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Plasticity

I Plasticity is commonly observed in metals.

I At sufficiently small stress, material responds elastically.

I But above a critical yield stress τY material suffers irreversible
plastic deformation.
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Perfect plasticity

I Perfect plasticity is an idealised model of such behaviour.
I Material is always in one of two states:

I linear elastic when below yield stress
I plastic when at the yield stress
I i.e. yield stress can never be exceeded.
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Granular plasticity

I We can construct a perfect plasticity model of a granular
medium based on Coulomb’s law of friction.

I Consider a 2D granular medium.

I Stress on interior surface
element with normal and
tangent vectors

n =

(
cos θ
sin θ

)
t =

(
− sin θ
cos θ

)
is given by. . . ����������
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F

x

y N

θ

T n =

(
τxx τxy
τxy τyy

)(
cos θ
sin θ

)
=

(
τxx cos θ + τxy sin θ
τxy cos θ + τyy sin θ

)

I Decompose into normal stress N and tangential stress F . . .



Granular plasticity

Normal stress N = n · (T n) =
(
cos θ
sin θ

)
·
(
τxx cos θ + τxy sin θ
τxy cos θ + τyy sin θ

)

i.e. N =
1

2
(τxx + τyy) +

1

2
(τxx − τyy) cos(2θ) + τxy sin(2θ)

Tangential stress F = t · (T n) =
(
− sin θ
cos θ

)
·
(
τxx cos θ + τxy sin θ
τxy cos θ + τyy sin θ

)

i.e. F =
1

2
(τyy − τxx) sin(2θ) + τxy cos(2θ)



Granular plasticity

N =
1

2
(τxx + τyy) +

1

2
(τxx − τyy) cos(2θ) + τxy sin(2θ)

F =
1

2
(τyy − τxx) sin(2θ) + τxy cos(2θ)

Impose constraints:

I Granular medium can’t withstand any tensile stress, so
N ≤ 0 ∀θ (⇔ T is negative semi-definite)

I Coulomb’s law of friction: |F | ≤ |N | tanφ ∀θ where φ is

angle of friction

I |F | < |N | tanφ ∀θ ⇒ material remains solid

I |F | = |N | tanφ for some θ ⇒ material can flow

on a slip surface defined by θ.



Aside — Coulomb’s law of friction

Consider a block in frictional contact with a plane at an angle α to
the horizontal

I Normal reaction R and friction force F satisfy F ≤ µR
where µ = coefficient of friction.

α
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I F < µR ⇒ block sticks

I F = µR ⇒ block slips

I Angle of friction φ = tan−1 µ = critical value of angle α for
slip to occur.



Granular plasticity

N =
1

2
(τxx + τyy) +

1

2
(τxx − τyy) cos(2θ) + τxy sin(2θ)

F =
1

2
(τyy − τxx) sin(2θ) + τxy cos(2θ)

Impose constraints:

I Granular medium can’t withstand any tensile stress, so
N ≤ 0 ∀θ (⇔ T is negative semi-definite)

I Coulomb’s law of friction: |F | ≤ |N | tanφ ∀θ where φ is

angle of friction

I |F | < |N | tanφ ∀θ ⇒ material remains solid

I |F | = |N | tanφ for some θ ⇒ material can flow

on a slip surface defined by θ.



Granular plasticity

N =
1

2
(τxx + τyy) +

1

2
(τxx − τyy) cos(2θ) + τxy sin(2θ)

F =
1

2
(τyy − τxx) sin(2θ) + τxy cos(2θ)

As θ varies, (N,F ) lie on the Mohr circle

F 2 +
(
N − 1

2 (τxx + τyy)
)2

= 1
4 (τxx − τyy)

2 + τ2xy



Granular plasticity

F 2 +
(
N − 1

2 (τxx + τyy)
)2

= 1
4 (τxx − τyy)

2 + τ2xy

Coulomb’s law ⇔ −(τxx + τyy) cosφ ≤ 2
√
τxxτyy − τ2xy

N

F

φ

√
1
4(τxx − τyy)2 + τ 2xy

−τxx + τyy
2

< material is solid

= material is flowing

NB yield condition depends only on invariants Tr(T ) and det(T )



Granular plasticity

I For simplicity assume inertia and gravity are negligible.

I Stress components satisfy

∂τxx
∂x

+
∂τxy
∂y

= 0
∂τxy
∂x

+
∂τyy
∂y

= 0

I We can introduce Airy stress function A(x, y) such that

τxx =
∂2A

∂y2
τxy = −

∂2A

∂x∂y
τyy =

∂2A

∂x2

I While material is solid we also have elastic constitutive
relations.
I Compatibility condition ⇒ ∇4A = 0 .



Granular plasticity

Perfect plasticity model
Either:

I Material is solid(
∇2A

)2
cos2 φ < 4

[
∂2A

∂x2
∂2A

∂y2
−
(
∂2A

∂x∂y

)2
]

and A satisfies biharmonic equation

∇4A = 0

or

I Material is flowing (plastic)
Then A satisfies nonlinear PDE

(
∇2A

)2
cos2 φ = 4

[
∂2A

∂x2
∂2A

∂y2
−
(
∂2A

∂x∂y

)2
]



Granular plasticity

elastic ∇4A = 0 ( E )

plastic
(
∇2A

)2
cos2 φ = 4

[
∂2A

∂x2
∂2A

∂y2
−
(
∂2A

∂x∂y

)2
]

( P )

I In general we have to solve a free boundary problem:

I ( E ) in solid regions

I ( P ) in flowing regions

with the boundary between them unknown a priori.

I ( E ) is elliptic, but ( P ) is hyperbolic
(cf Monge–Ampére equation)
I transports information along characteristics corresponding to

slip surfaces.



Granular plasticity

elastic ∇4A = 0 ( E )

plastic
(
∇2A

)2
cos2 φ = 4

[
∂2A

∂x2
∂2A

∂y2
−
(
∂2A

∂x∂y

)2
]

( P )

I In principle solution of ( E ), ( P ) and suitable BCs
determines A and therefore stress components τxx, τxy, τyy

I but no way to find velocity (u̇, v̇) when material is flowing.

I If inertia was important then we would be stuck. . .

ρ
∂u̇

∂t
=
∂τxx
∂x

+
∂τxy
∂y

ρ
∂v̇

∂t
=
∂τxy
∂x

+
∂τyy
∂y

I Situation is even worse in 3D (3 components of momentum
equation + 1 yield condition for 6 stress components τij)

I Need a flow rule to close the problem. . .



Dislocations

Example: consider antiplane strain u = w(x, y)ez with ∇2w = 0

I Note that (plane polars (r, θ))

w(x, y) =
b

2π
tan−1

(y
x

)
=

b

2π
θ

satisfies Laplace’s equation for (x, y) 6= (0, 0).

I If 0 ≤ θ < 2π then w jumps by b across positive x-axis.

I This displacement corresponds to a cut-and-weld operation. . .



Dislocations

yx

z

1 Cut cylinder along +ve x-axis

2 Shift one side up a distance b

3 Weld the two faces back together

I Once everything is welded back together, the cylinder is in a
state of self-stress, with

τθz =
µb

2πr

I (The z-axis is a source of incompatibility.)



Dislocations

We can perform a similar cut-and-weld operation in plane strain. . .

(a) (b)

x

y y

x

I Again cut along positive x-axis.

I Now shift one side horizontally with respect to the other
before welding back together.

I What happens if we do this operation at an atomic level?



Dislocations

I Start with a pristine lattice.

I Cut along positive x-axis.

I Shift lower side by an atomic distance and
reconnect.

I It’s like inserting an extra column of
atoms into the lattice.

I This configuration is called an edge
dislocation.

I Corresponding antiplane strain
configuration is a screw dislocation



Dislocations

Atoms in a metal are usually arranged on a periodic crystal lattice.

I If lattice was pristine then the yield stress
required to cause irreversible deformation
would be of order µ.

I Measured yield stresses are much smaller
(by factor of ≈ 10−5!)

I Hypothesis (1930s): plastic deformation arises from motion of
dislocations through the lattice. . .



Dislocations

(a) (b) (c) (d)

I Only small reorganisation of lattice is needed to shift
dislocation and cause irreversible deformation of the lattice.

I Requires yield stress τY much smaller than µ.

I Hypothesis was confirmed much later by
electron microscopy: metals contain
trillions of dislocations which are
generated and propagated by plastic
deformation of the sample.



Perfect plasticity in metals

Study of behaviour of dislocations leads to the following. . .

Hypothesis: plastic deformation in metals is driven by shear stress
— normal stress does not (usually) cause irreversible deformation

Based on this hypothesis, build a perfect plasticity model
whereby. . .

I |shear stress| < τY ⇒ elastic

I |shear stress| = τY ⇒ plastic


