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Contact of an elastic string

I Consider an elastic string stretched to a tension T above a
smooth obstacle given by z = f(x).

I Under an imposed body force p(x) the string deforms until it
makes contact with the obstacle
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String is either in contact

w(x) = f(x)

or out of contact

Tw′′(x) = p(x)

I The contact set is unknown in advance and must be solved for
as part of the problem.

I This is a free boundary problem — the free boundary is the
edge of the contact set (“codimension two”).
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� Contact

w(x) = f(x)

No contact

Tw′′(x) = p(x)

I At boundary of contact set continuity and a force balance give
continuity conditions (Problem sheet 3)[
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Example

I Consider simple case where:
I Obstacle is flat surface

z = f(x) = 0

I Ends of string fixed at

w(±1) = 1

I Uniform body force

p = constant
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I First consider no contact w′′(x) =
p

T
with w(±1) = 1 gives

w(x) = 1− p

2T

(
1− x2

)
I As p increases, contact first occurs at x = 0 when p = 2T



Example, continued

I For p > 2T , introduce contact set −s < x < s
(NB symmetry helps here!)
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In s < x < 1 we have to solve

w′′(x) =
p

T
s < x < 1

w(x) = 1 x = 1

w(x) = w′(x) = 0 x = s

I Integrate to get w(x) =
p

2T
(x− s)2 and w(1) = 1 gives

s = 1−

√
2T

p
for p > 2T

I NB s = 0 when p = 2T and s→ 1 as p/T →∞



Non-uniqueness

I Although the differential equation Tw′′ = p is linear, the free

boundary problem (solving for s as well) is nonlinear.
I We can get non-uniqueness of solution.

I For example, take p = 0 and a non-convex obstacle with
boundary conditions w(±1) = 0.
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� I Solve w′′ = 0 when not in
contact.

I Tangency at points where
contact is made with
obstacle.

I There are at least 3 different
possibilities.



Non-uniqueness
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I Possibility 1: w(x) ≡ 0 i.e. no contact at all.

I This solution is clearly unphysical.

I Eliminate by imposing additional constraint of non-penetration

w(x) ≥ f(x) everywhere.



Non-uniqueness

Two remaining possibilities. . .
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I Which is correct?



Non-uniqueness

I In contact set, obstacle applies reaction force R to string. . .
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Tw′′ = p−R with

R = 0 in non-contact set

R ≥ 0 in contact set

I Additional constraint Tw′′ − p ≤ 0 eliminates possibility 2
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Full contact problem

Altogether we have. . .

either contact or non-contact

w = f w > f

Tw′′ − p < 0 Tw′′ − p = 0

with equalities on both sides at “switch points”

I Express whole problem as a linear complementarity problem

(w − f)
(
Tw′′ − p

)
= 0

(w − f) ≥ 0(
Tw′′ − p

)
≤ 0

( LCP )

with w and w′ continuous everywhere.



Variational formulation

I For simplicity impose simple boundary conditions w(±1) = 0

I Then solution w(x) must lie in the space of continuously
differentiable functions that satisfy the boundary conditions
and the non-penetration constraint: w ∈ V where. . .

V =
{
v ∈ C1[−1, 1] : v ≥ f ; v(−1) = v(1) = 0

}
I Claim: solution w to the linear complementarity problem

( LCP ) is the member of V that minimises an energy
functional. . .



Variational formulation

Note from ( LCP ), for any v ∈ V. . .

0 =

∫ 1

−1

(
w − f

)(
p− Tw′′

)
dx

=

∫ 1

−1

(
w − v

)(
p− Tw′′

)
+
(
v − f

)(
p− Tw′′

)
dx

=

∫ 1

−1
Tw′′

(
v − w

)︸ ︷︷ ︸
by parts (careful!)

+ p
(
w − v

)
+
(
v − f

)(
p− Tw′′

)
dx

=

∫ 1

−1
Tw′

(
w′ − v′

)
+ p
(
w − v

)
+
(
v − f

)︸ ︷︷ ︸
≥0

(
p− Tw′′

)︸ ︷︷ ︸
≥0

dx

so we get the variational inequality∫ 1

−1
Tw′

(
v′ − w′

)
dx ≥

∫ 1

−1
p
(
w − v

)
dx ∀v ∈ V ( VI )



Variational formulation

(w − f)
(
Tw′′ − p

)
= 0

(w − f) ≥ 0(
Tw′′ − p

)
≤ 0

( LCP )

~�
∫ 1

−1
Tw′

(
w′ − v′

)
dx ≥

∫ 1

−1
p
(
w − v

)
dx ∀ v ∈ V ( VI )

Exercise: show that ( VI ) implies ( LCP )



Variational formulation

∫ 1

−1
Tw′

(
w′ − v′

)
dx ≥

∫ 1

−1
p
(
w − v

)
dx ∀ v ∈ V ( VI )

Exercise: show that ( VI ) is equivalent to U [w] ≤ U [v] ∀ v ∈ V

where U [v] =
∫ 1

−1

(
1

2
Tv′(x)2 + pv(x)

)
dx

I U [v] represents the net elastic and potential energy associated
with a displacement v(x).

I w is the element of V that minimises U .



Contact of other thin solids

e.g. 1 — contact of a beam
I In non-contact set, displacement satisfies the beam equation

Tw′′(x)−Bw′′′′(x) = p(x)

I Force and moment balance give continuity of w, w′ and w′′ at
“switch points”.

I Again can be reformulated as a minimisation problem,
namely. . .

min
w∈C2
w≥f

∫ 1

−1

(
1

2
Tw′(x)2 +

1

2
Bw′′(x)2︸ ︷︷ ︸

bending energy

+p(x)w(x)

)
dx



Contact of other thin solids

e.g. 2 — contact of an elastic membrane
I Obstacle z = f(x, y);

displacement z = w(x, y);
body force= p(x, y).

I Displacement satisfies{
T∇2w = p non-contact

w = f contact

I continuity of w and ∇w

I plus inequalities w ≥ f , T∇2w − p ≤ 0 everywhere.

I Corresponding minimisation problem

min
w∈C1
w≥f

∫∫
D

(
1

2
T |∇w|2 + pw

)
dxdy



Example — indentation of a circular membrane

I Push axisymmetric indenter
a distance δ into circular
membrane of radius L.

I By measuring corresponding
force we can infer the
tension in the membrane.

I Axisymm. displacement w(r) fixed at boundary so w(L) = 0 .

I Neglect gravity p = 0 so w satisfies. . .

∇2w =
1

r

d

dr

(
r
dw

dr

)
= 0 when not in contact.

I E.g. parabolic indenter f(r) = −δ + 1

2
κr2 with δ <

1

2
κL2



Example — indentation of a circular membrane

δ
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� Say non-contact set is s < r < L:

1

r

d

dr

(
r
dw

dr

)
= 0

w(L) = 0

w(s) = f(s) = −δ + κs2/2

w′(s) = f ′(s) = κs

I Integrate to get w(r) = κs2 log
( r
L

)
I Size of contact set s and indentation distance δ satisfy

δ =
κs2

2
+ κs2 log

(
L

s

)

I NB 0 < δ < κL2/2 for 0 < s < L



Example — indentation of a circular membrane

Now calculate corresponding force: F =

∫∫
contact

set

T∇2w dxdy

F = 2π

∫ s

0
T · (2κ) · r dr

i.e. F = 2πκTs2

Recall δ =
κs2

2
+ κs2 log

(
L

s

)

δ =
F

4πT

[
1− log

(
F

2πκTL2

)]
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