C5.2 Elasticity and Plasticity

Lecture 12 - Metal plasticity

Peter Howell

howell@maths.ox.ac.uk
Hilary Term 2021

Plasticity in torsion

$$
\begin{aligned}
& \text { displacement } \boldsymbol{u}=\left(\begin{array}{c}
-\Omega y z \\
\Omega x z \\
\Omega \psi(x, y)
\end{array}\right) \\
& \text { stress } \mathcal{T}=\left(\begin{array}{ccc}
0 & 0 & \tau_{x z} \\
0 & 0 & \tau_{y z} \\
\tau_{x z} & \tau_{y z} & 0
\end{array}\right)
\end{aligned}
$$

Stress on surface with normal
$\boldsymbol{n}=(\cos \theta, \sin \theta, 0)^{\top}$ is

$$
\mathcal{T} \boldsymbol{n}=\left(0,0, \tau_{x z} \cos \theta+\tau_{y z} \sin \theta\right)^{\top}
$$

Maximum shear stress

$$
\max _{\theta}\left(\tau_{x z} \cos \theta+\tau_{y z} \sin \theta\right)=\sqrt{\tau_{x z}^{2}+\tau_{y z}^{2}}
$$

(cf Tresca)

Plasticity in torsion

Perfect plasticity model:

$-\sqrt{\tau_{x z}^{2}+\tau_{y z}^{2}}<\tau_{\mathrm{Y}} \quad \Rightarrow \quad$ elastic

- $\sqrt{\tau_{x z}^{2}+\tau_{y z}^{2}}=\tau_{\mathrm{Y}} \quad \Rightarrow \quad$ plastic

Navier equation (neglect inertia and body force): $\frac{\partial \tau_{x z}}{\partial x}+\frac{\partial \tau_{y z}}{\partial y}=0$

- Holds everywhere whether elastic or plastic.
- Satisfied identically by introducing stress function ϕ such that

$$
\tau_{x z}=\mu \Omega \frac{\partial \phi}{\partial y} \quad \tau_{y z}=-\mu \Omega \frac{\partial \phi}{\partial x}
$$

(\& recall $\phi=0$ at stress-free boundary)

- Yield condition reads $|\nabla \phi| \leq \frac{\tau_{\mathrm{Y}}}{\mu \Omega}$

Plasticity in torsion

When material is elastic we have constitutive relations...

$$
\mu \Omega \frac{\partial \phi}{\partial y}=\tau_{x z}=\mu \Omega\left(\frac{\partial \psi}{\partial x}-y\right) \quad-\mu \Omega \frac{\partial \phi}{\partial x}=\tau_{y z}=\mu \Omega\left(\frac{\partial \psi}{\partial y}+x\right)
$$

Compatibility condition (eliminate ψ)

$$
\frac{\partial \tau_{x z}}{\partial y}-\frac{\partial \tau_{y z}}{\partial x}=-2 \mu \Omega
$$

When material is elastic ϕ satisfies Poisson's equation

$$
\nabla^{2} \phi=-2 \quad \text { and }|\nabla \phi|<\frac{\tau_{Y}}{\mu \Omega}
$$

When material is plastic ϕ satisfies eikonal equation

$$
|\nabla \phi|=\frac{\tau_{Y}}{\mu \Omega} \quad \text { (NB hyperbolic) }
$$

Plasticity in torsion

Typical situation in cross-section of elastic-plastic torsion bar

- $\phi=0$ at stress-free boundary
- Yield condition and stress balance \Rightarrow continuity of ϕ and $\partial \phi / \partial n$ at elastic-plastic free boundary
- Location of free boundary is unknown a priori and must be found as part of solution.

Example - circular torsion bar

- Suppose bar cross-section is the disk $0 \leq r \leq a$.
- Radial symmetry $\Rightarrow \phi=\phi(r)$.
- While material is elastic we solve. . .

$$
\frac{1}{r} \frac{\mathrm{~d}}{\mathrm{~d} r}\left(r \frac{\mathrm{~d} \phi}{\mathrm{~d} r}\right)=\nabla^{2} \phi=-2 \quad \phi(a)=0
$$

- Solution $\phi(r)=\frac{1}{2}\left(a^{2}-r^{2}\right)$
- $|\boldsymbol{\nabla} \phi|=\left|\frac{\mathrm{d} \phi}{\mathrm{d} r}\right|=r$ maximised at $r=a$.
- Yield first occurs at $r=a$ when $a=\frac{\tau_{\mathrm{Y}}}{\mu \Omega}$.
- i.e. first yield first occurs at critical twist $\Omega_{\mathrm{c}}=\frac{\tau_{\mathrm{Y}}}{\mu a}$

Example - circular torsion bar

- For $\Omega>\Omega_{\mathrm{c}}$ material is plastic in a neighbourhood of $r=a$ say plastic region is $s<r<a$ where s is to be determined.
- We have to solve...

$$
\begin{array}{rl}
\nabla^{2} \phi=\frac{1}{r} \frac{\mathrm{~d}}{\mathrm{~d} r}\left(r \frac{\mathrm{~d} \phi}{\mathrm{~d} r}\right)=-2 & 0 \leq r<s \leq a \\
|\nabla \phi|=-\frac{\mathrm{d} \phi}{\mathrm{~d} r}=\frac{\tau_{\mathrm{Y}}}{\mu \Omega} & 0 \leq s<r \leq a
\end{array}
$$

(NB sign of $\mathrm{d} \phi / \mathrm{d} r$ determined by continuity.)

- Boundary conditions: $\phi(a)=0$;
continuity $\quad[\phi]_{-}^{+}=\left[\frac{\mathrm{d} \phi}{\mathrm{d} r}\right]_{-}^{+}=0$ at $r=s$.

Example - circular torsion bar

Solution (Exercise)

$$
\phi(r)= \begin{cases}a s-\frac{1}{2}\left(s^{2}+r^{2}\right) & 0 \leq r<s \leq a \\ s(a-r) & 0 \leq s<r \leq a\end{cases}
$$

and...

$$
s=\frac{\tau_{\mathrm{Y}}}{\mu \Omega}=\frac{a \Omega_{\mathrm{c}}}{\Omega}
$$

- $s=a$ when $\Omega=\Omega_{\text {c }}$
- As Ω increases further, s decreases and more of the bar cross-section becomes plastic.

Example - circular torsion bar

Recall that corresponding torque M is determined by...

$$
\begin{aligned}
M & =\iint_{\substack{\text { cross } \\
\text { section }}}\left(x \tau_{y z}-y \tau_{x z}\right) \mathrm{d} x \mathrm{~d} y=2 \mu \Omega \iint_{\substack{\text { cross } \\
\text { section }}} \phi \mathrm{d} x \mathrm{~d} y \\
& =4 \pi \mu \Omega \int_{0}^{a} \phi(r) r \mathrm{~d} r \quad \text { with radial symmetry }
\end{aligned}
$$

Here torque M is related to twist Ω by... (Exercise)

$$
M=\left\{\begin{array}{lll}
\frac{\pi \mu a^{4} \Omega}{2} & \Omega<\Omega_{\mathrm{c}} & \text { (elastic - linear) } \\
\frac{2 \pi \tau_{\mathrm{Y}} a^{3}}{3}-\frac{\pi \tau_{\mathrm{Y}}^{4}}{6 \mu^{3} \Omega^{3}} & \Omega>\Omega_{\mathrm{c}} & \text { (plastic) }
\end{array}\right.
$$

NB they join up at $\Omega=\Omega_{\mathrm{c}}=\frac{\tau_{\mathrm{Y}}}{\mu a}$ and $M=M_{\mathrm{c}}=\frac{\pi \tau_{\mathrm{Y}} a^{3}}{2}$

Example - circular torsion bar

- Behaviour is linear and reversible below the elastic limit i.e. for $M<M_{\mathrm{c}}$.
- Although microscopic model is perfectly plastic, macroscopic behaviour resembles expected behaviour with gradual yield for $M>M_{\mathrm{c}}$.

Example - circular torsion bar

- Suppose we twist the bar to a maximum twist $\Omega_{\mathrm{m}}>\Omega_{\mathrm{c}}$ and then release it.
- The bar instantaneously reverts to being elastic (why?)
- Net torque M returns to zero but. . .
- Nonzero twist Ω_{0} remains (plastic deformation is irreversible)
- Nonzero residual stress remains in the bar
- Plastic stress field is incompatible with linear elasticity
- can't be removed by elastic recovery.

Plasticity in plane strain

- Consider plane strain with 2D stress tensor $\mathcal{T}=\left(\begin{array}{ll}\tau_{x x} & \tau_{x y} \\ \tau_{x y} & \tau_{y y}\end{array}\right)$
- Maximum shear stress on a surface with normal $\boldsymbol{n}=\binom{\cos \theta}{\sin \theta}$

$$
\begin{aligned}
& \text { and tangent } \boldsymbol{t}=\binom{-\sin \theta}{\cos \theta} \text { is. . }(c f \text { Tresca }) \\
& \begin{array}{|}
\max _{\theta} \boldsymbol{t} \cdot(\mathcal{T} \boldsymbol{n})=\sqrt{\frac{1}{4}\left(\tau_{x x}-\tau_{y y}\right)^{2}+\tau_{x y}^{2}} \\
=\sqrt{\frac{1}{4} \underbrace{\left(\tau_{x x}+\tau_{y y}\right)^{2}}_{\operatorname{Tr}(\mathcal{T})^{2}}-\underbrace{\left(\tau_{x x} \tau_{y y}-\tau_{x y}^{2}\right)}_{\operatorname{det}(\mathcal{T})}}
\end{array}
\end{aligned}
$$

Perfect plasticity model in plane strain

- $\left(\tau_{x x}-\tau_{y y}\right)^{2}+4 \tau_{x y}^{2}<4 \tau_{\mathrm{Y}}^{2} \Rightarrow$ linear elastic
- $\left(\tau_{x x}-\tau_{y y}\right)^{2}+4 \tau_{x y}^{2}=4 \tau_{\mathrm{Y}}^{2} \quad \Rightarrow \quad$ plastic

Example - plane strain with radial symmetry

- Consider circular hole in an infinite elastic-plastic medium.
- Hole is inflated to a pressure $P>0$
- Stress $\rightarrow 0$ at infinity.

$$
\frac{\mathrm{d} \tau_{r r}}{\mathrm{~d} r}+\frac{\tau_{r r}-\tau_{\theta \theta}}{r}=0
$$

- Yield condition $\left(\tau_{x x}-\tau_{y y}\right)^{2}+4 \tau_{x y}^{2} \leq 4 \tau_{Y}^{2}$
- Here $\tau_{r \theta}=0$ so yield condition is

$$
\left(\tau_{r r}-\tau_{\theta \theta}\right)^{2} \leq 4 \tau_{Y}^{2}
$$

- BCs: $\tau_{r r}=-P$ at $r=a ; \tau_{r r}, \tau_{\theta \theta} \rightarrow 0$ as $r \rightarrow \infty$.

Example - plane strain with radial symmetry

- While material is elastic we have constitutive relations ($u(r)=$ radial displacement)

$$
\tau_{r r}=(\lambda+2 \mu) \frac{\mathrm{d} u}{\mathrm{~d} r}+\lambda \frac{u}{r}
$$

$$
\tau_{\theta \theta}=\lambda \frac{\mathrm{d} u}{\mathrm{~d} r}+(\lambda+2 \mu) \frac{u}{r}
$$

- Plug into Navier $\frac{\mathrm{d} \tau_{r r}}{\mathrm{~d} r}+\frac{\tau_{r r}-\tau_{\theta \theta}}{r}=0 \ldots$

$$
(\lambda+2 \mu) \frac{\mathrm{d}}{\mathrm{~d} r}[\underbrace{\frac{\mathrm{~d} u}{\mathrm{~d} r}+\frac{u}{r}}_{=\operatorname{div} \boldsymbol{u}}]=0
$$

- Note $\tau_{r r}+\tau_{\theta \theta}=2(\lambda+\mu) \operatorname{div} \boldsymbol{u} \Rightarrow$ compatibility condition

$$
\frac{\mathrm{d}}{\mathrm{~d} r}\left(\tau_{r r}+\tau_{\theta \theta}\right)=0
$$

while material is elastic
(We can solve for stress components independently of u.)

Example - plane strain with radial symmetry

Summary: while material is elastic, stress components satisfy...

> Navier equation

$$
\frac{\mathrm{d} \tau_{r r}}{\mathrm{~d} r}+\frac{\tau_{r r}-\tau_{\theta \theta}}{r}=0
$$

compatibility condition

$$
\frac{\mathrm{d}}{\mathrm{~d} r}\left(\tau_{r r}+\tau_{\theta \theta}\right)=0
$$

Boundary conditions

$$
\begin{aligned}
& \hline \tau_{r r}=-P \text { at } r=a \\
& \hline \tau_{r r}, \tau_{\theta \theta} \rightarrow 0 \text { as } r \rightarrow \infty \\
& \left|\tau_{r r}-\tau_{\theta \theta}\right| \leq 2 \tau_{\mathrm{Y}} \\
& \hline
\end{aligned}
$$

yield condition

- Solution: $\tau_{r r}=-\frac{P a^{2}}{r^{2}}$

$$
\tau_{\theta \theta}=\frac{P a^{2}}{r^{2}}
$$

- $\tau_{\theta \theta}-\tau_{r r}=\frac{2 P a^{2}}{r^{2}}$ maximised at $r=a$
- As P increases, yield first occurs at $r=a$ when $P=\tau_{\mathrm{Y}}$

Example - plane strain with radial symmetry

- For $P>\tau_{\mathrm{Y}}$ introduce plastic region $a<r<s$.
- In elastic region $r>s$ solve $\frac{\mathrm{d} \tau_{r r}}{\mathrm{~d} r}+\frac{\tau_{r r}-\tau_{\theta \theta}}{r}=0$ and

$$
\begin{gathered}
\frac{\mathrm{d}}{\mathrm{~d} r}\left(\tau_{r r}+\tau_{\theta \theta}\right)=0 \text { with } \tau_{r r}, \tau_{\theta \theta} \rightarrow 0 \text { as } r \rightarrow \infty \ldots \\
\tau_{r r}=-\frac{A}{r^{2}}, \quad \tau_{\theta \theta}=\frac{A}{r^{2}}, \quad A=\text { arbitrary constant }
\end{gathered}
$$

- Yield condition: $\tau_{\theta \theta}-\tau_{r r}=2 \tau_{\mathrm{Y}}$ at $r=s$ gives $A=s^{2} \tau_{\mathrm{Y}}$, i.e.

$$
\tau_{r r}=-\frac{s^{2} \tau_{\mathrm{Y}}}{r^{2}}
$$

$$
\tau_{\theta \theta}=\frac{s^{2} \tau_{\mathrm{Y}}}{r^{2}}
$$

Example - plane strain with radial symmetry

- In plastic region $a<r<s$ solve $\frac{\mathrm{d} \tau_{r r}}{\mathrm{~d} r}+\frac{\tau_{r r}-\tau_{\theta \theta}}{r}=0$ and

$$
\tau_{\theta \theta}-\tau_{r r}=2 \tau_{\mathrm{Y}} \text { with } \tau_{r r}=-P \text { at } r=a \ldots
$$

$$
\tau_{r r}=-P+2 \tau_{\mathrm{Y}} \log (r / a) \quad \tau_{\theta \theta}=2 \tau_{\mathrm{Y}}-P+2 \tau_{\mathrm{Y}} \log (r / a)
$$

- Continuity of $\tau_{r r}$ at $r=s$ (and $\tau_{\theta \theta}$!)

$$
-P+2 \tau_{Y} \log (s / a)=-\tau_{Y}
$$

gives position of elastic-plastic boundary...

$$
s=a \exp \left(\frac{P}{2 \tau_{\mathrm{Y}}}-\frac{1}{2}\right)
$$

- Free boundary rapidly expands for $P>\tau_{\mathrm{Y}}$

