C5.2 Elasticity and Plasticity

Lecture 6 - Elastic waves

Peter Howell

howell@maths.ox.ac.uk

Hilary Term 2021

Elastic waves

- Recall the unsteady Navier equation (no body force)

$$
\rho \frac{\partial^{2} \boldsymbol{u}}{\partial t^{2}}=(\lambda+\mu) \operatorname{grad} \operatorname{div} \boldsymbol{u}+\mu \nabla^{2} \boldsymbol{u}
$$

- Seek travelling harmonic wave solutions of the form

$$
\boldsymbol{u}(\boldsymbol{x}, t)=\boldsymbol{a} \exp [\mathrm{i}(\boldsymbol{k} \cdot \boldsymbol{x}-\omega t)] \quad \text { (NB real part assumed) }
$$

$\boldsymbol{a}=$ (complex) amplitude

$$
|\boldsymbol{k}|=\text { wavenumber }=\frac{2 \pi}{\text { wavelength }}
$$

$\omega=$ frequency
$\boldsymbol{k}=$ wave-vector
$\frac{\boldsymbol{k}}{|\boldsymbol{k}|}=$ wave propagation direction
$c=\frac{\omega}{|\boldsymbol{k}|}=$ wave-speed

Elastic waves

- Plug $\boldsymbol{u}(\boldsymbol{x}, t)=\boldsymbol{a} \mathrm{e}^{\mathrm{i}(\boldsymbol{k} \cdot \boldsymbol{x}-\omega t)}$ into unsteady Navier equation.
- There are two distinct types of solution (Problem sheet 2)
(i) P -waves
"Primary" or "Pressure" waves
- Longitudinal waves with $\boldsymbol{a} \times \boldsymbol{k}=0$, i.e.

$$
\boldsymbol{u}=A \boldsymbol{k} \mathrm{e}^{\mathrm{i}(\boldsymbol{k} \cdot \boldsymbol{x}-\omega t)}
$$

- P-wave speed

$$
\frac{\omega}{|\boldsymbol{k}|}=c_{\mathrm{p}}=\sqrt{\frac{\lambda+2 \mu}{\rho}}
$$

(ii) S-waves
"Secondary" or "Shear" waves

- Transverse waves with $\boldsymbol{a} \cdot \boldsymbol{k}=\mathbf{0}$, i.e.

$$
\boldsymbol{u}=(\boldsymbol{B} \times \boldsymbol{k}) \mathrm{e}^{\mathrm{i}(\boldsymbol{k} \cdot \boldsymbol{x}-\omega t)}
$$

- S-wave speed

$$
\frac{\omega}{|\boldsymbol{k}|}=c_{\mathrm{s}}=\sqrt{\frac{\mu}{\rho}}
$$

P-waves and S-waves

P-wave speed

S-wave speed

$$
c_{\mathrm{p}}=\sqrt{\frac{\lambda+2 \mu}{\rho}}
$$

$$
c_{\mathrm{s}}=\sqrt{\frac{\mu}{\rho}}
$$

(2) The first P waves arrive
a little over 2 minutes later.
(3) The first S waves arrive 4 minutes later.

(4) The surface waves, which travel the long way around Earth's surface, arrive last.
(5) The S-P interval, here slightly less than 2 minutes, tells the seismologist how far away the earthquake was.

Wave reflection

- Solid occupies half-space $x<0$ with a straight rigid boundary at $x=0$.
- P-wave travels towards the boundary making incident angle α.
- NB can generalise, e.g. incident S-wave or stress-free instead of rigid boundary.
Incident wave-field

$$
\boldsymbol{u}_{\text {inc }}=\binom{\cos \alpha}{\sin \alpha} \mathrm{e}^{\mathrm{i} k_{\mathrm{p}}(x \cos \alpha+y \sin \alpha)-\mathrm{i} \omega t}
$$

$\binom{\cos \alpha}{\sin \alpha}=$ direction vector

$$
\text { amplitude }=1 \text { (wlog) }
$$

$$
\begin{aligned}
& k_{\mathrm{p}}\binom{\cos \alpha}{\sin \alpha}=\text { wave-vector } \\
& k_{\mathrm{p}}=\frac{\omega}{c_{\mathrm{p}}}=\frac{\omega}{\sqrt{(\lambda+2 \mu) / \rho}}
\end{aligned}
$$

Wave reflection

- Now include reflected wave-field $\boldsymbol{u}_{\text {ref }}$ s. t.

$$
\boldsymbol{u}=\boldsymbol{u}_{\text {inc }}+\boldsymbol{u}_{\text {ref }}=\mathbf{0} \text { at } x=0
$$

- $\boldsymbol{u}_{\text {ref }}$ must consist of both P-wave and S-wave to satisfy both components of (\star).
- Consider P - and S - waves making reflected angle γ and β, respectively.

$$
\begin{aligned}
\boldsymbol{u}_{\text {ref }}= & r_{\mathrm{p}}\binom{-\cos \gamma}{\sin \gamma} \mathrm{e}^{\mathrm{i} k_{\mathrm{p}}(-x \cos \gamma+y \sin \gamma)-\mathrm{i} \omega t} \\
& +r_{\mathrm{s}}\binom{\sin \beta}{\cos \beta} \mathrm{e}^{\mathrm{i} k_{\mathrm{s}}(-x \cos \beta+y \sin \beta)-\mathrm{i} \omega t}
\end{aligned}
$$

$$
\text { wave-vectors }=k_{\mathrm{p}}\binom{-\cos \gamma}{\sin \gamma} \quad \text { and } \quad k_{\mathrm{s}}\binom{-\cos \beta}{\sin \beta}
$$

$$
k_{\mathrm{s}}=\frac{\omega}{c_{s}}=\frac{\omega}{\sqrt{\mu / \rho}}
$$

$r_{\mathrm{p}}, r_{\mathrm{s}}=$ reflection coefficients

Wave reflection

Now impose $\boldsymbol{u}=\boldsymbol{u}_{\text {inc }}+\boldsymbol{u}_{\text {ref }}=\mathbf{0}$ at $x=0$ (NB $\mathrm{e}^{\mathrm{i} \omega t}$ is a factor)

$$
\binom{\cos \alpha}{\sin \alpha} \mathrm{e}^{\mathrm{i} k_{\mathrm{p}} y \sin \alpha}+r_{\mathrm{p}}\binom{-\cos \gamma}{\sin \gamma} \mathrm{e}^{\mathrm{i} k_{\mathrm{p}} y \sin \gamma}+r_{\mathrm{s}}\binom{\sin \beta}{\cos \beta} \mathrm{e}^{\mathrm{i} k_{\mathrm{s}} y \sin \beta}=\mathbf{0}
$$

- Must hold $\forall y$ so exponents must agree
- Therefore P-wave reflection is specular

$$
\gamma=\alpha
$$

- S-wave reflection satisfies Snell's law

$$
\frac{\sin \beta}{c_{\mathrm{s}}}=\frac{\sin \alpha}{c_{\mathrm{p}}} \quad\left(c_{\mathrm{s}}<c_{\mathrm{p}}\right)
$$

- Then solve 2×2 linear system for $\left(r_{\mathrm{p}}, r_{\mathrm{s}}\right)$
- Mode conversion - boundaries convert pure P - or S -wave to combination of both.

Love waves

- Example of wave propagation in a layered elastic medium...
- e.g. an underground coal seam.

- Consider antiplane displacement

$$
\boldsymbol{u}=\left(\begin{array}{c}
0 \\
0 \\
w(x, y, t)
\end{array}\right)
$$

- Unsteady Navier equation $\Rightarrow w$ satisfies the wave equation

$$
\frac{\rho}{\mu} \frac{\partial^{2} w}{\partial t^{2}}=\frac{1}{c_{\mathbf{s}}^{2}} \frac{\partial^{2} w}{\partial t^{2}}=\nabla^{2} w=\frac{\partial^{2} w}{\partial x^{2}}+\frac{\partial^{2} w}{\partial y^{2}}
$$

Love waves

$$
\begin{aligned}
\frac{1}{c_{\mathrm{s} 1}^{2}} \frac{\partial^{2} w}{\partial t^{2}} & =\nabla^{2} w, \quad|y|<h \\
\frac{1}{c_{\mathbf{s} 2}^{2}} \frac{\partial^{2} w}{\partial t^{2}} & =\nabla^{2} w, \quad|y|>h \\
c_{\mathrm{s} i} & =\sqrt{\frac{\mu_{i}}{\rho_{i}}}
\end{aligned}
$$

- Continuity of displacement and stress at boundaries:

$$
w_{1}=w_{2}, \quad \mu_{1} \frac{\partial w_{1}}{\partial y}=\mu_{2} \frac{\partial w_{2}}{\partial y} \quad \text { at } \quad y= \pm h
$$

Love waves

Seek travelling-wave solutions $w_{i}(x, y, t)=f_{i}(y) \mathrm{e}^{\mathrm{i}(k x-\omega t)}$
Suppose displacement is sinusoidal in coal seam and decays exponentially at infinity:

The seam acts as a waveguide, propagating waves in the x-direction without energy radiating to ∞.

Love waves

- Substitute assumed solution into the wave equation to get. . .

$$
\omega^{2}=c_{\mathrm{s} 1}^{2}\left(k^{2}+m^{2}\right)=c_{\mathrm{s} 2}^{2}\left(k^{2}-\ell^{2}\right)
$$

- Love waves travel at a wave-speed c_{L} satisfying. . .

$$
\frac{\omega^{2}}{k^{2}}=c_{\mathrm{L}}^{2}=c_{\mathrm{s} 1}^{2}\left(1+\frac{m^{2}}{k^{2}}\right)=c_{\mathrm{s} 2}^{2}\left(1-\frac{\ell^{2}}{k^{2}}\right)
$$

- Such waves exist provided $c_{\mathrm{s} 1}<c_{\mathrm{L}}<c_{\mathrm{s} 2}$ i.e. coal must be slower than rock.

Love waves

- Apply boundary conditions $[f]_{-}^{+}=\left[\mu f^{\prime}\right]_{-}^{+}=0$ at $y= \pm h$
- Solutions for $f(y)$ can be either even or odd...
- Even solution: $B_{1}=0, B_{2}=A_{2}$
- Odd solution: $A_{1}=0, B_{2}=-A_{2}$

$$
\begin{array}{ll}
f_{1}(y)=A_{1} \cos (m y) & |y|<h \\
f_{2}(y)=A_{2} \mathrm{e}^{-\ell y} & y>h \\
f_{2}(y)=A_{2} \mathrm{e}^{\ell y} & y<-h
\end{array}
$$

Even modes:

$$
\mu_{1} m \tan m h=\mu_{2} \ell
$$

$$
\mu_{1} m \cot m h=-\mu_{2} \ell
$$

Love waves

- Transcendental equation relating m and ℓ :

$$
\frac{\mu_{2} \ell}{\mu_{1} m}= \begin{cases}\tan (m h) & \text { even modes } \\ -\cot (m h) & \text { odd modes }\end{cases}
$$

- Simplest case: $\mu_{2} / \mu_{1} \rightarrow \infty$ i.e. rock much harder than coal.
- Then $m h=(n+1) \pi / 2$ where $n \in \mathbb{Z}_{\geq 0}$;
n is odd for odd modes and even for even modes.
- Then $\frac{\omega^{2}}{k^{2}}=c_{\mathrm{L}}^{2}=c_{\mathrm{s} 1}^{2}\left(1+\frac{(n+1)^{2} \pi^{2}}{4 h^{2} k^{2}}\right)$
- Love waves are dispersive $-c_{\mathrm{L}}$ varies with k.
- Note cut-off frequency $\omega>\omega_{c}=\frac{\pi c_{\mathrm{s} 1}}{2 h}$ waves cannot propagate without attenuation if $\omega<\omega_{c}$

