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Recap
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» Under the deformation X — z(X) = X + u(X)
——

displacement

P Linear elasticity — neglect nonlinear terms to get

0 0

i.e. no need to distinguish Eulerian and Lagrangian variables.



Recap

The (linear) strain tensor is given by
i — } 8ul + 6uj
Y2\ 0x; Oy

» & = (e;j) is symmetric.
» If ' = Px then & = PEPT

» £ is a tensor

» Jacobian J = det Ozi ~1+tr(f)=1+divu
0X;

» Density p = p—; ~ po(1 —divu) ~ pg to leading order.




Stress

» Consider the force on a small surface
element with infinitesimal area d.S and
unit normal n.

» Everything else being equal, force o area:

where o is the stress vector.

» Consider three special cases where n is one of the three
coordinate axes n = ey, e or es.

» Denote the stress vectors in these three cases as follows:
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Stress

» In general, define nine scalar quantitities

7 = stress in i-direction when the normal is in j-direction ‘

» Then define the (Cauchy) stress tensor by | 7 = ()

Properties of T

» For an arbitrary normal vector n = (n;) the stress is given by

0i = 7ijh; e

> T is symmetric: 75 = Tj;
» 7 is a tensor: if ' = Px then T/ = PTPT

(See Problem sheet 0 and lecture notes.)



Conservation of momentum

Apply Newton's second law to a volume V inside the solid:

// 8“1 dv :/// pg; AV + // i, dS
di v av
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rate of change of momentum body force g

traction on boundary 0V
82ui 67’13
= — pYi dV =0
/ / /V [p oz~ P9 o

Since V is arbitrary. ..

0?u; — it 0Tij
2 ,
. Cauchy’s momentum
Le | P TP +v-T equation

(NB some subtlety: 0/0t should really be Lagrangian...)



Constitutive relation

» To close the problem need a relation between stress 7 and
strain £.

» Hooke's law suggests a linear relation of the form
Tij = Cijrierl

where Cjji; are 36 scalar parameters (by symmetry)

» For isotropic material, relation contains just two parameters:

Tij = Aewk)dij + 2pei;

» NB ey, = Tr& = V - u and §;; =Kronecker delta.

> )\ and p are the Lamé constants of the solid material.



The Navier equation

2

u:pg+V-T

» Momentum equation pﬁ

» Constitutive relation Tij = Mexk)0ij + 2pe;; ie.

(O Ou; — Ouy;
T’L] = <8xk> 5@] +//L <ax] + axz>

» Combine to get the Navier equation

2
u .
P = P9 + (A + p) grad divu + pViu
2
or PaE = P9 + (A +2u) graddivu — pcurl curluw

P Linear elasticity amounts to solving this PDE subject to
appropriate boundary and initial conditions.



Energy
We find the energy equation by dotting the Navier equation with
Ou /0t and integrating over an arbitrary volume V. ..

0%u; Ou; ou; 0Tij 8uZ
///Vpat2 ot dv_/// P9 i dv+/// oz, ot ¢

Rearrange (Problem Sheet 1) to get net energy conservation. ..

/// ‘9“ dV+//WdV
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> rate of change of kinetic energy rate at which work is
done by gravity @ rate at which work is done by traction on

oV rate of change of internal elastic energy




Energy

» The strain energy density W(e;;) satisfies. . .

ow

_— = Ti ;
Geij J

» With linear constitutive relation 7;; = A(eg)di; + 2pes;. . .

1

2

1
W= —eyTij = B Aewr)? + Heijeij

» )V is a positive definite function of e;; iff. ..

pw>0 and

>\+%,u>0

pt = shear modulus, A+ Zp = bulk modulus ~ (Problem sheet 1)



Uniqueness

Consider the steady Navier equation in an elastic body B subject
to (e.g.) specified displacement on the boundary 0B:

0
V- -T=—pg inB u:W%naB

Suppose there exist two solutions for the displacement: u; and wus.
Then let uw = w1 — wo. u satisfies the homogeneous BVP.

Claim: this homogeneous problem has only the zero solution.

Proof: dot the PDE with wu. ..



Uniqueness

In B we have. ..

iaTij _0
a:]}j
= (uiTij) Oui T,
8 : (AN} al‘j 1]
1 auz 8’LL]'
=3 (8% 3%) Tij = €ijTij = 2W

using symmetry of 7;;, definition of W for linear elasticity.

= //a (Tm) dS—2// W dVv

By positive definiteness of W we must have e;; = 0.
It follows that w must be a rigid-body motion.
u = 0 on OB implies u = 0 everywhere in B. QED



Variational formulation

Final point about W. ..

» Define the energy functional

uu = [[[ W) = pg - wav

= elastic energy + potential energy due to gravity

» Use the calculus of variations to find the displacement u that
minimises U (subject to given boundary conditions).

» The minimising displacement w satisfies the steady Navier
equation (Problem Sheet 1).



Different coordinate systems
See lecture notes. . .

Spherical polar coordinates

The spherical polar coordinates (r, 0, ¢) are defined in the usual way, such that the position
vector of any point is given by

7sin 0 cos ¢
r(r,0,¢) = | rsinfsing | . (1.55)
7 cos 6

Again, we apply the constitutive relation (1.31) to obtain

Tor = (A + 20)err + Aega + Aegps Trp = 2Her,
Top = Aerr + (A + 2p)egs + Aegp, Trg = 2fterg, (1.56)
Top = Aerr + Aegg + (A + 2p) ey, Top = 2/1€95-
The linearised strain components are now given by
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Cauchy’s equation of motion leads to the three equations
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