio v between lateral contraction and longitudinal extension is Poisson’s
ratio.
With v given by (2.8), the stress tensor has just one nonzero element, namely

Tex = Ea; (29)
where (3)+ 20
2 + 21

F=—ww—" 2.10

A+ ( )

is Young’s modulus. If the cross-section of the bar has area A, then the tensile force T applied
to the bar is related to the stress by

T = A7y = AEq. (2.11)

By measuring T, the corresponding extensional strain « and transverse contraction va, one
may thus infer the values of F and v for a particular solid from a bar-stretching experiment.
The Lamé constants may then be evaluated using

vE E

A aToa-m)y Mt

(2.12)

2.4 Biaxial strain

Next consider an elastic plate strained in the (z, y)-plane as illustrated in Figure 2.2. Suppose
the plate experiences a linear in-plane distortion while shrinking by a factor + in the z-
direction, so the displacement is given by

U ax + by
u=|v]|=|cx+dy], (2.13)
w —vz

and, as in §2.3, the stress and strain tensors are both constant. Here we choose ~ to satisfy
the condition 7,, = 0 required on the traction-free upper and lower surfaces of the plate, so

that
7:<A+A2u> (a+d):(1iy>(a+d), (2.14)
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where v again denotes Poisson’s ratio. With this choice, and with F again denoting the
Young’s modulus, the only nonzero stress components are
E(a+ vd) _E(+c) E(va+d)

e =T Ay O (2.15)

We denote the net in-plane tensions and shear stresses applied to the plate by T;; = h7;j,
as illustrated in Figure 2.2. We can use (2.15) to relate these to the in-plane strain components
by

Eh

Tyw = T (exa + Veyy), (2.16a)
Eh

Twy = Tym = m@xgﬂ (216b)
Eh

Ty = T (Vegs + €yy) - (2.16¢)

These will provide useful evidence when constructing more general models for the deformation
of plates.

If no force is applied in the y-direction, that is Ty, = Ty, = 0, then (2.16) reproduces the
results of uniaxial stretching, with d = —va and Ty, = Fha. On the other hand, it is possible
for the displacement to be purely in the (z, z)-plane, with

Eva B Fa
1—v2’ Toe =12

b=c=d=0, Tyy = (2.17)
Thus a transverse stress 7, must be applied to prevent the plate from contracting in the y-
direction when we stretch it in the x-direction. Notice also that the effective elastic modulus
E/(1—v?) is larger than E whenever v is nonzero, which shows that purely two-dimensional
stretching is always more strenuous than uniaxial stretching.

2.5 Omne-dimensional bending of a beam

The displacement field
p —2xz
u=— 2vyz (2.18)
2 x? — Vy2 + v2?

gives rise to a stress tensor in which the only nonzero component is
Tre = —FKz. (2.19)

This describes bending of a beam aligned with the z-axis; the traction-free conditions on the
curved surface of the beam are identically satisfied. The net bending moment applied about

the y-axis is
M = // Tezzdydz = —Ek // 22 dydz, (2.20)
A A

where A is the region of the (y, z)-plane occupied by the bar cross-section. Hence we have
discovered a constitutive relation between the bending moment M applied to a beam and its
curvature k = 9*w/0x?, namely

0w

M=-F—
ox?’

(2.21)
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I://AZQdydz (2.22)

is the moment of inertia of the cross-section about the y-axis. The constant of proportionality
FE1 is known as the bending stiffness of the beam.

where



