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Contact of an elastic string

» Consider an elastic string stretched to a tension 1" above a
smooth obstacle given by z = f(z).

» Under an imposed body force p(x) the string deforms until it
makes contact with the obstacle
String is either in contact

Ll p(x)[ L] X w(:v) :f(:L’)

7 = w(x)

or out of contact

z=f(x) Tw"(z) = p(x)

» The contact set is unknown in advance and must be solved for
as part of the problem.

» This is a free boundary problem — the free boundary is the
edge of the contact set (“codimension two”).



Contact

[ p(x)l L1l X w(x) :f(ac)
= wx) No contact
o= T (x) = pla)

» At boundary of contact set continuity and a force balance give
continuity conditions (Problem sheet 3)




Example

» Consider simple case where:
» Obstacle is flat surface ‘
lincreasmg 4

z=f(x)=0 ]
» Ends of string fixed at

w(£l) =1

» Uniform body force

» First consider no contact | w”(z) = % with w(£1) = 1 gives
p 2
w(af;)zl—ﬁ(l—x)

P> As p increases, contact first occurs at x = 0 when



Example, continued

» For p > 2T, introduce contact set —s < x < s
(NB symmetry helps here!)

<

In s <z <1 we have to solve

w”(:z:):T s<z<l1
w(z) =1 =1
w(x) =w'(r) =0 =5

s=1—4/—| forp>2T

» NB s=0when p=2T and s = 1 as p/T —



Non-uniqueness

» Although the differential equation is linear, the free
boundary problem (solving for s as well) is nonlinear.
» We can get non-uniqueness of solution.
» For example, take p = 0 and a non-convex obstacle with
boundary conditions w(+1) = 0.

b4 » Solve when not in

contact.

» Tangency at points where
contact is made with
N obstacle.
iy 1
I ‘\ » There are at least 3 different
possibilities.




Non-uniqueness

N

X

[ \

» Possibility 1: i.e. no contact at all.

» This solution is clearly unphysical.
» Eliminate by imposing additional constraint of non-penetration

w(z) > f(z)| everywhere.



Non-uniqueness

Two remaining possibilities. . .

» Which is correct?




Non-uniqueness

P In contact set, obstacle applies reaction force R to string. ..

[

<

p(x)

|

R(x)

R = 0 in non-contact set
R > 0 in contact set

» Additional constraint | Tw” — p < 0| eliminates possibility

<




Full contact problem

Altogether we have. ..

either contact or non-contact
Tw" —p<0 Tw" —p=0

with equalities on both sides at “switch points”

» Express whole problem as a linear complementarity problem
(w—f) (Tw" —p) =0

(w—f)>0 (LCP))

(Tw” —p) <0

with w and w’ continuous everywhere.



Variational formulation

» For simplicity impose simple boundary conditions |w(+1) =0
» Then solution w(z) must lie in the space of continuously

differentiable functions that satisfy the boundary conditions
and the non-penetration constraint: w € V where. ..

V={vecl'-1,1]:v> fiv(-1) = v(1) =0}

» Claim: solution w to the linear complementarity problem

((LCP)) is the member of V that minimises an energy

functional. . .



Variational formulation

Note from () forany v e V...
1
0= / (w—f)(p—Tw”)dx

-1

[T + o 1) o T

-1

1

:/ Tw“(v—w) +p(w—v) + (U—f)(p—Tw”) dx

] ———r
by parts (careful!)

1
:/ Tw' (w' —v') +p(w—v)+ (v—f) (p—Tw") d
1 HZ’O—/T

so we get the variational inequality

/1Tw'(v'—w')de/lp(w—v)dx Yo eV (V1))

-1 -1




Variational formulation

(w—f)>0 (LCP))

/1Tw’(w'—v')da:Z/lp(w—v)dxVUGV (V1))

-1 —1

Exercise: show that () implies ()




Variational formulation

/1Tw’(w'—v’)de/lp(w—fu)d:cVUEV (Vi)

-1 -1

Exercise: show that ((VI]) is equivalent to ’L{[w} <U]Ywve V‘

where | U[v] = / 1 <;Tv’(x)2+ pv(az)) dz

-1

» Uv] represents the net elastic and potential energy associated
with a displacement v(z).

» w is the element of V that minimises U.



Contact of other thin solids

e.g. 1 — contact of a beam

» In non-contact set, displacement satisfies the beam equation

Tw"(z) — Bw" (z) = p(z)

» Force and moment balance give continuity of w, w’ and w' at
“switch points”.

» Again can be reformulated as a minimisation problem,
namely. ..

1
1 1
mi%/ <2Tw’(x)2 + EBw"(x)2 —|—p(m)w(m)> dz
usy ! ——

bending energy



Contact of other thin solids

e.g. 2 — contact of an elastic membrane
Z

» Obstacle z = f(z,y);
displacement z = w(z, y);
body force = p(x,y).

» Displacement satisfies

TV?w=p non-contact

{w =f contact

» continuity of w and Vw
» plus inequalities w > f, TV?w — p < 0 everywhere.
» Corresponding minimisation problem

min // ( T]Vw]2+pw) dady
wECl



Example — indentation of a circular membrane

Z . _
» Push axisymmetric indenter

indenter a distance § into circular
¢6 membrane of radius L.

L

» By measuring corresponding
force we can infer the
tension in the membrane.

y

» Axisymm. displacement w(r) fixed at boundary so | w(L) =0 |
> Neglect gravity p = 0 so w satisfies. . .

1d d
Viw=|-— r—w = 0| when not in contact.
rdr dr

1 1
» E.g. parabolic indenter | f(r) = —6 + §I€T2 with § < §I€L2




Example — indentation of a circular membrane

z Say non-contact set is s < r < L:

1

L ()

%) rdr dr
r 'U}(L) =
s () L 9
Y w(s) = f(s) = =0+ ks"/2

w'(s) = f'(s) = rs

> Integrate to get w(r) = ks’ log (£>

» Size of contact set s and indentation distance § satisfy

2 L
§ =" + ks? log <>
2 S

» NBO<§<kL?/2for0<s<L




Example — indentation of a circular membrane

Now calculate corresponding force: F = / TV?w dzdy
contact
se

1.0

o
®

S

F=27T/ T-(2k)-rdr
0

e,

2 L
Recall & = % + ks?log (§>

o
>

F/Q2nkL*T)

o
[N

0= r 1-1 r
- 47I'T 8 27TKZTL2 %0 0.2 0.4 06 08
26/ (xL?)




