C5.2 Elasticity and Plasticity

Lecture 2 - Equations of Linear Elasticity

Peter Howell
howell@maths.ox.ac.uk

Hilary Term 2021

Recap

rest state

Deformation

- Under the deformation $\boldsymbol{X} \mapsto \boldsymbol{x}(\boldsymbol{X})=\boldsymbol{X}+\underbrace{\boldsymbol{u}(\boldsymbol{X})}$ displacement
- Linear elasticity - neglect nonlinear terms to get

$$
\frac{\partial}{\partial X_{i}} \sim \frac{\partial}{\partial x_{i}}
$$

i.e. no need to distinguish Eulerian and Lagrangian variables.

Recap

The (linear) strain tensor is given by

$$
e_{i j}=\frac{1}{2}\left(\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}\right)
$$

- $\mathcal{E}=\left(e_{i j}\right)$ is symmetric.
- If $\boldsymbol{x}^{\prime}=P \boldsymbol{x}$ then $\mathcal{E}^{\prime}=P \mathcal{E} P^{\top}$
- \mathcal{E} is a tensor
- Jacobian $J=\operatorname{det}\left(\frac{\partial x_{i}}{\partial X_{j}}\right) \sim 1+\operatorname{tr}(\mathcal{E})=1+\operatorname{div} \boldsymbol{u}$
- Density $\rho=\frac{\rho_{0}}{J} \sim \rho_{0}(1-\operatorname{div} \boldsymbol{u}) \sim \rho_{0}$ to leading order.

Stress

- Consider the force on a small surface element with infinitesimal area $\mathrm{d} S$ and unit normal \boldsymbol{n}.
- Everything else being equal, force \propto area:

$$
\mathrm{d} \boldsymbol{f}=\boldsymbol{\sigma} \mathrm{d} S
$$

where $\boldsymbol{\sigma}$ is the stress vector.

- Consider three special cases where \boldsymbol{n} is one of the three coordinate axes $\boldsymbol{n}=\boldsymbol{e}_{1}, \boldsymbol{e}_{2}$ or \boldsymbol{e}_{3}.
- Denote the stress vectors in these three cases as follows:

$$
\text { for } \boldsymbol{n}=\boldsymbol{e}_{1}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)
$$

$$
\text { denote } \boldsymbol{\sigma}=\boldsymbol{\tau}_{1}=\left(\begin{array}{l}
\tau_{11} \\
\tau_{21} \\
\tau_{31}
\end{array}\right)
$$

Stress

- In general, define nine scalar quantitities

$$
\tau_{i j}=\text { stress in } i \text {-direction when the normal is in } j \text {-direction }
$$

- Then define the (Cauchy) stress tensor by $\mathcal{T}=\left(\tau_{i j}\right)$

Properties of \mathcal{T}

- For an arbitrary normal vector $\boldsymbol{n}=\left(n_{i}\right)$ the stress is given by

$$
\sigma_{i}=\tau_{i j} n_{j} \quad \text { i.e. } \quad \sigma=\mathcal{T} \boldsymbol{n}
$$

- \mathcal{T} is symmetric: $\tau_{i j} \equiv \tau_{j i}$
- \mathcal{T} is a tensor: if $\boldsymbol{x}^{\prime}=P \boldsymbol{x}$ then $\mathcal{T}^{\prime}=P \mathcal{T} P^{\top}$
(See Problem sheet 0 and lecture notes.)

Conservation of momentum

Apply Newton's second law to a volume V inside the solid:

$$
\begin{gathered}
\frac{\mathrm{d}}{\frac{\mathrm{~d} t}{\mathrm{~d} t} \iiint_{V} \rho \frac{\partial u_{i}}{\partial t} \mathrm{~d} V}=\underbrace{\iiint_{V} \rho g_{i} \mathrm{~d} V}_{\text {body force } \boldsymbol{g}}+\underbrace{\iint_{\partial V} \tau_{i j} n_{j} \mathrm{~d} S}_{\text {traction on boundary } \partial V} \\
\Rightarrow \iiint_{V}\left[\rho \frac{\partial^{2} u_{i}}{\partial t^{2}}-\rho g_{i}-\frac{\partial \tau_{i j}}{\partial x_{j}}\right] \mathrm{d} V=0
\end{gathered}
$$

Since V is arbitrary...

$$
\rho \frac{\partial^{2} u_{i}}{\partial t^{2}}=\rho g_{i}+\frac{\partial \tau_{i j}}{\partial x_{j}}
$$

$$
\text { i.e. } \rho \frac{\partial^{2} \boldsymbol{u}}{\partial t^{2}}=\rho \boldsymbol{g}+\boldsymbol{\nabla} \cdot \mathcal{T}
$$

Cauchy's momentum

 equation(NB some subtlety: $\partial / \partial t$ should really be Lagrangian. . .)

Constitutive relation

- To close the problem need a relation between stress \mathcal{T} and strain \mathcal{E}.
- Hooke's law suggests a linear relation of the form

$$
\tau_{i j}=C_{i j k l} e_{k l}
$$

where $C_{i j k l}$ are 36 scalar parameters (by symmetry)

- For isotropic material, relation contains just two parameters:

$$
\tau_{i j}=\lambda\left(e_{k k}\right) \delta_{i j}+2 \mu e_{i j}
$$

- NB $e_{k k}=\operatorname{Tr} \mathcal{E}=\nabla \cdot \boldsymbol{u}$ and $\delta_{i j}=$ Kronecker delta.
- λ and μ are the Lamé constants of the solid material.

The Navier equation

- Momentum equation

$$
\rho \frac{\partial^{2} \boldsymbol{u}}{\partial t^{2}}=\rho \boldsymbol{g}+\boldsymbol{\nabla} \cdot \mathcal{T}
$$

- Constitutive relation $\tau_{i j}=\lambda\left(e_{k k}\right) \delta_{i j}+2 \mu e_{i j}$ i.e.

$$
\tau_{i j}=\lambda\left(\frac{\partial u_{k}}{\partial x_{k}}\right) \delta_{i j}+\mu\left(\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}\right)
$$

- Combine to get the Navier equation

$$
\rho \frac{\partial^{2} \boldsymbol{u}}{\partial t^{2}}=\rho \boldsymbol{g}+(\lambda+\mu) \operatorname{grad} \operatorname{div} \boldsymbol{u}+\mu \nabla^{2} \boldsymbol{u}
$$

$$
\text { or } \quad \rho \frac{\partial^{2} \boldsymbol{u}}{\partial t^{2}}=\rho \boldsymbol{g}+(\lambda+2 \mu) \operatorname{grad} \operatorname{div} \boldsymbol{u}-\mu \operatorname{curl} \operatorname{curl} \boldsymbol{u}
$$

- Linear elasticity amounts to solving this PDE subject to appropriate boundary and initial conditions.

Energy

We find the energy equation by dotting the Navier equation with $\partial \boldsymbol{u} / \partial t$ and integrating over an arbitrary volume $V \ldots$

$$
\iiint_{V} \rho \frac{\partial^{2} u_{i}}{\partial t^{2}} \frac{\partial u_{i}}{\partial t} \mathrm{~d} V=\iiint_{V} \rho g_{i} \frac{\partial u_{i}}{\partial t} \mathrm{~d} V+\iiint_{V} \frac{\partial \tau_{i j}}{\partial x_{j}} \frac{\partial u_{i}}{\partial t} \mathrm{~d} V
$$

Rearrange (Problem Sheet 1) to get net energy conservation...

$$
\begin{aligned}
\underbrace{\frac{\mathrm{d}}{\mathrm{~d} t} \iiint_{V} \frac{1}{2} \rho\left|\frac{\partial \boldsymbol{u}}{\partial t}\right|^{2} \mathrm{~d} V}_{1} & +\underbrace{\frac{\mathrm{d}}{\mathrm{~d} t} \iint_{V} \mathcal{W} \mathrm{~d} V}_{2} \\
& =\underbrace{\iiint_{V} \rho \boldsymbol{g} \cdot \frac{\partial \boldsymbol{u}}{\partial t} \mathrm{~d} V}_{\sqrt{\int}}+\underbrace{\iint_{\partial V} \frac{\partial \boldsymbol{u}}{\partial t} \cdot(\mathcal{T} \boldsymbol{n}) \mathrm{d} S}_{4}
\end{aligned}
$$

- 1 rate of change of kinetic energy 3 rate at which work is done by gravity 4 rate at which work is done by traction on $\partial V 2$ rate of change of internal elastic energy

Energy

- The strain energy density $\mathcal{W}\left(e_{i j}\right)$ satisfies. ..

$$
\frac{\partial \mathcal{W}}{\partial e_{i j}}=\tau_{i j}
$$

- With linear constitutive relation $\tau_{i j}=\lambda\left(e_{k k}\right) \delta_{i j}+2 \mu e_{i j} \ldots$

$$
\mathcal{W}=\frac{1}{2} e_{i j} \tau_{i j}=\frac{1}{2} \lambda\left(e_{k k}\right)^{2}+\mu e_{i j} e_{i j}
$$

- \mathcal{W} is a positive definite function of $e_{i j}$ iff...

$$
\mu>0 \quad \text { and } \quad \lambda+\frac{2}{3} \mu>0
$$

$\mu=$ shear modulus, $\lambda+\frac{2}{3} \mu=$ bulk modulus (Problem sheet 1)

Uniqueness

Consider the steady Navier equation in an elastic body B subject to (e.g.) specified displacement on the boundary ∂B :

$$
\nabla \cdot \mathcal{T}=-\rho \boldsymbol{g}^{\mathbf{0}} \text { in } B \quad \boldsymbol{u}=\boldsymbol{u}_{\mathrm{b}}(\boldsymbol{x})^{0} \text { on } \partial B
$$

Suppose there exist two solutions for the displacement: \boldsymbol{u}_{1} and \boldsymbol{u}_{2}. Then let $\boldsymbol{u}=\boldsymbol{u}_{1}-\boldsymbol{u}_{2} . \boldsymbol{u}$ satisfies the homogeneous BVP.

Claim: this homogeneous problem has only the zero solution.

Proof: dot the PDE with $\boldsymbol{u} . .$.

Uniqueness

In B we have...

$$
\begin{gathered}
u_{i} \frac{\partial \tau_{i j}}{\partial x_{j}}=0 \\
\Rightarrow \quad \frac{\partial}{\partial x_{j}}\left(u_{i} \tau_{i j}\right)=\frac{\partial u_{i}}{\partial x_{j}} \tau_{i j} \\
=\frac{1}{2}\left(\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}\right) \tau_{i j}=e_{i j} \tau_{i j}=2 \mathcal{W}
\end{gathered}
$$

using symmetry of $\tau_{i j}$, definition of \mathcal{W} for linear elasticity.

$$
\Rightarrow \iint_{\partial B} \underbrace{\boldsymbol{u} \cdot(\mathcal{T} \boldsymbol{n})}_{=0} \mathrm{~d} S=2 \iiint_{B} \underbrace{\mathcal{W}}_{\geq 0} \mathrm{~d} V
$$

By positive definiteness of \mathcal{W} we must have $e_{i j} \equiv 0$.
It follows that \boldsymbol{u} must be a rigid-body motion.
$\boldsymbol{u}=\mathbf{0}$ on ∂B implies $\boldsymbol{u}=\mathbf{0}$ everywhere in B. QED

Variational formulation

Final point about $\mathcal{W} \ldots$

- Define the energy functional

$$
\begin{aligned}
\mathcal{U}[\boldsymbol{u}] & =\iiint_{B} \mathcal{W}\left(e_{i j}\right)-\rho \boldsymbol{g} \cdot \boldsymbol{u} \mathrm{d} V \\
& =\text { elastic energy }+ \text { potential energy due to gravity }
\end{aligned}
$$

- Use the calculus of variations to find the displacement \boldsymbol{u} that minimises \mathcal{U} (subject to given boundary conditions).
- The minimising displacement \boldsymbol{u} satisfies the steady Navier equation (Problem Sheet 1).

Different coordinate systems
 See lecture notes. . .

Spherical polar coordinates

The spherical polar coordinates (r, θ, ϕ) are defined in the usual way, such that the position vector of any point is given by

$$
\boldsymbol{r}(r, \theta, \phi)=\left(\begin{array}{c}
r \sin \theta \cos \phi \tag{1.55}\\
r \sin \theta \sin \phi \\
r \cos \theta
\end{array}\right)
$$

Again, we apply the constitutive relation (1.31) to obtain

$$
\begin{align*}
\tau_{r r} & =(\lambda+2 \mu) e_{r r}+\lambda e_{\theta \theta}+\lambda e_{\phi \phi}, & \tau_{r \theta} & =2 \mu e_{r \theta}, \\
\tau_{\theta \theta} & =\lambda e_{r r}+(\lambda+2 \mu) e_{\theta \theta}+\lambda e_{\phi \phi}, & \tau_{r \phi} & =2 \mu e_{r \phi}, \\
\tau_{\phi \phi} & =\lambda e_{r r}+\lambda e_{\theta \theta}+(\lambda+2 \mu) e_{\phi \phi}, & & \tau_{\theta \phi} \tag{1.56}
\end{align*}=2 \mu e_{\theta \phi} .
$$

The linearised strain components are now given by

$$
\begin{align*}
e_{r r} & =\frac{\partial u_{r}}{\partial r}, & 2 e_{r \theta} & =\frac{1}{r} \frac{\partial u_{r}}{\partial \theta}+\frac{\partial u_{\theta}}{\partial r}-\frac{u_{\theta}}{r} \\
e_{\theta \theta} & =\frac{1}{r}\left(\frac{\partial u_{\theta}}{\partial \theta}+u_{r}\right), & 2 e_{r \phi} & =\frac{1}{r \sin \theta} \frac{\partial u_{r}}{\partial \phi}+\frac{\partial u_{\phi}}{\partial r}-\frac{u_{\phi}}{r}, \\
e_{\phi \phi} & =\frac{1}{r \sin \theta} \frac{\partial u_{\phi}}{\partial \phi}+\frac{u_{r}}{r}+\frac{u_{\theta} \cot \theta}{r}, & 2 e_{\theta \phi} & =\frac{1}{r \sin \theta} \frac{\partial u_{\theta}}{\partial \phi}+\frac{1}{r} \frac{\partial u_{\phi}}{\partial \theta}-\frac{u_{\phi} \cot \theta}{r} . \tag{1.57}
\end{align*}
$$

Cauchy's equation of motion leads to the three equations

$$
\begin{align*}
& \rho \frac{\partial^{2} u_{r}}{\partial t^{2}}=\rho g_{r}+\frac{1}{r^{2}} \frac{\partial\left(r^{2} \tau_{r r}\right)}{\partial r}+\frac{1}{r \sin \theta} \frac{\partial\left(\sin \theta \tau_{r \theta}\right)}{\partial \theta}+\frac{1}{r \sin \theta} \frac{\partial \tau_{r \phi}}{\partial \phi}-\frac{\tau_{\theta \theta}+\tau_{\phi \phi}}{r}, \\
& \rho \frac{\partial^{2} u_{\theta}}{\partial t^{2}}=\rho g_{\theta}+\frac{1}{r^{2}} \frac{\partial\left(r^{2} \tau_{r \theta}\right)}{\partial r}+\frac{1}{r \sin \theta} \frac{\partial\left(\sin \theta \tau_{\theta \theta}\right)}{\partial \theta}+\frac{1}{r \sin \theta} \frac{\partial \tau_{\theta \phi}}{\partial \phi}+\frac{\tau_{r \theta}-\cot \theta \tau_{\phi \phi}}{r}, \tag{1.58}\\
& \rho \frac{\partial^{2} u_{\phi}}{\partial t^{2}}=\rho g_{\phi}+\frac{1}{r^{2}} \frac{\partial\left(r^{2} \tau_{r \phi}\right)}{\partial r}+\frac{1}{r \sin \theta} \frac{\partial\left(\sin \theta \tau_{\theta \phi}\right)}{\partial \theta}+\frac{1}{r \sin \theta} \frac{\partial \tau_{\phi \phi}}{\partial \phi}+\frac{\tau_{r \phi}+\cot \theta \tau_{\theta \phi}}{r},
\end{align*}
$$

