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Nonlinear beam theory

I Now drop assumption of small transverse displacement.

I For simplicity neglect body force and assume steady state.

Describe shape of beam by angle
θ(s) where s is arc-length.

If we solve for θ(s), can recover
shape of beam using. . .

θ(�)

�

�

dx

ds
= cos θ

dz

ds
= sin θ



Nonlinear beam theory

I Again consider a small segment [s, s+ δs]:

Now define shear force N in
normal direction.

(when θ = O(1) it makes a
difference. . . )
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Figure 6.6: (a) Schematic of the forces and moments acting on a small segment of a beam.
(b) Definition sketch showing the sign convention for the forces at the ends of the beam.

6.3.4 Waves on a beam

For the dynamic beam equation (6.13) with g = 0, we can seek travelling-wave solutions of
the form

u = A exp
�
i(kx � !t)

�
, (6.20)

where the real part is assumed as usual, and hence obtain the dispersion relation

%!2 = EIk4 + Tk2. (6.21)

Elastic waves on a beam are therefore dispersive, unlike P -waves, S -waves or waves on a
string. This should not come as too much of a surprise, since we have already discovered that
elastic waves are usually dispersive when boundaries are present.

For a beam under positive tension T > 0, waves with frequency ! can thus propagate
with wavelength 2⇡/k provided

!

k
=

s
T

%

✓
1 +

EIk2

T

◆1/2

. (6.22)

Evidently this reduces to the dispersion relation for a string if the waves are long, with
k ⌧

p
T/EI. For a beam under compression, with P = �T > 0, wave-like solutions of

(6.13) exist only if k2 > P/EI. For smaller values of k, (6.21) leads to complex values of
!, corresponding to solutions that grow exponentially in time. It follows that the beam is
unstable to waves with wavelength larger than 2⇡

p
EI/P , and we will investigate this further

in §6.4.5.

6.4 Nonlinear beam theory

6.4.1 Derivation of the model

In equilibrium, it is surprisingly easy to generalise our derivation of linear beam theory in
§6.3 to model large two-dimensional transverse displacements. We describe the deformation

I Force and moment balances give. . .

d

ds

(
T cos θ −N sin θ

)
= 0

dM

ds
= N

d

ds

(
T sin θ +N cos θ

)
= 0



Nonlinear beam theory

I Integrate with respect to s. . .

T cos θ −N sin θ = T0

= horizontal applied force

T sin θ +N cos θ = N0

= vertical applied force

I Invert to get. . .
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Evidently this reduces to the dispersion relation for a string if the waves are long, with
k ⌧

p
T/EI. For a beam under compression, with P = �T > 0, wave-like solutions of

(6.13) exist only if k2 > P/EI. For smaller values of k, (6.21) leads to complex values of
!, corresponding to solutions that grow exponentially in time. It follows that the beam is
unstable to waves with wavelength larger than 2⇡

p
EI/P , and we will investigate this further

in §6.4.5.

6.4 Nonlinear beam theory

6.4.1 Derivation of the model

In equilibrium, it is surprisingly easy to generalise our derivation of linear beam theory in
§6.3 to model large two-dimensional transverse displacements. We describe the deformation

T = T0 cos θ +N0 sin θ N = N0 cos θ − T0 sin θ =
dM

ds

I Close with constitutive relation M = −Bdθ

ds
(B = EI)

I Euler–Bernoulli beam equation

B
d2θ

ds2
+N0 cos θ − T0 sin θ = 0



Nonlinear beam theory

B
d2θ

ds2
+N0 cos θ − T0 sin θ = 0

I Four BCs needed in general — two for 2nd order ODE plus
two more to determine T0 and N0.

I Examples:

(a) Clamping — specify θ
(b) Zero moment (simple support) — dθ/ds = 0
(c) Specify displacement — specify

X =

∫ L

0

cos θ ds, Z =

∫ L

0

sin θ ds



Weakly nonlinear theory and buckling

I Consider same setup as before: beam of length L subject to
compressive force P and zero transverse force, clamped ends.

L

P P

I Set T0 = −P and N0 = 0 — nonlinear beam equation and
clamped boundary conditions become

d2θ

ds2
+
P

B
sin θ = 0 θ(0) = θ(L) = 0

I NB trivial solution θ(s) = 0 always works.

I If |θ| � 1 then sin θ ∼ θ −→ same eigenvalue problem

θ(s) = A sin
(nπs
L

)
⇐⇒ PL2

π2B
= n2 (n = 1, 2, · · · )



Weakly nonlinear theory and buckling

d2θ

ds2
+
P

B
sin θ = 0 θ(0) = θ(L) = 0

I Now assume θ is small but not infinitesimal.

I Set θ = δΘ with 0 < δ � 1.

I Also suppose applied compression is close to critical value, i.e.

λ =
PL2

π2B
= 1 + ελ1 also with 0 < ε� 1.

I Also non-dimensionalise s = Lξ so problem becomes. . .

d2Θ

dξ2
+ π2(1 + ελ1)

sin(δΘ)

δ
= 0 Θ(0) = Θ(1) = 0

I NB
sin(δΘ)

δ
∼ Θ− δ2Θ3

6
+ · · · as δ → 0



Weakly nonlinear theory and buckling

d2Θ

dξ2
+ π2(1 + ελ1)

(
Θ− δ2Θ3

6
+ · · ·

)
= 0

Θ(0) = Θ(1) = 0

I The problem contains two small parameters:
I δ measures amplitude of beam deformation
I ε measures excess loading

I To get a weakly nonlinear theory we balance these effects by

choosing δ =
√
ε

d2Θ

dξ2
+ π2

[
Θ + ε

(
λ1Θ−

Θ3

6

)
+O

(
ε2
)]

= 0

I Now write solution as an asymptotic expansion
Θ ∼ Θ0 + εΘ1 + · · · as ε→ 0.



Weakly nonlinear theory and buckling

I Now equate coefficients of different powers of ε.

I At O(1):

d2Θ0

dξ2
+ π2Θ0 = 0 Θ0(0) = Θ0(1) = 0

I This is the problem we already solved: Θ0(ξ) = A0 sin(πξ)

where A0 is arbitrary

I At O(ε):

d2Θ1

dξ2
+ π2Θ1 = π2

(
Θ3

0

6
− λ1Θ0

)
Θ1(0) = Θ1(1) = 0

I Homogeneous problem has nontrivial solution Θ1(ξ) = sin(πξ)

I By Fredholm Alternative inhomogeneous problem has no
solution unless RHS satisfies solvability condition



Weakly nonlinear theory and buckling

I Solvability condition for Θ1:

∫ 1

0

(
Θ3

0

6
− λ1Θ0

)
sin(πξ) dξ = 0

I Plug in Θ0(ξ) = A0 sin(πξ) to get amplitude equation

A0

(
A2

0 − 8λ1
)

= 0

I NB sin3 Θ ≡ 3

4
sin Θ− 1

4
sin(3Θ)

I If solvability condition is not satisfied, then it is impossible to
satisfy the BCs Θ1(0) = Θ1(1) = 0.



Weakly nonlinear theory and buckling

A0

(
A2

0 − 8λ1
)

= 0

Response diagram

Pitchfork bifurcation

λ1 < 0 ⇒ one solution for A0

λ1 > 0 ⇒ three solutions for A0

λ�

��

λ�

��

I When amplitude A0 is infinitesimal. . .

I Weakly nonlinear theory explains counterintuitive behaviour
found before.



Weakly nonlinear theory and buckling

λ�

��

λ�

��

I NB pitchfork bifurcation can occur only when there is perfect
symmetry.

I If there is small asymmetry (e.g. gravity) then. . .

I Always buckles downwards unless forced onto upper branch
(Problem sheet 3).


