C5.2 Elasticity and Plasticity

Lecture 4 - Antiplane strain and torsion

Peter Howell
howell@maths.ox.ac.uk

Hilary Term 2021

Antiplane strain

- Consider displacement field

$$
\boldsymbol{u}=\left(\begin{array}{c}
0 \\
0 \\
w(x, y)
\end{array}\right)
$$

- The stress tensor is given by

$$
\mathcal{T}=\left(\begin{array}{ccc}
0 & 0 & \tau_{x z} \\
0 & 0 & \tau_{y z} \\
\tau_{x z} & \tau_{y z} & 0
\end{array}\right)
$$

where

$$
\tau_{x z}=\mu \frac{\partial w}{\partial x}, \quad \tau_{y z}=\mu \frac{\partial w}{\partial y}
$$

- Steady Navier eqn (no body force) \rightarrow Laplace's equation

$$
\frac{\partial \tau_{x z}}{\partial x}+\frac{\partial \tau_{y z}}{\partial y}=0 \quad \Rightarrow \quad \frac{\partial^{2} w}{\partial x^{2}}+\frac{\partial^{2} w}{\partial y^{2}}=0
$$

Antiplane strain

Can be created by applying shear stress σ to boundary of a cylindrical bar.

$$
\left(\begin{array}{ccc}
0 & 0 & \tau_{x z} \\
0 & 0 & \tau_{y z} \\
\tau_{x z} & \tau_{y z} & 0
\end{array}\right)\left(\begin{array}{l}
n_{x} \\
n_{y} \\
0
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
\sigma
\end{array}\right) \text { on } \partial D
$$

- Leads to the Neumann problem

$$
\nabla^{2} w=0 \text { in } D, \quad \mu \frac{\partial w}{\partial n}=\sigma \text { on } \partial D
$$

- Note that the elastic energy in antiplane strain is given by

$$
\mathcal{U}[w]=\iint_{D} \mu|\nabla w|^{2} \mathrm{~d} x \mathrm{~d} y
$$

$\operatorname{Min} \mathcal{U}[w]$ via calculus of variations \rightarrow Laplace equation $\nabla^{2} w=0$.

Torsion

Displacement

$$
\boldsymbol{u}=\left(\begin{array}{c}
-\Omega y z \\
\Omega x z \\
\Omega \psi(x, y)
\end{array}\right)
$$ describes a bar being twisted about the z-axis

In-plane displacement $(u, v)=\Omega z(-y, x)$

Torsion

$$
\begin{aligned}
& \text { With } \boldsymbol{u}=\left(\begin{array}{c}
-\Omega y z \\
\Omega x z \\
\Omega \psi(x, y)
\end{array}\right) \text { only nonzero stress components are... } \\
& \tau_{x z}=\mu \Omega\left(\frac{\partial \psi}{\partial x}-y\right), \quad \tau_{y z}=\mu \Omega\left(\frac{\partial \psi}{\partial y}+x\right) .
\end{aligned}
$$

Navier eqn and stress-free BC:

$$
\begin{array}{rr}
\frac{\partial \tau_{x z}}{\partial x}+\frac{\partial \tau_{y z}}{\partial y}=0 \quad \text { in } D \\
\tau_{x z} n_{x}+\tau_{y z} n_{y}=0 \quad \text { on } \partial D
\end{array}
$$

Tangent and normal vectors given by

$$
\boldsymbol{t}=\left(\begin{array}{c}
x^{\prime}(s) \\
y^{\prime}(s) \\
0
\end{array}\right), \quad \boldsymbol{n}=\left(\begin{array}{c}
n_{x} \\
n_{y} \\
0
\end{array}\right)=\left(\begin{array}{c}
y^{\prime}(s) \\
-x^{\prime}(s) \\
0
\end{array}\right), \quad s=\text { arc-length }
$$

Torsion

We end up with well posed BVP for $\psi(x, y)$ (up to a constant):

$$
\nabla^{2} \psi=0 \quad \text { in } D
$$

(NB solvability

$$
\frac{\partial \psi}{\partial n}=\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} s}\left(x^{2}+y^{2}\right) \quad \text { on } \partial D
$$ condition satisfied identically)

Given shape of cross-section D, solve for ψ. Then calculate torque M using

$$
M=\iint_{D}\left(x \tau_{y z}-y \tau_{x z}\right) \mathrm{d} x \mathrm{~d} y
$$

Thus find that $M=R \Omega$ where torsional rigidity

$$
R=\mu \iint_{D}\left(x \frac{\partial \psi}{\partial y}-y \frac{\partial \psi}{\partial x}+x^{2}+y^{2}\right) \mathrm{d} x \mathrm{~d} y
$$

Example - a circular bar

- Suppose cross-section D is a disc of radius a.
- Then ψ satisfies [in polar coords (r, θ)]

$$
\nabla^{2} \psi=0 \quad \text { in } r<a, \quad \frac{\partial \psi}{\partial r}=\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} s}\left(x^{2}+y^{2}\right)=0 \quad \text { on } r=a
$$

- Solution is $\psi=$ constant
- Torsional rigidity

$$
\begin{aligned}
R & =\mu \iint_{D}\left(x \frac{\partial \psi}{\partial y}-y \frac{\partial \psi}{\partial x}+x^{2}+y^{2}\right) \mathrm{d} x \mathrm{~d} y \\
& =\mu \int_{0}^{2 \pi} \int_{0}^{a} r^{3} \mathrm{~d} r \mathrm{~d} \theta \\
\Rightarrow \quad R & =\frac{\pi a^{4} \mu}{2} \quad \text { torsional rigidity of a circular bar }
\end{aligned}
$$

Stress function

- Problem can be reformulated in terms of a stress function
- Whenever stress tensor is of the form $\mathcal{T}=\left(\begin{array}{ccc}0 & 0 & \tau_{x z} \\ 0 & 0 & \tau_{y z} \\ \tau_{x z} & \tau_{y z} & 0\end{array}\right)$, with $\tau_{x z}=\tau_{x z}(x, y)$ and $\tau_{y z}=\tau_{y z}(x, y) \ldots$
- Navier equation reduces to $\frac{\partial \tau_{x z}}{\partial x}+\frac{\partial \tau_{y z}}{\partial y}=0$
- We deduce the existence of a stress function $\phi(x, y)$ such that

$$
\begin{aligned}
& \mu \Omega\left(\frac{\partial \psi}{\partial x}-y\right)=\tau_{x z}=\mu \Omega \frac{\partial \phi}{\partial y} \\
& \mu \Omega\left(\frac{\partial \psi}{\partial y}+x\right)=\tau_{y z}=-\mu \Omega \frac{\partial \phi}{\partial x}
\end{aligned}
$$

(factor of $\mu \Omega$
included for
convenience)

Stress function

- Functions $\phi(x, y)$ and $\psi(x, y)$ satisfy the relations

$$
\frac{\partial \psi}{\partial x}=\frac{\partial \phi}{\partial y}+y
$$

$$
\frac{\partial \psi}{\partial y}=-\frac{\partial \phi}{\partial x}-x
$$

$$
=\frac{\partial}{\partial y}\left[\phi+\frac{1}{2}\left(x^{2}+y^{2}\right)\right] \quad=-\frac{\partial}{\partial x}\left[\phi+\frac{1}{2}\left(x^{2}+y^{2}\right)\right]
$$

- ψ and $\phi+\frac{1}{2}\left(x^{2}+y^{2}\right)$ are harmonic conjugates
- Eliminate ψ - stress function satisfies Poisson's equation

$$
\nabla^{2} \phi=-2 \quad \text { in cross-section } D
$$

- Boundary condition $\mathcal{T} \boldsymbol{n}=\mathbf{0}$ on ∂D :

$$
\frac{\mathrm{d} \phi}{\mathrm{~d} s}=\frac{\partial \phi}{\partial y} y^{\prime}(s)+\frac{\partial \phi}{\partial x} x^{\prime}(s)=0
$$

- i.e. $\phi=$ constant on ∂D and wlog $\phi=0$ on ∂D

Stress function

Now calculate torsional rigidity R :

$$
\begin{aligned}
R & =\mu \iint_{D}\left(x \frac{\partial \psi}{\partial y}-y \frac{\partial \psi}{\partial x}+x^{2}+y^{2}\right) \mathrm{d} x \mathrm{~d} y \\
& =-\mu \iint_{D}\left(x \frac{\partial \phi}{\partial x}+y \frac{\partial \phi}{\partial y}\right) \mathrm{d} x \mathrm{~d} y
\end{aligned}
$$

After using Divergence Theorem and BCs...

$$
R=2 \mu \iint_{D} \phi \mathrm{~d} x \mathrm{~d} y
$$

Calculation with ϕ looks more convenient than ψ

Exercise: reproduce calculation of R for a circular bar using ϕ

Multiply connected domains

Most torsion bars are actually tubes (e.g. bike frame)

So we have to solve

$$
\begin{aligned}
\nabla^{2} \phi & =-2 & & \text { in } D \\
\phi & =0 & & \text { on } \partial D_{0} \\
\phi & =k & & \text { on } \partial D_{i}
\end{aligned}
$$

$$
R=2 \mu \iint_{D} \phi \mathrm{~d} x \mathrm{~d} y+2 \mu k A_{i}
$$

- Zero stress on BCs $\Rightarrow \phi=$ constant on ∂D_{o} and ∂D_{i}
- We can only set one constant to zero without loss of generality!
- k is to be determined
- If there are many holes then there are many undetermined constants k_{i} !
- Torsional rigidity [exercise]
- $A_{i}=$ area of hole

Example - a circular cylindrical bar

Stress function $\phi(r)$ satisfies

$$
\begin{aligned}
\frac{1}{r} \frac{\mathrm{~d}}{\mathrm{~d} r}\left(r \frac{\mathrm{~d} \phi}{\mathrm{~d} r}\right) & =-2 & & a<r<b \\
\phi & =0 & & r=b \\
\phi & =k & & r=a
\end{aligned}
$$

$$
\phi(r)=\frac{b^{2}-r^{2}}{2}+\left(k-\frac{b^{2}-a^{2}}{2}\right) \frac{\log (r / b)}{\log (a / b)}
$$

- But how to determine k ?

Multiply connected domains

- To close the problem we must ensure that displacement $w=\Omega \psi$ is single-valued as we go around the hole...

$$
\begin{aligned}
0 & =[\psi]_{\partial D_{i}}=\int_{\partial D_{i}} \frac{\mathrm{~d} \psi}{\mathrm{~d} s} \mathrm{~d} s=\cdots \\
& \Rightarrow \quad \oint_{\partial D_{i}} \frac{\partial \phi}{\partial n} \mathrm{~d} s=-2 A_{i}
\end{aligned}
$$

- Extra condition ensures w is well defined and determines unkown k.

Example - a circular cylindrical bar

- For circular tube $a<r<b$,

$$
\phi(r)=\frac{b^{2}-r^{2}}{2}+\left(k-\frac{b^{2}-a^{2}}{2}\right) \frac{\log (r / b)}{\log (a / b)}
$$

- The closure condition $\oint_{\partial D_{i}} \frac{\partial \phi}{\partial n} \mathrm{~d} s=-2 A_{i}$

$$
\left.\Rightarrow \quad \int_{0}^{2 \pi} \frac{\mathrm{~d} \phi}{\mathrm{~d} r}\right|_{r=a} a \mathrm{~d} \theta=-2 \pi a^{2}
$$

- We find $k=\frac{b^{2}-a^{2}}{2}$
- NB this eliminates the $\log r$ in ϕ corresponding to θ in ψ.
- Then torsional rigidity is given by $R=\frac{\mu \pi}{2}\left(b^{4}-a^{4}\right)$

Rigidity of a thin tube

- For a tube $a<r<b$ we have $R=\frac{\mu \pi}{2}\left(b^{4}-a^{4}\right)$
- In practice tubes usually have thin walls.
- With $b=a(1+\epsilon)$ with $\epsilon \ll 1$ we get

$$
R \sim 2 \mu \pi a^{4} \epsilon
$$

- Now compare with a thin cut tube (e.g. rusted through)...

Rigidity of a thin cut tube

Stress function ϕ satisfies

$$
\begin{aligned}
\nabla^{2} \phi & =-2 & & a<r<b, 0<\theta<2 \pi \\
\phi & =0 & & r=a, r=b \\
\phi & =0 & & \theta=0, \theta=2 \pi \\
\text { i.e. } k & =0 & &
\end{aligned}
$$

- Assume wall is thin so $b=a(1+\epsilon)$ with $\epsilon \ll 1$.
- Let $r=a(1+\epsilon \xi)$ so $\xi \in[0,1]$ and. .

$$
\nabla^{2} \phi \sim \frac{1}{\epsilon^{2} a^{2}} \frac{\partial^{2} \phi}{\partial \xi^{2}} \sim-2
$$

with $\phi=0$ at $\xi=0,1$

Rigidity of a thin cut tube

Leading-order solution $\phi \sim \epsilon^{2} a^{2} \xi(1-\xi)$ and hence torsional rigidity...

$$
R=2 \mu \int_{0}^{2 \pi} \int_{a}^{a(1+\epsilon)} \phi r \mathrm{~d} r \mathrm{~d} \theta \sim 4 \pi \mu \int_{0}^{1} \epsilon^{2} a^{2} \xi(1-\xi) \epsilon a^{2} \mathrm{~d} \xi
$$

i.e.

$$
R=\frac{2 \pi}{3} \mu a^{4} \epsilon^{3}
$$

- cf $R \sim 2 \pi \mu a^{4} \epsilon$ for pristine tube.
- Small cut reduces R by two orders of magnitude!

