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Antiplane strain

I Consider displacement field u =




0
0

w(x, y)




I The stress tensor is given by

T =




0 0 τxz
0 0 τyz
τxz τyz 0




where

τxz = µ
∂w

∂x
, τyz = µ

∂w

∂y

I Steady Navier eqn (no body force) → Laplace’s equation

∂τxz
∂x

+
∂τyz
∂y

= 0 ⇒ ∂2w

∂x2
+
∂2w

∂y2
= 0



Antiplane strain

Can be created by applying shear stress σ
to boundary of a cylindrical bar.




0 0 τxz
0 0 τyz
τxz τyz 0





nx
ny
0


 =




0
0
σ


 on ∂D

surface
traction σ

y

x

z

D

I Leads to the Neumann problem

∇2w = 0 in D, µ
∂w

∂n
= σ on ∂D.

I Note that the elastic energy in antiplane strain is given by

U [w] =

∫∫

D
µ |∇w|2 dxdy

Min U [w] via calculus of variations → Laplace equation ∇2w = 0.



Torsion

Displacement u =



−Ωyz
Ωxz

Ωψ(x, y)


 describes a bar being

twisted about the z-axis

In-plane displacement (u, v) = Ωz(−y, x)
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Torsion

With u =



−Ωyz
Ωxz

Ωψ(x, y)


 only nonzero stress components are. . .

τxz = µΩ

(
∂ψ

∂x
− y
)
, τyz = µΩ

(
∂ψ

∂y
+ x

)
.
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Navier eqn and stress-free BC:

∂τxz
∂x

+
∂τyz
∂y

= 0 in D

τxznx + τyzny = 0 on ∂D

Tangent and normal vectors given by

t =



x′(s)
y′(s)

0


 , n =



nx
ny
0


 =



y′(s)
−x′(s)

0


 , s = arc-length.



Torsion
We end up with well posed BVP for ψ(x, y) (up to a constant):

∇2ψ = 0 in D

∂ψ

∂n
=

1

2

d

ds

(
x2 + y2

)
on ∂D

(NB solvability
condition satisfied
identically)

Given shape of cross-section D, solve for ψ.
Then calculate torque M using

M =

∫∫

D
(xτyz − yτxz) dxdy
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Thus find that M = RΩ where torsional rigidity

R = µ

∫∫

D

(
x
∂ψ

∂y
− y∂ψ

∂x
+ x2 + y2

)
dxdy



Example — a circular bar

I Suppose cross-section D is a disc of radius a.

I Then ψ satisfies [in polar coords (r, θ)]

∇2ψ = 0 in r < a,
∂ψ

∂r
=

1

2

d

ds

(
x2 + y2

)
= 0 on r = a

I Solution is ψ = constant

I Torsional rigidity

R = µ

∫∫

D

(
x
�
�
�S
S
S

∂ψ

∂y
− y
�
��S
SS

∂ψ

∂x
+ x2 + y2

)
dxdy

= µ

∫ 2π

0

∫ a

0
r3 drdθ

⇒ R =
πa4µ

2
torsional rigidity of a circular bar



Stress function

I Problem can be reformulated in terms of a stress function

I Whenever stress tensor is of the form T =




0 0 τxz
0 0 τyz
τxz τyz 0


,

with τxz = τxz(x, y) and τyz = τyz(x, y). . .

I Navier equation reduces to
∂τxz
∂x

+
∂τyz
∂y

= 0

I We deduce the existence of a stress function φ(x, y) such that

µΩ

(
∂ψ

∂x
− y
)

= τxz = µΩ
∂φ

∂y
(factor of µΩ
included for
convenience)

µΩ

(
∂ψ

∂y
+ x

)
= τyz = −µΩ

∂φ

∂x



Stress function

I Functions φ(x, y) and ψ(x, y) satisfy the relations

∂ψ

∂x
=
∂φ

∂y
+ y

∂ψ

∂y
= −∂φ

∂x
− x

=
∂

∂y

[
φ+

1

2

(
x2 + y2

)]
= − ∂

∂x

[
φ+

1

2

(
x2 + y2

)]

I ψ and φ+ 1
2

(
x2 + y2

)
are harmonic conjugates

I Eliminate ψ — stress function satisfies Poisson’s equation

∇2φ = −2 in cross-section D.

I Boundary condition T n = 0 on ∂D:

dφ

ds
=
∂φ

∂y
y′(s) +

∂φ

∂x
x′(s) = 0

I i.e. φ = constant on ∂D and wlog φ = 0 on ∂D



Stress function

Now calculate torsional rigidity R:

R = µ

∫∫

D

(
x
∂ψ

∂y
− y∂ψ

∂x
+ x2 + y2

)
dxdy

= −µ
∫∫

D

(
x
∂φ

∂x
+ y

∂φ

∂y

)
dxdy

After using Divergence Theorem and BCs. . .

R = 2µ

∫∫

D
φ dxdy

Calculation with φ looks more convenient than ψ

Exercise: reproduce calculation of R for a circular bar using φ



Multiply connected domains
Most torsion bars are actually tubes (e.g. bike frame)

� ∂��

∂��

�

�

I Zero stress on BCs
⇒ φ = constant on ∂Do and ∂Di

I We can only set one constant to
zero without loss of generality!

So we have to solve

∇2φ = −2 in D

φ = 0 on ∂D0

φ = k on ∂Di

R = 2µ

∫∫

D
φ dxdy + 2µkAi

I k is to be determined

I If there are many holes then
there are many undetermined
constants ki!

I Torsional rigidity [exercise]

I Ai = area of hole



Example — a circular cylindrical bar

3–6 OCIAM Mathematical Institute University of Oxford
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Figure 3.4: The cross-section of (a) a circular cylindrical tube; (b) a cut tube.

whose solution is easily found to be

� =
b2 � r2

2
+

✓
k � b2 � a2

2

◆
log (r/b)

log (a/b)
. (3.27)

By substituting this expression for � into (3.25), we find that

k =
b2 � a2

2
, (3.28)

which eliminates the logarithmic term from (3.27).
We therefore find that

� =
b2 � r2

2
, (3.29)

and it is straightforward to substitute this into (3.23) and obtain the torsional rigidity

R =
µ⇡

2

�
b4 � a4

�
. (3.30)

This result can easily be confirmed by solving for  rather than �. Even in this simple
radially symmetric geometry, the bother of finding the arbitrary constant k has outweighed the
convenience of introducing a stress function. When considering multiply-connected domains
it is therefore often a better idea to return to the physical variable  .

If the tube is thin, so a and b are nearly equal, then

R ⇠ 2µ⇡a4✏ (3.31)

where ✏ = b/a� 1 ⌧ 1. We can compare this with the torsional rigidity of a rusty tube, with
a thin axial cut, as illustrated in Figure 3.4(b). Here the cross-section is simply connected,
so that � must satisfy

r2� =
1

r

@

@r

✓
r
@�

@r

◆
+

1

r2

@2�

@✓2
= �2, a < r < b, (3.32a)

with
� = 0 on r = a, b, (3.32b)

Stress function φ(r) satisfies

1

r

d

dr

(
r

dφ

dr

)
= −2 a < r < b

φ = 0 r = b

φ = k r = a

Solution. . . φ(r) =
b2 − r2

2
+

(
k − b2 − a2

2

)
log (r/b)

log (a/b)
I But how to determine k?



Multiply connected domains

I To close the problem we must ensure that displacement
w = Ωψ is single-valued as we go around the hole. . .

0 =
[
ψ
]
∂Di

=

∫

∂Di

dψ

ds
ds = · · ·

⇒
∮

∂Di

∂φ

∂n
ds = −2Ai

I Extra condition ensures w is well defined and determines
unkown k.



Example — a circular cylindrical bar

I For circular tube a < r < b,

φ(r) =
b2 − r2

2
+

(
k − b2 − a2

2

)
log (r/b)

log (a/b)

I The closure condition

∮

∂Di

∂φ

∂n
ds = −2Ai

⇒
∫ 2π

0

dφ

dr

∣∣∣∣
r=a

adθ = −2πa2

I We find k =
b2 − a2

2
I NB this eliminates the log r in φ corresponding to θ in ψ.

I Then torsional rigidity is given by R =
µπ

2

(
b4 − a4

)



Rigidity of a thin tube

I For a tube a < r < b we have R =
µπ

2

(
b4 − a4

)

I In practice tubes usually have thin walls.

I With b = a(1 + ε) with ε� 1 we get

R ∼ 2µπa4ε

I Now compare with a thin cut tube (e.g. rusted through). . .



Rigidity of a thin cut tube3–6 OCIAM Mathematical Institute University of Oxford
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Figure 3.4: The cross-section of (a) a circular cylindrical tube; (b) a cut tube.

whose solution is easily found to be

� =
b2 � r2

2
+

✓
k � b2 � a2

2

◆
log (r/b)

log (a/b)
. (3.27)

By substituting this expression for � into (3.25), we find that

k =
b2 � a2

2
, (3.28)

which eliminates the logarithmic term from (3.27).
We therefore find that

� =
b2 � r2

2
, (3.29)

and it is straightforward to substitute this into (3.23) and obtain the torsional rigidity

R =
µ⇡

2

�
b4 � a4

�
. (3.30)

This result can easily be confirmed by solving for  rather than �. Even in this simple
radially symmetric geometry, the bother of finding the arbitrary constant k has outweighed the
convenience of introducing a stress function. When considering multiply-connected domains
it is therefore often a better idea to return to the physical variable  .

If the tube is thin, so a and b are nearly equal, then

R ⇠ 2µ⇡a4✏ (3.31)

where ✏ = b/a� 1 ⌧ 1. We can compare this with the torsional rigidity of a rusty tube, with
a thin axial cut, as illustrated in Figure 3.4(b). Here the cross-section is simply connected,
so that � must satisfy

r2� =
1

r

@

@r

✓
r
@�

@r

◆
+

1

r2

@2�

@✓2
= �2, a < r < b, (3.32a)

with
� = 0 on r = a, b, (3.32b)

Stress function φ satisfies

∇2φ = −2 a < r < b, 0 < θ < 2π

φ = 0 r = a, r = b

φ = 0 θ = 0, θ = 2π

i.e. k = 0

I Assume wall is thin so b = a(1 + ε) with ε� 1.

I Let r = a(1 + εξ) so ξ ∈ [0, 1] and. . .

∇2φ ∼ 1

ε2a2
∂2φ

∂ξ2
∼ −2

with φ = 0 at ξ = 0, 1



Rigidity of a thin cut tube

Leading-order solution φ ∼ ε2a2ξ(1− ξ) and hence torsional

rigidity. . .

R = 2µ

∫ 2π

0

∫ a(1+ε)

a
φr drdθ ∼ 4πµ

∫ 1

0
ε2a2ξ(1− ξ) εa2 dξ

i.e.

R =
2π

3
µa4ε3

I cf R ∼ 2πµa4ε for pristine tube.

I Small cut reduces R by two orders of magnitude!


