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Plane strain

I Consider purely two-dimensional displacement

u =
(
u (x, y) , v (x, y) , 0

)T
I Steady momentum equation (body force g = (gx, gy, 0)

T)

∂τxx
∂x

+
∂τxy
∂y

= −ρgx,
∂τxy
∂x

+
∂τyy
∂y

= −ρgy.

I Stress components

τxx = λ

(
∂u

∂x
+
∂v

∂y

)
+ 2µ

∂u

∂x
,

τxy = µ

(
∂u

∂y
+
∂v

∂x

)
, τzz = λ

(
∂u

∂x
+
∂v

∂y

)
.

τyy = λ

(
∂u

∂x
+
∂v

∂y

)
+ 2µ

∂v

∂y
,



Compatibility

I Suppose we know the stress components τxx(x, y), τxy(x, y)
and τyy(x, y).

I Can we solve for the displacement
(
u(x, y), v(x, y)

)
?

Constitutive relations

τxx = λ

(
∂u

∂x
+
∂v

∂y

)
+ 2µ

∂u

∂x

τxy = µ

(
∂u

∂y
+
∂v

∂x

)
τyy = λ

(
∂u

∂x
+
∂v

∂y

)
+ 2µ

∂v

∂y

Over-determined system of 3
equations for 2 unknowns

(
u, v
)

The system is solvable for
(
u, v
)

only if stress comonents satisfy a
compatability condition

Obtain the compatibility condition by cross-differentiation. . .



Compatibility

τxx = λ

(
∂u

∂x
+
∂v

∂y

)
+ 2µ

∂u

∂x

τyy = λ

(
∂u

∂x
+
∂v

∂y

)
+ 2µ

∂v

∂y

 solve for
∂u

∂x
and

∂v

∂y

Then. . .

∂2τxy
∂x∂y

= µ
∂2

∂x∂y

(
∂u

∂y
+
∂v

∂x

)
= µ

(
∂2

∂y2
∂u

∂x
+

∂2

∂x2
∂v

∂y

)
Thus obtain compatibility condition

∂2τyy
∂x2

− ∂2τxy
∂x∂y

+
∂2τxx
∂y2

= ν∇2 (τxx + τyy)

Recall ν = Poisson’s ratio =
λ

2(λ+ µ)



Compatibility

∂2τyy
∂x2

− ∂2τxy
∂x∂y

+
∂2τxx
∂y2

= ν∇2 (τxx + τyy) (CC)

I If (CC) is satisfied, then we can solve constitutive relations for
u and v (given τxx, τxy, τyy).

I If (CC) is not satisfied, then the stress field is incompatible
with plane strain.

I If such a stress field existed in a linear elastic material, there
would be no possible displacement field that returns the stress
to zero. . .
I There would always be some unrelieved residual stress in the

material.



Airy stress function
In steady plane strain with no body force, the Navier equations

∂τxx
∂x

+
∂τxy
∂y

= 0
∂τxy
∂x

+
∂τyy
∂y

= 0

are satisfied identically if stress components take the forms

τxx =
∂2A

∂y2
, τxy = −

∂2A

∂x∂y
, τyy =

∂2A

∂x2

where A is a potential function called the Airy stress function.

I NB A is unique up to an arbitrary linear function of x and y
i.e. c0 + c1x+ c2y

I Substite into compatibility condition. . .A satisfies the
biharmonic equation

∇4A =

(
∂2

∂x2
+

∂2

∂y2

)2

A = 0



Boundary conditions

Suppose we want to solve for the stress inside a domain D subject
to a given traction σ on the boundary ∂D.

tangent t =
(
x′(s), y′(s)

)T
normal n =

(
y′(s),−x′(s)

)T
s = arc-length

Boundary condition T n = σ

⇒

 ∂2A
∂y2

− ∂2A
∂x∂y

− ∂2A
∂x∂y

∂2A
∂x2

( y′(s)

−x′(s)

)
= σ

⇒ d

ds

(
∂A
∂y

−∂A
∂x

)
= σ

�
∂�

�
�

�

�

NB solvability condition∮
∂D
σ ds = 0



Boundary conditions

d

ds

(
∂A
∂y

−∂A
∂x

)
= σ(s) ⇒

(
∂A
∂y

−∂A
∂x

)
=

∫
σ(s) ds = f(s), say

⇒ dA

ds
= f · n, ∂A

∂n
= −f · t,

which amounts to specifying A and ∂A/∂n on ∂D.



Homogeneous boundary conditions

If there is no applied traction (σ = 0) then(
∂A
∂y

−∂A
∂x

)
= constant = 0 without loss of generality

since A is only defined up to a linear function of (x, y).

Dot with t and n again to get. . .
dA

ds
=
∂A

∂n
= 0 on ∂D

So A = constant = 0 wlog i.e.

A =
∂A

∂n
= 0 on ∂D

It can be shown that ∇4A = 0 in D subject to these BCs gives the
trivial solution A ≡ 0.

i.e. stress inside D is uniquely determined by boundary traction σ.



Example — plane strain in a disc

I In plane polar coordinates, stress components are related to
Airy stress function by (see Problem Sheet 2)

τrr =
1

r2
∂2A

∂θ2
+

1

r

∂A

∂r
, τrθ = −

∂

∂r

(
1

r

∂A

∂θ

)
, τθθ =

∂2A

∂r2
.

I Biharmonic eqn ∇4A =

(
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2

)2

A = 0

I Consider plane strain in the disc 0 ≤ r < a subject to an
applied pressure P (θ) at r = a, i.e.

∂

∂r

(
1

r

∂A

∂θ

)
= 0 at r = a

1

r2
∂2A

∂θ2
+

1

r

∂A

∂r
= −P (θ) at r = a

�(θ)

�



Plane strain in a disc

I Biharmonic equation

(
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2

)2

A = 0

I Simplify boundary conditions at r = a. . .

∂

∂r

(
1

r

∂A

∂θ

)
= 0 ⇒ ∂

∂r

(
A

r

)
=

1

r

∂A

∂r
−A

r2
= C = 0 wlog

I Then −P (θ) = 1

r2
∂2A

∂θ2
+

1

r

∂A

∂r
=

1

a2

(
∂2A

∂θ2
+ A

)
I Finally we end up with the boundary conditions

∂A

∂r
=

A

a
,

∂2A

∂θ2
+ A = −a2P (θ) at r = a



Plane strain in a disc
I We can express P as a Fourier series

P (θ) =
A0

2
+

∞∑
n=1

An cos(nθ) +Bn sin(nθ)

I Try separable solution for A i.e. A(r, θ) = f(r) cos / sin(nθ)

I Then

(
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2

)2

A = 0

⇒
(

d2

dr2
+

1

r

d

dr
− n2

r2

)2

f(r) = 0

I Cauchy–Euler equation — try f(r) = rm. . .(
m2 − n2

) (
(m− 2)2 − n2

)
= 0

I Four roots m = ±n, m = 2± n.
I NB special cases n = 0 and n = 1.



Plane strain in a disc

I A = sum of separable solutions An(r, θ) = fn(r) cos / sin(nθ)
with fn(r) ∝ rm and m ∈ {n, 2 + n, −n, 2− n}.

I Start with the case n ≥ 2.

I Stress bounded as r → 0 ⇒ reject final two roots i.e.

fn(r) = c1r
n + c2r

n+2

I BCs
∂A

∂r
=

A

a
,

∂2A

∂θ2
+ A = −a2P (θ) at r = a

I With Pn(θ) = An cos(nθ) we get

f ′n(a) =
fn(a)

a
,
(
1− n2

)
fn(a) = −a2An

I Solve simultaneous linear equations for c1 and c2.



Plane strain in a disc

I Special case n = 0

I f0(r) ∝ rm with m = 0 (twice) and m = 2 (twice)

I General solution f0(r) = c1 +����c2 log r + c3r
2 +�����

c4r
2 log r

(stress bounded as r → 0)

I With P (θ) = A0/2 boundary conditions are

f ′0(a) =
f0(a)

a
= −aA0

2

I Solution f0(r) = −
A0

4

(
r2 + a2

)



Plane strain in a disc

I Special case n = 1

I f1(r) ∝ rm with m = 1 (twice), m = −1 and m = 3

I General solution f(r) =��c1r +����c2r log r +�
��

c3r
−1 + c4r

3

(stress bounded as r → 0)

I With P (θ) = An cos(nθ) recall boundary conditions

f ′n(a) =
fn(a)

a
,
(
1− n2

)
fn(a) = −a2An

I For n = 1 we have a contradiction unless A1 = 0
(and similarly B1 = 0)

I Thus applied pressure must satisfy

∫ 2π

0
P (θ)

(
cos θ
sin θ

)
dθ = 0

— a force balance


