C5.2 Elasticity and Plasticity

Lecture 1 - Equations of Linear Elasticity

Peter Howell
howell@maths.ox.ac.uk

Hilary Term 2021

Lagrangian \& Eulerian coordinates

- Suppose material starts at time $t=0$ in a reference state.
- For $t>0$, the material is deformed such that a point initially at position \boldsymbol{X} is displaced to a new position $\boldsymbol{x}(\boldsymbol{X}, t)$.
- $\boldsymbol{X}=$ Lagrangian coordinate - fixed in the material.
- $\boldsymbol{x}=$ Eulerian coordinate - fixed in space.
- Displacement $\boldsymbol{u}(\boldsymbol{X}, t)=\boldsymbol{x}(\boldsymbol{X}, t)-\boldsymbol{X}$

Jacobian

- The material is a continuum if there is a smooth one-to-one relationship between \boldsymbol{X} and \boldsymbol{x}.
- This is true provided the Jacobian of the transformation $\boldsymbol{X} \mapsto \boldsymbol{x}$ is bounded away from zero, i.e.

$$
0<J<\infty, \quad \text { where } \quad J=\operatorname{det}\left(\frac{\partial x_{i}}{\partial X_{j}}\right)
$$

- J measures the change in an infinitesimal volume:

$$
\mathrm{d} x_{1} \mathrm{~d} x_{2} \mathrm{~d} x_{3}=J \mathrm{~d} X_{1} \mathrm{~d} X_{2} \mathrm{~d} X_{3}
$$

- Material is under expansion if $J>1$ or compression if $J<1$.
- Mass conservation leads to the identity

$$
\rho J=\rho_{0}
$$

where $\rho=$ current density, $\rho_{0}=$ initial density.

Strain

- Consider infinitesimal line element in the reference state joining \boldsymbol{X} to $\boldsymbol{X}+\delta \boldsymbol{X}$.
- Strain is related to the relative change in length of the element $\delta \boldsymbol{X}$ under deformation.

Strain

Deformation

$$
\boldsymbol{X} \mapsto \boldsymbol{x}(\boldsymbol{X})
$$

$$
\begin{aligned}
\boldsymbol{X} & \mapsto \boldsymbol{x}(\boldsymbol{X})=\boldsymbol{X}+\boldsymbol{u}(\boldsymbol{X}) \\
\boldsymbol{X}+\delta \boldsymbol{X} & \mapsto \boldsymbol{x}(\boldsymbol{X}+\delta \boldsymbol{X})=\boldsymbol{X}+\delta \boldsymbol{X}+\boldsymbol{u}(\boldsymbol{X}+\delta \boldsymbol{X}) \\
\Rightarrow \quad \delta \boldsymbol{X} & \mapsto \delta \boldsymbol{x}=\delta \boldsymbol{X}+\boldsymbol{u}(\boldsymbol{X}+\delta \boldsymbol{X})-\boldsymbol{u}(\boldsymbol{X})
\end{aligned}
$$

- By Taylor's Theorem, deformed line element is given by

$$
\delta \boldsymbol{x}=\delta \boldsymbol{X}+(\delta \boldsymbol{X} \cdot \boldsymbol{\nabla}) \boldsymbol{u}(\boldsymbol{X}) \quad+\text { h.o.t. }
$$

Strain

- Denote initial length $L=|\delta \boldsymbol{X}|$ and deformed length $\ell=|\delta \boldsymbol{x}|$.
- Then

$$
\ell^{2}=|\delta \boldsymbol{X}+(\delta \boldsymbol{X} \cdot \boldsymbol{\nabla}) \boldsymbol{u}(\boldsymbol{X}, t)|^{2}
$$

- Change in length of the line element can be written as

$$
\ell^{2}-L^{2}=2 e_{i j} \delta X_{i} \delta X_{j}
$$

[see Problem Sheet 0. NB summation convention]

$$
e_{i j}=\frac{1}{2}\left(\frac{\partial u_{i}}{\partial X_{j}}+\frac{\partial u_{j}}{\partial X_{i}}+\frac{\partial u_{k}}{\partial X_{i}} \frac{\partial u_{k}}{\partial X_{j}}\right)
$$

- The quantities $e_{i j}$ for $i, j=1,2,3$ give a 3×3 symmetric matrix called the strain tensor $\mathcal{E}=\left(e_{i j}\right)$
- This matrix measures the local stretch of the material in all possible directions.
- It can be shown that $e_{i j} \equiv 0$ iff the deformation is a rigid-body motion.

Strain

$$
e_{i j} \approx \frac{1}{2}\left(\frac{\partial u_{i}}{\partial X_{j}}+\frac{\partial u_{j}}{\partial X_{i}}+\frac{\partial u_{k}}{\partial X_{i}} \frac{\partial u_{k}}{\partial X_{j}}\right)
$$

- In this course, we focus on linear elasticity.
- For small deformations, the final nonlinear term is negligible.
- By the chain rule,

$$
\frac{\partial u_{i}}{\partial X_{j}}=\frac{\partial u_{i}}{\partial x_{k}} \frac{\partial x_{k}}{\partial X_{j}}=\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{i}}{\partial x_{k}} \frac{\partial u_{k}}{\partial X_{\dot{j}}}
$$

To leading order, no need to distinguish between Lagrangian and Eulerian derivatives.

- The linearised strain tensor is given by

$$
e_{i j}=\frac{1}{2}\left(\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}\right)
$$

Volume change

- The trace of \mathcal{E} measures the local volume change:

$$
\begin{gathered}
\text { Jacobian } J=\operatorname{det}\left(\frac{\partial x_{i}}{\partial X_{j}}\right)=\operatorname{det}\left(\delta_{i j}+\frac{\partial u_{i}}{\partial X_{j}}\right) \\
\Rightarrow \quad J \sim 1+\operatorname{tr}(\mathcal{E}) \sim 1+\operatorname{div} \boldsymbol{u}
\end{gathered}
$$

- We have local expansion where $\operatorname{div} \boldsymbol{u}>0$ and local compression where $\operatorname{div} \boldsymbol{u}<0$.
- Mass conservation implies density $\rho=\rho_{0} / J \sim \rho_{0}$.
- Density variations are negligible to leading order.

Basic properties of strain

[See Problem Sheet 0]

- \mathcal{E} is symmetric (evidently).
$-\mathcal{E}$ is a $2^{\text {nd }}$ rank tensor.
- Suppose we rotate the coordinate axes via $x^{\prime}=P x$ where P is orthogonal $\left(P P^{\top}=\mathcal{I}\right)$.
- The strain tensor calculated in the new coordinates satisfies

$$
\mathcal{E}^{\prime}=P \mathcal{E} P^{\top}
$$

- \mathcal{E} transforms just like a matrix representing a linear transformation of \mathbb{R}^{3}.
- \mathcal{E} is referred to as the strain tensor.
- $\mathcal{E} \equiv 0$ if and only if $\boldsymbol{u}(\boldsymbol{x})=\boldsymbol{c}+\boldsymbol{\omega} \times \boldsymbol{x}$ for constant \boldsymbol{c} and $\boldsymbol{\omega}$.
- This displacement represents a linearised rigid-body motion.

