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Recap

I u = (ui) = displacement E = (eij) = strain tensor
T = (τij) = stress tensor

I Momentum equation

ρ
∂2u

∂t2
= ∇ · T + ρg or ρ

∂2ui
∂t2

=
∂τij
∂xj

+ ρgi

I Constitutive relation (linear, isotropic)

τij = λ(ekk)δij + 2µeij = λ(∇ · u)δij + µ

(
∂ui
∂xj

+
∂uj
∂xi

)



Linear displacement

I In Cartesians: x = (x, y, z), u = (u, v, w). . .

T = λ(∇·u)I+µ

 2∂u/∂x ∂u/∂y + ∂v/∂x ∂u/∂z + ∂w/∂x
∂u/∂y + ∂v/∂x 2∂v/∂y ∂v/∂z + ∂w/∂y
∂u/∂z + ∂w/∂x ∂v/∂z + ∂w/∂y 2∂w/∂z


I In steady state with no body force, Navier equation reduces to

∂τij
∂xj

= 0

I Whenever u is a linear function of x, then T is constant, and
the Navier equation is automatically satisfied.



Example 1 — isotropic expansion

I Consider the linear displacement u =
α

3
x =

α

3

xy
z


I Represents isotropic expansion by a factor (1 + α/3)

I Relative volume change
(
1 +

α

3

)3
− 1 ∼ α = ∇ · u

I Stress tensor is isotropic as well: T =
(
λ+ 2

3µ
)
αI

I K = λ+ 2
3µ = bulk modulus — measures resistance to

volume change



Simple shear

Linear displacement u =

αy0
0

 corresponds to simple shear

Corresponding stress tensor T = µα

0 1 0
1 0 0
0 0 0


I µ = shear modulus — measures resistance to shear



Unixial stretching

I The linear displacement u = α

 x
−νy
−νz

 corresponds to. . .

I stretch by a factor α in the x-direction
I shrink by a factor να in the transverse directions.

Corresponding stress tensor (Problem Sheet 1)

T = α

(1− 2ν)λ+ 2µ 0 0
0 (1− 2ν)λ− 2νµ 0
0 0 (1− 2ν)λ− 2νµ





Stretching of a bar
Cross-section
in (y, z)-plane

�

�

�

Stress on boundary T n =

τxx 0 0
0 τyy 0
0 0 τzz

 0
ny
nz

 =

 0
τyyny
τzznz


The boundary is stress free iff 0 = τyy = τzz = α

[
(1− 2ν)λ− 2νµ

]
i.e. ν =

λ

2(λ+ µ)
= Poisson’s ratio



Stretching of a bar

When the bar stretches by a factor α, it
also shrinks by a factor να in transverse
direction.

I Thermodynamic constraints µ > 0 and λ+ 2
3µ > 0 imply

−1 < ν <
1

2

I Most “normal” solids have ν > 0, but there exist “auxetic”
materials with ν < 0.
I e.g. cork, crumpled paper,. . .



Stretching of a bar

I Only remaining stress component is τxx = α
[
(1− 2ν)λ+ 2µ

]
I Substitute for ν to get. . .

τxx = Eα i.e. Stress ∝ strain

Proportionality constant E =
µ(3λ+ 2µ)

(λ+ µ)
= Young’s modulus



Bending a beam

Consider the displacement u =

uv
w

 =
κ

2

 −2xz
2νyz

x2 − νy2 + νz2


I Only nonzero stress component (after some calculation!)

τxx = −Eκz

I This displacement corresponds to bending a beam

I The centre-line (x, 0, 0) 7→
(
x, 0, 12 κx

2
)

I κ =
∂2w

∂x2
= curvature of bent beam



Bending a beam

Bending moment
M = moment
about y-axis

A = cross-section
in (y, z)-plane

�
�

�

M =

∫∫
A
τxxz dydz =

∫∫
A
−κEz2 dydz

i.e. M = −EI ∂
2w

∂x2
where EI = E

∫∫
A
z2 dydz =

bending
stiffness

Q: What shape cross-section for max stiffness but min area. . . ?


