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Plastic flow

I In plane strain (and torsion) we can obtain a closed model for
the stress components in plastic region without considering
displacement (provided inertia is negligible)

I Two Navier equations
∂τxx
∂x

+
∂τxy
∂y

= 0,
∂τxy
∂x

+
∂τyy
∂y

= 0

and yield condition (τxx − τyy)2 + 4τ2xy = 4τ2Y

give three equations for {τxx, τxy, τyy}
I If inertia is not negligible then we can’t solve Navier equations

ρ
∂u̇

∂t
=
∂τxx
∂x

+
∂τxy
∂y

, ρ
∂v̇

∂t
=
∂τxy
∂x

+
∂τyy
∂y

without a constitutive relation for displacement in plastic
region.

I Situation is even worse in 3D: Navier equations plus yield
condition give four equations for six stress components.

I Again we’re stuck without a constitutive relation for plastic
flow.



Plastic flow

Plan

(1) Pose a general yield condition f(τij) ≤ τY

(2) Consider energy dissipation during plastic flow

(3) Pose a plastic flow rule based on maximising dissipation
subject to the yield condition f(τij) = τY



(1) General yield criterion

Suppose our yield criterion is expressed in the form f(τij) ≤ τY
e.g. for Tresca in plane strain

f(τxx, τxy, τyy) =

√
1

4
(τxx − τyy)2 + τ2xy

I f(τij) ≤ τY when elastic and f(τij) = τY when plastic

I f is called the yield function

I Now list some properties that f must satisfy to give physically
plausible behaviour. . .

(i) If material is isotropic then f can be a function only of the
isotropic invariants of T .

I e.g. for Tresca in plane strain f =
√

1
4 Tr(T )2 − det(T )



(1) General yield criterion

(ii) Given our hypothesis that yield (of a metal) is independent of
normal stress it follows that. . .

∂f

∂τkk
= 0 (summing over k)

I e.g. for Tresca
∂f

∂τxx
+

∂f

∂τyy
= 0 [check!]

(iii) Increase in stress makes yield more likely ⇒

τij
∂f

∂τij
≥ 0 (summing over i, j)

I In plane strain, (i), (ii), (iii) ⇒ Tresca

I In 3D there is more freedom to choose f .



(2) Energy equation

Conservation of energy in volume V where material is plastic
(T = temperature)

d

dt

∫∫∫
V

1

2
ρ

∣∣∣∣∂u∂t
∣∣∣∣2︸ ︷︷ ︸

kinetic
energy

+ ρcT︸︷︷︸
thermal
energy

dV =

∫∫∫
V
ρ
∂u

∂t
· g︸ ︷︷ ︸

work by
gravity

dV

+

∫∫
∂V

∂u

∂t
· (T n)︸ ︷︷ ︸

work by
stress

dS +

∫∫
∂V
k∇T · n︸ ︷︷ ︸

heat
conduction

dS ( EE )

I Hypothesis: when plastic, material stops storing elastic
energy (so no W on LHS)



(2) Energy equation

I Simplify ( EE ) and use Navier equation to get heat equation

ρc
∂T

∂t
−∇ · (k∇T ) = Φ where. . .

Φ = dissipation = τij ėij

ėij =
∂eij
∂t

= (linear) rate-of-strain tensor

I Φ represents convertion of mechanical energy into heat

I Second law of thermodynamics ⇒ Φ ≥ 0

I Any plastic flow rule must respect this inequality!



(3) Flow rule

Hypothesis: Plastic material flows so as to maximise the energy
dissipation Φ = τij ėij while obeying the yield condition f(τij) = τY

I This hypothesis leads to the associated flow rule

ėij = Λ
∂f

∂τij

where Λ is a Lagrange multiplier.

I Properties of f then imply properties of plastic flow. . .



(3) Flow rule

(1) f is isotropic ensures that flow rule is isotropic

(2)
∂f

∂τkk
= 0 implies ėkk = 0 i.e. plastic flow is incompressible

(3) Dissipation Φ = τij ėij = Λ τij
∂f

∂τij︸ ︷︷ ︸
≥0

≥ 0 provided Λ ≥ 0

Idea: material remains plastic while Λ > 0 but reverts to being
elastic as soon as Λ = 0 — Λ can never be negative



Plastic plane strain

With the Tresca yield function f =
√

1
4(τxx − τyy)2 + τ2xy . . .

∂f

∂τxx
=
τxx − τyy

4f
,

∂f

∂τxy
=
τxy
2f

,
∂f

∂τyy
=
τyy − τxx

4f
,

In plastic material, associated flow rule is. . .

∂u̇

∂x
= ėxx =

Λ

4τY
(τxx − τyy),

∂u̇

∂y
+
∂v̇

∂x
= 2ėxy =

Λ

τY
τxy,

∂v̇

∂y
= ėyy =

Λ

4τY
(τyy − τxx)

Plus yield condition f = τY and two Navier equations

I Total 6 equations for τxx, τxy ,τyy u, v and Λ

I Same count works in 3D — Navier (3) + flow rule (6) + yield
condition (1) for 6 stress components, 3 displacements and Λ.



Plastic plane strain

∂u̇

∂x
=

Λ

4τY
(τxx − τyy),

∂u̇

∂y
+
∂v̇

∂x
=

Λ

τY
τxy,

∂v̇

∂y
=

Λ

4τY
(τyy − τxx)

I Note incompressibility
∂u̇

∂x
+
∂v̇

∂y
=

∂

∂t
(divu) = 0 .

I divu remains fixed at its value when the material first yielded.

I We can invert to get stress in terms of rate-of-strain. . .



Plastic plane strain

τxx = −p+
2τY
Λ

∂u̇

∂x
,

τxy =
τY
Λ

(
∂u̇

∂y
+
∂v̇

∂x

)
,

τyy = −p+
2τY
Λ

∂v̇

∂y

where p = −(τxx + τyy)/2

I τY/Λ is an effective viscosity
I but its value is unknown in advance
I must be determined using the yield condition f = τY

I Viscosity must be positive for well-posed mathematical model.



Example — plane strain with radial symmetry

I Recall inflated circular hole problem.

I In elastic region r > s we have

−s
2τY
r2

= τrr = (λ+ 2µ)
du

dr
+ λ

u

r
s2τY
r2

= τθθ = λ
du

dr
+ (λ+ 2µ)

u

r

�

I Solve for elastic displacement u(r) =
s2τY
2µr

I NB divu =
1

r

d

dr
(ru) = 0 in elastic region.



Example — plane strain with radial symmetry

I In plastic region a < r < s we have

τrr = −P + 2τY log(r/a) τθθ = 2τY − P + 2τY log(r/a)

I Plastic flow rule gives us. . .

∂u̇

∂r
= ėrr =

Λ

4τY
(τrr − τθθ) = −Λ

2
u̇

r
= ėθθ =

Λ

4τY
(τθθ − τrr) =

Λ

2

I Add together. . .
∂u̇

∂r
+
u̇

r
= 0 i.e.

∂

∂t
(divu) = 0

I divu = 0 when material is elastic ∴ divu = 0 for all time.

I divu =
1

r

∂

∂r
(ru) = 0 implies u(r, t) =

A(t)

r
I Continuity of u at elastic–plastic boundary r = s gives. . .



Example — plane strain with radial symmetry

Displacement in entire domain a < r <∞ is given by

u(r, t) =
τYs(t)

2

2µr

I In plastic region, calculate Λ =
2u̇

r
= −2

∂u̇

∂r
i.e.

Λ =
2τYs(t)ṡ(t)

µr2

I Requirement Λ ≥ 0 implies that plastic model is only valid
while ṡ ≥ 0, i.e. while applied pressure P (t) is increasing.

I As soon as pressure starts to decrease, material
instantaneously reverts to being elastic.

I Analogous calculation also works for torsion — material
reverts to elastic immediately when applied torque is released.


