C5.2 Elasticity and Plasticity

Lecture 5 - Plane strain

Peter Howell

howell@maths.ox.ac.uk

Hilary Term 2021

Plane strain

- Consider purely two-dimensional displacement

$$
\boldsymbol{u}=(u(x, y), v(x, y), 0)^{\top}
$$

- Steady momentum equation (body force $\left.\boldsymbol{g}=\left(g_{x}, g_{y}, 0\right)^{\top}\right)$

$$
\frac{\partial \tau_{x x}}{\partial x}+\frac{\partial \tau_{x y}}{\partial y}=-\rho g_{x}, \quad \frac{\partial \tau_{x y}}{\partial x}+\frac{\partial \tau_{y y}}{\partial y}=-\rho g_{y}
$$

- Stress components

$$
\begin{array}{rlrl}
\tau_{x x} & =\lambda\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)+2 \mu \frac{\partial u}{\partial x}, & & \\
\tau_{x y} & =\mu\left(\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}\right), & \tau_{z z}=\lambda\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right) . \\
\tau_{y y} & =\lambda\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)+2 \mu \frac{\partial v}{\partial y}, & &
\end{array}
$$

Compatibility

- Suppose we know the stress components $\tau_{x x}(x, y), \tau_{x y}(x, y)$ and $\tau_{y y}(x, y)$.
- Can we solve for the displacement $(u(x, y), v(x, y))$?

Constitutive relations

$$
\begin{array}{rlrl}
\tau_{x x} & =\lambda\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)+2 \mu \frac{\partial u}{\partial x} & \begin{array}{l}
\text { Over-determined system of } 3 \\
\text { equations for } 2 \text { unknowns }(u, v)
\end{array} \\
\tau_{x y}=\mu\left(\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}\right) & \begin{array}{l}
\text { The system is solvable for }(u, v) \\
\text { only if stress comonents satisfy a } \\
\text { compatability condition }
\end{array} \\
\tau_{y y}=\lambda\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)+2 \mu \frac{\partial v}{\partial y} &
\end{array}
$$

Obtain the compatibility condition by cross-differentiation...

Compatibility

$$
\left.\begin{array}{rl}
\tau_{x x} & =\lambda\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)+2 \mu \frac{\partial u}{\partial x} \\
\tau_{y y} & =\lambda\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)+2 \mu \frac{\partial v}{\partial y}
\end{array}\right\} \text { solve for } \frac{\partial u}{\partial x} \text { and } \frac{\partial v}{\partial y}
$$

Then. . .

$$
\frac{\partial^{2} \tau_{x y}}{\partial x \partial y}=\mu \frac{\partial^{2}}{\partial x \partial y}\left(\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}\right)=\mu\left(\frac{\partial^{2}}{\partial y^{2}} \frac{\partial u}{\partial x}+\frac{\partial^{2}}{\partial x^{2}} \frac{\partial v}{\partial y}\right)
$$

Thus obtain compatibility condition

$$
\frac{\partial^{2} \tau_{y y}}{\partial x^{2}}-\frac{\partial^{2} \tau_{x y}}{\partial x \partial y}+\frac{\partial^{2} \tau_{x x}}{\partial y^{2}}=\nu \nabla^{2}\left(\tau_{x x}+\tau_{y y}\right)
$$

Recall $\nu=$ Poisson's ratio $=\frac{\lambda}{2(\lambda+\mu)}$

Compatibility

$$
\begin{equation*}
\frac{\partial^{2} \tau_{y y}}{\partial x^{2}}-\frac{\partial^{2} \tau_{x y}}{\partial x \partial y}+\frac{\partial^{2} \tau_{x x}}{\partial y^{2}}=\nu \nabla^{2}\left(\tau_{x x}+\tau_{y y}\right) \tag{CC}
\end{equation*}
$$

- If (CC) is satisfied, then we can solve constitutive relations for u and v (given $\tau_{x x}, \tau_{x y}, \tau_{y y}$).
- If (CC) is not satisfied, then the stress field is incompatible with plane strain.
- If such a stress field existed in a linear elastic material, there would be no possible displacement field that returns the stress to zero...
- There would always be some unrelieved residual stress in the material.

Airy stress function

In steady plane strain with no body force, the Navier equations

$$
\frac{\partial \tau_{x x}}{\partial x}+\frac{\partial \tau_{x y}}{\partial y}=0 \quad \frac{\partial \tau_{x y}}{\partial x}+\frac{\partial \tau_{y y}}{\partial y}=0
$$

are satisfied identically if stress components take the forms

$$
\tau_{x x}=\frac{\partial^{2} \mathfrak{A}}{\partial y^{2}}, \quad \tau_{x y}=-\frac{\partial^{2} \mathfrak{A}}{\partial x \partial y}, \quad \tau_{y y}=\frac{\partial^{2} \mathfrak{A}}{\partial x^{2}}
$$

where \mathfrak{A} is a potential function called the Airy stress function.

- NB \mathfrak{A} is unique up to an arbitrary linear function of x and y i.e. $c_{0}+c_{1} x+c_{2} y$
- Substite into compatibility condition... \mathfrak{A} satisfies the biharmonic equation

$$
\nabla^{4} \mathfrak{A}=\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)^{2} \mathfrak{A}=0
$$

Boundary conditions

Suppose we want to solve for the stress inside a domain D subject to a given traction $\boldsymbol{\sigma}$ on the boundary ∂D.
tangent $\boldsymbol{t}=\left(x^{\prime}(s), y^{\prime}(s)\right)^{\top}$
normal $\boldsymbol{n}=\left(y^{\prime}(s),-x^{\prime}(s)\right)^{\top}$
$s=$ arc-length
Boundary condition $\mathcal{T} \boldsymbol{n}=\boldsymbol{\sigma}$
$\Rightarrow \quad\left(\begin{array}{cc}\frac{\partial^{2} \mathfrak{A}}{\partial y^{2}} & -\frac{\partial^{2} \mathfrak{A}}{\partial x \partial y} \\ -\frac{\partial^{2} \mathfrak{A}}{\partial x \partial y} & \frac{\partial^{2} \mathfrak{A}}{\partial x^{2}}\end{array}\right)\binom{y^{\prime}(s)}{-x^{\prime}(s)}=\boldsymbol{\sigma}$

$$
\Rightarrow \quad \frac{\mathrm{d}}{\mathrm{~d} s}\binom{\frac{\partial \mathfrak{A}}{\partial y}}{-\frac{\partial \mathfrak{A}}{\partial x}}=\boldsymbol{\sigma}
$$

NB solvability condition

$$
\oint_{\partial D} \boldsymbol{\sigma} \mathrm{~d} s=\mathbf{0}
$$

Boundary conditions

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} s}\binom{\frac{\partial \mathfrak{A}}{\partial y}}{-\frac{\partial \mathfrak{A}}{\partial x}}=\boldsymbol{\sigma}(s) \Rightarrow \\
& \Rightarrow \quad\binom{\frac{\partial \mathfrak{A}}{\partial y}}{-\frac{\partial \mathfrak{A}}{\partial x}}=\int \boldsymbol{\sigma}(s) \mathrm{d} s=\boldsymbol{f}(s), \text { say } \\
& \Rightarrow \quad \frac{\mathrm{d} \mathfrak{A}}{\mathrm{~d} s}=\boldsymbol{f} \cdot \boldsymbol{n}, \frac{\partial \mathfrak{A}}{\partial n}=-\boldsymbol{f} \cdot \boldsymbol{t},
\end{aligned}
$$

which amounts to specifying \mathfrak{A} and $\partial \mathfrak{A} / \partial n$ on ∂D.

Homogeneous boundary conditions

If there is no applied traction $(\boldsymbol{\sigma}=\mathbf{0})$ then

$$
\binom{\frac{\partial \mathfrak{A}}{\partial y}}{-\frac{\partial \mathfrak{A}}{\partial x}}=\text { constant }=\mathbf{0} \text { without loss of generality }
$$

since \mathfrak{A} is only defined up to a linear function of (x, y).
Dot with \boldsymbol{t} and \boldsymbol{n} again to get... $\frac{\mathrm{d} \mathfrak{A}}{\mathrm{d} s}=\frac{\partial \mathfrak{A}}{\partial n}=0 \quad$ on ∂D
So $\mathfrak{A}=$ constant $=0$ wlog i.e.

$$
\mathfrak{A}=\frac{\partial \mathfrak{A}}{\partial n}=0 \quad \text { on } \partial D
$$

It can be shown that $\nabla^{4} \mathfrak{A}=0$ in D subject to these $B C$ gives the trivial solution $\mathfrak{A} \equiv 0$.
i.e. stress inside D is uniquely determined by boundary traction σ.

Example - plane strain in a disc

- In plane polar coordinates, stress components are related to Airy stress function by (see Problem Sheet 2)

$$
\tau_{r r}=\frac{1}{r^{2}} \frac{\partial^{2} \mathfrak{A}}{\partial \theta^{2}}+\frac{1}{r} \frac{\partial \mathfrak{A}}{\partial r}, \quad \tau_{r \theta}=-\frac{\partial}{\partial r}\left(\frac{1}{r} \frac{\partial \mathfrak{A}}{\partial \theta}\right), \quad \tau_{\theta \theta}=\frac{\partial^{2} \mathfrak{A}}{\partial r^{2}} .
$$

- Biharmonic eqn $\nabla^{4} \mathfrak{A}=\left(\frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r} \frac{\partial}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2}}{\partial \theta^{2}}\right)^{2} \mathfrak{A}=0$
- Consider plane strain in the disc $0 \leq r<a$ subject to an applied pressure $P(\theta)$ at $r=a$, i.e.

$$
\begin{array}{|l}
\frac{\partial}{\partial r}\left(\frac{1}{r} \frac{\partial \mathfrak{A}}{\partial \theta}\right)=0 \quad \text { at } r=a \\
\frac{1}{r^{2}} \frac{\partial^{2} \mathfrak{A}}{\partial \theta^{2}}+\frac{1}{r} \frac{\partial \mathfrak{A}}{\partial r}=-P(\theta) \quad \text { at } r=a \\
\hline
\end{array}
$$

Plane strain in a disc

- Biharmonic equation $\left(\frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r} \frac{\partial}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2}}{\partial \theta^{2}}\right)^{2} \mathfrak{A}=0$
- Simplify boundary conditions at $r=a \ldots$

$$
\frac{\partial}{\partial r}\left(\frac{1}{r} \frac{\partial \mathfrak{A}}{\partial \theta}\right)=0 \quad \Rightarrow \quad \frac{\partial}{\partial r}\left(\frac{\mathfrak{A}}{r}\right)=\frac{1}{r} \frac{\partial \mathfrak{A}}{\partial r}-\frac{\mathfrak{A}}{r^{2}}=C=0 \mathrm{wlog}
$$

- Then $-P(\theta)=\frac{1}{r^{2}} \frac{\partial^{2} \mathfrak{A}}{\partial \theta^{2}}+\frac{1}{r} \frac{\partial \mathfrak{A}}{\partial r}=\frac{1}{a^{2}}\left(\frac{\partial^{2} \mathfrak{A}}{\partial \theta^{2}}+\mathfrak{A}\right)$
- Finally we end up with the boundary conditions

$$
\frac{\partial \mathfrak{A}}{\partial r}=\frac{\mathfrak{A}}{a}, \quad \frac{\partial^{2} \mathfrak{A}}{\partial \theta^{2}}+\mathfrak{A}=-a^{2} P(\theta) \quad \text { at } r=a
$$

Plane strain in a disc

- We can express P as a Fourier series

$$
P(\theta)=\frac{A_{0}}{2}+\sum_{n=1}^{\infty} A_{n} \cos (n \theta)+B_{n} \sin (n \theta)
$$

- Try separable solution for \mathfrak{A} i.e. $\mathfrak{A}(r, \theta)=f(r) \cos / \sin (n \theta)$
- Then $\left(\frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r} \frac{\partial}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2}}{\partial \theta^{2}}\right)^{2} \mathfrak{A}=0$

$$
\Rightarrow \quad\left(\frac{\mathrm{d}^{2}}{\mathrm{~d} r^{2}}+\frac{1}{r} \frac{\mathrm{~d}}{\mathrm{~d} r}-\frac{n^{2}}{r^{2}}\right)^{2} f(r)=0
$$

- Cauchy-Euler equation - try $f(r)=r^{m} \ldots$

$$
\left(m^{2}-n^{2}\right)\left((m-2)^{2}-n^{2}\right)=0
$$

- Four roots $m= \pm n, m=2 \pm n$.
- NB special cases $n=0$ and $n=1$.

Plane strain in a disc

- $\mathfrak{A}=$ sum of separable solutions $\mathfrak{A}_{n}(r, \theta)=f_{n}(r) \cos / \sin (n \theta)$ with $f_{n}(r) \propto r^{m}$ and $m \in\{n, 2+n,-n, 2-n\}$.
- Start with the case $n \geq 2$.
- Stress bounded as $r \rightarrow 0 \Rightarrow$ reject final two roots i.e.

$$
f_{n}(r)=c_{1} r^{n}+c_{2} r^{n+2}
$$

- BCs $\frac{\partial \mathfrak{A}}{\partial r}=\frac{\mathfrak{A}}{a}, \quad \frac{\partial^{2} \mathfrak{A}}{\partial \theta^{2}}+\mathfrak{A}=-a^{2} P(\theta) \quad$ at $r=a$
- With $P_{n}(\theta)=A_{n} \cos (n \theta)$ we get

$$
f_{n}^{\prime}(a)=\frac{f_{n}(a)}{a}, \quad\left(1-n^{2}\right) f_{n}(a)=-a^{2} A_{n}
$$

- Solve simultaneous linear equations for c_{1} and c_{2}.

Plane strain in a disc

- Special case $n=0$
- $f_{0}(r) \propto r^{m}$ with $m=0$ (twice) and $m=2$ (twice)
- General solution $f_{0}(r)=c_{1}+c_{2} \log r+c_{3} r^{2}+c_{4} r^{2} \log r$ (stress bounded as $r \rightarrow 0$)
- With $P(\theta)=A_{0} / 2$ boundary conditions are

$$
f_{0}^{\prime}(a)=\frac{f_{0}(a)}{a}=-\frac{a A_{0}}{2}
$$

- Solution $f_{0}(r)=-\frac{A_{0}}{4}\left(r^{2}+a^{2}\right)$

Plane strain in a disc

- Special case $n=1$
- $f_{1}(r) \propto r^{m}$ with $m=1$ (twice), $m=-1$ and $m=3$
- General solution $f(r)=c_{4} r+c_{2} r \log r+c_{3} r^{-1}+c_{4} r^{3}$ (stress bounded as $r \rightarrow 0$)
- With $P(\theta)=A_{n} \cos (n \theta)$ recall boundary conditions

$$
f_{n}^{\prime}(a)=\frac{f_{n}(a)}{a}, \quad\left(1-n^{2}\right) f_{n}(a)=-a^{2} A_{n}
$$

- For $n=1$ we have a contradiction unless $A_{1}=0$ (and similarly $B_{1}=0$)
- Thus applied pressure must satisfy $\int_{0}^{2 \pi} P(\theta)\binom{\cos \theta}{\sin \theta} \mathrm{d} \theta=\mathbf{0}$ - a force balance

