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What are the real numbers?



Notation
We write R for the set of real numbers. We write QQ for the set of
rational numbers, and C for the set of complex numbers.



Arithmetic axioms for RR.

| 2

>

For every a, b € R there is a unique real number a + b, called
their sum.

For every a, b € R there is a unique real number a - b, called
their product.

For a € R there is a unique real number —a called its negative
or its additive inverse.

For a € R with a # 0 there is a unique real number % called
its reciprocal or its multiplicative inverse.

There is a special element 0 € R called zero or the additive
identity.

There is a special element 1 € R called one or the
multiplicative identity.



For all a, b, c € R, we have

>
>
>
>
>
>
| 2
>
>

>

These properties are called axioms.

at+tb=b+a

a+(b+c)=(a+b)+c

at+0=a
a+(—a)=0
a-b=b>b-a
a-(b-c)=(a-b)-c
a-l=a
ifa;«éOthenaé:l
a-(b+c)=a-b+a-c
0#1

(+ is commutative
(+ is associative
(additive identity
(additive inverses

(- is associative
(multiplicative identity
(multiplicative inverses

(- distributes over +

)
)
)
)
(- is commutative)
)
)
)
)
)

(to avoid total collapse



Definition
Let F be a set with operations + and - that satisfy these axioms.
Then we say that F is a field.



Example

We've just said that R is a field.

The rational numbers QQ form a field.

The complex numbers C form a field.

You'll meet other fields too, in other courses.
The integers Z do not form a field.
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Properties of arithmetic in R



Proposition 1
Let a, b, ¢, x, y be real numbers.

(i) If a4+ x = a for all a then x =0 (uniqueness of 0).
If a+ x = a+y then x =y (cancellation for +).

)

(i) =0 =0.

(iv) —(—a) = a.

(v) =(a+b)=(-a)+(=b).

(vi) Ifa-x = a for all a+# 0 then x =1 (uniqueness of 1).
(vii) Ifa# 0 and a-x = a-y then x =y (cancellation for -).
(viii) Ifa# 0 then I = a.

(ix) (a+b)-c:aa-c+b-c.

(x) a-0=0.

(xi) a-(—=b)=—(a-b). In particular, (—1) - a = —a.

(xii) (-1)-(-1)=1.

(xiii) Ifa-b=0thena=0o0rb=0.Ifa#0 and b # 0 then

1 _ 1.1
ab~ a b’



Remark

>
>

(i) shows the uniqueness of —a, the additive inverse of a.
(vii) shows the uniqueness of 1, the multiplicative inverse of a
(if a # 0).

As we'll see shortly, (i)—(v) can be proved using only the four
axioms about +.

Similarly, (vi)—(viii) can be proved using only the four axioms
about -.

(ix)—(xiii) between them use all the axioms.

It's worth proving results like this in a sensible order! Once
we've proved a property, we can add it to the list of properties

we can assume in subsequent parts. You'll see that we prove
some later parts using earlier parts.
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Proof.
(i) Suppose that a + x = a for all a. Then

x =x+0 (additive identity)
=0+ x (4 is commutative)
=0 (by hypothesis, with a = 0).



Proof.
(ii) Suppose that a+ x =a+y. Then

y =y +0 (additive identity)
=y+(a+(—a)) (additive inverses)

(y+a)+(—a) (+ is associative)
=(a+y)+(—a) (+ is commutative)
=(a+x)+(—a) (hypothesis)
= (x+a)+(—a) (+ is commutative)

=x+(a+(—a)) (+ is associative)
=x+0 (additive inverses)
= x (additive identity).



Proof.
(iii) We have 0+ 0 = 0 (additive identity)
and 0+ (—0) = 0 (additive inverses)
s0 0+0=0+(—0), so 0 = —0 (cancellation for + (ii)).

(iv)—(xii) Exercise/see notes.



(xiii) Suppose, for a contradiction, a# 0, b# 0, a- b= 0. Then

1 1
0=(;7)0 ()
1 1 . ,

0- (; . E) (- is commutative)
=(a-b)- (é . %) (hypothesis)
=(b-a)- (1 : l) (- is commutative)

a b

1, 1 . I
=((b-a)- 5) "5 (- is associative)
=(b-(a- %)) : % (- is associative)
=(b-1)- % (multiplicative inverses)
=b- L (multiplicative identity)

b
1 (

multiplicative inverses)



and this is a contradiction (0 # 1).

Soifa-b=0thena=0or b=0.

Note that on the way we showed that if a # 0 and b # 0 then
11

a-b+#0and (a~b)-<-) zlsoizl-1
a a b

5 o (cancellation
for - (vii)).



Notation
From now on, we use more familiar notation. We write

a—bfora+(—b)
abfora-b

1
% for a- (b)

1 ) 1
a -~ sometimes for —.
a

The associativity of addition and multiplication means that we can
write expressions like a+ b+ ¢ and xyz, without needing to write
brackets.



Definition
Take a € R\ {0}.

Define a% =

We define p05|t|ve powers of a inductively: for integers k > 0, we
define a¥t1 = ak . a.

For integers | < —1, we define al = %.

Remark
Note that with this definition a! = a and a®> = a- a (as we'd want).



Lemma 2
For a € R\ {0} we have a"a" = a™*" form, n € Z.

Proof.

Exercise (see Sheet 1).
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Ordering the real numbers



Axioms for the usual ordering on R

There is a subset P of R such that for a, b € R

» ifa, becPthena+beP (+ and ordering)
» ifa, becPthena-beP (- and ordering)
> exactly one of a € P, a=0 and —a € P holds (positive,

negative or 0).

The elements of IP are called the positive numbers. The elements
of PU {0} are called the non-negative numbers.

We write a < b, or b > a, exactly when b—a € P.

We write a < b, or b > a, exactly when b—a € PU {0}.



Proposition 3
Take a, b, c € R. Then

(i) a< a; (reflexivity)
(i) ifa< band b < athena=b; (antisymmetry)
(iii) ifa< b and b < c then a < ¢, and similarly with < in place

of <; (transitivity)
(iv) exactly one of a < b, a= b and a > b holds. (trichotomy)
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Proof.
(i) We have a— a =0 € PU{0} (additive inverses).

(i)

(i)

(iv)

Suppose that a < band b < a.

If a—b=0o0r b—a=0then a= b (properties of +) and we
are done.

If not, then b—a€Pand a—beP.

But b— a= —(a— b) (properties of +),

so then a— b € P and —(a — b) € P, contradicting ‘positive,
negative or 0.

Notethatc —a=c+(—a)=c+0+(—a) =

c+ (=b)+ b+ (—a) =(c—b)+ (b— a) (properties of +)
soif a< band b < c then a < ¢ (+ and ordering).

The cases where a = b and/or b = ¢ are straightforward, and
give the result for <.

This follows from ‘positive, negative or 0’
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Inequalities and arithmetic



Proposition 4
Take a, b, c € R.

(i) 0 < 1.
(i) a< b ifand only if —b < —a. In particular, a > 0 if and only
if —a < 0.
(iii) Ifa< b thena+c<b+c.

Ifa<band0<cthenac<bc

)
(iv)
(v) a= > 0, with equality if and only if a= 0.
(vi) a> 0 ifand only if 1 > 0.

1 1
(vii) Ifa, b >0 and a < b then 5 <
Furthermore, (ii), (iii) and (iv) hold with < in place of <.
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Proof.

(i) By trichotomy, we have 0 <1 or0=1o0r0 > 1.
But ‘to avoid total collapse’ 0 # 1. So it suffices to rule out
0>1.
Suppose, for a contradiction, that 0 > 1.
Then —1 € P (by definition of >) so (—1)-(—1) € P (- and
ordering).
But (—1) - (—1) = 1 (Proposition 1 (xii)),
so 0 < 1 — but this contradicts trichotomy.
So 0 < 1.

(ii) Using properties of addition, we have

a<bsb—acP
& (—a)—(—b)eP
& —a > —b.

(iii) Assume that a < b.
Then (b+c)—(a+c)=b—a>0soa+c<b+c.



Proof.

(iv)
(v)

(vi)

(vii)

Assume that a < band 0 < c.

Then bc — ac = (b — a)c > 0 (- and ordering).

Certainly a®> = 0 if and only if a = 0 (Proposition 1 (x) and
(xiii)).

If a £ 0, then exactly one of a and —a is positive, and either
way a> = a-a=(—a)-(—a) > 0 (- and ordering).

Suppose, for a contradiction, that a > 0 and é <0,s0a>0
and —% > 0.

Then -1 = — (a- i) =a- (—i) > 0. But this contradicts
().

Similarly if a< 0 and 1 > 0.

Suppose that a, b > 0 and a < b.

Then % 1> 0 by (vi),

1
< b.
b<

[

by (iv),

o | =
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Theorem 5 (Bernoulli's Inequality)

Let x be a real number with x > —1. Let n be a positive integer.
Then (1+x)" > 1+ nx.
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Proof.

By induction on n. Fix x > —1.

n = 1: clear.

induction step: suppose the result holds for some n > 1, that is,
(1+x)" > 1+ nx.

Note that 14 x > 0, and nx? > 0 (since n > 0 and x2 > 0 by
Proposition 4 (v)).

Then

(14 x)" = (14 x)(1+x)" (by definition)
> (14 x)(1+ nx) (induction hypothesis, Prop 4 (iv))
=14 (n+1)x+ nx> (properties of arithmetic)
>1+(n+1)x (since nx*> > 0).

So, by induction, the result holds. O
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The modulus of a real number



Definition
Let a € R. The modulus |a| of a is defined to be

a ifa>0
la| :==<0 ifa=0
—a ifa<O.

(It is also sometimes called the absolute value of a.)

Remark

The modulus is well defined (that is, this is a legitimate definition)
thanks to the ‘positive, negative or 0" property (essentially
trichotomy).



Proposition 6
Take a, b, c € R. Then

(i) = |a ;

(i) laf =

(iii) \a|2 =3’

(iv) [ab] = |a|\b|

(v) ! |<a<|al;

(vi) ifc >0, then |a| < c if and only if —c < a < ¢; and similarly

W/th weak inequalities (<, =) replaced by strict (<, >).
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Proof.

(i), (ii) Immediate from the definition, since a > 0 if and only if
—a<0.

(iii) Check using the definition and trichotomy — go through the

cases and also use (—a)(—a) = a°.

(iv) Check the cases using the definition and trichotomy.
(v) If a>0, then —|a] <0< a=]a|
If a <0, then —|a] = a <0< al.
(vi) Assume that ¢ > 0.
(= )Suppose that |a| < c. Then, by (v),
—c < —]a] < a < |a| < ¢, and we're done by transitivity
(Proposition 3).
(<) Suppose that —c < a< c. Then —a< cand a< c. But
la| is a or —a, so |a| < c.
Similarly for the version with strict inequalities.



Theorem 7 (Triangle Inequality)
Take a, b € R. Then
(i) la+ bl < lal +[b
(i) la+b| > |la| —[b

’

Remark
(ii) is called the Reverse Triangle Inequality.
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Proof.

(i) We have —|a| < a < |a| and —|b| < b < |b]|, by Proposition 6.
We can add these (see Sheet 1 Q2); using properties of
addition, we get — (|a| + |b|) < a+ b < |a| + |b].

By Proposition 6 (vi) (with ¢ = |a| + |b| > 0), this gives
la+ b| < a] + [b].

(i) By (i), we have
lal = [a+ b+ (=b)| <[a+ b+ |- b] = [a+ b + [b],
so |a+ b| > |a| —|b].

Similarly (swap a and b), |a+ b| > |b| — |a.
Now [[a| — |b[| is [a] —[b] or [b| —|al, so |a + b| > [[a] —[b]].
L]
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The complex numbers



C is a field.

But there is no ordering on C that satisfies the ordering axioms.
(Exercise: prove this!)

The Triangle Inequality and Reverse Triangle Inequality both hold
in C.
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Upper and lower bounds



Definition
Let S C R. Take b € R. We say that
» b is an upper bound of S if s < b for all s € S;

b is a lower bound of S if s > b forall s € S;

S is bounded below if S has a lower bound:;

>

» S is bounded above if S has an upper bound,;
>

» S is bounded if S is bounded above and below.



Example
See Quiz 8.1 on Moodle.
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Supremum, infimum and completeness



Definition
Let S C R. We say that a € R is the supremum of S, written
sup S, if
(i) s<aforallses; (v is an upper bound of S)

(i) if s< bforallse Sthen a < b («is the least upper bound
of S).

Remark
If S has a supremum, then sup S is unique. (Check you can show

this!)



Completeness axiom for the real numbers Let S be a
non-empty subset of R that is bounded above. Then S has a
supremum.



Remark

There are two conditions on S here: non-empty, and bounded
above. They are both crucial!

It is easy to forget the non-empty condition, but it has to be there:
the empty set does not have a supremum, because every real
number is an upper bound for the empty set — there is no least
upper bound.

The condition that S is bounded above is also necessary: a set
with no upper bound certainly has no supremum.



Example

» Let S=[1,2). Then 2 is an upper bound, and is the least
upper bound: if b < 2 then b is not an upper bound because
max(1,1+ 2) € S and max(1,1 + 2) > b. Note that in this
case supS € S.

» Let S =(1,2]. Then we again have sup S = 2, and this time
supS € S.



Definition
Let S C R. We say that a € R is the infimum of S, written inf S,
if

» s>aforallseS; (cv is a lower bound of S)

» ifs>bforallseSthena>b (v is the greatest lower
bound of S).



Proposition 8

(i) Let S, T be non-empty subsets of R, with S C T and with T
bounded above. Then S is bounded above, and
supS <supT.

(i) Let T C R be non-empty and bounded below. Let

S={—t:te T}. Then S is non-empty and bounded above.
Furthermore, inf T exists, and inf T = —sup S.



Remark

(ii) and a similar result with sup and inf swapped essentially tell us
that we can pass between sups and infs. Any result we prove about
sup will have an analogue for inf. Also, we could have phrased the
Completeness Axiom in terms of inf instead of sup. Proposition
8(ii) tells us that we don't need separate axioms for sup and inf.
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Proof.

(i) Since T is bounded above, it has an upper bound, say b.
Then t < bforallt e T, socertainlyt < bforallte S, sob
is an upper bound for S.
Now S, T are non-empty and bounded above, so by
completeness each has a supremum.
Note that sup T is an upper bound for T and hence also for S,
sosup T > sup$S (since sup S is the least upper bound for S).

O



Proof.

(i) Since T is non-empty, so is S.
Let b be a lower bound for T,sot > bforallt € T.
Then —t < —bforallt€ T,sos< —bforallse S, so —b
is an upper bound for S.
Now S is non-empty and bounded above, so by completeness
it has a supremum.
Then s <supSforallseS,sot> —supSforallte T, so
—sup S is a lower bound for T.
Also, we saw before that if b is a lower bound for T then —b
is an upper bound for S.
Then —b > sup S (since sup S is the least upper bound),
so b < —supS.
So —sup S is the greatest lower bound.
So inf T exists and inf T = —sup S.



Definition
Let S C R be non-empty. Take M € R. We say that M is the
maximum of S if

(i) MeS; (M is an element of S)
(i) s<Mforallse S (M is an upper bound for S).



Remark

» If S is empty or S is not bounded above then S does not have
a maximum. (Check this!)

» Let S C R be non-empty and bounded above, so (by
completeness) sup S exists.
Then S has a maximum if and only if sup S € S.
Also, if S has a maximum then max$ =sup S.
(Check this!)



Definition
Let S C R be non-empty. Take m € R. We say that m is the
minimum of S if

(i) me S; (m is an element of S)

(i) s=mforallse S (m is a lower bound for S).



Proposition 9 (Approximation Property)

Let S C R be non-empty and bounded above. For any ¢ > 0, there
is s. € S such thatsupS —e <s. <supS.
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Proof.

Take £ > 0.

Note that by definition of the supremum we have s < sup S for all
seS.

Suppose, for a contradiction, that supS —e > sforall s € S.

Then supS — ¢ is an upper bound for S, but supS — ¢ <supS.
Contradiction.

So thereis s. € S with sup S — ¢ < s.. O



Analysis | — Video 11

Vicky Neale

Michaelmas Term 2021



Existence of roots



Theorem 10
There exists a unique positive real number o such that a® = 2.
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Proof

Existence Let S = {s € R:s >0, s? < 2}.

Note that S is non-empty (eg 1 € S)

and S is bounded above, because if x > 2 then x? > 4 (properties
of ordering) so x € S, so 2 is an upper bound for S.

So, by completeness, S has a supremum. Let o = sup S.

Note that certainly a > 0 (since 1 € S so a > 1).

By trichotomy, we have a? < 2 or a® =2 or o > 2.



Proof

Case 1 Suppose, for a contradiction, that a? < 2.

Then a? =2 — ¢ for some € > 0.

Note that o < 2 (we said earlier that 2 is an upper bound for S).
For h € (0,1) we have

(a4 h)?> = o® + 2ah + h?
=2 — e+ 2ah+ K
<2—c+4h+h

<2—¢e+5h
so let h = min(55,3) and then (a + h)? < 2.
Now o+ he€ S and o+ h > supS. This is a contradiction.
So it is not the case that a? < 2.



Proof

Case 2 Suppose, for a contradiction, that a?>2.
Then a2 = 2 + ¢ for some € > 0.
For h € (0,1) we have

(v — h)? = o — 2ah + h?
=2+¢e—2ah+ h?
>2+4¢e¢—4h

so choose h = min(§, 3,%) and then (o — h)? > 2 (and also
a—h>0).

Now o« — h < sup S, so by the Approximation property there is
se Switha—h<s.

But then 2 < (a — h)? < s < 2, which is a contradiction.

So it is not the case that a? > 2.

Hence, by trichotomy, a? = 2.



Proof

Uniqueness Suppose that 3 is also a positive real number such
that 2 = 2.

Then 0 = a? — 32 = (a — B)(a + B)

and a+ 8 >0,s0 a=p.

O



Proposition 11
Q is not complete (with the ordering inherited from R ).

Proof.

If @ were complete, then the proof of Theorem 10 would work just
as well in Q. But we know that there is not an element of QQ that
squares to 2. So Q is not complete. O



Theorem 12

Let n be an integer with n > 2, and take a positive real number r.
Then r has a real nt root.

Proof.
Exercise. (See Sheet 2 for the case of the cube root of 2.) O
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More consequences of completeness



In this course, we write N for the set of positive integers, so
N =29



Theorem 13 (Archimedean property of N)

N /s not bounded above.
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Proof.

Suppose, for a contradiction, that N is bounded above.

Then N is non-empty and bounded above, so by completeness (of
R) N has a supremum.

By the Approximation property with € = % there is a natural
number n € N such that supN — % < n<supN.

Now n+1 &€ Nand n+ 1 > supN. This is a contradiction. []



Corollary 14
Let € > 0. Then there is n € N such that 0 < % <e.

Proof.
If not, then % would be an upper bound for N. This would
contradict Theorem 13.

O



Theorem 15
Let S be a non-empty subset of 7.

(i) If S is bounded below, then S has a minimum.

(i) If S is bounded above, then S has a maximum.
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Proof.

(i) Assume that S is bounded below.
Then, by completeness (applied to {—s:s € S}), S has an
infimum.
By the Approximation property (with € = 1), thereis n€ S
such that inff S < n<infS§S+1.
Suppose, for a contradiction, that inf S < n.
Write n=infS 4+ 6§, where 0 < § < 1.
By the Approximation property (with € =), thereis m € S
such that infS < m<infS+¢e=n.
Now m<nson—m>0
but n — mis an integer, so n — m > 1.
Now n>m-+1>infS+ 1. This is a contradiction.
Son=infSe€ SsoinfS=minS.

(ii) Similar.



Proposition 16
Take a, b € R with a < b. Then

(i) there is x € Q such that a < x < b (the rationals are dense in
the reals); and

(ii) thereis y € R\ Q such that a < y < b (the irrationals are
dense in the reals).

Proof.
Exercise (see Sheet 2).

OJ



Summary of our work so far

R is a complete ordered field.

This sums up the key properties we have identified as our
assumptions about R. From this, we shall develop the theory of
real analysis.
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Countability



Definition
Let A be a set. We say that A is finite if A = () or there exists
n € N such that there is a bijection f : A — {1,2,...,n}.

We say that A is infinite if it is not finite



Remark
» A subset of a finite set is finite.

» A non-empty finite subset of R is bounded above (in fact, has
a maximum) and so a subset of R that is not bounded above
is infinite.

» N is not bounded above (by the Archimedean property) so is
infinite.



Definition

Let A be a set. We say that A is
» countably infinite if there is a bijection f : A — N;
» countable if there is an injection f : A — N;

» uncountable if A is not countable.



Remark
There are variations on the details of these definitions, so it's

worth checking carefully if you're looking at a book or other
source. For example, some people say ‘countable’ where we are
using ‘countably infinite'.



Proposition 17
Let A be a set.
(i) A is countable if and only if A is countably infinite or finite.

(ii) If there is an injection f : A — B and an injection g : B — A,
then there is a bijection h: A — B.

Proof.
Not in this course. See Priestley's supplementary notes on
countability. O



Proposition 18

Each of the following sets is countably infinite.
(i) N

NuU {0}

(i) {2k —1: k e N}

(iv

(v

i)
)
) Z
) N xN.



Remark
It might feel surprising that the set of odd natural numbers ‘has
the same size as’ the set of all natural numbers!
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Proof.
(i) Clear.

(ii

(iv) Define f :Z — N by

This is a bijection.

) Define f : NU {0} — N by f(n) = n+ 1. This is a bijection.
(iii) Define f : N — {2k —1: k € N} by f(n) =2n—1.
)



Proof.

(v) Define f : N x N — N by f((m, n)) =2m"1(2n - 1).
Claim f is a bijection.
Proof of claim
injective: If f((my,n1)) = f((m2, ny)) then
2m=1(2p; — 1) =2m~1(2n, — 1),

so, by uniqueness of prime factorisation in N, 2m~—1 = 2m—1

and 2m —1=2ny — 1,

so my = my and ny = no.

surjective: Take k € N.

Then k =27(2s + 1) for some r, s >0

(consider the set T = {t € Z*%: £ € N} — this is
non-empty and bounded above so has a maximum).
Then k =f(r+1,s+1).

O
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More on countability



Proposition 19
Let A, B be countable sets.

(i) If A and B are disjoint, then AU B is countable.
(i) A x B is countable.

Remark
In (i), we don't need the condition that A and B are disjoint, but it
makes life easier for our proof.
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Proof.

Since A and B are countable, there are injections f : A — N and
g:B—N.

(i) Define h: AUB — N by

ho) — {2f(x)— 1 ifxeA

2g(x) if x € B.

This is an injection (because f and g are).

(i) Define h: Ax B — N by h((a, b)) = 27(2)38(b),
By the uniqueness of prime factorisation in N, this is an
injection.



Theorem 20
Q>0 is countable.
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Proof.
Define f : Q®° — N by f(g) = 2P39 where p, q € Z>° and

hef(p, q) = 1.
This is an injection (by uniqueness of prime factorisation in N). [



Corollary 21
Q is countable.






Proof.

We can write Q = Q% U {0} UQ<C. This is a disjoint union.
We have just seen that Q>° is countable, and similarly so is Q<°,
and {0} is finite and hence countable.

Hence, by Proposition 19, Q is countable. O



Fact Every real number has a decimal expansion, and if we require
that we choose a non-terminating expansion (such as 0.24999. ..
for 1) rather than a terminating one (such as 0.25 for 1) where
there is a choice, then this decimal expansion is unique.



Theorem 22
R is uncountable.

Remark
The proof strategy we are going to use is called Cantor’s diagonal
argument.
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Proof

It suffices to show that (0, 1] is uncountable.

Note that certainly (0, 1] is not finite (by Corollary 14 of the
Archimedean property).

Suppose, for a contradiction, that (0, 1] is countably infinite. List
the elements as x1, x2, X3, ....

Each has a non-terminating decimal expansion (choosing the
non-terminating option where relevant):

X1 = 0.811312313314 Ce
X = 0.821322323324 .

X3 = 0.831332333334 ce

Xk — O.aklakgakgak4 .



Proof

Construct a real number x € (0, 1] with decimal expansion
0.b1bobs ... where
. 5 if dkk = 6
k- 6 if alk 75 6.
Then x # x for all k, because x differs from xj in the k*" decimal

place, so x is not on our list, which supposedly contained all
elements of (0,1]. This is a contradiction.

O



Remark
The only significance of the choice of 5 and 6 as the key digits

when defining x was that we didn’t involve 0 or 9, to avoid issues
with non-unique decimal expansions.
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Introduction to sequences



For now, we'll work with familiar functions such as sine, cosine,
exponential and log—we'll assume that these functions exist and
have the properties we expect.

You can do this on the problems sheets too.

We'll define them carefully later in the course, when we've studied
series.



Notation
When we use logarithms, these will all be to the base e. We write
log x for log.(x). We don't write In x.

For a> 0 and x € R, we define a¥ = eX'082, (Of course this relies
on definitions of the exponential and logarithm functions, which
will come later.)



Here are some informal examples of sequences.

>

3 33 333 3333
1071007 1000° 10000 """
better than the previous.
14 141 1414 14142

10’100’ 1000° 10000 "
better than the previous.

are approximations to % each

are approximations to v/2, each

Take € > 0. Then, by the Archimedean property, there is

N > 1 such that 0 < ﬁ < e. Now for all n > N we have
0< % < % < &. We see that apart from finitely many terms
at the start, the terms of the sequence 1, %, %, %, %, ... all lie
within distance € of 0. This is the case for any positive real
number €.

1,—-1,2,—-2,3,—4,4,—4, ... is another sequence, and
intuitively it feels as though it does not tend to a limit.
7,1.2,—-5,2,324 —-9235.32, ... is another sequence—there is
no clear pattern to the terms, but it is still a sequence.



Definition
A real sequence, or sequence of real numbers, is a function
a: N — R. We call a(n) the nth term of the sequence.

We usually write a, for a(n), and say that « defines the sequence
(an) with terms a1, az, as, as, .... We might also write this as

(an)n>1 or (an)fyozl-

Similarly, a complex sequence is formally a function o : N — C,
and we write it as (a,), where now a, € C for n > 1.



Remark

| 2
| 2

>

The order of the terms in a sequence matters!

We write (a,) for the sequence, and a, for a term of the
sequence.

Much of the theory relating to sequences applies to both real
and complex sequences. Sometimes, though, we'll need to
focus only on real sequences—for example if we're using
inequalities. In this case we'll carefully specify that we're
working with real sequences. If we don’t specify, and just say
‘sequences’, then it applies equally to real and complex
sequences. We'll also have a section (and corresponding
video) at the end of this block concentrating on complex
sequences.



Example

» Let a, = (—1)". Then the first few terms of the sequence are

-1,1,-1,1,-1,1,....
» Let a, = 5;1”1. Then the first few terms of the sequence are
%sin 1,%sin2,%sin3,....
> Let
0 if nis prime
an = 1 _
1+~ otherwise.

Then the first few terms of the sequence are
50709
2,0,0,%,0,5,0,5,....

> Let a, = n. Then the first few terms of the sequence are

1,2,3,4,5,....



Definition

We can make new sequences from old. Let (a,), (b,) be sequences
and let ¢ be a constant. Then we can define new sequences
‘termwise": (an + bp), (—an), (anbn), (can), (|an]). If by # 0 for all
n, then we can also define a sequence ().



Example

Let a, =(—1)" and b, =1 for n > 1.

Then the first few terms of (a, + by) are 0,2,0,2,0,2,...; and
(—an) = ((—1)"); and (|anl) = (bn).
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Convergence of a sequence
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Definition
Let (an) be a real sequence, let L € R. We say that (a,) converges
toLasn— oo if

Ve >0 3N € Nsuch that Van > N, |a, — L| < e.

In this case we write a, — L as n — 0o, and we say that L is the
limit of (ap).



Remark

| 4

>
>

We might also say that (a,) tends to L as n — oo, and we

might also write that lim a, = L.
n—oo

N can depend on ¢, and almost always will.

The ‘order of the quantifiers’ matters. We wrote

Ve > 0 dN € N.... This order allows N to depend on ¢. If we
wrote 3N € N such that Ve > 0. .. that would be something
quite different.

We could replace n > N in the definition by n > N, and

lan — L| < € by |a, — L| < &, without changing the definition.
(Check this!) But it's crucial that we have € > 0 not € > 0.
(Check this!)

| put ‘the’ limit in the definition. We'll see later that if it
exists then it's unique.



Definition

Let (a,) be a real sequence. We say that (a,) converges, or is
convergent, if there is L € R such that a, — L as n — oco. If (ap)
does not converge, then we say that it diverges, or is divergent.



Definition

Let (a,) be a sequence. A tail of (a,) is a sequence (by,), where for
some natural number k we have b, = a,1x for n > 1. That is,
(by) is the sequence obtained by deleting the first k terms of (a,).



Lemma 23 (Tails Lemma)
Let (a,) be a sequence.

(i) If (an) converges to a limit L, then every tail of (a,) also
converges, and to this same limit L.

(ii) If a tail (by) = (an+k) of (an) converges, then (a,) converges.
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Proof.

(i) Take a tail of (a,): take k > 1 and let b, = apk for n > 1.
Assume that (a,) converges to a limit L.
Take € > 0.
Then there is N such that if n > N then |a, — L| < e.
Now if n > N then n+ k > N so |a,+k — L| < ¢, that is,
|bp — L| < e.
So (b,) converges and b, — L as n — cc.

(ii) Assume that (b,) = (an1k) converges.
Then there is L € R such that b, — L as n — oo.
Take € > 0.
Then there is N such that if m > N then |by, — L| < ¢, that
is, |am+k — L] < e.
Now if n > N + k then n = m+ k where m > N, and so
lan — L| < e.
So (ap) converges and a, — L as n — oo.






Claim

% — 0 as n — oo.
Proof.

Take € > 0.

Then there is N € N such that % < £ (by the Archimedean
property).

Forn> Nwehave |1 —0|=1< 1 <.
Sol—0asn— oo

O
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Claim

Let a, = 1—1—(—1)”% forn>1. Then a, — 1 as n — oo.

Proof.

Take € > 0.

Take N =[4]+1.

Here [x] denotes the ceiling function: it is defined to be the
smallest integer greater than or equal to x.

If n > N, then

so —= < ¢
so la, — 1| <e.

So a, -+ 1asn— oo.
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Claim
ncos(n® + 1)

Leta, = ————2 forn>1. Then a, — 0 as n — oo.

5n2 +1

Proof.
Take € > 0.
Take N = [1] +1.
If n>N, thenn>—so
ncos(n® + 1) 1
|an| = ‘

< — <.
5n2 +1 5n<€

So a, — 0 as n — oo.



Remark
Here are some top tips!

» We don't need the smallest possible N. It's (almost always)
not even interesting to know what it is. So make your life
easier! If an inequality (in the right direction) helps, then go
for it.

» Be careful to make sure that the logic flows in the right
direction, and that you've set out the logic explicitly.
Hopefully the examples we've just seen help you to have ideas
of how to do this.

» The definition officially says N € N, but we don't really care
whether N is a natural number. If we have a value that works,
then we can always choose a natural number larger than it.



Remark

> We think of £ as a small positive real number, but we are
obliged to prove it for all ¢ > 0. But if we can prove it for say
0 < € < 1 then that's enough—if N works for a certain ¢ then
it works for all larger values too. So you can work with a
smaller range of ¢, such as 0 < € < 1, if that is most
convenient (but it would be a good idea to mention briefly
why this is sufficient).

> It's really worth becoming comfortable with inequalities and
modulus. In the examples, it was nicer to use the absolute
values to write things like |a, — L| < €, rather than
—e& < ap, — L < e. If you prefer the second at the moment,
then | recommend practising to get used to the first!
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Limits: first key results



Proposition 24 (Sandwiching, first version)

Let (a,) and (by) be real sequences with 0 < a, < by, for all n > 1.
If b, — 0 as n — oo, then a, — 0 as n — oco.
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Proof.

Idea: if N works for b, then it works for a, too.

Assume that 0 < a, < b, for all n, and that b, — 0 as n — oo.
Take £ > 0.

Since b, — 0, there exists N such that if n > N then |b,| < .
Now if n > N then 0 < a, < b, < ¢, so |a,| < €.

So a, — 0 as n — oo.
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Claim

2n—>Oasn—>oo

Proof.

We have 2" > n for n > 1 (can prove this by induction),
soO<2:l 1forn 1and1—>0

so by SandW|ch|ng 57 — 0 as n — oo.
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Claim
ncos(n® +1)

Let a, = TRl for n > 1 (we saw this example earlier).
Then a, — 0 as n — oo.
Proof.
Idea: apply Sandwiching to (|an|).
We have
3
0 ncos(n> + 1) gigl
5n? +1 5n ~ n

forn>1,

and%—>Oasn—>oo,

so, by Sandwiching, |a,| — 0 as n — 0.

But (looking back at the definition) we see that |a,| — 0 if and
only if a, — 0.



Lemma 25
(i) Take c € R with |c| < 1. Then ¢c" — 0 as n — 0.
(i) Let ay = 55 forn>1. Then a, — 0 as n — oo.
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Proof.

(i) Write |c| = ﬁ where y > 0.
Take € > 0.
_ra
Take n > N.
By Bernoulli's inequality (since y > 0 and n > 1) we have

(14+y)">1+ny, so

-t <t 1
(I+y)" “1+4+ny = Ny

Soc" —0asn— oo.



Proof.

(ii) Note that if n> 2 then 2" = (1+1)" > (5) (by the binomial
theorem).
Take € > 0.
Let N = [2+ 2].
For n > N, we have

lap — 0| = —

Soa, —0as n— .



Theorem 26 (Uniqueness of limits)
Let (an) be a convergent sequence. Then the limit is unique.



ok

e it Unib L3lg | hen vien "
oMt resty b e Ly o M"b

Pl , W ik P:u:l-l(. B el “hoislat

L
swane v “«-—"L‘ oA 0. o>le.

. Lizhe

Sogpow, bor & CAmdisin, bk Ll
lv &= |Li-W) S0,
Saw  &a —”l.-\ , 3N, w 4 anth s loa -ba) €.
Ale, Sale 6n Ly, IN, Vb oA e loa—Lal €5
for a3, mev da,, A e o e ~L2) <3 0 [a-Lal €8, %
L, Lol = V(L e lew -L)
¢ | IPURRE ¢ \t.\—l.-l_\ \73 NN \.-l‘\b
¢ls = L, -tal.

so Ll”l—t . D



Proof.
Assume that a, — L1 and a, — Ly as n — oco. Aim: L1 = L.
Suppose, for a contradiction, that L; # L.

L —L
Let6:M>0.

Since a, — L1 as n — oo, there is Ny such that if n > Nj then
\a,, — L1’ < E.

Also, since a, — Ly as n — oo, there is N> such that if n > N>
then |a, — Lo] < e.

For n > max{Ni, No} we have |a, — L1]| < € and |a, — | < ¢, so

1Ly = Lof = [(Lx — an) + (a0 — L2)]
< |L1 — an| + |an — La| by the triangle inequality
< 2e= ’Ll — L2’.

This is a contradiction.
So L1 = L2. L]
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Limits: modulus and inequalities



Proposition 27

Let (an) be a convergent sequence. Then (|an|) also converges.
Moreover, if a, — L as n — oo then |a,| — |L| as n — oo.
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Proof.
Say a, — L as n — oc.
Take € > 0.

Then there is N such that if n > N then |a, — L| < e.
Now if n > N then, by the Reverse Triangle Inequality, we have
lan| = |LI| < lan — L] <e.

So (|an|) converges, and |a,| — |L| as n — oc.



Remark
We could instead have proved Proposition 27 using the

Sandwiching Lemma, since a, — L as n — oo if and only if
|an — L| — 0 as n — oo (check this using the definition of

convergence).



If (an) is a convergent sequence and a, > 0 for all n, then what
can we say about the limit? It's not the case that the limit must
be positive.

For example, if a, = % then a, > 0 for all n but a, — 0.

But it's hard to see how a sequence of positive terms could have a
negative limit.



Proposition 28 (Limits preserve weak inequalities)

Let (an) and (b,) be real sequences, and assume that a, — L and
b, —+ M as n — oo, and that a, < b, for all n. Then L < M.



Remark

» This includes the special case where a, = 0 for all n:
Proposition 28 says that if b, > 0 for all n, and b, — M as
n — oo, then M > 0. (This is because the constant sequence
0,0,0,... certainly converges to 0.)

> A common mistake is to use the non-result that limits
preserve strict inequalities. As we've seen, this is not true.
Please try not to do this!
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Proof.
Suppose, for a contradiction, that it is not the case that L < M, so
(by trichotomy) L > M.

Lete = 3(L— M) >0.

Since a, — L as n — 00, there is N; such that if n > Nj then
lan — L| <e.

Since b, —+ M as n — oo, there is Ny such that if n > N, then
|by — M| < e.

Now for n > max{Ny, N} we have a, > L — ¢ and b, < M + ¢,
sol—e<a,<b,<M+¢,

sol — M < 2s=L— M. This is a contradiction.

O



Proposition 29 (Sandwiching)

Let (an), (bn) and (cn) be real sequences with a, < b, < ¢, for all
n>1. Ifa,— Landc,— L asn— oo, then b, — L as n — .
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Proof.

Take € > 0.

Since a, — L as n — 00, there is N; such that if n > Nj then

lan — L| < e.

Since ¢, — L as n — o0, there is N such that if n > N> then

len — L < e.

Then for n > max{Ny, No} we have L—e < a, < b, <c, < L+e¢,
so |b, — L| <e.

So b, — L as n — oc. O
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Bounded and unbounded sequences



Definition

Let (a,) be a sequence. We say that (a,) is bounded if the set

{an : n > 1} is bounded, that is, there is M such that |a,| < M for
all n > 1. If (a,) is not bounded then we say that it is unbounded.



Proposition 30 (A convergent sequence is bounded)
Let (an) be a convergent sequence. Then (ap) is bounded.

Remark
Proposition 30 tells us that if (a) is unbounded then (a,) diverges.
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Proof.
Assume that a, — L as n — oo.
Then (taking € = 1) there is N such that if n > N then

lan — L] <1 so
|an| = |(an — L) + L] <fan — L]+ |L] <1 +]L|.

Let M = max{|ai1],|az|,-..,|an],|L| + 1}.
Then |a,| < M for all n > 1.



Remark

» As remarked earlier, if (a,) is unbounded then (a,) diverges.
So, for example, (2") diverges.

» Unboundedness is not the same as divergence. The converse
of Proposition 30 is not true. A bounded sequence can
diverge. For example, let a, = (—1)". Then |a,| < 1 for all
n>1, so (ap) is bounded.
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Claim
((—1)™) does not converge.

Proof.

Suppose, for a contradiction, that (—1)" — L as n — oc.
Then (taking € = 1) there is N such that if n > N then
[(-1)" - L] < 1.

In particular (n = 2N) we have [L — 1| <1so L >0,
and (n=2N+1) we have [L+ 1] <1so L <0.

This is a contradiction.
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Definition
Let (an) be a real sequence. We say that (a,) tends to infinity as
n— oo if

VM € R 3N € N such that Vn > N, a, > M.

In this case we write a, — o0 as n — oo.
Similarly, we say that (a,) tends to negative infinity as n — oo if

VM € R IN € N such that Vn > N, a, < M.

In this case we write a, — —o0 as n — oo.



Remark
This is a separate definition from our earlier definition of

convergence, and oo is definitely not a real number. Results about
convergence to a real number L cannot just be applied by ‘taking

L = oo’'—this would be highly illegal!






Let a, = n®> — 6n for n > 1.

Claim
ap — 00 as N — 00.

Proof.

Fix M > 0. (It suffices to prove the result for M > 0.)
We want N such that if n > N then n®> —6n > M
but n> —6n=(n—3)2-0

so we are done if (n —3)2 > M +9

that is, we are doneif n—3 > VM +9

Let N=[4+VM+9].
Ifn>N,thenn—3>+vM+9 >0,
so(n—3)2>M+09,

son?—6n> M.

So a, — 00 as n — 0.



0 if nprime
Let a, = P )

n  otherwise.
Then (a,) does not tend to infinity, because there are infinitely
many primes: for any N € N, there is a prime n with n > N, and

then a, = 0.



Lemma 31
(i) If a« <0, then n* — 0 as n — 0.

(i) If & >0, then n® — oo as n — oo.
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Proof.
(i) Take € € (0,1). We have

n® <e
o ealogn <e

< alogn <loge
1
< logn > —loge (note o < 0)
«

1
& n > ealoge

so we can take N =1+ [eé log=7



Proof.
(i) Take M > 0. We have

n“>M
<:>ealogn M
< «alogn > log M

1
& logn > — IogM (note o > 0)

<:>n>ea'°gM

so we can take N =1+ [ea log M



Lemma 32
Let ¢ € R>O,

(i) Ifc <1, then ¢" — 0 as n — 0.
(i) Ifc=1, then c" — 1 as n — oo.

(iii) If ¢ > 1, then ¢" — o0 as n — oc.



Proof.
(i) This was Lemma 25.
(i) This is clear from the definition of convergence.

(i) Exercise. (You could adapt the argument from (i), or use
logarithms.)

O
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Complex sequences



Definition
Let (z,) be a complex sequence, let L € C. We say that (z,)
converges to L as n — oo if

Ve > 03N € Nsuch thatVn > N, |z, — L| <e.



Remark
» If (z,) tends to a limit, then this limit is unique, exactly as in
Theorem 26.
> We can have a sort of sandwiching for complex sequences, if

we use the modulus. If (z,) and (w,) are complex sequences,
and |wp| < |z| for all n > 1, and z, — 0 as n — oo, then

wp, — 0 as n — oo.



Theorem 33 (Convergence of complex sequences)

Let (z,) be a complex sequence. Write z, = xp + iy, with x,,

¥n € R, so that (x,) and (yn) are real sequences. Then (z,)
converges if and only if both (x,) and (yn) converge. Moreover, in
the case where (z,) converges, we have

lim z, = lim x, +1i lim y,.
n—oo n—oo n—0o0

Proof.

Exercise. O



Example

> Letz,,:%. Then |zn\:%—>Oasn—>oosoz,,—>0as
n— oo.

» Let z, = (1+41)". The sequence is
144,20, ~2+2i, 4 —4— 4, 8,8 —8i,16,.... The real
parts are 1,0, -2, —4,—4,0, 8,16, ...—this sequence doesn't
converge, and hence neither does (z,).
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Subsequences



Informal understanding of a subsequence?

Let (an)n>1 be a sequence. Then a subsequence is a sequence
(br)r>1, where each b, is in (a), and the terms are in the right
order.



Example

Let a, = n for n > 1. The following are subsequences of (a,).

> 2,46,8,... — the subsequence (az,)
» 2,4,8,16,... — the subsequence (azn)
The following are not subsequences of (a,).
> 6,4,8,... — the terms are not in the right order
» 2.4.0,... — not all the terms are in (a,)

> 1,2,3,...,2020 — finite so not a sequence.



Definition

Let (an)n>1 be a sequence. A subsequence (b;),>1 of (an)n>1 is
defined by a function f : N — N such that f is strictly increasing
(if p < g then f(p) < f(q)), and b, = af(,) for r > 1.

We often write f(r) as n,. Then ny < np < n3 < --- is a strictly
increasing sequence of natural numbers, and b, = a,, so the
sequence (b,) has terms ap,, an,, an;, - - - .



Remark

» Formally, (an) corresponds to a function oo : N — R or
a: N — C. Then a subsequence of (a,) corresponds to a
function awo f, where f : N — N is strictly increasing.

» Subscripts are ‘dummy variables’. We can write (a,) as (ar)
or (am) or (aq) or (ax). It is conventional to use a letter close
to n in the alphabet, to help us remember that it is a natural
number. We can use any letter for the subscripts in the
subsequence (b,), except that if we write our original sequence
as (a,) then we should avoid using n for the subsequence too.

» [t's sometimes useful to know that n, > r for r > 1.
(Exercise: prove this inequality, using induction.)



Proposition 34 (Subsequences of a convergent sequence)

Let (a,) be a sequence. If (a,) converges, then every subsequence
(an,) of (an) converges. Moreover, if a, — L as n — oo then every
subsequence also converges to L.

Remark

So if (ap) is a sequence, and it has two subsequences that tend to
different limits, then (a,) does not converge. This follows from
Proposition 34, and can be a useful strategy for showing that a
sequence does not converge.
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Proof.

Assume that (a,) converges to L.

Let (an,) be a subsequence of (a,).

Take € > 0.

Since a, — L, there is N such that if n > N then |a, — L| < e.
If r > N, then n, > r > N (see remark before this result),

so |ap, — L| <e.

So a,, — L as r — oc.



Example
0 if nis prime
Let a, = 1 p
1+ otherwise
Claim
(an) does not converge.
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Proof.

Let the primes be py < po < p3 < ---. Let P = {p1,p2,p3,... }
Note that there are infinitely many primes, so (ap,)r>1 is a
subsequence.

We have a, =0 forall r > 1, so ap, — 0 as r — oo.

Let the elements of N\ P be ny < np < n3 < -

Note that there are infinitely many non—primes, so (ap,)r>1 is a
subsequence.

We have a,, =1+ - for r > 1, and so we see that a,, — 1 as
r — oo.

So (ap) has subsequences that converge to different limits, so, by
Proposition 34, (a,) does not converge.
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Algebra of Limits — part one



Example
This is an unofficial example. We'll return to it once we've proved
some results.

7n5 — nsin(n® +5n) + 3
4n® —3n2 +n+2

Let a, =

What can we say about (a,)? Intuitively...

- the numerator grows like 7n®> — the other terms are much
smaller for large n, which is all we care about;

- the denominator grows like 4n°

so we might conjecture that a, — % as n — oo.



Theorem 35 (Algebra of Limits, part 1)

Let (a,) and (b,) be sequences with a, — L and b, — M as
n — oo. Let ¢ be a constant.

(i) (constant) If a, = c, so (a,) is a constant sequence, then
ap — Cc asn— 0.

(ii) (scalar multiplication) The sequence (ca,) converges, and
ca, — cL as n — oo.

(iii) (addition) The sequence (a, + b,) converges, and
an+b,— L+ M asn— .

(iv) (subtraction) The sequence (a, — b,) converges, and
an—by,—>L—M asn— 0.

(v) (modulus) The sequence (|an|) converges, and |a,| — |L| as
n— 0.
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Proof.

(i) This is immediate from the definition.

(ii) If ¢ =0, then we're done by (i). So assume that ¢ # 0.
Take € > 0.
Since a, — L, there is N such that if n > N then |a, — L| < e.
Now if n > N then |ca, — cL| = |c||an — L| < |cle.
So (can) converges to cL.
OR...
Take € > 0.
Since a, — L there is N such that if n > N then
la, — L] < ‘C|
Now if n > N then |ca, — cL| = |c||lan — L| < e.
So (cap) converges to cL.



Proof.

(iii) Take € > 0.
Since a, — L as n — oo there is Ny such that if n > N; then
lan — L| < e.
Since b, —+ M as n — oo there is N, such that if n > N, then
|by — M| < e.

Let N = max{Ny, No}. If n > N, then |a, — L| < £ and
|bp — M| < ¢, so

|(an + bn) — (L+ M)| < |an — L| + | by — M| (triangle ineq)
< 2¢.

So (an + by) converges to L+ M.
(iv) This follows from (ii) and (iii).
(v) This was Proposition 27.



Remark

In (iii), | ended up showing that we can make |(a, + b,) — (L + M)|
less than 2¢ by going far enough along the sequence. But the
definition says &, not 2¢, so isn't this a problem?

Well, no, it's not a problem. We need to show that we can make
|(an + bn) — (L 4+ M)] less than any positive real number — and
that's what we've done. The important thing is that 2 was a
(positive) constant: it didn't depend on n.

We could instead have chosen Ni and N corresponding to 5 (so if
n > Ny then |a, — L| < § and similarly for b,), and then we'd have
got € at the end. But if I'd done that then it might have seemed
more mysterious: you might have wondered “how would | have
known to choose 57"

In practice, sometimes | doodle on scrap paper and consequently
know what to choose at the start, and sometimes | just work
through and see what happens, and if | get 2¢ or 1000¢ at the end
then it doesn’t matter. | illustrated these two alternative
approaches in (ii) — but really they're the same, and both are fine.



Example

Claim

1 1
Let an = ? + (1 + (—1)n7
n

. Then a, — 1 as

ncos(n® + 1)
5m +1

n — o0.
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Proof. ) )
We showed earlier that > 0and 14 (—1)"— — 1 and also
n

Vn

341
neos(n” +1) — 0 as n — oo (see Section 16).

5n2 +1

So, by AOL, (a,) converges, and a, - 0+14+0=1 as
n— 0o.



Example

Claim
Let a, = (—1)" + 5 for n > 1. Then (a,) does not converge.






Proof.

Suppose, for a contradiction, that (a,) converges.

Note that (47) converges (this was an earlier example).

So, by AOL, the sequence with n*" term (—1)" = a, — 4
converges.

But we showed earlier that ((—1)") does not converge (or we could
now note that it has subsequences tending to different limits 1 and

—1). This is a contradiction. O
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Algebra of Limits — part two



Theorem 36 (Algebra of Limits, part 2)

Let (an) and (by) be sequences with a, — L and b, — M as
n— oo.

(vi) (product) The sequence (anbp) converges, and anb, — LM as
n— 0o.

VIl reciproca , then the sequence | — | converges, an
(vii) (reciprocal) If M # 0, then th (bl) ges, and
1

1
Fﬁ-}masn—)OO.

(viii) (quotient) If M # 0, then the sequence (Z—:) converges, and

an L
B — g7 s n — oo.



Remark
You might wonder whether the sequences (bin) and <Z—:) in (vii)

and (viii) are defined. This is a good question.

The answer is that — as we'll show in the proof — if M £ 0 then
a tail of (bp) has all its terms nonzero, and hence there's a tail of

(bi,,) that exists, and similarly for (Z—:) When we talk about

convergence of these sequences, it's enough to consider a tail.
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Proof.

(vi) Take e > 0. We may assume that ¢ < 1.
Since a, — L, there is Ny such that if n > Nj then

lan — L| < e.
Since b, — M, there is N> such that if n > N, then
|bp — M| < e.

Let N = max{Ny, N, }.
If n> N, then |a, — L| < ¢ and |b, — M| < ¢ and
lan| < |L| + ¢, so

lanbn — LM| = |an(byp — M) + M(a, — L)|
< |anl|bp — M| + [M|[an — L]
<(|L|+¢€)-e+|M|-e
<e(1+ L]+ |M)).

Since 1+ |L| + |M]| is constant, this is enough to show that
(apbp) converges, and the limit is LM.

O



(vii) Assume that M # 0.
Take € > 0.
Since b, — M and |[M| > 0, there is Ny such that if n > N;
then |b, — M| < |—A24| so (by the Reverse Triangle Inequality)

M
bal > [l -+ (M — b)] — (M~ byf| > 1% > 00

So the tail (bp)s>n, has all terms nonzero, so we can consider

the sequence (i )
q b" n>N1

Also, there is Ny such that if n > N, then |b, — M| < e.

Let N = max{Ny, No}. If n > N, then

1 1] [M—b) e 2

by M| [M[[bs)| ~[M] [M]

Since 25 is a positive constant, this shows that (A
|M| bn n>Ny

converges, and the limit is ﬁ



Proof.
(viii) This follows from (vi) and (vii).



Example
7n% — nsin(n® +5n) + 3

4n> —3n2 +n+2
start of Video 22).

(we saw this example at the

Let a, =

Claim

an — £ as n — oo.
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Proof.

We have
7—%sin(n2+5n)+%
ap =
4-3+L+2
1 1
Now 0 < in(n? +5n)\—4<fand — 0, so by
n n

Sandwmhmg 7 sin(n® +5n) — 0, and several other terms also
tend to 0 (eg by Sandwiching),
so, by AOL, (a,) converges, and

7—-0+40 7

n— =
T A-0+0+0 4

as n — 0.



Proposition 37 (Reciprocals and infinite/zero limits)

Let (a,) be a sequence of positive real numbers. Then a, — oo as
n— oo ifandonlyifain—>Oasn—>oo.

Proof.
Exercise (using the definitions). O
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Orders of magnitude



Example
8n? + 1000000n + 1000000

14n® +n3+n
Intuitively, the key term in the numerator is 8n?, and the key term
in the denominator is 14n°. Even with the amusingly large
coefficients in the numerator, when n is large these terms will be
much smaller than 8n?.
So it feels like the sequence grows roughly like %, so should tend
to 0.
We can formalise this using AOL. Dividing through top and
bottom by n® (since this is the key term), we get

Let a, =

8 4 1000000 . 1000000 . 04040
14+ L4+ 14+04+0

dn =

as n — o0.



Example

We showed in Lemma 25 that 5; — 0 as n — oo.

This is an example of the idea that ‘exponentials beat
polynomials’. But while ‘exponentials beat polynomials’ is a useful
slogan for intuition, it is not suitable for rigorous proofs!



Example

We've seen a couple of examples where we used that |cos x| < 1
and |sin x| < 1 for all x — this can be useful.



Example
We'll show in the next section that "’% —0as n— o0.

Intuitively, polynomials grow faster than logarithms.



Definition

Let (a,) and (bp) be sequences. We write a, = O(b,) as n — oo if
there is a constant C € R>? and there is N such that if n > N
then |a,| < C|bp|. This is ‘big O’ notation.

If b, # 0 for all n (or all sufficiently large n), then we write
an = o(bp) as n — oo if > — 0 as n — oo. This is ‘little o'
notation.



Remark

» Sandwiching tells us that if a, = O(b,) and b, — 0 as
n — oo then a, — 0 as n — oo.

» Big O and little o notation give us precise ways to make
precise statements about comparative rates of growth of
sequences. Please use them precisely!



Example

This example is in a Moodle quiz. Before you watch the next
video, please go to the Moodle course page for Analysis |, and try
the quiz for section 24 (it's a short multiple choice quiz).



Analysis | — Video 25

Vicky Neale

Michaelmas Term 2021



Monotonic sequences



Definition
Let (a,) be a real sequence.

>

>
>

We say that (a,) is monotonic increasing, or monotone
increasing, or increasing, if a, < ap41 for all n.

We say that (a,) is strictly increasing if a, < ap4+1 for all n.

We say that (a,) is monotonic decreasing, or monotone
decreasing, or decreasing, if a, > ap41 for all n.

We say that (a,) is strictly decreasing if a, > a,+1 for all n.

We say that (a,) is monotonic, or monotone, if it is increasing
or decreasing.



Example

Notice that a constant sequence is both increasing and decreasing.
This might seem counterintuitive!






Theorem 38 (Monotone Sequences Theorem)
Let (ap) be a real sequence.
(i) If (an) is increasing and bounded above, then (a,) converges.

(ii) If (an) is decreasing and bounded below, then (a,) converges.

Remark
> So ‘a bounded monotone sequence converges'.

» The result applies to tails of sequences too: if (a,) has a tail
that is monotone and bounded, then it converges.
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Proof.

(i) Assume that (a,) is increasing and bounded above.
The set S = {a, : n > 1} is non-empty and bounded above,
so, by Completeness, it has a supremum.

Take € > 0.

By the Approximation Property, there is N such that
supS —e < ay <supS.

If n> N, thensupS —e <ay <a,<supS,

so |a, —sup S| < e.

So (ap) converges, and a, — sup S as n — 0.

(ii) If (ap) is decreasing and bounded below, then (—a,) is
increasing and bounded above, so (ii) follows from (i).



Lemma 39
Let (an) be a real sequence that is increasing and not bounded
above. Then a, — 00 as n — oo.



Proof.

Take M € R.
Since (a,) is not bounded above, there is N such that ay > M.

Then, since (a,,) is increasing, if n > N then a, > ay > M. O]



Example

1 n
Let a, = (1 + - .

n
On Sheet 1, you proved that (a,) is increasing and that (a,) is
bounded above (by 3). So, by the Monotone Sequences Theorem,
(an) converges. Say a, — L as n — co. Then, since limits preserve
weak inequalities, we see that 2 < L < 3.

(Secretly, we know more about L, but that's strictly unofficial for
now.)
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Example

Let ¢ > 0. In this example, we'll show that \/c exists. (This
generalises earlier work on /2, and uses a different strategy.)
: 1
Define (ap) by a1 =1 and ap+1 = 5 (a,, + C) forn>1.
dn
This is a legitimate definition, since (by induction) a, # 0 for
n> 1.

Claim
(an) converges, and if a, — L then [? = c.



» (a,) bounded below:
by a straightforward induction argument, we have a, > 0 for
all n.

» study a2 — c:
for n > 1, we have

2
5 1 c
an+1_C:4<3n+an> —C
1/, 2
:4<an+2c+a%)c
1/, c?
:4<an—2C+a%>
1 c\?
= — an — —
4\""  a,
> 0,



» (an)n>2 decreasing:
for n > 2, we have

C
an+> — an
dn

)
7_an
dn
(c —ap)



So, by the Monotone Sequences Theorem, (a,,) converges.
Say a, — L as n — oc.

Then also a1 — L as n — oo (it's a tail of the sequence).
But if L # 0 then

1 c 1
a"+1_2<a"+a) 2 (t+7)
by AOL.

Since limits are unique, we have L = % (L + %)

so, rearranging, L2 = c.

Also, we have a, > 0 for all n, and limits preserve weak
inequalities, so L > 0.

So /¢ exists (L = /c).

In the case that L = 0, since limits preserve weak inequalities and
a > cforn>2wehave c<0,s0oc=0and [?=c.



Lemma 40
Wehave'c’%HOasn%oo.






Proof.
Let a, =
Then a, > 0 for all n, so (a,) is bounded below.

Also, by properties of log we see that (a,)n>100 is decreasing.
So, by the Monotone Sequences Theorem, (a,) converges. Say
IOE" — Las n— oo.

Since limits preserve weak inequalities, we have L > 0.
Now

log n

log(2n)  log2+ logn L
= 0+ —
2n 2n - O 2

azn =

by AOL,
but also (a2,) is a subsequence of (a,) so ax, — L as n — oo.
So, by uniqueness of limits, é =1/[,soL=0.
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Convergent subsequences



Theorem 41 (Scenic Viewpoints Theorem)

Let (a,) be a real sequence. Then (a,) has a monotone
subsequence.
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Proof.

Let V={k e N: if m> k then ap,, < ar}. (The elements of V
are ‘peaks’ or ‘scenic viewpoints’: if k € V then aj is higher than
all subsequent terms.)

Case 1: V is infinite.

Say the elements of V are k1 < ko < - --.

Then (ax,), is a subsequence of (a,)

and it is monotone decreasing (if r < s then k, < ks so ax, > ax.).
Case 2: V is finite.

Then there is N such that if k € V then k < N.

Let m; = N. Then my ¢ V so there is my > my with am, > am,.
Also, my & V so there is m3 > my with ap, = am,.

Continuing inductively, we construct m; < mp < ms < --- such
that am, < am, < am; <+~

Then (am, ), is an increasing subsequence of (a,). O



Theorem 42 (Bolzano-Weierstrass Theorem)

Let (a,) be a bounded real sequence. Then (a,) has a convergent
subsequence.



Proof.

By the Scenic Viewpoints Theorem, (a,) has a monotone

subsequence.
This monotone subsequence is bounded (because the whole
sequence is), so by the Monotone Sequences Theorem (Theorem

38) it converges. O



Remark

» This proof of the Bolzano-Weierstrass Theorem was very
short, because we did all the work in the Monotone Sequences
Theorem and Scenic Viewpoints Theorem! | have another
favourite proof of Bolzano-Weierstrass. |'ve turned it into a
quiz ‘proof sorter’ activity on Moodle.

» The Monotone Sequences Theorem and Scenic Viewpoints
Theorem don't make sense for complex sequences. But
Bolzano-Weierstrass potentially could . ..



Corollary 43 (Bolzano-Weierstrass Theorem for complex
sequences)

Let (z,) be a bounded complex sequence. Then (z,) has a
convergent subsequence.
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Proof.

Write z, = x, + iy, where x,, y, € R.

Say (zp) is bounded by M, so |z,| < M for all n.

Then (x,) and (y,) are also bounded by M, and they are real
sequences.

By Bolzano-Weierstrass, (x,) has a convergent subsequence, say
(%, )r-

Now (yn,)r is a bounded real sequence, so by Bolzano-Weierstrass
it has a convergent subsequence, say (yp,_)s-

Note that (xp, )s is a subsequence of the convergent sequence
(xn,)r and hence converges.

So, by Theorem 33, (z,,, )s converges (since its real and imaginary
parts converge). O
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Cauchy sequences
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Example

Let (an) be a convergent sequence.

Then ap41 —a, — 0as n — oo.

We can prove this directly from the definition (with the triangle
inequality), or using tails and the Algebra of Limits.

But it is not the case that if a,+1 —a, — 0 as n — oo then (a,)
converges.

For example, consider a, = \/n. Certainly (a,) does not converge.
But

apny1 —anp = \/ﬁ \[ ( 1) n 1

vVn+1+/n \/n+71+ﬁ—>0

as n — o0o.

Nonetheless, intuitively it seems that if eventually all the terms of
a sequence are bunched up close together then the sequence might
converge.



Definition
Let (a,) be a sequence. We say that (a,,) is a Cauchy sequence if

Ve > 0 N € N such that Vm,n > N |a, — anm| < .

Remark
Note that this definition makes sense for complex sequences as well
as for real sequences.



Proposition 44
Let (a,) be a convergent sequence. Then (a,) is Cauchy.
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Proof.
Say a, — L as n — oc.

Take € > 0.
Since a, — L, there is N such that if n > N then |a, — L| < 5.

Take m,n > N. Then |a, — L| < 5 and |2, — L| < §,
so, by the triangle inequality,

|am — an| = [(am — L) + (L — an)|
<l|am — Ll +]an— L] < e.

So (ap) is Cauchy.



Proposition 45
Let (a,) be a Cauchy sequence. Then (a,) is bounded.
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Proof.

Since (ap) is Cauchy, there is (applying the definition with ¢ = 1)
N such that if m,n > N then |a, — an| < 1.

Now for n > N we have |a, — an| < 1,

so |an| = |(an — an) + an| < 1+ |an].

Let K = max{\al\, ‘32‘, ceey ’a/\/,l‘, 1+ \aN\}.

Then |a,| < K for all n > 1.

So (ap) is bounded.



Proposition 46

Let (an) be a Cauchy sequence. Suppose that the subsequence
(an,)r converges. Then (a,) converges.
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Proof.
Say that a,, — L as r — oc.
Take € > 0.

Then there is Ny such that if r > Ny then |a,, — L| < 5.

Also, since (a,,) is Cauchy there is Ny such that if m, n
lam — an| < 5.

Let N = max{Nl, N2}

Let r=N. Then n, > r > Ny so |ap, — L| < 5

and if n > N then n, n, > N> so |a,, — an| < 5,

so

lan — L[ = |(an — an,) + (an, — L)|
< |ap—an, |+ lan, — L| <e.

So a, — L as n — oo.

N> then



Theorem 47 (Cauchy Convergence Criterion)

Let (a,) be a sequence. Then (a,) converges if and only if (a,) is
Cauchy.



Proof.

(=) This was Proposition 44.

(<) Assume that (a,) is Cauchy.

Then (a,) is bounded, by Proposition 45,

so by the Bolzano-Weierstrass Theorem (Theorem 42), (a,) has a
convergent subsequence, say (ap, ).

Then, by Proposition 46, (a,) converges. O



Remark
One reason this is so useful is that it gives us a way to show that a

sequence converges without needing to know in advance what the

limit is.
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Convergence for series



Example

Here are some informal examples of series to set the scene.
o0

P For suitable r, we can consider the geometric series Z r"
n=0
(you might already have some ideas about this series).

» Decimal expansions. When we write % =0.111... or % =01,

1
we mean Z .
£~ 10"

[e.e]

1
» We'll define e = Z -
n=0
i = x"
» We'll define X = Z ~.
n!
n=0

We'll revisit these examples once we've explored some theory.



Definition
Let (ax) be a sequence. For n > 1, let

n
Sn:al+32+"‘+anzzak~
k=1

o0
This is called a partial sum of the series Z ak.
k=1

oo
We say that the series Z ay converges if the sequence (s,) of

k=1
partial sums converges. If s, — s as n — 0o, then we write

(o.9]
E dx = S.
k=1
oo

If (s,) does not converge, then we say that Z a, diverges.
k=1



Remark

>

>

So convergence of series is really a special case of convergence
of sequences, rather than a new concept.

A series is a limit.

We might sometimes write Z ay or even Y aj instead of

k>1
[e.9]
E dk.
k=1

n
It would be highly illegal to write something like Z anp — we
n=1
need to use different letters for quantities that can be

different. That's why I've put k as the dummy variable in the
sums, because it isn't n (and is still a good letter for a natural
number).

It's sometimes helpful to note that (with the notation above)
ax = Sk — Sk—1 for k > 2.
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Example
Geometric series. Take z € C. Let ay = z¥ for k > 0, and let

n
Sp = sz. Then for n > 0 we have
k=0

22 itz 41
S, =
" n+1 if z=1.

oo
as n — 00, SO E z" exists and equals
n=0

1
If |z| <1, then s, —
1—=z

1

1—2z

If |z| > 1, then (s,) does not converge and so the series diverges.
(One way to see that (s,) does not converge is to note that if
|z| > 1 then s, — s,—1 = a, = z" does not tend to 0 as n — c0.)



Remark
Notice how we worked with partial sums, and determined that the
limit exists before writing down »_ z".
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Example

1
A telescoping series. Let a, = m for k > 1.

R AU AU N AU S S

B 2 2 3 3 4 n n+1
1

=1—— s lasn— o

n+1

1
SO Z m exists and equals 1.



Remark
Notice how we worked with partial sums, and determined that the
limit exists before writing down > K k+1)
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Example

Let ax = (—1)X, let s, = Z(—l)k.

k=1

{—1 if n odd
Sp =

Then

0 if n even.

o
So (sp) does not converge, that is, Z(—l)k diverges.
k=1



Remark

Notice how we worked with partial sums, not the series, and in fact
the limit doesn't exist. We definitely didn’t write anything dodgy
like

i(—l)k:(—1+1)+(—1+1)+---:0,
k=1

because this would be wrong.
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Series: first results and a first test for convergence



Proposition 48

[o.¢] oo

Consider the series Z ak. If Z ax converges, then a — 0 as
k=1 k=1

k — oo.

Remark
So one way to show that a series diverges is to show that a, /4 0.
This is disproportionately useful!
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Proof.

Let s, = Z ak. Then (s,) converges by assumption. Say s, — s

k=1
as n — Q.

Then also s,—1 — s as n — oo,
so by AOL a, =5, —s,-1 +s—s=0as n— oc.



Remark
Proposition 48 does not say that if ax — 0 as kK — oo then >_ aj
converges. That's because this is false. For example ...
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Example

Forn>1, lets, = Z The series Z is called the harmonic
_ k=1

series.

Claim

The harmonic series diverges.

Proof.
Consider |syn+1 — so0|. We have

2n+1

1 1 1
[spr — 5| = ) PR =i
k=27+1

So (sp) is not Cauchy, so (s,) does not converge. O



Remark
It is interesting to study the partial sums of the harmonic series.
We'll do this in more detail in a future section.



Proposition 49
Let (ak) be a sequence of non-negative real numbers, and /et

Sp = Z ak. Suppose that (s;,) is bounded. Then the series Z ak

k=1 k=1
converges.
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Proof.
Since ax > 0 for all k, we see that (s,) is increasing.

So (sp) is monotone and bounded, so by the Monotone Sequences
(e 9]

Theorem (Theorem 38) it converges, that is, Zak converges. [
k=1



Remark

Proposition 49 is a result that can be useful in practice for showing
that a series converges. One particularly frequent way to apply it is
to show that the partial sums are bounded by comparing with
another series that we already know converges. We'll record that
as a separate result, but really it's just a special case of
Proposition 49, which is in turn just a special case of the
Monotone Sequences Theorem.



Theorem 50 (Comparison Test)
Let (ax) and (by) be real sequences. Assume that 0 < ay < by for

o0 [e.9]
all k > 1, and that Z by converges. Then Z ax converges.
k=1 k=1
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Proof.

Let s, = Zn:ak.

Then (s,,) |s increasing, since ax > 0 for all k >
Also,

n

S, = Z ax < by < Z by
k=1

k=1

(since this last series converges),

so (sp) is bounded.

Hence, by the Monotone Sequences Theorem (or Proposition 49),
o0

E ay converges. L]
k=1



Remark
> More generally, if there is a positive constant C such that

oo e.@)
0<ax <Chyfork=>1,andif Z by converges, then Z ak

k=1 k=1
converges, by a small generalisation of the argument.

» The Comparison Test can also be used to show that a series

[o¢]
diverges. If 0 < ax < by for all k and Zak diverges, then
k=1

oo
Z by diverges.
k=1
» We don't need to know the value of > by to use the
Comparison Test, just that it exists.



Remark

» Please check the conditions of the Comparison Test very
carefully before applying it. Please do not do this by writing
oo o0

things like Z ax < Z bi. We can't write down Y ax (which
k=1 k=1
is, remember, a limit) until we know that the limit exists. So

either check the precise conditions of the Comparison Test, or
work with partial sums as in Proposition 49.

» The Comparison Test is great!
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Example

Claim
= 1
Z 2 converges.
k=1
Proof.
For k > 2, we have
1 1
<< —
0s k2 = k(k—1)
— 1
and kz_z Kk=1) converges (we saw this previously),

oo
1
so by the Comparison Test we have that Z 2 converges.
k=1



Remark

oo
. : 1 .
Note that this tells us nothing about the value of Z p! That is
k=1
an interesting, but more challenging, problem for another time (we
won't discuss it in this course). But we can still use > % in future
applications of the Comparison Test, even without knowing the

value.



Example

[e.9]
1
The series Z 1 converges. (As usual, we define 0! = 1.) This is

k=0
an exercise on Sheet 5.

1
We can then define e = Z PR
k=0



Example

Decimal expansions. I'm not going to go through this example, but
now is a good time to revisit it. You'll find the details in Hilary
Priestley’s supplementary notes on the uncountability of the reals,
on Moodle.
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Series: more results and another test for convergence



Theorem 51 (Cauchy Convergence Crlterlon for serles)

Let (ax) be a sequence, and write s, = Z ak. Then Z ak

) ) k=1 k=1
converges if and only if

Ve >0 dJN € Nsuch thatVn>m> N

n

> s

k=m+1

|5n_5m’: <€

Proof.
Immediate from the Cauchy Convergence Criterion (Theorem
47).

O



Definition
o

Let (ak) be a sequence. We say that Z ay converges absolutely if
k=1

o

Z |ak| converges.

k=1

Remark

» This makes sense for real and complex series.

» The series > |ak] is a series where all the terms are (real and)
non-negative. Such series are particularly nice!



Theorem 52 (Absolute convergence implies convergence)

Let (ax) be a sequence. Ifz |ak| converges, then Z ak

k=1 k=1
converges.
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Proof.
Let

For n > m, we have

n

> s

k=m+1

Sn — Sm| =

k=m+1

Now > |ak| converges by assumption,

so (Sp) is Cauchy by the Cauchy Convergence Criterion,
so (sp) is Cauchy by the inequality above,

so Y ak converges by the Cauchy Convergence Criterion.

< D lad =150 = Sml.

OJ
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Example ,
3 sin’ (k%)
Let ax = (-1) il
Then 0 < |ax| < 5 for k > 1,
and ) % converges,
so by the Comparison Test ) |ax| converges,
SO Y ax converges since absolute convergence implies convergence.



Lemma 53

Take p € R. Then kP diverges for p < 1, and converges if
g

k=1
p>1.
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Proof.

Case 1 p < 0. Then k=P 4 0 as k — 00, so the series does not
converge (by Proposition 48).

Case 2 p = 1. This is the harmonic series (see an example in
Section 29).

Case 3 0 < p < 1. Note that then k=P > k1 > 0, and we know
that >_ k! diverges, so by the Comparison Test Y kP diverges.
Case 4 p > 2. We already know that 3 1 72 converges (this was an
example near the end of Section 29), and 0 < k=P < k~2, so, by
the Comparison Test, Y kP converges.

Case 5 1 < p < 2. We'll do this later, once we've developed some

more theory. O



Example
We know that Z diverges, and so Z " does not converge
absolutely. But does it converge? The next result will give us a

way to show that it does.



Theorem 54 (Alternating Series Test)

[e.e]

Let (uk) be a real sequence, and consider the series Z(—l)k_luk.
k=1
If
» u, >0 fork >1; and

» (uy) is decreasing, that is, ux11 < uk for k > 1; and
> uk — 0 as k — o0,

then Z ~Luy converges.
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Proof. .
Let s, = Z(—l)kiluk.

k=1
» (s2,) bounded above: We have

Son =ty — (up — u3) — -+ — (U2p—2 — Upp—1) — U2p < U,

so uj is an upper bound for (sz,).

» (s2p) is increasing: We have

Sont2 — S2n = U2pt1 — U2pt2 = 0.

So, by the Monotone Sequences Theorem, (sp,) converges. Say
Son — S as n — 00.

Now sopt1 = Sop + tapy1 — s+ 0 =s as n — oo, by AOL.

So (s2n+1) also converges to s.

Then (by Sheet 4 Q2) (s,) converges. O






Example

Claim
o0

—1)7
Z u converges.
n

n=1

Proof.
We have = >0 for all n,
and (n)n is decreasmg,

and%—)Oasn—)oo.

o0
Hence, by the Alternating Series Test, Z(—l)

n=1
n

converges.

o0
and so (by AOL) Z
n=1

41
=12 converges,
n

O



Example

Claim

- (=1)"
Z N converges.
n=1

Proof.

Exercise.




Remark

This remark is not part of the course. A series such as ) #
that converges but does not converge absolutely is said to
converge conditionally. Such series are delicate, when compared to
more robust series that converge absolutely!
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More on the Comparison Test
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Example

k?+ k+1 : K2+ k+1
Let g = m and consider ; m
For large enough k, the denominator is positive, so a, exists and
ax = 0. Can we apply the Comparison Test? For sufficiently large
k, we have
ak  AKP(K?+k+1)  AK* 44k + 4k

L7 Mk k-1 Ak k-1
1+t + 4
:1"—"21—>1ask—>oo,
1=~z

SO

N W

so there is K such that if k > K then 0 < —k <
T

3 1
0<ak < AT Now Zk: W converges,

so, by the Comparison Test, ), ax converges.
(It doesn't matter that we have the inequalities only for large
enough k — the first finitely many terms don't affect convergence.)



Theorem 55 (Limit form of Comparison Test)

Let (ak), (bk) be real sequences of positive terms, and assume that

there is L > 0 such that Z—i — L as k — co. Then ) ay converges
if and only if Y by converges.
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Proof.

Since & < — Las k— o0 and £ 5 > 0, there is K such that if k > K
L =% 3L

L} dso - < — < —.

™ <5 andso 5 < by < 2

(<) Then for k > K we have 0<ak< bk so if Y by converges
then so does 3" 3L b, and hence, by the Comparlson Test, Y ax
converges.

(=) Also, for k > K we have 0 < by < Zai (noting that L # 0),
so if 3 ai converges then so does > Za, and hence, by the
Comparison Test, > by converges. O

then




Remark

It was important that, at least for sufficiently large k, the terms a
and by are positive, and it was important that Z—i converges to a
positive real number.
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Example

K2+ k+1
4kY K21
Then (as before)

Let a, =

a
Tk — 1 as k — o0,
K2

and ay > 0 for sufficiently large k

and 4—11(2>0fork>1

and > ﬁ converges

so, by the limit form of the Comparison Test, > ax converges.
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Ratio Test
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Example

k >k
Let a; = ok and consider Z o
k=1

We can't directly compare with > 2%

More precisely,

ak+1_k—|—1 k

ay _2k+1/2k
k41 2k
T2k
k+1 1

()

where we used AOL at the end.

MM—\

fask—>oo,



So there is K such that if kK > K then

=)% 2

a 1 1
k+1 ‘ -

a 3
ktl 3

dg 4’
Then for k > K we have 0 < a, < (%)k_K aK

o] k—K
3 . : .
and E <4> ak converges (geometric series with common
k=K

ratio 3, and {%‘ <1)
so, by the Comparison Test, > a) converges.



Theorem 56 (Ratio Test)

» a
Let (ax) be a real sequence of positive terms. Assume that krl

ak

converges as k — o0, say to limit L.
(i) If0 < L <1, then )  ax converges.
(i) If L > 1, then ) ax diverges.

Remark

P> Here, exceptionally, we allow L = co, and this is covered by
the L > 1 case.

> If L =1, then the Ratio Test tells us nothing.

> |If a"“ does not tend to a limit as k — oo, then the Ratio
Test tells us nothing.
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Proof.
(i) Assume that 0 < L < 1.

Let a =1 sothat L<a<1. Lete=a—L>0.
Since ak“ — L, there is N such that if kK > N then
3k+1 L’ <e,

o) a::1 <L+e=a.

Now for k > N we have 0 < a < o*Nay.

But Z o Nay converges (constant times a geometric series
k=N

with common ratio «, where |a] < 1).

So, by the Comparison Test, ) ax converges (the first N

terms do not affect convergence).



Proof.

(i) Assume that L > 1.
Casel L ¢ R.
Leta—ﬂ sol<a<Ll Lete=L—a>0.

Since kH — L, there is N such that if Kk > N then
ak

Ak

Bkt _ L’ <&,

o) ag—zl >L—e=a.

Now for k > N we have a, > o Nay >0,
and so ax /4 0 as k — 00, so Y a, diverges.
Case 2 L = ¢

Let o = 2.

) Ak+1
Since 25t
Ak

al<+1 > .
Then finish as in Case 1.

— 00, there is N such that if kK > N then



osr ke



Example

k
Let ax = 5 (we did this before!).
Then a, > 0 for all k, and

a1 k+1 2% 1\ 1 1
Tk—2k+1'7— 1+; '§—>§<135k—>00,

by AOL.
So, by the Ratio Test, ) ax converges.






Example
Let a, = %
Then a, > 0 for all k, and

k
3k+1:7_>135k_>00’
ak k+1

so the Ratio Test tells us nothing.

Notice how we really had to consider the limit. We have "’:—:1 <1
for all k, but that's not enough to determine convergence —
remember that we already know that this series diverges.
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Example
Let

if k=2 forsomem>1

otherwise.

OM,_.

I

As it stands, we can't apply the Ratio Test, because the terms
aren't all positive.
But we can omit the zero terms (which do not affect the

) 1
convergence of the series): let by, = for m > 1, and consider

22m
> bm.
m
Now b, > 0 for all m, and

b 22" 1
Z+1:W:22m_>0<1asm_>oo
m

so by the Ratio Test ) b, converges and hence ) ax converges.



Remark

» The Ratio Test is brilliant, but please make sure you apply it
carefully. Check the conditions!

» It's not always the case that % converges, so that's why we
stated it as a condition in the Ratio Test. Try to avoid

assuming that the limit exists.

> We proved the Ratio Test by comparing with a geometric
series. So we shouldn't use the Ratio Test to decide whether a
geometric series converges!



Corollary 57

Let (ax) be a sequence of non-zero (real or complex) numbers.

a -
Assume that ‘Hl converges as k — oo, say to limit L.
ak

(i) If0< L <1, then ) ax converges absolutely and hence
converges.

(it) If L> 1, then )" a) diverges.

Remark
» As before, we allow L = oo and include this in the case L > 1.
> If L =1 then the Ratio Test tells us nothing.



Proof.
(i) Apply the Ratio Test to (|ak|).

(i) If L > 1, then the proof of the Ratio Test as applied to (|ak]|)
shows that |ax| /4 0, so ax /4 0, and so ) ax diverges.

O



Remark
We'll see later in the course that the Ratio Test (especially in this
form) is extremely helpful for studying power series.
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Integral Test



In this video, we'll study certain series by considering
corresponding integrals. This is a bit surprising, since we currently
don’t know what integration is. But it's nice to see the link to
convergence of series now, so we'll pretend that we know what
integration is, and that we know some basic facts about
integration. In Analysis Ill, you'll fill in the details of this — you
might like to revisit this section/video after studying Analysis Ill.
Some (for now unofficial) facts we'll assume:

>

Suitably nice functions are integrable (in this section we'll

consider only suitably nice functions).

We can integrate constants: if ¢ € R then kk+1 cdx =c.

Integration preserves weak inequalities: if £, g : [a, b] — R are
suitably nice, and f(x) < g(x) for all x € [a, b], then

Pf< e

If a< b<candf:][ac]— Ris suitably nice, then

b
=L f+ ) f



Theorem 58 (Integral Test)

Let f : [1,00) — R be a function. Assume that
» f is non-negative (f(x) > 0 for all x € [1,00));
» f is decreasing (if x < y then f(x) > f(y))
> kk+1 f(x)dx exists for each k >

Let s, =Y 7 4 f(k) and I, = []" f(x)dx.

(i) Let op = sp — In. Then (0,) converges, and if we let o be the
limit of (¢,), then 0 < o < f(1).

(i) >_f(k) converges if and only if (I,) converges.

Remark

» The main part of the Integral Test is (ii), and (i) is mostly
interesting for helping us to prove (ii), but (as we'll see) (i) is
also useful in its own right.

k+1

> If f is continuous then [,"" " f(x)dx exists for each k > 1.
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Proof
(i) Since f is decreasing, for x € [k, k + 1], we have

f(k+1) < f(x) < f(k), and so
f(k+1)—/kk+1 F(k + 1)dx

k+1 k+1
< /k f(x)dx < /k f(k)dx = f(k).

Now
£(2) < / " F)dx < F(1)
13
and £(3) < / F(x)dx < £(2)
2
and



Adding these (finitely many) inequalities gives
sn— (1) < Ip < s, —f(n),

so 0 < f(n) <s,— 1, < f(1),

so0< o, <f(1) foralln>1.

Also,

Onyl —Op = Sp41 — /n+1 —sp+ 1y

n+1
:f(n+1)—/ f(x)dx <0

as above.

So (op) is decreasing and bounded below,

so, by the Monotone Sequences Theorem, it converges.

Say 0, = 0 as n — 0.

Then, since limits preserve weak inequalities, and 0 < o, < f(1)
for all n > 1, we have 0 < o < f(1).



(i) If (sp) converges, then by AOL so does (/,), since I, = s, — op.
And if (/,) converges, then by AOL so does (s,), since
sp =1, + on.
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Example

Claim
If 0 < p<1,then > kP diverges, and if p > 1 then > kP
converges.

Proof.

Fix p > 0. Define f : [1,00) — R by f(x) = x7P.

Then f is non-negative, and decreasing on [1,00), and continuous.
Now for p # 1 we have

n 1 " 1
In = / x"Pdx = [ Xl_p] = (n'=P — 1),
1 1—p 1 1=p

so for p < 1 the sequence (/,) doesn't converge, and for p > 1 it
does.

n

Also, for p =1 we have I, = / x"Pdx = [log x]{ = log n, so (I,)
1

does not converge.

Hence, by the Integral Test, > k~P converges for p > 1 and
diverges for 0 < p < 1. O



Remark
The Integral Test handles p > 0, but not p < 0 because in this case

the function is not decreasing. Fortunately we can handle p < 0
directly, because in this case k=P 4 0 and so ) | k~P diverges.



Example

Claim

Z 1 diverges
Klog k O CTEES:

k>2

Proof.

Exercise — use the Integral Test. O

Remark
This series can be useful for counterexamples, because it feels like
it ‘only just’ diverges.
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Euler’'s constant and rearranging series
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Example
. . 1 .
We know that the harmonic series Z % diverges. But the Integral
k

Test can give us additional information.
Let’ynzl—i—%—i-%-i--”—k%—logn.

Define f : [1,00) — R by f(x) = 1.

Then f is non-negative, decreasing and continuous, and

n
1 "1

n:§ o 7d7

i k:lk /1x x

so (i) of Theorem 58 tells us that (7,) converges as n — oo, and
the limit is in [0, 1].
Let « be this limit (this is standard notation), so

1 1 1
%1:1+§+§+...+7—|ogn—>fyasn—>oo,
n

and 0 <~y < 1.



So, roughly speaking, the partial sums of the harmonic series grow
like log n, and hence tend to infinity rather slowly.

The number v is known as Euler’s constant.

It is not known whether ~ is rational or irrational.
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Example

1
Let s, = Z(—l)k_lﬁ.
k=1
Then
1 1 1 1

1. _ =
S2n R T

= 1+1+1+ +1 2 1+1+ +1
- 2 3 2n 2 4 2n

= (72n + log(2n)) — (7n + log n)
= log2 + vyon — Vn
— log2 as n — oo,

and Syp41 = Sop + ﬁ — log2 as n — oo,
so (by a result on a problems sheet) (s,,) converges to log2, that is,

_1\k—1
Z(lz = log 2.

00
k=1



Remark

The order in which we sum the terms in this series really matters.
It turns out that if we regroup to have the same terms but in
another order, with three positive terms followed by one negative,

SO

then we instead get log 2 + % log 3 (exercise: show this!).

There's yet another version of the series, with yet another value,
on Sheet 7.



Definition
Let g : N — N be a bijection (a permutation of N). Given a series
> ak, write by = ag(k). Then }_ by is a rearrangement of _ a.



Remark

» It turns out (no proof in this course!) that if > ay is
absolutely convergent, then any rearrangement of ) a, also
converges, to the same limit. In this sense absolutely
convergent series are ‘robust’.

> As we have seen, a series that converges but not absolutely
(that is, a series that converges conditionally) is less robust. A
rearrangement might give a series that converges to a
different value, or even that does not converge at all.



Remark
In this course we've seen several tests for convergence of a series:

» the Comparison Test;

» the Alternating Series Test;
» the Ratio Test;

P the Integral Test.

We also saw that absolute convergence implies convergence.

These are the main tools for studying convergence of a series, but
they are not the only ones: not every series is susceptible to one of
these tests, and there are other convergence tests that can be
useful — but they are beyond the scope of the course.
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Power series



Definition
o0

A real power series is a series of the form g ckxk, where ¢, € R
_ _ k=0
for all k > 0 and x is a real variable.

[e.e]

A complex power series is a series of the form g ckz®, where
. - k:O
cx € C for all k > 0 and z is a complex variable.



Remark

» Much of the theory applies equally to real and complex power
series, and of course every real power series is also a complex
power series. Our focus in this course is mostly on real power
series, but sometimes it is at least as convenient, or even more
convenient, to work in the more general complex setting and
then specialise later.

> We typically want to define a function using a power series.

This is why we think of x or z as a variable.
[e.e]

» By convention, when we consider the series Z ckzk at z =0,
k=0
we mean just ¢p. There are no issues about what 0° might
mean! Every power series converges at z = 0, so we do not
need to consider this case when studying convergence.
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Example

o0k
Consider Z % We use the Ratio Test: for z # 0, we have
k=0 "
k+1 k
z z k! F4
= = k
‘(k+1)!/k! r e =g 70 ko

and 0 < 1, so by the Ratio Test the series converges absolutely,
and hence converges, for all z € C.



Definition
We define the exponential function exp : C — C by

> Z
exp E kf
k=0

We also write e* for exp(z).



Example
Consider

2k+1

kz(_ and Z 2k+ 2k +1)!

o 2k+1 2k
dS 2 and
an Z(2/<+1) an Z 2K

Each of these converges for all z € C. (Exercise: use the Ratio
Test to prove this for z # 0.)



Definition
We define the sine function sin : C — C by

oo 2k+1
sin( kz_(:) (k+ 1)

and the cosine function cos : C — C by




Definition
We define the hyperbolic sine function sinh : C — C by

2k+1

sinh(2) = 3 gy (2k + 1)!
k:0

and the hyperbolic cosine function cosh : C — C by

oo
cosh(z Z 2’

k:0




Remark

» We can go on to define other trig functions such as tan,
cosec, sec and cot using these, on suitable domains. We
wouldn't expect these further functions to have power series
that converge on the whole of C.

> We have defined sin and cos by power series, not by
right-angled triangles.

» We need to go on to deduce the usual properties of exp, sin
and cos, working from the power series definitions. We'll
make a start on that in this course, and you will continue in
Analysis Il next term.
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Remark

We previously proved (as part of AOL) that if (s,) and (t,) are
convergent sequences, with s, — L and t, — M, then (s, + t,)
also converges, and s, + t, — L+ M.

We can apply this to sequences of partial sums, which gives us a
way to consider the sum of two series.

To put that more explicitly, let >~ ax and > by be convergent
series, and write

Sp = zn:ak and t, = Zn:bk.
k=1 k=1

Then (s,) and (t,) converge. Say s, — s and t, — t (that is,

iak = s and ibk: t).
k=1 k=1



Then

n

5n+tn:Zak+Zbk :Z(ak+bk),
k=1 k=1

k=1

o
so by AOL (s, + t,) converges, and Z(ak + b)) =s+t.

k=1
So we can sum two convergent series.

We can also use AOL to show that we can multiply a series by a
(real or complex) number.



Remark
The above remark gives a useful way to show that a series diverges.

If " ax converges and > by diverges, then > (ax + by) diverges
too. That's because if Y (ax + bk) converges, then also
> ((ak + bk) — ak) converges, by the remark above.

Exercise: show, through suitable examples, that if > ax and ) by
both diverge, then it might be that )" (ax + bk) converges and it
might be that it diverges.



Example

From the power series definitions earlier, and this remark about
AOL applied to series, we can see that for z € C we have

1 . .
cosz = E(elz +e %)

and sinz = —(e'? —e 712
inz 2i(e e %)

1
and coshz = 5(62 +e7 %)
1
and sinhz = E(ez —e %)
and e'? = cos z + isin z.

We can also see from the power series definitions that for z € C
we have cos(iz) = cosh z, and other similar relationships between
cos and cosh, and between sin and sinh.

Exercise: think about all of these!
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Radius of convergence



In this section, it will be more natural to study power series in C.
The main goal will be to determine the subset of C on which a
given power series converges. As we'll see, this subset must have a

rather specific form.



K



Definition
Let > cxz¥ be a power series. We define its radius of convergence
to be

R {sup{\z[ € R: Y |ckz¥| converges} if the sup exists

00 otherwise.



Remark

> We certainly have 0 € {|z| € R: Y |ckz¥| converges}, so the
set is non-empty. So this subset of R has a sup if and only if
it is bounded.

» There are other equivalent ways to define the radius of
convergence, so if you look at another source then you might
see a slightly different definition.



Proposition 59 (Radius of convergence)
Let > cxz* be a power series with radius of convergence R.
(i) If R >0 and |z| < R, then " ¢ z¥ converges absolutely and
hence converges.
(i) If |z| > R, then Y cxz* diverges.

Remark
This proposition says nothing about what happens if |z| = R. This
is deliberate!
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Proof.

(i) Case 1: R e R.
Assume that R > 0, and take z € C with |z| < R.
Then there is S with [z]| <S < R. Lete=R—-S5 > 0.
Since R = sup{|w| € R: 3" |ckw*| converges}, by the
Approximation Property there is p such that
S=R—e<p<Rand > |ckp¥| converges.
Then 0 < |z| < p and 3~ |ckp”| converges, so by the
Comparison Test > |cxz¥| converges.
Since absolute convergence implies convergence, this shows
that > cxz¥ converges.
Case 2: R = oc.
Very similar to Case 1.



Proof.
(ii) Take z € C with |z| > R
Suppose, for a contradiction, that 3 ¢,z¥ converges.
Then ¢, zX — 0 as k — oo, so (cxz¥) is bounded, so there is
M such that |c,z¥| < M for all k.
Take p with R < p < |z|.
Then

k k
o<lai< ae[Y <u?

and ‘f}k converges (geometric series with common ratio
2], and |2] <1).

so, by the Comparison Test, S~ |ckp¥| converges,
contradicting the definition of R.



Remark

» We call {z € C: |z| < R} the disc of convergence for the
power series. Proposition 59 shows that this is a useful
concept. For a real power series, the corresponding concept is
an interval of convergence.

» Anything at all can happen on the circle {z € C : |z| = R}!
The series might converge everywhere on the circle, or diverge
everywhere on the circle, or converge at some points and
diverge at others.

» You might like to revisit Sheet 6 Q4 briefly having seen the
theory, to see the connections.



Example

» We have already seen that the exponential, sine and cosine,
hyperbolic sine and hyperbolic cosine series have radius of
convergence oo (using the Ratio Test).

» The geometric series > zX has R = 1 (from an example in
Video 28).
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Example
=k
Consider Z ﬂx )
k=0
For x # 0, we have

(k+1)! g KK
(k+ 1)k 1" kixk

Kl Kk k \*
:(k+1)kk!|xz<k+1> X

1\~ 1
:<1+> |x| = —|x| as k — oo,
e

k

so by the Ratio Test the series > ‘%x"‘ converges for |x| < e (so
R > e)

and diverges for |x| > e (so R < e).

SoR=e.



Remark

Note that it was not enough to use the Ratio Test to show that
the series converges (absolutely) for |x| < e — this shows that
R > e, not that R =e.
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Example
Consider 3 ¢, x* where ¢, = {1 itk prl.me
0 otherwise.
For x = 1, we see that ckxk # 0 as k — oo (because there are
infinitely many primes), so R < 1.
If [x| <1, then 0 < |cexX| < |xK],
and 3" |x¥| is a convergent geometric series,
so, by the Comparison Test, " cxx* converges absolutely and
hence converges. So R > 1.
So R=1.



Remark
The Ratio Test is often useful for finding the radius of convergence

of a power series, but does not always work. There are more
sophisticated strategies that work in other situations, but it is easy
to apply them incorrectly, and they are not needed for Prelims.
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Differentiation Theorem



Theorem 60 (Differentiation Theorem for real power series)

Let 3" ckx* be a real power series with radius of convergence R.

Assume that 0 < R < oo. For |x| < R, define f(x Z crxk.

Then f(x) is well defined whenever |x| < R. I\/Ioreover /f|x] <R
then the derivative f'(x) exists, and

d S k) S d S k—1
= — E CiX E —(c xK) = E ke x
dx (k—o - k=0 dx " k=1 -



Remark

» The slogan is that “on the disc of convergence, we can
differentiate term-by-term”.

» The theorem is definitely not obvious! It involves exchanging
the order of limiting processes, and that is a delicate business.






Example

We saw that the power series defining the exponential, sine, cosine,
sinh and cosh functions have R = o0, so the series converge on R
(and on C), and by the Differentiation Theorem they are
differentiable on all of R. Moreover, by the Differentiation
Theorem we can differentiate term by term on R.



For example, for x € R we have

4
d
— d [xk . i
:Z— — | by the Differentiation Theorem




To summarise, for all x € R we have

d

X = X

dx

d .

— sin X = cos X
dx

— COSX = —sinx
dx

I sinh x = cosh x

d
— cosh x = sinh x.

dx
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Example

Claim
sin?x + cos?x =1 for all x € R.

Proof.

Define h: R — R by h(x) = sin® x + cos? x.

Then (using properties of differentiability that you'll study in
Analysis Il next term) h is differentiable on R, and

H'(x) = 2cos xsinx — 2sinx cosx = 0 for all x € R.

This means (using a result you'll see in Analysis Il) that h is
constant.

But we know from the power series that sin0 = 0 and cos0 =1,
so h(0) = 1.

So h(x) =1 for all x € R.



Remark
It would not be a good plan to try to do this by squaring power

series and manipulating terms — this would need a lot of

justification.






Example

Claim
et — e for all 3, b € R.

Proof.
Fix c € R, and define g : R — R by g(x) = eXe“ ™.
Then (Analysis Il) g is differentiable on R, and

g'(x) =ee“ —eXe“ ¥ =0 forall x e R.

This means (Analysis 1) that g is constant.

But we know from the power series that e® = 1, so g(0) = e€.
So g(x) = e€ for all x € R.

This argument works for all ¢ € R. Take a,b € R, and apply it

with x = a, c = a+ b to get e?*P = e%eb.



Remark

This shows that for all x € R we have eXe™* = ¢® = 1. From the
power series, we see that e > 0 for x > 0, and hence in fact

e* > 0 for all x € R.

Remark
These examples illustrate a really useful strategy, which can also be
used to prove results like trig identities. Watch out for more on

this in Analysis Il next term!



What is 7?

We have defined sine and cosine using power series, without
mentioning right-angled triangles.

We can then define 7 to be the smallest positive x such that

sinx =0, or % as the smallest positive x such that cosx = 0. It is
not obvious that smallest such values exist; you'll look at this in
more detail in Analysis II.

You'll then be able to go on and prove that sine and cosine are
2m-periodic, for example.



Example
We see that if x,y € R then

Y = eX(cosy +isiny).

We can then use properties of 7 to see that ¢2™ = 1.

You'll study differentiability in C as part of the Part A Complex
Analysis course, when you'll go on to explore many interesting
(and surprising) properties of complex functions.



Building on your knowledge of analysis so far, you might like to
consider the following questions, as a warm up for Analysis II.

» Given a function f : R — R and a, L € R, what does it mean
to say that f(x) — L as x — a?

» What does it mean to say that f : R — R is continuous at a
point x € R?

if
> Define f : R — R by f(x) = {g 't;( €Q At which points
otherwise.

(if any) is f continuous?

» What does it mean to say that f : R — R is differentiable at a
point x € R?



To be continued. . . (in Analysis Il)



