C5.2 Elasticity and Plasticity

Lecture 9 - Contact

Peter Howell

howell@maths.ox.ac.uk

Hilary Term 2021

Contact of an elastic string

- Consider an elastic string stretched to a tension T above a smooth obstacle given by $z=f(x)$.
- Under an imposed body force $p(x)$ the string deforms until it makes contact with the obstacle

String is either in contact

$$
w(x)=f(x)
$$

or out of contact

$$
T w^{\prime \prime}(x)=p(x)
$$

- The contact set is unknown in advance and must be solved for as part of the problem.
- This is a free boundary problem - the free boundary is the edge of the contact set ("codimension two").

Contact

$$
w(x)=f(x)
$$

No contact

$$
T w^{\prime \prime}(x)=p(x)
$$

- At boundary of contact set continuity and a force balance give continuity conditions (Problem sheet 3)

$$
[w]_{-}^{+}=\left[w^{\prime}\right]_{-}^{+}=[T]_{-}^{+}=0
$$

Example

- Consider simple case where:
- Obstacle is flat surface

$$
z=f(x)=0
$$

- Ends of string fixed at

$$
w(\pm 1)=1
$$

- Uniform body force

$$
p=\mathrm{constant}
$$

- First consider no contact $w^{\prime \prime}(x)=\frac{p}{T}$ with $w(\pm 1)=1$ gives

$$
w(x)=1-\frac{p}{2 T}\left(1-x^{2}\right)
$$

- As p increases, contact first occurs at $x=0$ when $p=2 T$

Example, continued

- For $p>2 T$, introduce contact set $-s<x<s$
(NB symmetry helps here!)

In $s<x<1$ we have to solve

$$
\begin{array}{rr}
w^{\prime \prime}(x)=\frac{p}{T} & s<x<1 \\
w(x)=1 & x=1 \\
w(x)=w^{\prime}(x)=0 & x=s
\end{array}
$$

- Integrate to get $w(x)=\frac{p}{2 T}(x-s)^{2}$ and $w(1)=1$ gives

$$
s=1-\sqrt{\frac{2 T}{p}} \quad \text { for } p>2 T
$$

- NB $s=0$ when $p=2 T$ and $s \rightarrow 1$ as $p / T \rightarrow \infty$

Non-uniqueness

- Although the differential equation $T w^{\prime \prime}=p$ is linear, the free boundary problem (solving for s as well) is nonlinear.
- We can get non-uniqueness of solution.
- For example, take $p=0$ and a non-convex obstacle with boundary conditions $w(\pm 1)=0$.

- Solve $w^{\prime \prime}=0$ when not in contact.
- Tangency at points where contact is made with obstacle.
- There are at least 3 different possibilities.

Non-uniqueness

- Possibility 1: $w(x) \equiv 0$ i.e. no contact at all.
- This solution is clearly unphysical.
- Eliminate by imposing additional constraint of non-penetration

$$
w(x) \geq f(x) \quad \text { everywhere. }
$$

Non-uniqueness

Two remaining possibilities...

- Which is correct?

Non-uniqueness

- In contact set, obstacle applies reaction force R to string. . .

$$
\begin{gathered}
T w^{\prime \prime}=p-R \text { with } \\
R=0 \text { in non-contact set } \\
R \geq 0 \text { in contact set }
\end{gathered}
$$

- Additional constraint $T w^{\prime \prime}-p \leq 0$ eliminates possibility 2

Full contact problem

Altogether we have. . .

$$
\begin{array}{ll}
\text { either contact } & \text { or non-contact } \\
w=f & w>f \\
T w^{\prime \prime}-p<0 & T w^{\prime \prime}-p=0
\end{array}
$$

with equalities on both sides at "switch points"

- Express whole problem as a linear complementarity problem

$$
\begin{aligned}
& (w-f)\left(T w^{\prime \prime}-p\right)=0 \\
& (w-f) \geq 0 \\
& \left(T w^{\prime \prime}-p\right) \leq 0
\end{aligned}
$$

with w and w^{\prime} continuous everywhere.

Variational formulation

- For simplicity impose simple boundary conditions $w(\pm 1)=0$
- Then solution $w(x)$ must lie in the space of continuously differentiable functions that satisfy the boundary conditions and the non-penetration constraint: $w \in \mathcal{V}$ where...

$$
\mathcal{V}=\left\{v \in \mathcal{C}^{1}[-1,1]: v \geq f ; v(-1)=v(1)=0\right\}
$$

- Claim: solution w to the linear complementarity problem (LCP) is the member of \mathcal{V} that minimises an energy functional...

Variational formulation

Note from (LCP), for any $v \in \mathcal{V} \ldots$

$$
\begin{aligned}
0 & =\int_{-1}^{1}(w-f)\left(p-T w^{\prime \prime}\right) \mathrm{d} x \\
& =\int_{-1}^{1}(w-v)\left(p-T w^{\prime \prime}\right)+(v-f)\left(p-T w^{\prime \prime}\right) \mathrm{d} x \\
& =\int_{-1}^{1} \underbrace{T w^{\prime \prime}(v-w)}_{\text {by parts (careful!) }}+p(w-v)+(v-f)\left(p-T w^{\prime \prime}\right) \mathrm{d} x \\
& =\int_{-1}^{1} T w^{\prime}\left(w^{\prime}-v^{\prime}\right)+p(w-v)+\underbrace{(v-f)}_{\geq 0} \underbrace{\left(p-T w^{\prime \prime}\right)}_{\geq 0} \mathrm{~d} x
\end{aligned}
$$

so we get the variational inequality

$$
\begin{equation*}
\int_{-1}^{1} T w^{\prime}\left(v^{\prime}-w^{\prime}\right) \mathrm{d} x \geq \int_{-1}^{1} p(w-v) \mathrm{d} x \quad \forall v \in \mathcal{V} \tag{VI}
\end{equation*}
$$

Variational formulation

$$
\begin{gather*}
\begin{array}{l}
(w-f)\left(T w^{\prime \prime}-p\right)=0 \\
(w-f) \geq 0 \\
\left(T w^{\prime \prime}-p\right) \leq 0
\end{array} \\
\mathbb{I} \\
\int_{-1}^{1} T w^{\prime}\left(w^{\prime}-v^{\prime}\right) \mathrm{d} x \geq \int_{-1}^{1} p(w-v) \mathrm{d} x \quad \forall v \in \mathcal{V}
\end{gather*}
$$

Exercise: show that ((VI) implies $(\boxed{\mathrm{LCP}})$

Variational formulation

$$
\begin{equation*}
\int_{-1}^{1} T w^{\prime}\left(w^{\prime}-v^{\prime}\right) \mathrm{d} x \geq \int_{-1}^{1} p(w-v) \mathrm{d} x \quad \forall v \in \mathcal{V} \tag{VI}
\end{equation*}
$$

Exercise: show that $(\widehat{\mathrm{VI}})$ is equivalent to $\mathcal{U}[w] \leq \mathcal{U}[v] \forall v \in \mathcal{V}$ where

$$
\mathcal{U}[v]=\int_{-1}^{1}\left(\frac{1}{2} T v^{\prime}(x)^{2}+p v(x)\right) \mathrm{d} x
$$

- $\mathcal{U}[v]$ represents the net elastic and potential energy associated with a displacement $v(x)$.
- w is the element of \mathcal{V} that minimises \mathcal{U}.

Contact of other thin solids

e.g. 1 - contact of a beam

- In non-contact set, displacement satisfies the beam equation

$$
T w^{\prime \prime}(x)-B w^{\prime \prime \prime \prime}(x)=p(x)
$$

- Force and moment balance give continuity of w, w^{\prime} and $w^{\prime \prime}$ at "switch points".
- Again can be reformulated as a minimisation problem, namely...

$$
\min _{\substack{w \in \mathcal{C}^{2} \\ w \geq f}} \int_{-1}^{1}(\frac{1}{2} T w^{\prime}(x)^{2}+\underbrace{\frac{1}{2} B w^{\prime \prime}(x)^{2}}_{\text {bending energy }}+p(x) w(x)) \mathrm{d} x
$$

Contact of other thin solids

e.g. 2 - contact of an elastic membrane

- Obstacle $z=f(x, y)$; displacement $z=w(x, y)$; body force $=p(x, y)$.
- Displacement satisfies

$$
\begin{cases}T \nabla^{2} w=p & \text { non-contact } \\ w=f & \text { contact }\end{cases}
$$

- continuity of w and ∇w
- plus inequalities $w \geq f, T \nabla^{2} w-p \leq 0$ everywhere.
- Corresponding minimisation problem

$$
\min _{\substack{w \in \mathcal{C}^{1} \\ w \geq f}} \iint_{D}\left(\frac{1}{2} T|\nabla w|^{2}+p w\right) \mathrm{d} x \mathrm{~d} y
$$

Example - indentation of a circular membrane

- Push axisymmetric indenter a distance δ into circular membrane of radius L.
- By measuring corresponding force we can infer the tension in the membrane.
- Axisymm. displacement $w(r)$ fixed at boundary so $w(L)=0$.
- Neglect gravity $p=0$ so w satisfies...

$$
\nabla^{2} w=\frac{1}{r} \frac{\mathrm{~d}}{\mathrm{~d} r}\left(r \frac{\mathrm{~d} w}{\mathrm{~d} r}\right)=0 \text { when not in contact. }
$$

- E.g. parabolic indenter $f(r)=-\delta+\frac{1}{2} \kappa r^{2}$ with $\delta<\frac{1}{2} \kappa L^{2}$

Example - indentation of a circular membrane

Say non-contact set is $s<r<L$:

$$
\begin{aligned}
\frac{1}{r} \frac{\mathrm{~d}}{\mathrm{~d} r}\left(r \frac{\mathrm{~d} w}{\mathrm{~d} r}\right) & =0 \\
w(L) & =0 \\
w(s)=f(s) & =-\delta+\kappa s^{2} / 2 \\
w^{\prime}(s)=f^{\prime}(s) & =\kappa s
\end{aligned}
$$

- Integrate to get $w(r)=\kappa s^{2} \log \left(\frac{r}{L}\right)$
- Size of contact set s and indentation distance δ satisfy

$$
\delta=\frac{\kappa s^{2}}{2}+\kappa s^{2} \log \left(\frac{L}{s}\right)
$$

- NB $0<\delta<\kappa L^{2} / 2$ for $0<s<L$

Example - indentation of a circular membrane

Now calculate corresponding force: $\quad F=\iint_{\substack{\text { contact } \\ \text { set }}} T \nabla^{2} w \mathrm{~d} x \mathrm{~d} y$

$$
\begin{aligned}
& F=2 \pi \int_{0}^{s} T \cdot(2 \kappa) \cdot r \mathrm{~d} r \\
& \text { i.e. } \quad F=2 \pi \kappa T s^{2}
\end{aligned}
$$

Recall $\quad \delta=\frac{\kappa s^{2}}{2}+\kappa s^{2} \log \left(\frac{L}{s}\right)$

$$
\delta=\frac{F}{4 \pi T}\left[1-\log \left(\frac{F}{2 \pi \kappa T L^{2}}\right)\right]
$$

