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Antiplane strain

0
» Consider displacement field |u = 0
w(z,y)
P The stress tensor is given by
0 0 7us

T=0 0 7

Tzz Tyz O

where
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» Steady Navier eqn (no body force) — Laplace's equation

0Ty 8Tyz_0 N 82710_’_82710_0
Ox oy ox2 = 0y?




Antiplane strain

Can be created by applying shear stress o
to boundary of a cylindrical bar.

surface
0 0 Txz Ny 0 ftraction o
0 0 7y ny | =10] ondD
Tez Tyz O 0 o 4

P Leads to the Neumann problem
: 0
V2w =0in D, ,u—wzaon oD.
on
P> Note that the elastic energy in antiplane strain is given by

o] = [ /D 4Vl dudy

Min U[w] via calculus of variations — Laplace equation VZw = 0.




Torsion

Displacement

In-plane dlsplacement u,v)

\Qz

/
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" — ( —Q(Z:Z ) describes a bar being
N twisted about the z-axis
Q(x, y)
<
= Qz(—y, ) ()




Torsion

—Qyz
With u = Qxz ) only nonzero stress components are. . .
Q(z,y)
0 0
Tm:,u,Q(ajﬁ—y), Tyz:uQ<({;§+x).
.\4
¢ Navier eqn and stress-free BC:
n
Qz 0Ty, 0Ty —0 D
= \ oz + oy "

' TezNg + TyzNy = 0 on 0D
Tangent and normal vectors given by
z'(s) Ny y'(s)
t=1y(s)|, n=|ny|=[-2'(s)|, s=arclength.
0 0



Torsion
We end up with well posed BVP for ¢(z,y) (up to a constant):

V% =0 inD
(NB solvability
condition satisfied
gﬁ = %% (2 +y*) ondD identically)
Given shape of cross-section D, solve for 1. | e

Then calculate torque M using D

e \-
e ffpeomasee N

Thus find that where torsional rigidity

R = ,u//<—y +x2+y2) dady
y ox




Example — a circular bar

» Suppose cross-section D is a disc of radius a.
» Then 1) satisfies [in polar coords (r,6)]

9% _1d
or  2ds

» Torsional rigidity

R= ,u// <x§§— y%?—k 22+ y2> dady
D
2m a
= / / r® drdf
0o Jo
matp

= |R=

V2 =0 inr<a, (x2—|—y2):0 onr=a

torsional rigidity of a circular bar
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Stress function

» Problem can be reformulated in terms of a stress function
0 0 7
» Whenever stress tensor is of the form 7 = | 0 0 7y

Tez Tyz O
with 7. = o2 (2, y) and 7, = 72 (2, ). ..

8 xrz a z
» Navier equation reduces to lk Tyz _ 0
ox dy
» We deduce the existence of a stress function ¢(z,y) such that
0
iy (gw ) =|Tpr = MQ; (factor of 2
t Y included for
oY 0] convenience)
Q — =Ty, = —uf
e <8y + x) Ty 97




Stress function

» Functions ¢(z,y) and ¥ (x,y) satisfy the relations

oY _ 09 oy 09
or Oy 4 ?y__%_
0 1 0 1
LR B A (= {Caes)]

> ¢ and ¢ + % (ZE2 + y2) are harmonic conjugates

» Eliminate 1) — stress function satisfies Poisson’s equation

Vng = —2/| in cross-section D.

» Boundary condition 7n =0 on 0D:

dp 09 , o9 ,
&—59(5)4‘%93(5)—0

» i.e. ¢ = constant on 9D and wlog |¢ =0 on 0D



Stress function

Now calculate torsional rigidity R:

R= ,u// <x—y+$ +y)dxdy
= f], (5 + vy ) das

After using Divergence Theorem and BCs. ..

R= 2,u/ ¢ dzdy
D

Calculation with ¢ looks more convenient than )

Exercise: reproduce calculation of R for a circular bar using ¢



Multiply connected domains

Most torsion bars are actually tubes (e.g. bike frame)
)

JD,
» Zero stress on BCs

D/o”D,- = ¢ = constant on 9D, and 9D;

J x » We can only set one constant to

zero without loss of generality!

So we have to solve » k is to be determined

V26— -2 inD » If there are many holes then
¢=- n there are many undetermined
=0 on 0Dy constants k;!

o=k on 9D; » Torsional rigidity [exercise]

R=2p //D ¢dady + 2ukAi| » A, = area of hole




Example — a circular cylindrical bar

Stress function ¢(r) satisfies

LA WRCC e
\\J ok r—a

Solution. .. o(r) = b2 —r? + <k _ b* — a2> log (r/b)

» But how to determine k7?7




Multiply connected domains

» To close the problem we must ensure that displacement
w = O is single-valued as we go around the hole. ..

» Extra condition ensures w is well defined and determines
unkown k.



Example — a circular cylindrical bar

» For circular tube a < r < b,

b2 — 2

o(r) = — +<k;

b2 — a2) log (r/b)
2 log (a/b)
9¢

» The closure condition —ds = —2A4;
ap; On

27rd¢
- /Odr

b2 — a?

2
» NB this eliminates the logr in ¢ corresponding to 6 in 1.

adf = —2ma®

r=a

» We find k =

» Then torsional rigidity is given by | R = %T (b4 — a4)




Rigidity of a thin tube

> Foratubea<r<bwehaveR:%(b‘l—a"‘)

P In practice tubes usually have thin walls.
> With b= a(l + ¢) with ¢ < 1 we get

R ~ 2uma’e

» Now compare with a thin cut tube (e.g. rusted through). ..



Rigidity of a thin cut tube

Y

e,

A

A

J

Stress function ¢ satisfies

Vp=—-2 a<r<b 0<0<2r
¢=0 r=a,r=>
6=0 0=0,0=2r

ie. k=10

» Assume wall is thin so b = a(1 + €) with e < 1.

> LetMsoﬁG[O,l] and. ..

V2¢p ~

1 0%

. )
€2a2 0€2

with g =0at £ =0, 1



Rigidity of a thin cut tube

Leading-order solution | ¢ ~ €2a?£(1 — €) | and hence torsional

rigidity. . .

2r  ra(l+e) 1
R= 2u/ / ¢rdrdf ~ 47T[L/ €2a6(1 — €) ea® dé¢
0 a 0
i.e.
2
R= g pate?

» cf R~ 2mpa’e for pristine tube.

» Small cut reduces R by two orders of magnitude!



