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Elastic waves

I Recall the unsteady Navier equation (no body force)

ρ
∂2u

∂t2
= (λ+ µ) grad divu+ µ∇2u

I Seek travelling harmonic wave solutions of the form

u(x, t) = a exp
[
i (k · x− ωt)

]
(NB real part assumed)

a = (complex) amplitude

ω = frequency

k = wave-vector

|k| = wavenumber =
2π

wavelength
k

|k|
= wave propagation direction

c =
ω

|k|
= wave-speed



Elastic waves

I Plug u(x, t) = aei(k·x−ωt) into unsteady Navier equation.

I There are two distinct types of solution (Problem sheet 2)

(i) P-waves

“Primary” or “Pressure” waves

I Longitudinal waves with
a× k = 0, i.e.

u = Akei(k·x−ωt)

I P-wave speed

ω

|k|
= cp =

√
λ+ 2µ

ρ

(ii) S-waves

“Secondary” or “Shear” waves

I Transverse waves with
a · k = 0, i.e.

u = (B × k)ei(k·x−ωt)

I S-wave speed

ω

|k|
= cs =

√
µ

ρ



P-waves and S-waves
P-wave speed S-wave speed

cp =

√
λ+ 2µ

ρ
> cs =

√
µ

ρ



Wave reflection

I Solid occupies half-space x < 0 with a
straight rigid boundary at x = 0.

I P-wave travels towards the boundary
making incident angle α.

I NB can generalise, e.g. incident S-wave or
stress-free instead of rigid boundary.

Incident wave-field

uinc =

(
cosα
sinα

)
eikp(x cosα+y sinα)−iωt

�  �

α

�

�

�

(
cosα
sinα

)
= direction vector kp

(
cosα
sinα

)
= wave-vector

amplitude = 1 (wlog) kp =
ω

cp
=

ω√
(λ+ 2µ)/ρ



Wave reflection
I Now include reflected wave-field uref s. t.

u = uinc + uref = 0 at x = 0 (?)

I uref must consist of both P-wave and
S-wave to satisfy both components of (?).

I Consider P- and S- waves making
reflected angle γ and β, respectively.

uref = rp

(
− cos γ
sin γ

)
eikp(−x cos γ+y sin γ)−iωt

+ rs

(
sinβ
cosβ

)
eiks(−x cosβ+y sinβ)−iωt �  �

α

�

γ

�

β γ

�

�

�

wave-vectors = kp

(
− cos γ
sin γ

)
and ks

(
− cosβ
sinβ

)
ks =

ω

cs
=

ω√
µ/ρ

rp, rs = reflection coefficients



Wave reflection

Now impose u = uinc + uref = 0 at x = 0 (NB eiωt is a factor)(
cosα
sinα

)
eikpy sinα + rp

(
− cos γ
sin γ

)
eikpy sin γ + rs

(
sinβ
cosβ

)
eiksy sinβ = 0

I Must hold ∀y so exponents must agree

I Therefore P-wave reflection is specular

γ = α

I S-wave reflection satisfies Snell’s law

sinβ

cs
=

sinα

cp
(cs < cp)

I Then solve 2× 2 linear system for (rp, rs)

I Mode conversion — boundaries convert
pure P- or S-wave to combination of both.
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Love waves

I Example of wave propagation in a layered elastic medium. . .

I e.g. an underground coal seam.

µ1, ρ1

µ2, ρ2

µ2, ρ2

x

y

h

−h
“rock”

“rock”

“coal”

I Consider antiplane
displacement

u =

 0
0

w(x, y, t)



I Unsteady Navier equation ⇒ w satisfies the wave equation

ρ

µ

∂2w

∂t2
=

1

c2s

∂2w

∂t2
= ∇2w =

∂2w

∂x2
+
∂2w

∂y2



Love waves

µ1, ρ1

µ2, ρ2

µ2, ρ2

x

y

h

−h
“rock”

“rock”

“coal”

1

c2s1

∂2w

∂t2
= ∇2w, |y| < h

1

c2s2

∂2w

∂t2
= ∇2w, |y| > h

csi =

√
µi
ρi

I Continuity of displacement and stress at boundaries:

w1 = w2, µ1
∂w1

∂y
= µ2

∂w2

∂y
at y = ±h.



Love waves

Seek travelling-wave solutions wi(x, y, t) = fi (y) e
i(kx−ωt)

Suppose displacement is sinusoidal in coal seam and decays
exponentially at infinity:

µ1, ρ1

µ2, ρ2

µ2, ρ2

x

y

h

−h
“rock”

“rock”

“coal”

f1(y) = A1 cos(my) +B1 sin(my)

− h < y < h

f2(y) = A2e
−`y y > h

f2(y) = B2e
`y y < −h

The seam acts as a waveguide, propagating waves in the
x-direction without energy radiating to ∞.



Love waves

I Substitute assumed solution into the wave equation to get. . .

ω2 = c2s1
(
k2 +m2

)
= c2s2

(
k2 − `2

)
I Love waves travel at a wave-speed cL satisfying. . .

ω2

k2
= c2L = c2s1

(
1 +

m2

k2

)
= c2s2

(
1− `2

k2

)

I Such waves exist provided cs1 < cL < cs2 i.e. coal must be
slower than rock.



Love waves

I Apply boundary conditions
[
f
]+
− =

[
µf ′
]+
− = 0 at y = ±h

I Solutions for f(y) can be either even or odd. . .

I Even solution: B1 = 0, B2 = A2

I Odd solution: A1 = 0, B2 = −A2

µ1, ρ1

µ2, ρ2

µ2, ρ2

x

y

h

−h
“rock”

“rock”

“coal”

f1(y) = A1 cos(my) |y| < h

f2(y) = A2e
−`y y > h

f2(y) = A2e
`y y < −h

Even modes: Odd modes:
µ1m tanmh = µ2` µ1m cotmh = −µ2`



Love waves

I Transcendental equation relating m and `:

µ2`

µ1m
=

tan(mh) even modes

− cot(mh) odd modes

I Simplest case: µ2/µ1 →∞ i.e. rock much harder than coal.

I Then mh = (n+ 1)π/2 where n ∈ Z≥0;

n is odd for odd modes and even for even modes.

I Then
ω2

k2
= c2L = c2s1

(
1 +

(n+ 1)2π2

4h2k2

)
I Love waves are dispersive — cL varies with k.

I Note cut-off frequency ω > ωc =
πcs1
2h

waves cannot propagate without attenuation if ω < ωc


