C5.2 Elasticity and Plasticity

Lecture 3 - Elementary Steady Solutions

Peter Howell
howell@maths.ox.ac.uk

Hilary Term 2021

Recap

- $\boldsymbol{u}=\left(u_{i}\right)=$ displacement $\quad \mathcal{E}=\left(e_{i j}\right)=$ strain tensor $\mathcal{T}=\left(\tau_{i j}\right)=$ stress tensor
- Momentum equation

$$
\rho \frac{\partial^{2} \boldsymbol{u}}{\partial t^{2}}=\nabla \cdot \mathcal{T}+\rho \boldsymbol{g} \quad \text { or } \quad \rho \frac{\partial^{2} u_{i}}{\partial t^{2}}=\frac{\partial \tau_{i j}}{\partial x_{j}}+\rho g_{i}
$$

- Constitutive relation (linear, isotropic)

$$
\tau_{i j}=\lambda\left(e_{k k}\right) \delta_{i j}+2 \mu e_{i j}=\lambda(\boldsymbol{\nabla} \cdot \boldsymbol{u}) \delta_{i j}+\mu\left(\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}\right)
$$

Linear displacement

$$
\begin{aligned}
& \text { - In Cartesians: } \boldsymbol{x}=(x, y, z), \boldsymbol{u}=(u, v, w) \ldots \\
& \mathcal{T}=\lambda(\boldsymbol{\nabla} \cdot \boldsymbol{u}) \mathbb{I}+\mu\left(\begin{array}{ccc}
2 \partial u / \partial x & \partial u / \partial y+\partial v / \partial x & \partial u / \partial z+\partial w / \partial x \\
\partial u / \partial y+\partial v / \partial x & 2 \partial v / \partial y & \partial v / \partial z+\partial w / \partial y \\
\partial u / \partial z+\partial w / \partial x & \partial v / \partial z+\partial w / \partial y & 2 \partial w / \partial z
\end{array}\right)
\end{aligned}
$$

- In steady state with no body force, Navier equation reduces to

$$
\frac{\partial \tau_{i j}}{\partial x_{j}}=0
$$

- Whenever \boldsymbol{u} is a linear function of \boldsymbol{x}, then \mathcal{T} is constant, and the Navier equation is automatically satisfied.

Example 1 - isotropic expansion

- Consider the linear displacement $\boldsymbol{u}=\frac{\alpha}{3} \boldsymbol{x}=\frac{\alpha}{3}\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$
- Represents isotropic expansion by a factor $(1+\alpha / 3)$

- Relative volume change $\left(1+\frac{\alpha}{3}\right)^{3}-1 \sim \alpha=\boldsymbol{\nabla} \cdot \boldsymbol{u}$
- Stress tensor is isotropic as well: $\mathcal{T}=\left(\lambda+\frac{2}{3} \mu\right) \alpha \mathbb{I}$
- $K=\lambda+\frac{2}{3} \mu=$ bulk modulus - measures resistance to volume change

Simple shear

Linear displacement $\boldsymbol{u}=\left(\begin{array}{c}\alpha y \\ 0 \\ 0\end{array}\right)$ corresponds to simple shear

Corresponding stress tensor $\mathcal{T}=\mu \alpha\left(\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$

- $\mu=$ shear modulus - measures resistance to shear

Unixial stretching

- The linear displacement $\boldsymbol{u}=\alpha\left(\begin{array}{c}x \\ -\nu y \\ -\nu z\end{array}\right)$ corresponds to...
- stretch by a factor α in the x-direction
- shrink by a factor $\nu \alpha$ in the transverse directions.

Corresponding stress tensor (Problem Sheet 1)

$$
\mathcal{T}=\alpha\left(\begin{array}{ccc}
(1-2 \nu) \lambda+2 \mu & 0 & 0 \\
0 & (1-2 \nu) \lambda-2 \nu \mu & 0 \\
0 & 0 & (1-2 \nu) \lambda-2 \nu \mu
\end{array}\right)
$$

Stretching of a bar

Stress on boundary $\mathcal{T} \boldsymbol{n}=\left(\begin{array}{ccc}\tau_{x x} & 0 & 0 \\ 0 & \tau_{y y} & 0 \\ 0 & 0 & \tau_{z z}\end{array}\right)\left(\begin{array}{c}0 \\ n_{y} \\ n_{z}\end{array}\right)=\left(\begin{array}{c}0 \\ \tau_{y y} n_{y} \\ \tau_{z z} n_{z}\end{array}\right)$
The boundary is stress free iff $0=\tau_{y y}=\tau_{z z}=\alpha[(1-2 \nu) \lambda-2 \nu \mu]$
i.e. $\quad \nu=\frac{\lambda}{2(\lambda+\mu)}=$ Poisson's ratio

Stretching of a bar

When the bar stretches by a factor α, it also shrinks by a factor $\nu \alpha$ in transverse direction.

- Thermodynamic constraints $\mu>0$ and $\lambda+\frac{2}{3} \mu>0$ imply

$$
-1<\nu<\frac{1}{2}
$$

- Most "normal" solids have $\nu>0$, but there exist "auxetic" materials with $\nu<0$.
- e.g. cork, crumpled paper,...

Stretching of a bar

- Only remaining stress component is $\tau_{x x}=\alpha[(1-2 \nu) \lambda+2 \mu]$
- Substitute for ν to get...

$$
\tau_{x x}=E \alpha \quad \text { i.e. } \quad \text { Stress } \propto \text { strain }
$$

Proportionality constant $E=\frac{\mu(3 \lambda+2 \mu)}{(\lambda+\mu)}=$ Young's modulus

Bending a beam

Consider the displacement $\boldsymbol{u}=\left(\begin{array}{c}u \\ v \\ w\end{array}\right)=\frac{\kappa}{2}\left(\begin{array}{c}-2 x z \\ 2 \nu y z \\ x^{2}-\nu y^{2}+\nu z^{2}\end{array}\right)$

- Only nonzero stress component (after some calculation!)

$$
\tau_{x x}=-E \kappa z
$$

- This displacement corresponds to bending a beam

- The centre-line $(x, 0,0) \mapsto\left(x, 0, \frac{1}{2} \kappa x^{2}\right)$
- $\kappa=\frac{\partial^{2} w}{\partial x^{2}}=$ curvature of bent beam

Bending a beam

Bending moment $M=$ moment about y-axis
$A=$ cross-section in (y, z)-plane

$$
M=\iint_{A} \tau_{x x} z \mathrm{~d} y \mathrm{~d} z=\iint_{A}-\kappa E z^{2} \mathrm{~d} y \mathrm{~d} z
$$

i.e. $M=-E I \frac{\partial^{2} w}{\partial x^{2}}$

$$
E I=E \iint_{A} z^{2} \mathrm{~d} y \mathrm{~d} z=\begin{aligned}
& \text { bending } \\
& \text { stiffness }
\end{aligned}
$$

Q: What shape cross-section for max stiffness but min area... ?

