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Plastic flow

» In plane strain (and torsion) we can obtain a closed model for
the stress components in plastic region without considering
displacement (provided inertia is negligible)
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> Two Navier equations

give three equations for {74, Tay, Tyy }

P If inertia is not negligible then we can’t solve Navier equations
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without a constitutive relation for displacement in plastic
region.

> Situation is even worse in 3D: Navier equations plus yield
condition give four equations for six stress components.

> Again we're stuck without a constitutive relation for plastic
flow.



Plastic flow

Plan

(1) Pose a general yield condition | f(7;;) < 7y

(2) Consider energy dissipation during plastic flow

(3) Pose a plastic flow rule based on maximising dissipation
subject to the yield condition f(7;;) = 7y



(1) General yield criterion

Suppose our yield criterion is expressed in the form | f(7;;) < 7y

e.g. for Tresca in plane strain

1
f(Tees Txys Tyy) = \/4 (Tex — 7'yy)z + Ta?y

» f(7i;) < 1v when elastic and f(7;;) = 7y when plastic
> f is called the yield function

> Now list some properties that f must satisfy to give physically
plausible behaviour. ..

(i) If material is isotropic then f can be a function only of the
isotropic invariants of 7.

» e.g. for Tresca in plane strain f = \/i Tr(7)? — det(T)




(1) General yield criterion

(ii) Given our hypothesis that yield (of a metal) is independent of
normal stress it follows that. ..

9f 0| (summing over k)
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» e.g. for Tresca of + or = 0 [check!]

OTea  OTyy
(iii) Increase in stress makes yield more likely =

P . .
Tij@T{j > 0| (summing over i, j)

» In plane strain, (i), (ii), (iii) = Tresca

» In 3D there is more freedom to choose f.



(2) Energy equation

Conservation of energy in volume V' where material is plastic
(T' = temperature)
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» Hypothesis: when plastic, material stops storing elastic
energy (so no W on LHS)



(2) Energy equation

» Simplify () and use Navier equation to get heat equation

or
pear V. (kVT) =2 where. ...
’(I) = dissipation = Tijéij
e
€ij = 86;] = (linear) rate-of-strain tensor

> & represents convertion of mechanical energy into heat

» Second law of thermodynamics =

» Any plastic flow rule must respect this inequality!



(3) Flow rule

Hypothesis: Plastic material flows so as to maximise the energy
dissipation ® = 7;;¢;; while obeying the yield condition f(7;;) = 7v

» This hypothesis leads to the associated flow rule
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where A is a Lagrange multiplier.

» Properties of f then imply properties of plastic flow. ..



(3) Flow rule

(1) f is isotropic ensures that flow rule is isotropic

(2) ;_‘; = 0 implies i.e. plastic flow is incompressible
0
(3) Dissipation ® = 7;;é;; = AT”G / > 0 provided
\‘,_z

>0

Idea: material remains plastic while A > 0 but reverts to being
elastic as soon as A =0 — A can never be negative



Plastic plane strain

With the Tresca yield function f = \/%(Tm —Tyy)? FTE
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In plastic material, associated flow rule is. ..
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Plus yield condition f = 7 and two Navier equations
» Total 6 equations for T,p, Toy Tyy u, v and A

» Same count works in 3D — Navier (3) + flow rule (6) + yield
condition (1) for 6 stress components, 3 displacements and A.



Plastic plane strain
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or H(Tm — Tyy);
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» Note incompressibility % + g; = ;f (divu) =01

» divu remains fixed at its value when the material first yielded.

» We can invert to get stress in terms of rate-of-strain. ..



Plastic plane strain
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where p = —(Tpp + Tyy) /2

» 7v/A is an effective viscosity

» but its value is unknown in advance
» must be determined using the yield condition f = 7y

» Viscosity must be positive for well-posed mathematical model.



Example — plane strain with radial symmetry

» Recall inflated circular hole problem.

P In elastic region r > s we have

27y du U @

du U
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» Solve for elastic displacement | u(r) = 5
ur

1d
» NB divu = ——(ru) = 0 in elastic region.
rdr



Example — plane strain with radial symmetry

» In plastic region a < r < s we have
Trr = —P + 27y log(r/a) 199 = 217y — P + 27y log(r/a)

» Plastic flow rule gives us. ..
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E = €rr = H(Trr - 7-00) = _E
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=0 = R(Toe — Tpr) = 3

> Add together. .. ou + %20 e g(div u) =0
or r
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» divu = 0 when material is elastic .". divu = 0 for all time.
. 10 . A(t)
> = —— — - 7\
divu B (ru) =0 implies u(r,t) "

» Continuity of u at elastic—plastic boundary r = s gives. ..



Example — plane strain with radial symmetry

Displacement in entire domain a < r < oo is given by

£)2
u(r,t) = mvs(t)
2ur
: . 21 ou .
» In plastic region, calculate A = U %
r aor
A= QTys(tzé(t)
wr

P> Requirement implies that plastic model is only valid
while § > 0, i.e. while applied pressure P(t) is increasing.

> As soon as pressure starts to decrease, material
instantaneously reverts to being elastic.

» Analogous calculation also works for torsion — material
reverts to elastic immediately when applied torque is released.



