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What are the real numbers?



Notation
We write R for the set of real numbers. We write Q for the set of
rational numbers, and C for the set of complex numbers.



Arithmetic axioms for R.

▶ For every a, b ∈ R there is a unique real number a+ b, called
their sum.

▶ For every a, b ∈ R there is a unique real number a · b, called
their product.

▶ For a ∈ R there is a unique real number −a called its negative
or its additive inverse.

▶ For a ∈ R with a ̸= 0 there is a unique real number 1
a called

its reciprocal or its multiplicative inverse.

▶ There is a special element 0 ∈ R called zero or the additive
identity.

▶ There is a special element 1 ∈ R called one or the
multiplicative identity.



For all a, b, c ∈ R, we have

▶ a+ b = b + a (+ is commutative)

▶ a+ (b + c) = (a+ b) + c (+ is associative)

▶ a+ 0 = a (additive identity)

▶ a+ (−a) = 0 (additive inverses)

▶ a · b = b · a (· is commutative)

▶ a · (b · c) = (a · b) · c (· is associative)
▶ a · 1 = a (multiplicative identity)

▶ if a ̸= 0 then a · 1
a = 1 (multiplicative inverses)

▶ a · (b + c) = a · b + a · c (· distributes over +)

▶ 0 ̸= 1 (to avoid total collapse)

These properties are called axioms.



Definition
Let F be a set with operations + and · that satisfy these axioms.
Then we say that F is a field.



Example

We’ve just said that R is a field.
The rational numbers Q form a field.
The complex numbers C form a field.
You’ll meet other fields too, in other courses.
The integers Z do not form a field.
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Properties of arithmetic in R



Proposition 1

Let a, b, c, x, y be real numbers.

(i) If a+ x = a for all a then x = 0 (uniqueness of 0).

(ii) If a+ x = a+ y then x = y (cancellation for +).

(iii) −0 = 0.

(iv) −(−a) = a.

(v) −(a+ b) = (−a) + (−b).

(vi) If a · x = a for all a ̸= 0 then x = 1 (uniqueness of 1).

(vii) If a ̸= 0 and a · x = a · y then x = y (cancellation for ·).
(viii) If a ̸= 0 then 1

1
a

= a.

(ix) (a+ b) · c = a · c + b · c.
(x) a · 0 = 0.

(xi) a · (−b) = −(a · b). In particular, (−1) · a = −a.

(xii) (−1) · (−1) = 1.

(xiii) If a · b = 0 then a = 0 or b = 0. If a ̸= 0 and b ̸= 0 then
1
a·b = 1

a ·
1
b .



Remark
▶ (ii) shows the uniqueness of −a, the additive inverse of a.

▶ (vii) shows the uniqueness of 1
a , the multiplicative inverse of a

(if a ̸= 0).

▶ As we’ll see shortly, (i)–(v) can be proved using only the four
axioms about +.

▶ Similarly, (vi)–(viii) can be proved using only the four axioms
about ·.

▶ (ix)–(xiii) between them use all the axioms.

▶ It’s worth proving results like this in a sensible order! Once
we’ve proved a property, we can add it to the list of properties
we can assume in subsequent parts. You’ll see that we prove
some later parts using earlier parts.











Proof.

(i) Suppose that a+ x = a for all a. Then

x = x + 0 (additive identity)

= 0 + x (+ is commutative)

= 0 (by hypothesis, with a = 0).



Proof.

(ii) Suppose that a+ x = a+ y . Then

y = y + 0 (additive identity)

= y + (a+ (−a)) (additive inverses)

= (y + a) + (−a) (+ is associative)

= (a+ y) + (−a) (+ is commutative)

= (a+ x) + (−a) (hypothesis)

= (x + a) + (−a) (+ is commutative)

= x + (a+ (−a)) (+ is associative)

= x + 0 (additive inverses)

= x (additive identity).



Proof.

(iii) We have 0 + 0 = 0 (additive identity)
and 0 + (−0) = 0 (additive inverses)
so 0 + 0 = 0 + (−0), so 0 = −0 (cancellation for + (ii)).

(iv)–(xii) Exercise/see notes.



(xiii) Suppose, for a contradiction, a ̸= 0, b ̸= 0, a · b = 0. Then

0 = (
1

a
· 1
b
) · 0 ((x))

= 0 · (1
a
· 1
b
) (· is commutative)

= (a · b) · (1
a
· 1
b
) (hypothesis)

= (b · a) · (1
a
· 1
b
) (· is commutative)

= ((b · a) · 1
a
) · 1

b
(· is associative)

= (b · (a · 1
a
)) · 1

b
(· is associative)

= (b · 1) · 1
b

(multiplicative inverses)

= b · 1
b

(multiplicative identity)

= 1 (multiplicative inverses)



and this is a contradiction (0 ̸= 1).
So if a · b = 0 then a = 0 or b = 0.
Note that on the way we showed that if a ̸= 0 and b ̸= 0 then

a · b ̸= 0 and (a · b) ·
(
1

a
· 1
b

)
= 1 so

1

a · b
=

1

a
· 1
b
(cancellation

for · (vii)).



Notation
From now on, we use more familiar notation. We write

a− b for a+ (−b)

ab for a · b
a

b
for a ·

(
1

b

)
a−1 sometimes for

1

a
.

The associativity of addition and multiplication means that we can
write expressions like a+ b + c and xyz , without needing to write
brackets.



Definition
Take a ∈ R \ {0}.
Define a0 = 1.
We define positive powers of a inductively: for integers k ⩾ 0, we
define ak+1 = ak · a.
For integers l ⩽ −1, we define al =

1

a−l
.

Remark
Note that with this definition a1 = a and a2 = a · a (as we’d want).



Lemma 2
For a ∈ R \ {0} we have aman = am+n for m, n ∈ Z.

Proof.
Exercise (see Sheet 1).
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Ordering the real numbers



Axioms for the usual ordering on R

There is a subset P of R such that for a, b ∈ R
▶ if a, b ∈ P then a+ b ∈ P (+ and ordering)

▶ if a, b ∈ P then a · b ∈ P (· and ordering)

▶ exactly one of a ∈ P, a = 0 and −a ∈ P holds (positive,
negative or 0).

The elements of P are called the positive numbers. The elements
of P ∪ {0} are called the non-negative numbers.
We write a < b, or b > a, exactly when b − a ∈ P.
We write a ⩽ b, or b ⩾ a, exactly when b − a ∈ P ∪ {0}.



Proposition 3

Take a, b, c ∈ R. Then
(i) a ⩽ a; (reflexivity)

(ii) if a ⩽ b and b ⩽ a then a = b; (antisymmetry)

(iii) if a ⩽ b and b ⩽ c then a ⩽ c, and similarly with < in place
of ⩽; (transitivity)

(iv) exactly one of a < b, a = b and a > b holds. (trichotomy)







Proof.

(i) We have a− a = 0 ∈ P ∪ {0} (additive inverses).

(ii) Suppose that a ⩽ b and b ⩽ a.
If a− b = 0 or b − a = 0 then a = b (properties of +) and we
are done.
If not, then b − a ∈ P and a− b ∈ P.
But b − a = −(a− b) (properties of +),
so then a− b ∈ P and −(a− b) ∈ P, contradicting ‘positive,
negative or 0’.

(iii) Note that c − a = c + (−a) = c + 0 + (−a) =
c + (−b) + b + (−a) = (c − b) + (b − a) (properties of +)
so if a < b and b < c then a < c (+ and ordering).
The cases where a = b and/or b = c are straightforward, and
give the result for ⩽.

(iv) This follows from ‘positive, negative or 0’.
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Inequalities and arithmetic



Proposition 4

Take a, b, c ∈ R.
(i) 0 < 1.

(ii) a < b if and only if −b < −a. In particular, a > 0 if and only
if −a < 0.

(iii) If a < b then a+ c < b + c.

(iv) If a < b and 0 < c then ac < bc.

(v) a2 ⩾ 0, with equality if and only if a = 0.

(vi) a > 0 if and only if 1
a > 0.

(vii) If a, b > 0 and a < b then
1

b
<

1

a
.

Furthermore, (ii), (iii) and (iv) hold with ⩽ in place of <.













Proof.

(i) By trichotomy, we have 0 < 1 or 0 = 1 or 0 > 1.
But ‘to avoid total collapse’ 0 ̸= 1. So it suffices to rule out
0 > 1.
Suppose, for a contradiction, that 0 > 1.
Then −1 ∈ P (by definition of >) so (−1) · (−1) ∈ P (· and
ordering).
But (−1) · (−1) = 1 (Proposition 1 (xii)),
so 0 < 1 — but this contradicts trichotomy.
So 0 < 1.

(ii) Using properties of addition, we have

a < b ⇔ b − a ∈ P
⇔ (−a)− (−b) ∈ P
⇔ −a > −b.

(iii) Assume that a < b.
Then (b + c)− (a+ c) = b − a > 0 so a+ c < b + c .



Proof.

(iv) Assume that a < b and 0 < c .
Then bc − ac = (b − a)c > 0 (· and ordering).

(v) Certainly a2 = 0 if and only if a = 0 (Proposition 1 (x) and
(xiii)).
If a ̸= 0, then exactly one of a and −a is positive, and either
way a2 = a · a = (−a) · (−a) > 0 (· and ordering).

(vi) Suppose, for a contradiction, that a > 0 and 1
a < 0, so a > 0

and −1
a > 0.

Then −1 = −
(
a · 1

a

)
= a ·

(
−1

a

)
> 0. But this contradicts

(i).
Similarly if a < 0 and 1

a > 0.

(vii) Suppose that a, b > 0 and a < b.
Then 1

a ,
1
b > 0 by (vi),

so a · 1
a
· 1
b
< b · 1

a
· 1
b
by (iv),

so 1
b < 1

a .



Theorem 5 (Bernoulli’s Inequality)

Let x be a real number with x > −1. Let n be a positive integer.
Then (1 + x)n ⩾ 1 + nx.





Proof.
By induction on n. Fix x > −1.
n = 1: clear.
induction step: suppose the result holds for some n ⩾ 1, that is,
(1 + x)n ⩾ 1 + nx .
Note that 1 + x > 0, and nx2 ⩾ 0 (since n > 0 and x2 ⩾ 0 by
Proposition 4 (v)).
Then

(1 + x)n+1 = (1 + x)(1 + x)n (by definition)

⩾ (1 + x)(1 + nx) (induction hypothesis, Prop 4 (iv))

= 1 + (n + 1)x + nx2 (properties of arithmetic)

⩾ 1 + (n + 1)x (since nx2 ⩾ 0).

So, by induction, the result holds.
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The modulus of a real number



Definition
Let a ∈ R. The modulus |a| of a is defined to be

|a| :=


a if a > 0

0 if a = 0

−a if a < 0.

(It is also sometimes called the absolute value of a.)

Remark
The modulus is well defined (that is, this is a legitimate definition)
thanks to the ‘positive, negative or 0’ property (essentially
trichotomy).



Proposition 6

Take a, b, c ∈ R. Then
(i) | − a| = |a|;
(ii) |a| ⩾ 0;

(iii) |a|2 = a2;

(iv) |ab| = |a||b|;
(v) −|a| ⩽ a ⩽ |a|;
(vi) if c ⩾ 0, then |a| ⩽ c if and only if −c ⩽ a ⩽ c; and similarly

with weak inequalities (⩽, ⩾) replaced by strict (<, >).





Proof.

(i), (ii) Immediate from the definition, since a > 0 if and only if
−a < 0.

(iii) Check using the definition and trichotomy – go through the
cases and also use (−a)(−a) = a2.

(iv) Check the cases using the definition and trichotomy.

(v) If a ⩾ 0, then −|a| ⩽ 0 ⩽ a = |a|.
If a < 0, then −|a| = a < 0 ⩽ |a|.

(vi) Assume that c ⩾ 0.
(⇒) Suppose that |a| ⩽ c . Then, by (v),
−c ⩽ −|a| ⩽ a ⩽ |a| ⩽ c , and we’re done by transitivity
(Proposition 3).
(⇐) Suppose that −c ⩽ a ⩽ c . Then −a ⩽ c and a ⩽ c . But
|a| is a or −a, so |a| ⩽ c .
Similarly for the version with strict inequalities.



Theorem 7 (Triangle Inequality)

Take a, b ∈ R. Then
(i) |a+ b| ⩽ |a|+ |b|;
(ii) |a+ b| ⩾ ||a| − |b||.

Remark
(ii) is called the Reverse Triangle Inequality.





Proof.

(i) We have −|a| ⩽ a ⩽ |a| and −|b| ⩽ b ⩽ |b|, by Proposition 6.
We can add these (see Sheet 1 Q2); using properties of
addition, we get − (|a|+ |b|) ⩽ a+ b ⩽ |a|+ |b|.
By Proposition 6 (vi) (with c = |a|+ |b| ⩾ 0), this gives
|a+ b| ⩽ |a|+ |b|.

(ii) By (i), we have
|a| = |a+ b + (−b)| ⩽ |a+ b|+ | − b| = |a+ b|+ |b|,
so |a+ b| ⩾ |a| − |b|.
Similarly (swap a and b), |a+ b| ⩾ |b| − |a|.
Now ||a| − |b|| is |a| − |b| or |b| − |a|, so |a+ b| ⩾ ||a| − |b||.
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The complex numbers



C is a field.

But there is no ordering on C that satisfies the ordering axioms.
(Exercise: prove this!)

The Triangle Inequality and Reverse Triangle Inequality both hold
in C.
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Upper and lower bounds



Definition
Let S ⊆ R. Take b ∈ R. We say that

▶ b is an upper bound of S if s ⩽ b for all s ∈ S ;

▶ b is a lower bound of S if s ⩾ b for all s ∈ S ;

▶ S is bounded above if S has an upper bound;

▶ S is bounded below if S has a lower bound;

▶ S is bounded if S is bounded above and below.



Example

See Quiz 8.1 on Moodle.
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Supremum, infimum and completeness



Definition
Let S ⊆ R. We say that α ∈ R is the supremum of S , written
supS , if

(i) s ⩽ α for all s ∈ S ; (α is an upper bound of S)

(ii) if s ⩽ b for all s ∈ S then α ⩽ b (α is the least upper bound
of S).

Remark
If S has a supremum, then sup S is unique. (Check you can show
this!)



Completeness axiom for the real numbers Let S be a
non-empty subset of R that is bounded above. Then S has a
supremum.



Remark
There are two conditions on S here: non-empty, and bounded
above. They are both crucial!
It is easy to forget the non-empty condition, but it has to be there:
the empty set does not have a supremum, because every real
number is an upper bound for the empty set — there is no least
upper bound.
The condition that S is bounded above is also necessary: a set
with no upper bound certainly has no supremum.



Example

▶ Let S = [1, 2). Then 2 is an upper bound, and is the least
upper bound: if b < 2 then b is not an upper bound because
max(1, 1 + b

2 ) ∈ S and max(1, 1 + b
2 ) > b. Note that in this

case sup S ̸∈ S .

▶ Let S = (1, 2]. Then we again have sup S = 2, and this time
supS ∈ S .



Definition
Let S ⊆ R. We say that α ∈ R is the infimum of S , written inf S ,
if

▶ s ⩾ α for all s ∈ S ; (α is a lower bound of S)

▶ if s ⩾ b for all s ∈ S then α ⩾ b (α is the greatest lower
bound of S).



Proposition 8

(i) Let S, T be non-empty subsets of R, with S ⊆ T and with T
bounded above. Then S is bounded above, and
supS ⩽ supT.

(ii) Let T ⊆ R be non-empty and bounded below. Let
S = {−t : t ∈ T}. Then S is non-empty and bounded above.
Furthermore, inf T exists, and inf T = − supS.



Remark
(ii) and a similar result with sup and inf swapped essentially tell us
that we can pass between sups and infs. Any result we prove about
sup will have an analogue for inf. Also, we could have phrased the
Completeness Axiom in terms of inf instead of sup. Proposition
8(ii) tells us that we don’t need separate axioms for sup and inf.







Proof.

(i) Since T is bounded above, it has an upper bound, say b.
Then t ⩽ b for all t ∈ T , so certainly t ⩽ b for all t ∈ S , so b
is an upper bound for S .
Now S , T are non-empty and bounded above, so by
completeness each has a supremum.
Note that supT is an upper bound for T and hence also for S ,
so supT ⩾ supS (since supS is the least upper bound for S).



Proof.

(ii) Since T is non-empty, so is S .
Let b be a lower bound for T , so t ⩾ b for all t ∈ T .
Then −t ⩽ −b for all t ∈ T , so s ⩽ −b for all s ∈ S , so −b
is an upper bound for S .
Now S is non-empty and bounded above, so by completeness
it has a supremum.
Then s ⩽ supS for all s ∈ S , so t ⩾ − supS for all t ∈ T , so
− supS is a lower bound for T .
Also, we saw before that if b is a lower bound for T then −b
is an upper bound for S .
Then −b ⩾ supS (since sup S is the least upper bound),
so b ⩽ − supS .
So − supS is the greatest lower bound.
So inf T exists and inf T = − supS .



Definition
Let S ⊆ R be non-empty. Take M ∈ R. We say that M is the
maximum of S if

(i) M ∈ S ; (M is an element of S)

(ii) s ⩽ M for all s ∈ S (M is an upper bound for S).



Remark
▶ If S is empty or S is not bounded above then S does not have

a maximum. (Check this!)

▶ Let S ⊆ R be non-empty and bounded above, so (by
completeness) supS exists.
Then S has a maximum if and only if sup S ∈ S .
Also, if S has a maximum then max S = supS .
(Check this!)



Definition
Let S ⊆ R be non-empty. Take m ∈ R. We say that m is the
minimum of S if

(i) m ∈ S ; (m is an element of S)

(ii) s ⩾ m for all s ∈ S (m is a lower bound for S).



Proposition 9 (Approximation Property)

Let S ⊆ R be non-empty and bounded above. For any ε > 0, there
is sε ∈ S such that supS − ε < sε ⩽ supS.





Proof.
Take ε > 0.
Note that by definition of the supremum we have s ⩽ supS for all
s ∈ S .
Suppose, for a contradiction, that sup S − ε ⩾ s for all s ∈ S .
Then sup S − ε is an upper bound for S , but supS − ε < supS .
Contradiction.
So there is sε ∈ S with sup S − ε < sε.
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Existence of roots



Theorem 10
There exists a unique positive real number α such that α2 = 2.











Proof

Existence Let S = {s ∈ R : s > 0, s2 < 2}.
Note that S is non-empty (eg 1 ∈ S)
and S is bounded above, because if x > 2 then x2 > 4 (properties
of ordering) so x ̸∈ S , so 2 is an upper bound for S .
So, by completeness, S has a supremum. Let α = supS .
Note that certainly α > 0 (since 1 ∈ S so α ⩾ 1).
By trichotomy, we have α2 < 2 or α2 = 2 or α2 > 2.



Proof

Case 1 Suppose, for a contradiction, that α2 < 2.
Then α2 = 2− ε for some ε > 0.
Note that α ⩽ 2 (we said earlier that 2 is an upper bound for S).
For h ∈ (0, 1) we have

(α+ h)2 = α2 + 2αh + h2

= 2− ε+ 2αh + h2

⩽ 2− ε+ 4h + h

⩽ 2− ε+ 5h

so let h = min( ε
10 ,

1
2) and then (α+ h)2 < 2.

Now α+ h ∈ S and α+ h > supS . This is a contradiction.
So it is not the case that α2 < 2.



Proof

Case 2 Suppose, for a contradiction, that α2 > 2.
Then α2 = 2 + ε for some ε > 0.
For h ∈ (0, 1) we have

(α− h)2 = α2 − 2αh + h2

= 2 + ε− 2αh + h2

⩾ 2 + ε− 4h

so choose h = min( ε8 ,
1
2 ,

α
2 ) and then (α− h)2 > 2 (and also

α− h > 0).
Now α− h < supS , so by the Approximation property there is
s ∈ S with α− h < s.
But then 2 < (α− h)2 < s2 < 2, which is a contradiction.
So it is not the case that α2 > 2.
Hence, by trichotomy, α2 = 2.



Proof

Uniqueness Suppose that β is also a positive real number such
that β2 = 2.
Then 0 = α2 − β2 = (α− β)(α+ β)
and α+ β > 0, so α = β.



Proposition 11

Q is not complete (with the ordering inherited from R).

Proof.
If Q were complete, then the proof of Theorem 10 would work just
as well in Q. But we know that there is not an element of Q that
squares to 2. So Q is not complete.



Theorem 12
Let n be an integer with n ⩾ 2, and take a positive real number r .
Then r has a real nth root.

Proof.
Exercise. (See Sheet 2 for the case of the cube root of 2.)
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More consequences of completeness



In this course, we write N for the set of positive integers, so
N = Z>0.



Theorem 13 (Archimedean property of N)
N is not bounded above.





Proof.
Suppose, for a contradiction, that N is bounded above.
Then N is non-empty and bounded above, so by completeness (of
R) N has a supremum.
By the Approximation property with ε = 1

2 , there is a natural
number n ∈ N such that supN− 1

2 < n ⩽ supN.
Now n + 1 ∈ N and n + 1 > supN. This is a contradiction.



Corollary 14

Let ε > 0. Then there is n ∈ N such that 0 < 1
n < ε.

Proof.
If not, then 1

ε would be an upper bound for N. This would
contradict Theorem 13.



Theorem 15
Let S be a non-empty subset of Z.
(i) If S is bounded below, then S has a minimum.

(ii) If S is bounded above, then S has a maximum.





Proof.

(i) Assume that S is bounded below.
Then, by completeness (applied to {−s : s ∈ S}), S has an
infimum.
By the Approximation property (with ε = 1), there is n ∈ S
such that inf S ⩽ n < inf S + 1.
Suppose, for a contradiction, that inf S < n.
Write n = inf S + δ, where 0 < δ < 1.
By the Approximation property (with ε = δ), there is m ∈ S
such that inf S ⩽ m < inf S + ε = n.
Now m < n so n −m > 0
but n −m is an integer, so n −m ⩾ 1.
Now n ⩾ m + 1 ⩾ inf S + 1. This is a contradiction.
So n = inf S ∈ S so inf S = minS .

(ii) Similar.



Proposition 16

Take a, b ∈ R with a < b. Then

(i) there is x ∈ Q such that a < x < b (the rationals are dense in
the reals); and

(ii) there is y ∈ R \Q such that a < y < b (the irrationals are
dense in the reals).

Proof.
Exercise (see Sheet 2).



Summary of our work so far

R is a complete ordered field.

This sums up the key properties we have identified as our
assumptions about R. From this, we shall develop the theory of
real analysis.
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Countability



Definition
Let A be a set. We say that A is finite if A = ∅ or there exists
n ∈ N such that there is a bijection f : A → {1, 2, . . . , n}.

We say that A is infinite if it is not finite



Remark
▶ A subset of a finite set is finite.

▶ A non-empty finite subset of R is bounded above (in fact, has
a maximum) and so a subset of R that is not bounded above
is infinite.

▶ N is not bounded above (by the Archimedean property) so is
infinite.



Definition
Let A be a set. We say that A is

▶ countably infinite if there is a bijection f : A → N;
▶ countable if there is an injection f : A → N;
▶ uncountable if A is not countable.



Remark
There are variations on the details of these definitions, so it’s
worth checking carefully if you’re looking at a book or other
source. For example, some people say ‘countable’ where we are
using ‘countably infinite’.



Proposition 17

Let A be a set.

(i) A is countable if and only if A is countably infinite or finite.

(ii) If there is an injection f : A → B and an injection g : B → A,
then there is a bijection h : A → B.

Proof.
Not in this course. See Priestley’s supplementary notes on
countability.



Proposition 18

Each of the following sets is countably infinite.

(i) N
(ii) N ∪ {0}
(iii) {2k − 1 : k ∈ N}
(iv) Z
(v) N× N.



Remark
It might feel surprising that the set of odd natural numbers ‘has
the same size as’ the set of all natural numbers!







Proof.

(i) Clear.

(ii) Define f : N ∪ {0} → N by f (n) = n + 1. This is a bijection.

(iii) Define f : N → {2k − 1 : k ∈ N} by f (n) = 2n − 1.

(iv) Define f : Z → N by

f (k) =

{
2k if k ⩾ 1

1− 2k if k ⩽ 0.

This is a bijection.



Proof.

(v) Define f : N× N → N by f ((m, n)) = 2m−1(2n − 1).
Claim f is a bijection.
Proof of claim
injective: If f ((m1, n1)) = f ((m2, n2)) then
2m1−1(2n1 − 1) = 2m2−1(2n2 − 1),
so, by uniqueness of prime factorisation in N, 2m1−1 = 2m2−1

and 2n1 − 1 = 2n2 − 1,
so m1 = m2 and n1 = n2.
surjective: Take k ∈ N.
Then k = 2r (2s + 1) for some r , s ⩾ 0
(consider the set T = {t ∈ Z⩾0 : k

2t ∈ N} — this is
non-empty and bounded above so has a maximum).
Then k = f (r + 1, s + 1).
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More on countability



Proposition 19

Let A, B be countable sets.

(i) If A and B are disjoint, then A ∪ B is countable.

(ii) A× B is countable.

Remark
In (i), we don’t need the condition that A and B are disjoint, but it
makes life easier for our proof.





Proof.
Since A and B are countable, there are injections f : A → N and
g : B → N.
(i) Define h : A ∪ B → N by

h(x) =

{
2f (x)− 1 if x ∈ A

2g(x) if x ∈ B.

This is an injection (because f and g are).

(ii) Define h : A× B → N by h((a, b)) = 2f (a)3g(b).
By the uniqueness of prime factorisation in N, this is an
injection.



Theorem 20
Q>0 is countable.





Proof.
Define f : Q>0 → N by f (pq ) = 2p3q where p, q ∈ Z>0 and
hcf(p, q) = 1.
This is an injection (by uniqueness of prime factorisation in N).



Corollary 21

Q is countable.





Proof.
We can write Q = Q>0 ∪ {0} ∪Q<0. This is a disjoint union.
We have just seen that Q>0 is countable, and similarly so is Q<0,
and {0} is finite and hence countable.
Hence, by Proposition 19, Q is countable.



Fact Every real number has a decimal expansion, and if we require
that we choose a non-terminating expansion (such as 0.24999 . . .
for 1

4) rather than a terminating one (such as 0.25 for 1
4) where

there is a choice, then this decimal expansion is unique.



Theorem 22
R is uncountable.

Remark
The proof strategy we are going to use is called Cantor’s diagonal
argument.





Proof

It suffices to show that (0, 1] is uncountable.
Note that certainly (0, 1] is not finite (by Corollary 14 of the
Archimedean property).
Suppose, for a contradiction, that (0, 1] is countably infinite. List
the elements as x1, x2, x3, . . . .
Each has a non-terminating decimal expansion (choosing the
non-terminating option where relevant):

x1 = 0.a11a12a13a14 . . .

x2 = 0.a21a22a23a24 . . .

x3 = 0.a31a32a33a34 . . .

...

xk = 0.ak1ak2ak3ak4 . . .

...



Proof

Construct a real number x ∈ (0, 1] with decimal expansion
0.b1b2b3 . . . where

bk =

{
5 if akk = 6

6 if akk ̸= 6.

Then x ̸= xk for all k, because x differs from xk in the kth decimal
place, so x is not on our list, which supposedly contained all
elements of (0, 1]. This is a contradiction.



Remark
The only significance of the choice of 5 and 6 as the key digits
when defining x was that we didn’t involve 0 or 9, to avoid issues
with non-unique decimal expansions.
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Introduction to sequences



For now, we’ll work with familiar functions such as sine, cosine,
exponential and log—we’ll assume that these functions exist and
have the properties we expect.

You can do this on the problems sheets too.

We’ll define them carefully later in the course, when we’ve studied
series.



Notation
When we use logarithms, these will all be to the base e. We write
log x for loge(x). We don’t write ln x .

For a > 0 and x ∈ R, we define ax = ex log a. (Of course this relies
on definitions of the exponential and logarithm functions, which
will come later.)



Here are some informal examples of sequences.

▶
3

10
,
33

100
,
333

1000
,
3333

10000
, . . . are approximations to 1

3 , each

better than the previous.

▶
14

10
,
141

100
,
1414

1000
,
14142

10000
, . . . are approximations to

√
2, each

better than the previous.

▶ Take ε > 0. Then, by the Archimedean property, there is
N ⩾ 1 such that 0 < 1

N < ε. Now for all n ⩾ N we have
0 < 1

n ⩽ 1
N < ε. We see that apart from finitely many terms

at the start, the terms of the sequence 1, 12 ,
1
3 ,

1
4 ,

1
5 , . . . all lie

within distance ε of 0. This is the case for any positive real
number ε.

▶ 1,−1, 2,−2, 3,−4, 4,−4, . . . is another sequence, and
intuitively it feels as though it does not tend to a limit.

▶ 7, 1.2,−5, 2, 324,−9235.32, . . . is another sequence—there is
no clear pattern to the terms, but it is still a sequence.



Definition
A real sequence, or sequence of real numbers, is a function
α : N → R. We call α(n) the nth term of the sequence.

We usually write an for α(n), and say that α defines the sequence
(an) with terms a1, a2, a3, a4, . . . . We might also write this as
(an)n⩾1 or (an)

∞
n=1.

Similarly, a complex sequence is formally a function α : N → C,
and we write it as (an), where now an ∈ C for n ⩾ 1.



Remark
▶ The order of the terms in a sequence matters!

▶ We write (an) for the sequence, and an for a term of the
sequence.

▶ Much of the theory relating to sequences applies to both real
and complex sequences. Sometimes, though, we’ll need to
focus only on real sequences—for example if we’re using
inequalities. In this case we’ll carefully specify that we’re
working with real sequences. If we don’t specify, and just say
‘sequences’, then it applies equally to real and complex
sequences. We’ll also have a section (and corresponding
video) at the end of this block concentrating on complex
sequences.



Example

▶ Let an = (−1)n. Then the first few terms of the sequence are
−1, 1,−1, 1,−1, 1, . . . .

▶ Let an = sin n
2n+1 . Then the first few terms of the sequence are

1
3 sin 1,

1
5 sin 2,

1
7 sin 3, . . . .

▶ Let

an =

{
0 if n is prime

1 + 1
n otherwise.

Then the first few terms of the sequence are
2, 0, 0, 54 , 0,

7
6 , 0,

9
8 , . . . .

▶ Let an = n. Then the first few terms of the sequence are
1, 2, 3, 4, 5, . . . .



Definition
We can make new sequences from old. Let (an), (bn) be sequences
and let c be a constant. Then we can define new sequences
‘termwise’: (an + bn), (−an), (anbn), (can), (|an|). If bn ̸= 0 for all
n, then we can also define a sequence ( anbn ).



Example

Let an = (−1)n and bn = 1 for n ⩾ 1.
Then the first few terms of (an + bn) are 0, 2, 0, 2, 0, 2, . . . ; and
(−an) = ((−1)n+1); and (|an|) = (bn).
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Convergence of a sequence



an = (−1)n



an =

{
0 if n is prime

1 + 1
n otherwise



an = sin n
2n+1



an = n





Definition
Let (an) be a real sequence, let L ∈ R. We say that (an) converges
to L as n → ∞ if

∀ε > 0 ∃N ∈ N such that ∀n ⩾ N, |an − L| < ε.

In this case we write an → L as n → ∞, and we say that L is the
limit of (an).



Remark
▶ We might also say that (an) tends to L as n → ∞, and we

might also write that lim
n→∞

an = L.

▶ N can depend on ε, and almost always will.

▶ The ‘order of the quantifiers’ matters. We wrote
∀ε > 0 ∃N ∈ N . . .. This order allows N to depend on ε. If we
wrote ∃N ∈ N such that ∀ε > 0 . . . that would be something
quite different.
We could replace n ⩾ N in the definition by n > N, and
|an − L| < ε by |an − L| ⩽ ε, without changing the definition.
(Check this!) But it’s crucial that we have ε > 0 not ε ⩾ 0.
(Check this!)

▶ I put ‘the’ limit in the definition. We’ll see later that if it
exists then it’s unique.



Definition
Let (an) be a real sequence. We say that (an) converges, or is
convergent, if there is L ∈ R such that an → L as n → ∞. If (an)
does not converge, then we say that it diverges, or is divergent.



Definition
Let (an) be a sequence. A tail of (an) is a sequence (bn), where for
some natural number k we have bn = an+k for n ⩾ 1. That is,
(bn) is the sequence obtained by deleting the first k terms of (an).



Lemma 23 (Tails Lemma)

Let (an) be a sequence.

(i) If (an) converges to a limit L, then every tail of (an) also
converges, and to this same limit L.

(ii) If a tail (bn) = (an+k) of (an) converges, then (an) converges.







Proof.

(i) Take a tail of (an): take k ⩾ 1 and let bn = an+k for n ⩾ 1.
Assume that (an) converges to a limit L.
Take ε > 0.
Then there is N such that if n ⩾ N then |an − L| < ε.
Now if n ⩾ N then n + k ⩾ N so |an+k − L| < ε, that is,
|bn − L| < ε.
So (bn) converges and bn → L as n → ∞.

(ii) Assume that (bn) = (an+k) converges.
Then there is L ∈ R such that bn → L as n → ∞.
Take ε > 0.
Then there is N such that if m ⩾ N then |bm − L| < ε, that
is, |am+k − L| < ε.
Now if n ⩾ N + k then n = m + k where m ⩾ N, and so
|an − L| < ε.
So (an) converges and an → L as n → ∞.





Claim
1
n → 0 as n → ∞.

Proof.
Take ε > 0.
Then there is N ∈ N such that 1

N < ε (by the Archimedean
property).
For n ⩾ N we have | 1n − 0| = 1

n ⩽ 1
N < ε.

So 1
n → 0 as n → ∞.





Claim
Let an = 1 + (−1)n 1√

n
for n ⩾ 1. Then an → 1 as n → ∞.

Proof.
Take ε > 0.
Take N = ⌈ 1

ε2
⌉+ 1.

Here ⌈x⌉ denotes the ceiling function: it is defined to be the
smallest integer greater than or equal to x.
If n ⩾ N, then

n >
1

ε2

so
√
n >

1

ε

so
1√
n
< ε

so |an − 1| < ε.

So an → 1 as n → ∞.





Claim

Let an =
n cos(n3 + 1)

5n2 + 1
for n ⩾ 1. Then an → 0 as n → ∞.

Proof.
Take ε > 0.
Take N = ⌈1ε⌉+ 1.
If n ⩾ N, then n > 1

5ε so

|an| =
∣∣∣∣n cos(n3 + 1)

5n2 + 1

∣∣∣∣ ⩽ 1

5n
< ε.

So an → 0 as n → ∞.



Remark
Here are some top tips!

▶ We don’t need the smallest possible N. It’s (almost always)
not even interesting to know what it is. So make your life
easier! If an inequality (in the right direction) helps, then go
for it.

▶ Be careful to make sure that the logic flows in the right
direction, and that you’ve set out the logic explicitly.
Hopefully the examples we’ve just seen help you to have ideas
of how to do this.

▶ The definition officially says N ∈ N, but we don’t really care
whether N is a natural number. If we have a value that works,
then we can always choose a natural number larger than it.



Remark
▶ We think of ε as a small positive real number, but we are

obliged to prove it for all ε > 0. But if we can prove it for say
0 < ε < 1 then that’s enough—if N works for a certain ε then
it works for all larger values too. So you can work with a
smaller range of ε, such as 0 < ε < 1, if that is most
convenient (but it would be a good idea to mention briefly
why this is sufficient).

▶ It’s really worth becoming comfortable with inequalities and
modulus. In the examples, it was nicer to use the absolute
values to write things like |an − L| < ε, rather than
−ε < an − L < ε. If you prefer the second at the moment,
then I recommend practising to get used to the first!
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Limits: first key results



Proposition 24 (Sandwiching, first version)

Let (an) and (bn) be real sequences with 0 ⩽ an ⩽ bn for all n ⩾ 1.
If bn → 0 as n → ∞, then an → 0 as n → ∞.





Proof.
Idea: if N works for bn then it works for an too.
Assume that 0 ⩽ an ⩽ bn for all n, and that bn → 0 as n → ∞.
Take ε > 0.
Since bn → 0, there exists N such that if n ⩾ N then |bn| < ε.
Now if n ⩾ N then 0 ⩽ an ⩽ bn < ε, so |an| < ε.
So an → 0 as n → ∞.





Claim
1
2n → 0 as n → ∞.

Proof.
We have 2n ⩾ n for n ⩾ 1 (can prove this by induction),
so 0 ⩽ 1

2n ⩽ 1
n for n ⩾ 1, and 1

n → 0,
so by Sandwiching 1

2n → 0 as n → ∞.





Claim

Let an =
n cos(n3 + 1)

5n2 + 1
for n ⩾ 1 (we saw this example earlier).

Then an → 0 as n → ∞.

Proof.
Idea: apply Sandwiching to (|an|).
We have

0 ⩽

∣∣∣∣n cos(n3 + 1)

5n2 + 1

∣∣∣∣ ⩽ 1

5n
⩽

1

n

for n ⩾ 1,
and 1

n → 0 as n → ∞,
so, by Sandwiching, |an| → 0 as n → ∞.
But (looking back at the definition) we see that |an| → 0 if and
only if an → 0.



Lemma 25

(i) Take c ∈ R with |c| < 1. Then cn → 0 as n → ∞.

(ii) Let an = n
2n for n ⩾ 1. Then an → 0 as n → ∞.







Proof.

(i) Write |c| = 1
1+y where y > 0.

Take ε > 0.
Let N = ⌈ 1

yε⌉+ 1.
Take n ⩾ N.
By Bernoulli’s inequality (since y > 0 and n ⩾ 1) we have
(1 + y)n ⩾ 1 + ny , so

|cn| = 1

(1 + y)n
⩽

1

1 + ny
⩽

1

Ny
< ε.

So cn → 0 as n → ∞.



Proof.

(ii) Note that if n ⩾ 2 then 2n = (1 + 1)n ⩾
(n
2

)
(by the binomial

theorem).
Take ε > 0.
Let N = ⌈2 + 2

ε⌉.
For n ⩾ N, we have

|an − 0| = n

2n
⩽

n(n
2

) =
2

n − 1
⩽

2

N − 1
< ε.

So an → 0 as n → ∞.



Theorem 26 (Uniqueness of limits)

Let (an) be a convergent sequence. Then the limit is unique.





Proof.
Assume that an → L1 and an → L2 as n → ∞. Aim: L1 = L2.
Suppose, for a contradiction, that L1 ̸= L2.

Let ε =
|L1 − L2|

2
> 0.

Since an → L1 as n → ∞, there is N1 such that if n ⩾ N1 then
|an − L1| < ε.
Also, since an → L2 as n → ∞, there is N2 such that if n ⩾ N2

then |an − L2| < ε.
For n ⩾ max{N1,N2} we have |an − L1| < ε and |an − L2| < ε, so

|L1 − L2| = |(L1 − an) + (an − L2)|
⩽ |L1 − an|+ |an − L2| by the triangle inequality

< 2ε = |L1 − L2|.

This is a contradiction.
So L1 = L2.
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Limits: modulus and inequalities



Proposition 27

Let (an) be a convergent sequence. Then (|an|) also converges.
Moreover, if an → L as n → ∞ then |an| → |L| as n → ∞.





Proof.
Say an → L as n → ∞.
Take ε > 0.
Then there is N such that if n ⩾ N then |an − L| < ε.
Now if n ⩾ N then, by the Reverse Triangle Inequality, we have

||an| − |L|| ⩽ |an − L| < ε.

So (|an|) converges, and |an| → |L| as n → ∞.



Remark
We could instead have proved Proposition 27 using the
Sandwiching Lemma, since an → L as n → ∞ if and only if
|an − L| → 0 as n → ∞ (check this using the definition of
convergence).



If (an) is a convergent sequence and an > 0 for all n, then what
can we say about the limit? It’s not the case that the limit must
be positive.

For example, if an = 1
n then an > 0 for all n but an → 0.

But it’s hard to see how a sequence of positive terms could have a
negative limit.



Proposition 28 (Limits preserve weak inequalities)

Let (an) and (bn) be real sequences, and assume that an → L and
bn → M as n → ∞, and that an ⩽ bn for all n. Then L ⩽ M.



Remark
▶ This includes the special case where an = 0 for all n:

Proposition 28 says that if bn ⩾ 0 for all n, and bn → M as
n → ∞, then M ⩾ 0. (This is because the constant sequence
0, 0, 0, . . . certainly converges to 0.)

▶ A common mistake is to use the non-result that limits
preserve strict inequalities. As we’ve seen, this is not true.
Please try not to do this!





Proof.
Suppose, for a contradiction, that it is not the case that L ⩽ M, so
(by trichotomy) L > M.
Let ε = 1

2(L−M) > 0.
Since an → L as n → ∞, there is N1 such that if n ⩾ N1 then
|an − L| < ε.
Since bn → M as n → ∞, there is N2 such that if n ⩾ N2 then
|bn −M| < ε.
Now for n ⩾ max{N1,N2} we have an > L− ε and bn < M + ε,
so L− ε < an ⩽ bn < M + ε,
so L−M < 2ε = L−M. This is a contradiction.



Proposition 29 (Sandwiching)

Let (an), (bn) and (cn) be real sequences with an ⩽ bn ⩽ cn for all
n ⩾ 1. If an → L and cn → L as n → ∞, then bn → L as n → ∞.





Proof.
Take ε > 0.
Since an → L as n → ∞, there is N1 such that if n ⩾ N1 then
|an − L| < ε.
Since cn → L as n → ∞, there is N2 such that if n ⩾ N2 then
|cn − L| < ε.
Then for n ⩾ max{N1,N2} we have L− ε ⩽ an ⩽ bn ⩽ cn ⩽ L+ ε,
so |bn − L| < ε.
So bn → L as n → ∞.



Analysis I — Video 19

Vicky Neale

Michaelmas Term 2021



Bounded and unbounded sequences



Definition
Let (an) be a sequence. We say that (an) is bounded if the set
{an : n ⩾ 1} is bounded, that is, there is M such that |an| ⩽ M for
all n ⩾ 1. If (an) is not bounded then we say that it is unbounded.



Proposition 30 (A convergent sequence is bounded)

Let (an) be a convergent sequence. Then (an) is bounded.

Remark
Proposition 30 tells us that if (an) is unbounded then (an) diverges.





Proof.
Assume that an → L as n → ∞.
Then (taking ε = 1) there is N such that if n ⩾ N then
|an − L| < 1 so

|an| = |(an − L) + L| ⩽ |an − L|+ |L| < 1 + |L|.

Let M = max{|a1|, |a2|, . . . , |aN |, |L|+ 1}.
Then |an| ⩽ M for all n ⩾ 1.



Remark
▶ As remarked earlier, if (an) is unbounded then (an) diverges.

So, for example, (2n) diverges.

▶ Unboundedness is not the same as divergence. The converse
of Proposition 30 is not true. A bounded sequence can
diverge. For example, let an = (−1)n. Then |an| ⩽ 1 for all
n ⩾ 1, so (an) is bounded.





Claim
((−1)n) does not converge.

Proof.
Suppose, for a contradiction, that (−1)n → L as n → ∞.
Then (taking ε = 1) there is N such that if n ⩾ N then
|(−1)n − L| < 1.
In particular (n = 2N) we have |L− 1| < 1 so L > 0,
and (n = 2N + 1) we have |L+ 1| < 1 so L < 0.
This is a contradiction.





Definition
Let (an) be a real sequence. We say that (an) tends to infinity as
n → ∞ if

∀M ∈ R ∃N ∈ N such that ∀n ⩾ N, an > M.

In this case we write an → ∞ as n → ∞.
Similarly, we say that (an) tends to negative infinity as n → ∞ if

∀M ∈ R ∃N ∈ N such that ∀n ⩾ N, an < M.

In this case we write an → −∞ as n → ∞.



Remark
This is a separate definition from our earlier definition of
convergence, and ∞ is definitely not a real number. Results about
convergence to a real number L cannot just be applied by ‘taking
L = ∞’—this would be highly illegal!





Let an = n2 − 6n for n ⩾ 1.

Claim
an → ∞ as n → ∞.

Proof.
Fix M > 0. (It suffices to prove the result for M > 0.)
We want N such that if n ⩾ N then n2 − 6n ⩾ M
but n2 − 6n = (n − 3)2 − 0
so we are done if (n − 3)2 ⩾ M + 9
that is, we are done if n − 3 ⩾

√
M + 9

Let N = ⌈4 +
√
M + 9⌉.

If n ⩾ N, then n − 3 ⩾
√
M + 9 > 0,

so (n − 3)2 ⩾ M + 9,
so n2 − 6n ⩾ M.
So an → ∞ as n → ∞.



Let an =

{
0 if n prime

n otherwise.

Then (an) does not tend to infinity, because there are infinitely
many primes: for any N ∈ N, there is a prime n with n > N, and
then an = 0.



Lemma 31

(i) If α < 0, then nα → 0 as n → ∞.

(ii) If α > 0, then nα → ∞ as n → ∞.







Proof.

(i) Take ε ∈ (0, 1). We have

nα < ε

⇔ eα log n < ε

⇔ α log n < log ε

⇔ log n >
1

α
log ε (note α < 0)

⇔ n > e
1
α
log ε

so we can take N = 1 + ⌈e
1
α
log ε⌉.



Proof.

(ii) Take M > 0. We have

nα > M

⇔ eα log n > M

⇔ α log n > logM

⇔ log n >
1

α
logM (note α > 0)

⇔ n > e
1
α
logM

so we can take N = 1 + ⌈e
1
α
logM⌉.



Lemma 32
Let c ∈ R>0.

(i) If c < 1, then cn → 0 as n → ∞.

(ii) If c = 1, then cn → 1 as n → ∞.

(iii) If c > 1, then cn → ∞ as n → ∞.



Proof.

(i) This was Lemma 25.

(ii) This is clear from the definition of convergence.

(iii) Exercise. (You could adapt the argument from (i), or use
logarithms.)
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Complex sequences



Definition
Let (zn) be a complex sequence, let L ∈ C. We say that (zn)
converges to L as n → ∞ if

∀ε > 0 ∃N ∈ N such that ∀n ⩾ N, |zn − L| < ε.



Remark
▶ If (zn) tends to a limit, then this limit is unique, exactly as in

Theorem 26.

▶ We can have a sort of sandwiching for complex sequences, if
we use the modulus. If (zn) and (wn) are complex sequences,
and |wn| ⩽ |zn| for all n ⩾ 1, and zn → 0 as n → ∞, then
wn → 0 as n → ∞.



Theorem 33 (Convergence of complex sequences)

Let (zn) be a complex sequence. Write zn = xn + iyn with xn,
yn ∈ R, so that (xn) and (yn) are real sequences. Then (zn)
converges if and only if both (xn) and (yn) converge. Moreover, in
the case where (zn) converges, we have
lim
n→∞

zn = lim
n→∞

xn + i lim
n→∞

yn.

Proof.
Exercise.



Example

▶ Let zn = in

n . Then |zn| = 1
n → 0 as n → ∞ so zn → 0 as

n → ∞.

▶ Let zn = (1 + i)n. The sequence is
1 + i, 2i,−2 + 2i,−4,−4− 4i,−8i, 8− 8i, 16, . . . . The real
parts are 1, 0,−2,−4,−4, 0, 8, 16, . . .—this sequence doesn’t
converge, and hence neither does (zn).
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Subsequences



Informal understanding of a subsequence?

Let (an)n⩾1 be a sequence. Then a subsequence is a sequence
(br )r⩾1, where each br is in (an), and the terms are in the right
order.



Example

Let an = n for n ⩾ 1. The following are subsequences of (an).

▶ 2, 4, 6, 8, . . . — the subsequence (a2n)

▶ 2, 4, 8, 16, . . . — the subsequence (a2n)

The following are not subsequences of (an).

▶ 6, 4, 8, . . . — the terms are not in the right order

▶ 2, 4, 0, . . . — not all the terms are in (an)

▶ 1, 2, 3, . . . , 2020 — finite so not a sequence.



Definition
Let (an)n⩾1 be a sequence. A subsequence (br )r⩾1 of (an)n⩾1 is
defined by a function f : N → N such that f is strictly increasing
(if p < q then f (p) < f (q)), and br = af (r) for r ⩾ 1.

We often write f (r) as nr . Then n1 < n2 < n3 < · · · is a strictly
increasing sequence of natural numbers, and br = anr so the
sequence (br ) has terms an1 , an2 , an3 , . . . .



Remark
▶ Formally, (an) corresponds to a function α : N → R or

α : N → C. Then a subsequence of (an) corresponds to a
function α ◦ f , where f : N → N is strictly increasing.

▶ Subscripts are ‘dummy variables’. We can write (an) as (ar )
or (am) or (aα) or (ax). It is conventional to use a letter close
to n in the alphabet, to help us remember that it is a natural
number. We can use any letter for the subscripts in the
subsequence (br ), except that if we write our original sequence
as (an) then we should avoid using n for the subsequence too.

▶ It’s sometimes useful to know that nr ⩾ r for r ⩾ 1.
(Exercise: prove this inequality, using induction.)



Proposition 34 (Subsequences of a convergent sequence)

Let (an) be a sequence. If (an) converges, then every subsequence
(anr ) of (an) converges. Moreover, if an → L as n → ∞ then every
subsequence also converges to L.

Remark
So if (an) is a sequence, and it has two subsequences that tend to
different limits, then (an) does not converge. This follows from
Proposition 34, and can be a useful strategy for showing that a
sequence does not converge.





Proof.
Assume that (an) converges to L.
Let (anr ) be a subsequence of (an).
Take ε > 0.
Since an → L, there is N such that if n ⩾ N then |an − L| < ε.
If r ⩾ N, then nr ⩾ r ⩾ N (see remark before this result),
so |anr − L| < ε.
So anr → L as r → ∞.



Example

Let an =

{
0 if n is prime

1 + 1
n otherwise

.

Claim
(an) does not converge.





Proof.
Let the primes be p1 < p2 < p3 < · · · . Let P = {p1, p2, p3, . . . }.
Note that there are infinitely many primes, so (apr )r⩾1 is a
subsequence.
We have apr = 0 for all r ⩾ 1, so apr → 0 as r → ∞.
Let the elements of N \ P be n1 < n2 < n3 < · · · .
Note that there are infinitely many non-primes, so (anr )r⩾1 is a
subsequence.
We have anr = 1 + 1

nr
for r ⩾ 1, and so we see that anr → 1 as

r → ∞.
So (an) has subsequences that converge to different limits, so, by
Proposition 34, (an) does not converge.
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Algebra of Limits — part one



Example

This is an unofficial example. We’ll return to it once we’ve proved
some results.

Let an =
7n5 − n sin(n2 + 5n) + 3

4n5 − 3n2 + n + 2
.

What can we say about (an)? Intuitively...

- the numerator grows like 7n5 — the other terms are much
smaller for large n, which is all we care about;

- the denominator grows like 4n5

so we might conjecture that an → 7
4 as n → ∞.



Theorem 35 (Algebra of Limits, part 1)

Let (an) and (bn) be sequences with an → L and bn → M as
n → ∞. Let c be a constant.

(i) (constant) If an = c, so (an) is a constant sequence, then
an → c as n → ∞.

(ii) (scalar multiplication) The sequence (can) converges, and
can → cL as n → ∞.

(iii) (addition) The sequence (an + bn) converges, and
an + bn → L+M as n → ∞.

(iv) (subtraction) The sequence (an − bn) converges, and
an − bn → L−M as n → ∞.

(v) (modulus) The sequence (|an|) converges, and |an| → |L| as
n → ∞.









Proof.

(i) This is immediate from the definition.

(ii) If c = 0, then we’re done by (i). So assume that c ̸= 0.
Take ε > 0.
Since an → L, there is N such that if n ⩾ N then |an − L| < ε.
Now if n ⩾ N then |can − cL| = |c ||an − L| < |c |ε.
So (can) converges to cL.
OR...
Take ε > 0.
Since an → L, there is N such that if n ⩾ N then
|an − L| < ε

|c| .

Now if n ⩾ N then |can − cL| = |c ||an − L| < ε.
So (can) converges to cL.



Proof.

(iii) Take ε > 0.
Since an → L as n → ∞ there is N1 such that if n ⩾ N1 then
|an − L| < ε.
Since bn → M as n → ∞ there is N2 such that if n ⩾ N2 then
|bn −M| < ε.
Let N = max{N1,N2}. If n ⩾ N, then |an − L| < ε and
|bn −M| < ε, so

|(an + bn)− (L+M)| ⩽ |an − L|+ |bn −M| (triangle ineq)

< 2ε.

So (an + bn) converges to L+M.

(iv) This follows from (ii) and (iii).

(v) This was Proposition 27.



Remark
In (iii), I ended up showing that we can make |(an + bn)− (L+M)|
less than 2ε by going far enough along the sequence. But the
definition says ε, not 2ε, so isn’t this a problem?
Well, no, it’s not a problem. We need to show that we can make
|(an + bn)− (L+M)| less than any positive real number — and
that’s what we’ve done. The important thing is that 2 was a
(positive) constant: it didn’t depend on n.
We could instead have chosen N1 and N2 corresponding to ε

2 (so if
n ⩾ N1 then |an − L| < ε

2 and similarly for bn), and then we’d have
got ε at the end. But if I’d done that then it might have seemed
more mysterious: you might have wondered “how would I have
known to choose ε

2?”
In practice, sometimes I doodle on scrap paper and consequently
know what to choose at the start, and sometimes I just work
through and see what happens, and if I get 2ε or 1000ε at the end
then it doesn’t matter. I illustrated these two alternative
approaches in (ii) — but really they’re the same, and both are fine.



Example

Claim

Let an =
1

2n
+

(
1 + (−1)n

1√
n

)
+

n cos(n3 + 1)

5n2 + 1
. Then an → 1 as

n → ∞.





Proof.

We showed earlier that
1

2n
→ 0 and 1 + (−1)n

1√
n
→ 1 and also

n cos(n3 + 1)

5n2 + 1
→ 0 as n → ∞ (see Section 16).

So, by AOL, (an) converges, and an → 0 + 1 + 0 = 1 as
n → ∞.



Example

Claim
Let an = (−1)n + n

2n for n ⩾ 1. Then (an) does not converge.





Proof.
Suppose, for a contradiction, that (an) converges.
Note that

(
n
2n

)
converges (this was an earlier example).

So, by AOL, the sequence with nth term (−1)n = an − n
2n

converges.
But we showed earlier that ((−1)n) does not converge (or we could
now note that it has subsequences tending to different limits 1 and
−1). This is a contradiction.
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Algebra of Limits — part two



Theorem 36 (Algebra of Limits, part 2)

Let (an) and (bn) be sequences with an → L and bn → M as
n → ∞.

(vi) (product) The sequence (anbn) converges, and anbn → LM as
n → ∞.

(vii) (reciprocal) If M ̸= 0, then the sequence
(

1
bn

)
converges, and

1
bn

→ 1
M as n → ∞.

(viii) (quotient) If M ̸= 0, then the sequence
(
an
bn

)
converges, and

an
bn

→ L
M as n → ∞.



Remark
You might wonder whether the sequences

(
1
bn

)
and

(
an
bn

)
in (vii)

and (viii) are defined. This is a good question.

The answer is that — as we’ll show in the proof — if M ̸= 0 then
a tail of (bn) has all its terms nonzero, and hence there’s a tail of(

1
bn

)
that exists, and similarly for

(
an
bn

)
. When we talk about

convergence of these sequences, it’s enough to consider a tail.







Proof.

(vi) Take ε > 0. We may assume that ε < 1.
Since an → L, there is N1 such that if n ⩾ N1 then
|an − L| < ε.
Since bn → M, there is N2 such that if n ⩾ N2 then
|bn −M| < ε.
Let N = max{N1,N2}.
If n ⩾ N, then |an − L| < ε and |bn −M| < ε and
|an| < |L|+ ε, so

|anbn − LM| = |an(bn −M) +M(an − L)|
⩽ |an||bn −M|+ |M||an − L|
< (|L|+ ε) · ε+ |M| · ε
< ε(1 + |L|+ |M|).

Since 1 + |L|+ |M| is constant, this is enough to show that
(anbn) converges, and the limit is LM.



(vii) Assume that M ̸= 0.
Take ε > 0.
Since bn → M and |M| > 0, there is N1 such that if n ⩾ N1

then |bn −M| < |M|
2 , so (by the Reverse Triangle Inequality)

|bn| ⩾ ||bn + (M − bn)| − |M − bn|| >
|M|
2

> 0.

So the tail (bn)n⩾N1 has all terms nonzero, so we can consider

the sequence
(

1
bn

)
n⩾N1

.

Also, there is N2 such that if n ⩾ N2 then |bn −M| < ε.
Let N = max{N1,N2}. If n ⩾ N, then∣∣∣∣ 1bn − 1

M

∣∣∣∣ = |M − bn|
|M||bn|

<
ε

|M|
· 2

|M|
.

Since 2
|M|2 is a positive constant, this shows that

(
1
bn

)
n⩾N1

converges, and the limit is 1
M .



Proof.

(viii) This follows from (vi) and (vii).



Example

Let an =
7n5 − n sin(n2 + 5n) + 3

4n5 − 3n2 + n + 2
(we saw this example at the

start of Video 22).

Claim
an → 7

4 as n → ∞.





Proof.
We have

an =
7− 1

n4
sin(n2 + 5n) + 3

n5

4− 3
n3

+ 1
n4

+ 2
n5

.

Now 0 ⩽

∣∣∣∣ 1n4 sin(n2 + 5n)

∣∣∣∣ ⩽ 1

n4
⩽

1

n
and 1

n → 0, so by

Sandwiching 1
n4

sin(n2 + 5n) → 0, and several other terms also
tend to 0 (eg by Sandwiching),
so, by AOL, (an) converges, and

an → 7− 0 + 0

4− 0 + 0 + 0
=

7

4

as n → ∞.



Proposition 37 (Reciprocals and infinite/zero limits)

Let (an) be a sequence of positive real numbers. Then an → ∞ as
n → ∞ if and only if 1

an
→ 0 as n → ∞.

Proof.
Exercise (using the definitions).
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Orders of magnitude



Example

Let an =
8n2 + 1000000n + 1000000

14n6 + n3 + n
.

Intuitively, the key term in the numerator is 8n2, and the key term
in the denominator is 14n6. Even with the amusingly large
coefficients in the numerator, when n is large these terms will be
much smaller than 8n2.
So it feels like the sequence grows roughly like 8

14n4
, so should tend

to 0.
We can formalise this using AOL. Dividing through top and
bottom by n6 (since this is the key term), we get

an =
8
n4

+ 1000000
n5

+ 1000000
n6

14 + 1
n3

+ 1
n5

→ 0 + 0 + 0

14 + 0 + 0
= 0

as n → ∞.



Example

We showed in Lemma 25 that n
2n → 0 as n → ∞.

This is an example of the idea that ‘exponentials beat
polynomials’. But while ‘exponentials beat polynomials’ is a useful
slogan for intuition, it is not suitable for rigorous proofs!



Example

We’ve seen a couple of examples where we used that | cos x | ⩽ 1
and | sin x | ⩽ 1 for all x — this can be useful.



Example

We’ll show in the next section that log n
n → 0 as n → ∞.

Intuitively, polynomials grow faster than logarithms.



Definition
Let (an) and (bn) be sequences. We write an = O(bn) as n → ∞ if
there is a constant C ∈ R>0 and there is N such that if n ⩾ N
then |an| ⩽ C |bn|. This is ‘big O’ notation.

If bn ̸= 0 for all n (or all sufficiently large n), then we write
an = o(bn) as n → ∞ if an

bn
→ 0 as n → ∞. This is ‘little o’

notation.



Remark
▶ Sandwiching tells us that if an = O(bn) and bn → 0 as

n → ∞ then an → 0 as n → ∞.

▶ Big O and little o notation give us precise ways to make
precise statements about comparative rates of growth of
sequences. Please use them precisely!



Example

This example is in a Moodle quiz. Before you watch the next
video, please go to the Moodle course page for Analysis I, and try
the quiz for section 24 (it’s a short multiple choice quiz).
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Monotonic sequences



Definition
Let (an) be a real sequence.

▶ We say that (an) is monotonic increasing, or monotone
increasing, or increasing, if an ⩽ an+1 for all n.

▶ We say that (an) is strictly increasing if an < an+1 for all n.

▶ We say that (an) is monotonic decreasing, or monotone
decreasing, or decreasing, if an ⩾ an+1 for all n.

▶ We say that (an) is strictly decreasing if an > an+1 for all n.

▶ We say that (an) is monotonic, or monotone, if it is increasing
or decreasing.



Example

Notice that a constant sequence is both increasing and decreasing.
This might seem counterintuitive!





Theorem 38 (Monotone Sequences Theorem)

Let (an) be a real sequence.

(i) If (an) is increasing and bounded above, then (an) converges.

(ii) If (an) is decreasing and bounded below, then (an) converges.

Remark
▶ So ‘a bounded monotone sequence converges’.

▶ The result applies to tails of sequences too: if (an) has a tail
that is monotone and bounded, then it converges.





Proof.

(i) Assume that (an) is increasing and bounded above.
The set S = {an : n ⩾ 1} is non-empty and bounded above,
so, by Completeness, it has a supremum.
Take ε > 0.
By the Approximation Property, there is N such that
supS − ε < aN ⩽ supS .
If n ⩾ N, then supS − ε < aN ⩽ an ⩽ supS ,
so |an − supS | < ε.
So (an) converges, and an → supS as n → ∞.

(ii) If (an) is decreasing and bounded below, then (−an) is
increasing and bounded above, so (ii) follows from (i).



Lemma 39
Let (an) be a real sequence that is increasing and not bounded
above. Then an → ∞ as n → ∞.



Proof.
Take M ∈ R.
Since (an) is not bounded above, there is N such that aN > M.
Then, since (an) is increasing, if n ⩾ N then an ⩾ aN > M.



Example

Let an =

(
1 +

1

n

)n

.

On Sheet 1, you proved that (an) is increasing and that (an) is
bounded above (by 3). So, by the Monotone Sequences Theorem,
(an) converges. Say an → L as n → ∞. Then, since limits preserve
weak inequalities, we see that 2 ⩽ L ⩽ 3.

(Secretly, we know more about L, but that’s strictly unofficial for
now.)







Example

Let c ⩾ 0. In this example, we’ll show that
√
c exists. (This

generalises earlier work on
√
2, and uses a different strategy.)

Define (an) by a1 = 1 and an+1 =
1

2

(
an +

c

an

)
for n ⩾ 1.

This is a legitimate definition, since (by induction) an ̸= 0 for
n ⩾ 1.

Claim
(an) converges, and if an → L then L2 = c .



▶ (an) bounded below:
by a straightforward induction argument, we have an > 0 for
all n.

▶ study a2n − c:
for n ⩾ 1, we have

a2n+1 − c =
1

4

(
an +

c

an

)2

− c

=
1

4

(
a2n + 2c +

c2

a2n

)
− c

=
1

4

(
a2n − 2c +

c2

a2n

)
=

1

4

(
an −

c

an

)2

⩾ 0,

so a2n+1 ⩾ c for n ⩾ 1.



▶ (an)n⩾2 decreasing:
for n ⩾ 2, we have

an+1 − an =
1

2

(
an +

c

an

)
− an

=
1

2

(
c

an
− an

)
=

1

2an
(c − a2n)

⩽ 0,

so an+1 ⩽ an for n ⩾ 2.



So, by the Monotone Sequences Theorem, (an) converges.
Say an → L as n → ∞.
Then also an+1 → L as n → ∞ (it’s a tail of the sequence).
But if L ̸= 0 then

an+1 =
1

2

(
an +

c

an

)
→ 1

2

(
L+

c

L

)
by AOL.
Since limits are unique, we have L = 1

2

(
L+ c

L

)
,

so, rearranging, L2 = c .
Also, we have an > 0 for all n, and limits preserve weak
inequalities, so L ⩾ 0.
So

√
c exists (L =

√
c).

In the case that L = 0, since limits preserve weak inequalities and
a2n ⩾ c for n ⩾ 2 we have c ⩽ 0, so c = 0 and L2 = c .



Lemma 40
We have log n

n → 0 as n → ∞.





Proof.
Let an = log n

n .
Then an ⩾ 0 for all n, so (an) is bounded below.
Also, by properties of log we see that (an)n⩾100 is decreasing.
So, by the Monotone Sequences Theorem, (an) converges. Say
log n
n → L as n → ∞.

Since limits preserve weak inequalities, we have L ⩾ 0.
Now

a2n =
log(2n)

2n
=

log 2 + log n

2n
→ 0 +

L

2

by AOL,
but also (a2n) is a subsequence of (an) so a2n → L as n → ∞.
So, by uniqueness of limits, L

2 = L, so L = 0.
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Convergent subsequences



Theorem 41 (Scenic Viewpoints Theorem)

Let (an) be a real sequence. Then (an) has a monotone
subsequence.







Proof.
Let V = {k ∈ N : if m > k then am < ak}. (The elements of V
are ‘peaks’ or ‘scenic viewpoints’: if k ∈ V then ak is higher than
all subsequent terms.)
Case 1: V is infinite.
Say the elements of V are k1 < k2 < · · · .
Then (akr )r is a subsequence of (an)
and it is monotone decreasing (if r < s then kr < ks so akr > aks ).
Case 2: V is finite.
Then there is N such that if k ∈ V then k < N.
Let m1 = N. Then m1 ̸∈ V so there is m2 > m1 with am2 ⩾ am1 .
Also, m2 ̸∈ V so there is m3 > m2 with am3 ⩾ am2 .
Continuing inductively, we construct m1 < m2 < m3 < · · · such
that am1 ⩽ am2 ⩽ am3 ⩽ · · · .
Then (amr )r is an increasing subsequence of (an).



Theorem 42 (Bolzano-Weierstrass Theorem)

Let (an) be a bounded real sequence. Then (an) has a convergent
subsequence.



Proof.
By the Scenic Viewpoints Theorem, (an) has a monotone
subsequence.
This monotone subsequence is bounded (because the whole
sequence is), so by the Monotone Sequences Theorem (Theorem
38) it converges.



Remark
▶ This proof of the Bolzano-Weierstrass Theorem was very

short, because we did all the work in the Monotone Sequences
Theorem and Scenic Viewpoints Theorem! I have another
favourite proof of Bolzano-Weierstrass. I’ve turned it into a
quiz ‘proof sorter’ activity on Moodle.

▶ The Monotone Sequences Theorem and Scenic Viewpoints
Theorem don’t make sense for complex sequences. But
Bolzano-Weierstrass potentially could . . .



Corollary 43 (Bolzano-Weierstrass Theorem for complex
sequences)

Let (zn) be a bounded complex sequence. Then (zn) has a
convergent subsequence.





Proof.
Write zn = xn + iyn where xn, yn ∈ R.
Say (zn) is bounded by M, so |zn| ⩽ M for all n.
Then (xn) and (yn) are also bounded by M, and they are real
sequences.
By Bolzano-Weierstrass, (xn) has a convergent subsequence, say
(xnr )r .
Now (ynr )r is a bounded real sequence, so by Bolzano-Weierstrass
it has a convergent subsequence, say (ynrs )s .
Note that (xnrs )s is a subsequence of the convergent sequence
(xnr )r and hence converges.
So, by Theorem 33, (znrs )s converges (since its real and imaginary
parts converge).
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Cauchy sequences





Example

Let (an) be a convergent sequence.
Then an+1 − an → 0 as n → ∞.
We can prove this directly from the definition (with the triangle
inequality), or using tails and the Algebra of Limits.
But it is not the case that if an+1 − an → 0 as n → ∞ then (an)
converges.
For example, consider an =

√
n. Certainly (an) does not converge.

But

an+1 − an =
√
n + 1−

√
n =

(n + 1)− n√
n + 1 +

√
n
=

1√
n + 1 +

√
n
→ 0

as n → ∞.
Nonetheless, intuitively it seems that if eventually all the terms of
a sequence are bunched up close together then the sequence might
converge.



Definition
Let (an) be a sequence. We say that (an) is a Cauchy sequence if

∀ε > 0 ∃N ∈ N such that ∀m, n ⩾ N |an − am| < ε.

Remark
Note that this definition makes sense for complex sequences as well
as for real sequences.



Proposition 44

Let (an) be a convergent sequence. Then (an) is Cauchy.





Proof.
Say an → L as n → ∞.
Take ε > 0.
Since an → L, there is N such that if n ⩾ N then |an − L| < ε

2 .
Take m, n ⩾ N. Then |am − L| < ε

2 and |an − L| < ε
2 ,

so, by the triangle inequality,

|am − an| = |(am − L) + (L− an)|
⩽ |am − L|+ |an − L| < ε.

So (an) is Cauchy.



Proposition 45

Let (an) be a Cauchy sequence. Then (an) is bounded.





Proof.
Since (an) is Cauchy, there is (applying the definition with ε = 1)
N such that if m, n ⩾ N then |am − an| < 1.
Now for n ⩾ N we have |an − aN | < 1,
so |an| = |(an − aN) + aN | ⩽ 1 + |aN |.
Let K = max{|a1|, |a2|, . . . , |aN−1|, 1 + |aN |}.
Then |an| ⩽ K for all n ⩾ 1.
So (an) is bounded.



Proposition 46

Let (an) be a Cauchy sequence. Suppose that the subsequence
(anr )r converges. Then (an) converges.





Proof.
Say that anr → L as r → ∞.
Take ε > 0.
Then there is N1 such that if r ⩾ N1 then |anr − L| < ε

2 .
Also, since (an) is Cauchy there is N2 such that if m, n ⩾ N2 then
|am − an| < ε

2 .
Let N = max{N1,N2}.
Let r = N. Then nr ⩾ r ⩾ N1 so |anr − L| < ε

2
and if n ⩾ N then n, nr ⩾ N2 so |anr − an| < ε

2 ,
so

|an − L| = |(an − anr ) + (anr − L)|
⩽ |an − anr |+ |anr − L| < ε.

So an → L as n → ∞.



Theorem 47 (Cauchy Convergence Criterion)

Let (an) be a sequence. Then (an) converges if and only if (an) is
Cauchy.



Proof.
(⇒) This was Proposition 44.
(⇐) Assume that (an) is Cauchy.
Then (an) is bounded, by Proposition 45,
so by the Bolzano-Weierstrass Theorem (Theorem 42), (an) has a
convergent subsequence, say (anr ).
Then, by Proposition 46, (an) converges.



Remark
One reason this is so useful is that it gives us a way to show that a
sequence converges without needing to know in advance what the
limit is.
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Convergence for series



Example

Here are some informal examples of series to set the scene.

▶ For suitable r , we can consider the geometric series
∞∑
n=0

rn

(you might already have some ideas about this series).

▶ Decimal expansions. When we write 1
9 = 0.111 . . . or 1

9 = 0.1̇,

we mean
∞∑
n=1

1

10n
.

▶ We’ll define e =
∞∑
n=0

1

n!
.

▶ We’ll define ex =
∞∑
n=0

xn

n!
.

We’ll revisit these examples once we’ve explored some theory.



Definition
Let (ak) be a sequence. For n ⩾ 1, let

sn = a1 + a2 + · · ·+ an =
n∑

k=1

ak .

This is called a partial sum of the series
∞∑
k=1

ak .

We say that the series
∞∑
k=1

ak converges if the sequence (sn) of

partial sums converges. If sn → s as n → ∞, then we write
∞∑
k=1

ak = s.

If (sn) does not converge, then we say that
∞∑
k=1

ak diverges.



Remark
▶ So convergence of series is really a special case of convergence

of sequences, rather than a new concept.

▶ A series is a limit.

▶ We might sometimes write
∑
k⩾1

ak or even
∑

ak instead of

∞∑
k=1

ak .

▶ It would be highly illegal to write something like
n∑

n=1

an — we

need to use different letters for quantities that can be
different. That’s why I’ve put k as the dummy variable in the
sums, because it isn’t n (and is still a good letter for a natural
number).

▶ It’s sometimes helpful to note that (with the notation above)
ak = sk − sk−1 for k ⩾ 2.





Example

Geometric series. Take z ∈ C. Let ak = zk for k ⩾ 0, and let

sn =
n∑

k=0

zk . Then for n ⩾ 0 we have

sn =

{
1−zn+1

1−z if z ̸= 1

n + 1 if z = 1.

If |z | < 1, then sn → 1

1− z
as n → ∞, so

∞∑
n=0

zn exists and equals

1

1− z
.

If |z | ⩾ 1, then (sn) does not converge and so the series diverges.
(One way to see that (sn) does not converge is to note that if
|z | ⩾ 1 then sn − sn−1 = an = zn does not tend to 0 as n → ∞.)



Remark
Notice how we worked with partial sums, and determined that the
limit exists before writing down

∑
zn.





Example

A telescoping series. Let ak =
1

k(k + 1)
for k ⩾ 1.

Let sn =
n∑

k=1

1

k(k + 1)
.

Then

sn =
n∑

k=1

(
1

k
− 1

k + 1

)
=

(
1− 1

2

)
+

(
1

2
− 1

3

)
+

(
1

3
− 1

4

)
+ · · ·+

(
1

n
− 1

n + 1

)
= 1− 1

n + 1
→ 1 as n → ∞

so
∞∑
k=1

1

k(k + 1)
exists and equals 1.



Remark
Notice how we worked with partial sums, and determined that the
limit exists before writing down

∑ 1
k(k+1) .





Example

Let ak = (−1)k , let sn =
n∑

k=1

(−1)k .

Then

sn =

{
−1 if n odd

0 if n even.

So (sn) does not converge, that is,
∞∑
k=1

(−1)k diverges.



Remark
Notice how we worked with partial sums, not the series, and in fact
the limit doesn’t exist. We definitely didn’t write anything dodgy
like

∞∑
k=1

(−1)k = (−1 + 1) + (−1 + 1) + · · · = 0,

because this would be wrong.
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Series: first results and a first test for convergence



Proposition 48

Consider the series
∞∑
k=1

ak . If
∞∑
k=1

ak converges, then ak → 0 as

k → ∞.

Remark
So one way to show that a series diverges is to show that ak ̸→ 0.
This is disproportionately useful!





Proof.

Let sn =
n∑

k=1

ak . Then (sn) converges by assumption. Say sn → s

as n → ∞.
Then also sn−1 → s as n → ∞,
so by AOL an = sn − sn−1 → s − s = 0 as n → ∞.



Remark
Proposition 48 does not say that if ak → 0 as k → ∞ then

∑
ak

converges. That’s because this is false. For example . . .





Example

For n ⩾ 1, let sn =
n∑

k=1

1

k
. The series

∞∑
k=1

1

k
is called the harmonic

series.

Claim
The harmonic series diverges.

Proof.
Consider |s2n+1 − s2n |. We have

|s2n+1 − s2n | =
2n+1∑

k=2n+1

1

k
⩾ 2n · 1

2n+1
=

1

2
.

So (sn) is not Cauchy, so (sn) does not converge.



Remark
It is interesting to study the partial sums of the harmonic series.
We’ll do this in more detail in a future section.



Proposition 49

Let (ak) be a sequence of non-negative real numbers, and let

sn =
n∑

k=1

ak . Suppose that (sn) is bounded. Then the series
∞∑
k=1

ak

converges.





Proof.
Since ak ⩾ 0 for all k , we see that (sn) is increasing.
So (sn) is monotone and bounded, so by the Monotone Sequences

Theorem (Theorem 38) it converges, that is,
∞∑
k=1

ak converges.



Remark
Proposition 49 is a result that can be useful in practice for showing
that a series converges. One particularly frequent way to apply it is
to show that the partial sums are bounded by comparing with
another series that we already know converges. We’ll record that
as a separate result, but really it’s just a special case of
Proposition 49, which is in turn just a special case of the
Monotone Sequences Theorem.



Theorem 50 (Comparison Test)

Let (ak) and (bk) be real sequences. Assume that 0 ⩽ ak ⩽ bk for

all k ⩾ 1, and that
∞∑
k=1

bk converges. Then
∞∑
k=1

ak converges.





Proof.

Let sn =
n∑

k=1

ak .

Then (sn) is increasing, since ak ⩾ 0 for all k ⩾ 1.
Also,

sn =
n∑

k=1

ak ⩽
n∑

k=1

bk ⩽
∞∑
k=1

bk

(since this last series converges),
so (sn) is bounded.
Hence, by the Monotone Sequences Theorem (or Proposition 49),
∞∑
k=1

ak converges.



Remark
▶ More generally, if there is a positive constant C such that

0 ⩽ ak ⩽ Cbk for k ⩾ 1, and if
∞∑
k=1

bk converges, then
∞∑
k=1

ak

converges, by a small generalisation of the argument.

▶ The Comparison Test can also be used to show that a series

diverges. If 0 ⩽ ak ⩽ bk for all k and
∞∑
k=1

ak diverges, then

∞∑
k=1

bk diverges.

▶ We don’t need to know the value of
∑

bk to use the
Comparison Test, just that it exists.



Remark
▶ Please check the conditions of the Comparison Test very

carefully before applying it. Please do not do this by writing

things like
∞∑
k=1

ak ⩽
∞∑
k=1

bk . We can’t write down
∑

ak (which

is, remember, a limit) until we know that the limit exists. So
either check the precise conditions of the Comparison Test, or
work with partial sums as in Proposition 49.

▶ The Comparison Test is great!





Example

Claim∞∑
k=1

1

k2
converges.

Proof.
For k ⩾ 2, we have

0 ⩽
1

k2
⩽

1

k(k − 1)
,

and
∞∑
k=2

1

k(k − 1)
converges (we saw this previously),

so by the Comparison Test we have that
∞∑
k=1

1

k2
converges.



Remark

Note that this tells us nothing about the value of
∞∑
k=1

1

k2
! That is

an interesting, but more challenging, problem for another time (we
won’t discuss it in this course). But we can still use

∑ 1
k2 in future

applications of the Comparison Test, even without knowing the
value.



Example

The series
∞∑
k=0

1

k!
converges. (As usual, we define 0! = 1.) This is

an exercise on Sheet 5.

We can then define e =
∞∑
k=0

1

k!
.



Example

Decimal expansions. I’m not going to go through this example, but
now is a good time to revisit it. You’ll find the details in Hilary
Priestley’s supplementary notes on the uncountability of the reals,
on Moodle.
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Series: more results and another test for convergence



Theorem 51 (Cauchy Convergence Criterion for series)

Let (ak) be a sequence, and write sn =
n∑

k=1

ak . Then
∞∑
k=1

ak

converges if and only if

∀ε > 0 ∃N ∈ N such that ∀n > m ⩾ N

|sn − sm| =

∣∣∣∣∣
n∑

k=m+1

ak

∣∣∣∣∣ < ε.

Proof.
Immediate from the Cauchy Convergence Criterion (Theorem
47).



Definition

Let (ak) be a sequence. We say that
∞∑
k=1

ak converges absolutely if

∞∑
k=1

|ak | converges.

Remark
▶ This makes sense for real and complex series.

▶ The series
∑

|ak | is a series where all the terms are (real and)
non-negative. Such series are particularly nice!



Theorem 52 (Absolute convergence implies convergence)

Let (ak) be a sequence. If
∞∑
k=1

|ak | converges, then
∞∑
k=1

ak

converges.





Proof.
Let

sn =
n∑

k=1

ak and Sn =
n∑

k=1

|ak |.

For n > m, we have

|sn − sm| =

∣∣∣∣∣
n∑

k=m+1

ak

∣∣∣∣∣ ⩽
n∑

k=m+1

|ak | = |Sn − Sm|.

Now
∑

|ak | converges by assumption,
so (Sn) is Cauchy by the Cauchy Convergence Criterion,
so (sn) is Cauchy by the inequality above,
so
∑

ak converges by the Cauchy Convergence Criterion.





Example

Let ak = (−1)3k
sin3(k2)

k2 + 1
.

Then 0 ⩽ |ak | ⩽ 1
k2 for k ⩾ 1,

and
∑ 1

k2 converges,
so by the Comparison Test

∑
|ak | converges,

so
∑

ak converges since absolute convergence implies convergence.



Lemma 53

Take p ∈ R. Then
∞∑
k=1

k−p diverges for p ⩽ 1, and converges if

p > 1.





Proof.
Case 1 p ⩽ 0. Then k−p ̸→ 0 as k → ∞, so the series does not
converge (by Proposition 48).
Case 2 p = 1. This is the harmonic series (see an example in
Section 29).
Case 3 0 < p < 1. Note that then k−p > k−1 > 0, and we know
that

∑
k−1 diverges, so by the Comparison Test

∑
k−p diverges.

Case 4 p ⩾ 2. We already know that
∑ 1

k2 converges (this was an
example near the end of Section 29), and 0 ⩽ k−p ⩽ k−2, so, by
the Comparison Test,

∑
k−p converges.

Case 5 1 < p < 2. We’ll do this later, once we’ve developed some
more theory.



Example

We know that
∑ 1

n diverges, and so
∑ (−1)n

n does not converge
absolutely. But does it converge? The next result will give us a
way to show that it does.



Theorem 54 (Alternating Series Test)

Let (uk) be a real sequence, and consider the series
∞∑
k=1

(−1)k−1uk .

If

▶ uk ⩾ 0 for k ⩾ 1; and

▶ (uk) is decreasing, that is, uk+1 ⩽ uk for k ⩾ 1; and

▶ uk → 0 as k → ∞,

then
∞∑
k=1

(−1)k−1uk converges.







Proof.

Let sn =
n∑

k=1

(−1)k−1uk .

▶ (s2n) bounded above: We have

s2n = u1 − (u2 − u3)− · · · − (u2n−2 − u2n−1)− u2n ⩽ u1,

so u1 is an upper bound for (s2n).

▶ (s2n) is increasing: We have

s2n+2 − s2n = u2n+1 − u2n+2 ⩾ 0.

So, by the Monotone Sequences Theorem, (s2n) converges. Say
s2n → s as n → ∞.
Now s2n+1 = s2n + u2n+1 → s + 0 = s as n → ∞, by AOL.
So (s2n+1) also converges to s.
Then (by Sheet 4 Q2) (sn) converges.





Example

Claim∞∑
n=1

(−1)n

n
converges.

Proof.
We have 1

n ⩾ 0 for all n,
and

(
1
n

)
n
is decreasing,

and 1
n → 0 as n → ∞.

Hence, by the Alternating Series Test,
∞∑
n=1

(−1)n−1 1

n
converges,

and so (by AOL)
∞∑
n=1

(−1)n

n
converges.



Example

Claim∞∑
n=1

(−1)n√
n

converges.

Proof.
Exercise.



Remark
This remark is not part of the course. A series such as

∑ (−1)n

n
that converges but does not converge absolutely is said to
converge conditionally. Such series are delicate, when compared to
more robust series that converge absolutely!
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More on the Comparison Test





Example

Let ak =
k2 + k + 1

4k4 − k2 − 1
and consider

∑
k

k2 + k + 1

4k4 − k2 − 1
.

For large enough k , the denominator is positive, so ak exists and
ak ⩾ 0. Can we apply the Comparison Test? For sufficiently large
k , we have

ak
1

4k2

=
4k2(k2 + k + 1)

4k4 − k2 − 1
=

4k4 + 4k3 + 4k2

4k4 − k2 − 1

=
1 + 1

k + 1
k2

1− 1
4k2 − 1

4k4

→ 1 as k → ∞,

so there is K such that if k ⩾ K then 0 ⩽
ak
1

4k2

⩽
3

2
so

0 ⩽ ak ⩽
3

2
· 1

4k2
. Now

∑
k

3

8k2
converges,

so, by the Comparison Test,
∑

k ak converges.
(It doesn’t matter that we have the inequalities only for large
enough k — the first finitely many terms don’t affect convergence.)



Theorem 55 (Limit form of Comparison Test)

Let (ak), (bk) be real sequences of positive terms, and assume that
there is L > 0 such that ak

bk
→ L as k → ∞. Then

∑
ak converges

if and only if
∑

bk converges.





Proof.
Since ak

bk
→ L as k → ∞ and L

2 > 0, there is K such that if k ⩾ K

then

∣∣∣∣akbk − L

∣∣∣∣ < L

2
, and so

L

2
<

ak
bk

<
3L

2
.

(⇐) Then for k ⩾ K we have 0 < ak < 3L
2 bk , so if

∑
bk converges

then so does
∑ 3L

2 bk and hence, by the Comparison Test,
∑

ak
converges.
(⇒) Also, for k ⩾ K we have 0 < bk < 2

Lak (noting that L ̸= 0),
so if

∑
ak converges then so does

∑ 2
Lak and hence, by the

Comparison Test,
∑

bk converges.



Remark
It was important that, at least for sufficiently large k, the terms ak
and bk are positive, and it was important that ak

bk
converges to a

positive real number.





Example

Let ak =
k2 + k + 1

4k4 − k2 − 1
.

Then (as before)

ak
1

4k2

→ 1 as k → ∞,

and ak > 0 for sufficiently large k
and 1

4k2 > 0 for k ⩾ 1

and
∑ 1

4k2 converges
so, by the limit form of the Comparison Test,

∑
ak converges.
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Ratio Test





Example

Let ak =
k

2k
and consider

∞∑
k=1

k

2k
.

We can’t directly compare with
∑ 1

2k
.

More precisely,

ak+1

ak
=

k + 1

2k+1
/
k

2k

=
k + 1

2k+1
· 2

k

k

=
k + 1

k
· 1
2

=

(
1 +

1

k

)
· 1
2
→ 1

2
as k → ∞,

where we used AOL at the end.



So there is K such that if k ⩾ K then

∣∣∣∣ak+1

ak
− 1

2

∣∣∣∣ < 1

4
, so

ak+1

ak
<

3

4
.

Then for k ⩾ K we have 0 < ak ⩽
(
3
4

)k−K
aK

and
∞∑

k=K

(
3

4

)k−K

aK converges (geometric series with common

ratio 3
4 , and

∣∣3
4

∣∣ < 1)
so, by the Comparison Test,

∑
ak converges.



Theorem 56 (Ratio Test)

Let (ak) be a real sequence of positive terms. Assume that
ak+1

ak
converges as k → ∞, say to limit L.

(i) If 0 ⩽ L < 1, then
∑

ak converges.

(ii) If L > 1, then
∑

ak diverges.

Remark
▶ Here, exceptionally, we allow L = ∞, and this is covered by

the L > 1 case.

▶ If L = 1, then the Ratio Test tells us nothing.

▶ If ak+1

ak
does not tend to a limit as k → ∞, then the Ratio

Test tells us nothing.







Proof.

(i) Assume that 0 ⩽ L < 1.
Let α = 1+L

2 , so that L < α < 1. Let ε = α− L > 0.
Since ak+1

ak
→ L, there is N such that if k ⩾ N then∣∣∣ak+1

ak
− L
∣∣∣ < ε,

so ak+1

ak
< L+ ε = α.

Now for k ⩾ N we have 0 < ak ⩽ αk−NaN .
But

∑
k⩾N

αk−NaN converges (constant times a geometric series

with common ratio α, where |α| < 1).
So, by the Comparison Test,

∑
ak converges (the first N

terms do not affect convergence).



Proof.

(ii) Assume that L > 1.
Case 1 L ∈ R.
Let α = 1+L

2 , so 1 < α < L. Let ε = L− α > 0.

Since
ak+1

ak
→ L, there is N such that if k ⩾ N then∣∣∣ak+1

ak
− L
∣∣∣ < ε,

so ak+1

ak
> L− ε = α.

Now for k ⩾ N we have ak ⩾ αk−NaN > 0,
and so ak ̸→ 0 as k → ∞, so

∑
ak diverges.

Case 2 L = ∞.
Let α = 2.
Since

ak+1

ak
→ ∞, there is N such that if k ⩾ N then

ak+1

an
> α.

Then finish as in Case 1.





Example

Let ak =
k

2k
(we did this before!).

Then ak > 0 for all k, and

ak+1

ak
=

k + 1

2k+1
· 2

k

k
=

(
1 +

1

k

)
· 1
2
→ 1

2
< 1 as k → ∞,

by AOL.
So, by the Ratio Test,

∑
ak converges.





Example

Let ak = 1
k .

Then ak > 0 for all k, and

ak+1

ak
=

k

k + 1
→ 1 as k → ∞,

so the Ratio Test tells us nothing.
Notice how we really had to consider the limit. We have ak+1

ak
< 1

for all k , but that’s not enough to determine convergence —
remember that we already know that this series diverges.





Example

Let

ak =

{
1
2k

if k = 2m for some m ⩾ 1

0 otherwise.

As it stands, we can’t apply the Ratio Test, because the terms
aren’t all positive.
But we can omit the zero terms (which do not affect the

convergence of the series): let bm =
1

22m
for m ⩾ 1, and consider∑

m

bm.

Now bm > 0 for all m, and

bm+1

bm
=

22
m

22m+1 =
1

22m
→ 0 < 1 as m → ∞,

so by the Ratio Test
∑

bm converges and hence
∑

ak converges.



Remark
▶ The Ratio Test is brilliant, but please make sure you apply it

carefully. Check the conditions!

▶ It’s not always the case that ak+1

ak
converges, so that’s why we

stated it as a condition in the Ratio Test. Try to avoid
assuming that the limit exists.

▶ We proved the Ratio Test by comparing with a geometric
series. So we shouldn’t use the Ratio Test to decide whether a
geometric series converges!



Corollary 57

Let (ak) be a sequence of non-zero (real or complex) numbers.

Assume that

∣∣∣∣ak+1

ak

∣∣∣∣ converges as k → ∞, say to limit L.

(i) If 0 ⩽ L < 1, then
∑

ak converges absolutely and hence
converges.

(ii) If L > 1, then
∑

ak diverges.

Remark
▶ As before, we allow L = ∞ and include this in the case L > 1.

▶ If L = 1 then the Ratio Test tells us nothing.



Proof.

(i) Apply the Ratio Test to (|ak |).
(ii) If L > 1, then the proof of the Ratio Test as applied to (|ak |)

shows that |ak | ̸→ 0, so ak ̸→ 0, and so
∑

ak diverges.



Remark
We’ll see later in the course that the Ratio Test (especially in this
form) is extremely helpful for studying power series.
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Integral Test



In this video, we’ll study certain series by considering
corresponding integrals. This is a bit surprising, since we currently
don’t know what integration is. But it’s nice to see the link to
convergence of series now, so we’ll pretend that we know what
integration is, and that we know some basic facts about
integration. In Analysis III, you’ll fill in the details of this — you
might like to revisit this section/video after studying Analysis III.
Some (for now unofficial) facts we’ll assume:

▶ Suitably nice functions are integrable (in this section we’ll
consider only suitably nice functions).

▶ We can integrate constants: if c ∈ R then
∫ k+1
k c dx = c .

▶ Integration preserves weak inequalities: if f , g : [a, b] → R are
suitably nice, and f (x) ⩽ g(x) for all x ∈ [a, b], then∫ b
a f ⩽

∫ b
a g .

▶ If a < b < c and f : [a, c] → R is suitably nice, then∫ c
a f =

∫ b
a f +

∫ c
b f .



Theorem 58 (Integral Test)

Let f : [1,∞) → R be a function. Assume that

▶ f is non-negative (f (x) ⩾ 0 for all x ∈ [1,∞));

▶ f is decreasing (if x < y then f (x) ⩾ f (y));

▶
∫ k+1
k f (x)dx exists for each k ⩾ 1.

Let sn =
∑n

k=1 f (k) and In =
∫ n
1 f (x)dx.

(i) Let σn = sn − In. Then (σn) converges, and if we let σ be the
limit of (σn), then 0 ⩽ σ ⩽ f (1).

(ii)
∑

f (k) converges if and only if (In) converges.

Remark
▶ The main part of the Integral Test is (ii), and (i) is mostly

interesting for helping us to prove (ii), but (as we’ll see) (i) is
also useful in its own right.

▶ If f is continuous then
∫ k+1
k f (x)dx exists for each k ⩾ 1.







Proof
(i) Since f is decreasing, for x ∈ [k, k + 1], we have

f (k + 1) ⩽ f (x) ⩽ f (k), and so

f (k + 1) =

∫ k+1

k
f (k + 1)dx

⩽
∫ k+1

k
f (x)dx ⩽

∫ k+1

k
f (k)dx = f (k).

Now

f (2) ⩽
∫ 2

1
f (x)dx ⩽ f (1)

and f (3) ⩽
∫ 3

2
f (x)dx ⩽ f (2)

and
...

and f (n) ⩽
∫ n

n−1
f (x)dx ⩽ f (n − 1).



Adding these (finitely many) inequalities gives
sn − f (1) ⩽ In ⩽ sn − f (n),
so 0 ⩽ f (n) ⩽ sn − In ⩽ f (1),
so 0 ⩽ σn ⩽ f (1) for all n ⩾ 1.
Also,

σn+1 − σn = sn+1 − In+1 − sn + In

= f (n + 1)−
∫ n+1

n
f (x)dx ⩽ 0

as above.
So (σn) is decreasing and bounded below,
so, by the Monotone Sequences Theorem, it converges.
Say σn → σ as n → ∞.
Then, since limits preserve weak inequalities, and 0 ⩽ σn ⩽ f (1)
for all n ⩾ 1, we have 0 ⩽ σ ⩽ f (1).



(ii) If (sn) converges, then by AOL so does (In), since In = sn−σn.
And if (In) converges, then by AOL so does (sn), since
sn = In + σn.





Example

Claim
If 0 < p ⩽ 1, then

∑
k−p diverges, and if p > 1 then

∑
k−p

converges.

Proof.
Fix p > 0. Define f : [1,∞) → R by f (x) = x−p.
Then f is non-negative, and decreasing on [1,∞), and continuous.
Now for p ̸= 1 we have

In =

∫ n

1
x−pdx =

[
1

1− p
x1−p

]n
1

=
1

1− p
(n1−p − 1),

so for p < 1 the sequence (In) doesn’t converge, and for p > 1 it
does.

Also, for p = 1 we have In =

∫ n

1
x−pdx = [log x ]n1 = log n, so (In)

does not converge.
Hence, by the Integral Test,

∑
k−p converges for p > 1 and

diverges for 0 < p ⩽ 1.



Remark
The Integral Test handles p > 0, but not p < 0 because in this case
the function is not decreasing. Fortunately we can handle p < 0
directly, because in this case k−p ̸→ 0 and so

∑
k−p diverges.



Example

Claim∑
k⩾2

1

k log k
diverges.

Proof.
Exercise — use the Integral Test.

Remark
This series can be useful for counterexamples, because it feels like
it ‘only just’ diverges.
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Euler’s constant and rearranging series





Example

We know that the harmonic series
∑
k

1

k
diverges. But the Integral

Test can give us additional information.
Let γn = 1 + 1

2 + 1
3 + · · ·+ 1

n − log n.
Define f : [1,∞) → R by f (x) = 1

x .
Then f is non-negative, decreasing and continuous, and

γn =
n∑

k=1

1

k
−
∫ n

1

1

x
dx ,

so (i) of Theorem 58 tells us that (γn) converges as n → ∞, and
the limit is in [0, 1].
Let γ be this limit (this is standard notation), so

γn = 1 +
1

2
+

1

3
+ · · ·+ 1

n
− log n → γ as n → ∞,

and 0 ⩽ γ ⩽ 1.



So, roughly speaking, the partial sums of the harmonic series grow
like log n, and hence tend to infinity rather slowly.
The number γ is known as Euler’s constant.
It is not known whether γ is rational or irrational.





Example

Let sn =
n∑

k=1

(−1)k−1 1

k
.

Then

s2n = 1− 1

2
+

1

3
+ · · ·+ 1

2n − 1
− 1

2n

=

(
1 +

1

2
+

1

3
+ · · ·+ 1

2n

)
− 2

(
1

2
+

1

4
+ · · ·+ 1

2n

)
= (γ2n + log(2n))− (γn + log n)

= log 2 + γ2n − γn

→ log 2 as n → ∞,

and s2n+1 = s2n +
1

2n+1 → log 2 as n → ∞,
so (by a result on a problems sheet) (sn) converges to log 2, that is,

∞∑
k=1

(−1)k−1

k
= log 2.



Remark
The order in which we sum the terms in this series really matters.
It turns out that if we regroup to have the same terms but in
another order, with three positive terms followed by one negative,
so

1 +
1

3
+

1

5
− 1

2
+

1

7
+

1

9
+

1

11
− 1

4
+ · · ·

then we instead get log 2 + 1
2 log 3 (exercise: show this!).

There’s yet another version of the series, with yet another value,
on Sheet 7.



Definition
Let g : N → N be a bijection (a permutation of N). Given a series∑

ak , write bk = ag(k). Then
∑

bk is a rearrangement of
∑

ak .



Remark
▶ It turns out (no proof in this course!) that if

∑
ak is

absolutely convergent, then any rearrangement of
∑

ak also
converges, to the same limit. In this sense absolutely
convergent series are ‘robust’.

▶ As we have seen, a series that converges but not absolutely
(that is, a series that converges conditionally) is less robust. A
rearrangement might give a series that converges to a
different value, or even that does not converge at all.



Remark
In this course we’ve seen several tests for convergence of a series:

▶ the Comparison Test;

▶ the Alternating Series Test;

▶ the Ratio Test;

▶ the Integral Test.

We also saw that absolute convergence implies convergence.
These are the main tools for studying convergence of a series, but
they are not the only ones: not every series is susceptible to one of
these tests, and there are other convergence tests that can be
useful — but they are beyond the scope of the course.
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Power series



Definition

A real power series is a series of the form
∞∑
k=0

ckx
k , where ck ∈ R

for all k ⩾ 0 and x is a real variable.

A complex power series is a series of the form
∞∑
k=0

ckz
k , where

ck ∈ C for all k ⩾ 0 and z is a complex variable.



Remark
▶ Much of the theory applies equally to real and complex power

series, and of course every real power series is also a complex
power series. Our focus in this course is mostly on real power
series, but sometimes it is at least as convenient, or even more
convenient, to work in the more general complex setting and
then specialise later.

▶ We typically want to define a function using a power series.
This is why we think of x or z as a variable.

▶ By convention, when we consider the series
∞∑
k=0

ckz
k at z = 0,

we mean just c0. There are no issues about what 00 might
mean! Every power series converges at z = 0, so we do not
need to consider this case when studying convergence.





Example

Consider
∞∑
k=0

zk

k!
. We use the Ratio Test: for z ̸= 0, we have

∣∣∣∣ zk+1

(k + 1)!
/
zk

k!

∣∣∣∣ = k!

(k + 1)!
|z | = |z |

k + 1
→ 0 as k → ∞

and 0 < 1, so by the Ratio Test the series converges absolutely,
and hence converges, for all z ∈ C.



Definition
We define the exponential function exp : C → C by

exp(z) =
∞∑
k=0

zk

k!
.

We also write ez for exp(z).



Example

Consider

∞∑
k=0

(−1)k
z2k

(2k)!
and

∞∑
k=0

(−1)k
z2k+1

(2k + 1)!

and
∞∑
k=0

z2k+1

(2k + 1)!
and

∞∑
k=0

z2k

(2k)!
.

Each of these converges for all z ∈ C. (Exercise: use the Ratio
Test to prove this for z ̸= 0.)



Definition
We define the sine function sin : C → C by

sin(z) =
∞∑
k=0

(−1)k
z2k+1

(2k + 1)!
,

and the cosine function cos : C → C by

cos(z) =
∞∑
k=0

(−1)k
z2k

(2k)!
.



Definition
We define the hyperbolic sine function sinh : C → C by

sinh(z) =
∞∑
k=0

z2k+1

(2k + 1)!

and the hyperbolic cosine function cosh : C → C by

cosh(z) =
∞∑
k=0

z2k

(2k)!
.



Remark
▶ We can go on to define other trig functions such as tan,

cosec, sec and cot using these, on suitable domains. We
wouldn’t expect these further functions to have power series
that converge on the whole of C.

▶ We have defined sin and cos by power series, not by
right-angled triangles.

▶ We need to go on to deduce the usual properties of exp, sin
and cos, working from the power series definitions. We’ll
make a start on that in this course, and you will continue in
Analysis II next term.





Remark
We previously proved (as part of AOL) that if (sn) and (tn) are
convergent sequences, with sn → L and tn → M, then (sn + tn)
also converges, and sn + tn → L+M.
We can apply this to sequences of partial sums, which gives us a
way to consider the sum of two series.
To put that more explicitly, let

∑
ak and

∑
bk be convergent

series, and write

sn =
n∑

k=1

ak and tn =
n∑

k=1

bk .

Then (sn) and (tn) converge. Say sn → s and tn → t (that is,
∞∑
k=1

ak = s and
∞∑
k=1

bk = t).



Then

sn + tn =
n∑

k=1

ak +
n∑

k=1

bk =
n∑

k=1

(ak + bk),

so by AOL (sn + tn) converges, and
∞∑
k=1

(ak + bk) = s + t.

So we can sum two convergent series.
We can also use AOL to show that we can multiply a series by a
(real or complex) number.



Remark
The above remark gives a useful way to show that a series diverges.

If
∑

ak converges and
∑

bk diverges, then
∑

(ak + bk) diverges
too. That’s because if

∑
(ak + bk) converges, then also∑

((ak + bk)− ak) converges, by the remark above.

Exercise: show, through suitable examples, that if
∑

ak and
∑

bk
both diverge, then it might be that

∑
(ak + bk) converges and it

might be that it diverges.



Example

From the power series definitions earlier, and this remark about
AOL applied to series, we can see that for z ∈ C we have

cos z =
1

2
(eiz + e−iz)

and sin z =
1

2i
(eiz − e−iz)

and cosh z =
1

2
(ez + e−z)

and sinh z =
1

2
(ez − e−z)

and eiz = cos z + i sin z .

We can also see from the power series definitions that for z ∈ C
we have cos(iz) = cosh z , and other similar relationships between
cos and cosh, and between sin and sinh.
Exercise: think about all of these!



Analysis I — Video 36

Vicky Neale

Michaelmas Term 2021



Radius of convergence



In this section, it will be more natural to study power series in C.
The main goal will be to determine the subset of C on which a
given power series converges. As we’ll see, this subset must have a
rather specific form.





Definition
Let

∑
ckz

k be a power series. We define its radius of convergence
to be

R :=

{
sup{|z | ∈ R :

∑
|ckzk | converges} if the sup exists

∞ otherwise.



Remark
▶ We certainly have 0 ∈ {|z | ∈ R :

∑
|ckzk | converges}, so the

set is non-empty. So this subset of R has a sup if and only if
it is bounded.

▶ There are other equivalent ways to define the radius of
convergence, so if you look at another source then you might
see a slightly different definition.



Proposition 59 (Radius of convergence)

Let
∑

ckz
k be a power series with radius of convergence R.

(i) If R > 0 and |z | < R, then
∑

ckz
k converges absolutely and

hence converges.

(ii) If |z | > R, then
∑

ckz
k diverges.

Remark
This proposition says nothing about what happens if |z | = R. This
is deliberate!







Proof.

(i) Case 1: R ∈ R.
Assume that R > 0, and take z ∈ C with |z | < R.
Then there is S with |z | < S < R. Let ε = R − S > 0.
Since R = sup{|w | ∈ R :

∑
|ckwk | converges}, by the

Approximation Property there is ρ such that
S = R − ε < ρ ⩽ R and

∑
|ckρk | converges.

Then 0 ⩽ |z | < ρ and
∑

|ckρk | converges, so by the
Comparison Test

∑
|ckzk | converges.

Since absolute convergence implies convergence, this shows
that

∑
ckz

k converges.
Case 2: R = ∞.
Very similar to Case 1.



Proof.

(ii) Take z ∈ C with |z | > R
Suppose, for a contradiction, that

∑
ckz

k converges.
Then ckz

k → 0 as k → ∞, so (ckz
k) is bounded, so there is

M such that |ckzk | ⩽ M for all k .
Take ρ with R < ρ < |z |.
Then

0 ⩽ |ckρk | ⩽ |ckzk |
∣∣∣ρ
z

∣∣∣k ⩽ M
∣∣∣ρ
z

∣∣∣k
and

∑∣∣ρ
z

∣∣k converges (geometric series with common ratio∣∣ρ
z

∣∣, and ∣∣ρz ∣∣ < 1),
so, by the Comparison Test,

∑
|ckρk | converges,

contradicting the definition of R.



Remark
▶ We call {z ∈ C : |z | < R} the disc of convergence for the

power series. Proposition 59 shows that this is a useful
concept. For a real power series, the corresponding concept is
an interval of convergence.

▶ Anything at all can happen on the circle {z ∈ C : |z | = R}!
The series might converge everywhere on the circle, or diverge
everywhere on the circle, or converge at some points and
diverge at others.

▶ You might like to revisit Sheet 6 Q4 briefly having seen the
theory, to see the connections.



Example

▶ We have already seen that the exponential, sine and cosine,
hyperbolic sine and hyperbolic cosine series have radius of
convergence ∞ (using the Ratio Test).

▶ The geometric series
∑

zk has R = 1 (from an example in
Video 28).





Example

Consider
∞∑
k=0

k!

kk
xk .

For x ̸= 0, we have∣∣∣∣ (k + 1)!

(k + 1)k+1
xk+1 · kk

k!xk

∣∣∣∣ = k!

(k + 1)k
kk

k!
|x | =

(
k

k + 1

)k

|x |

=

(
1 +

1

k

)−k

|x | → 1

e
|x | as k → ∞,

so by the Ratio Test the series
∑∣∣ k!

kk x
k
∣∣ converges for |x | < e (so

R ⩾ e)
and diverges for |x | > e (so R ⩽ e).
So R = e.



Remark
Note that it was not enough to use the Ratio Test to show that
the series converges (absolutely) for |x | < e — this shows that
R ⩾ e, not that R = e.





Example

Consider
∑

ckx
k where ck =

{
1 if k prime

0 otherwise.

For x = 1, we see that ckx
k ̸→ 0 as k → ∞ (because there are

infinitely many primes), so R ⩽ 1.
If |x | < 1, then 0 ⩽ |ckxk | ⩽ |xk |,
and

∑
|xk | is a convergent geometric series,

so, by the Comparison Test,
∑

ckx
k converges absolutely and

hence converges. So R ⩾ 1.
So R = 1.



Remark
The Ratio Test is often useful for finding the radius of convergence
of a power series, but does not always work. There are more
sophisticated strategies that work in other situations, but it is easy
to apply them incorrectly, and they are not needed for Prelims.
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Differentiation Theorem



Theorem 60 (Differentiation Theorem for real power series)

Let
∑

ckx
k be a real power series with radius of convergence R.

Assume that 0 < R ⩽ ∞. For |x | < R, define f (x) =
∞∑
k=0

ckx
k .

Then f (x) is well defined whenever |x | < R. Moreover, if |x | < R
then the derivative f ′(x) exists, and

f ′(x) =
d

dx

( ∞∑
k=0

ckx
k

)
=

∞∑
k=0

d

dx
(ckx

k) =
∞∑
k=1

kckx
k−1.



Remark
▶ The slogan is that “on the disc of convergence, we can

differentiate term-by-term”.

▶ The theorem is definitely not obvious! It involves exchanging
the order of limiting processes, and that is a delicate business.





Example

We saw that the power series defining the exponential, sine, cosine,
sinh and cosh functions have R = ∞, so the series converge on R
(and on C), and by the Differentiation Theorem they are
differentiable on all of R. Moreover, by the Differentiation
Theorem we can differentiate term by term on R.



For example, for x ∈ R we have

d

dx
ex =

d

dx

( ∞∑
k=0

xk

k!

)

=
∞∑
k=0

d

dx

(
xk

k!

)
by the Differentiation Theorem

=
∞∑
k=1

kxk−1

k!

=
∞∑
k=1

xk−1

(k − 1)!

=
∞∑
k=0

xk

k!
= ex .



To summarise, for all x ∈ R we have

d

dx
ex = ex

d

dx
sin x = cos x

d

dx
cos x = − sin x

d

dx
sinh x = cosh x

d

dx
cosh x = sinh x .





Example

Claim
sin2 x + cos2 x = 1 for all x ∈ R.

Proof.
Define h : R → R by h(x) = sin2 x + cos2 x .
Then (using properties of differentiability that you’ll study in
Analysis II next term) h is differentiable on R, and

h′(x) = 2 cos x sin x − 2 sin x cos x = 0 for all x ∈ R.

This means (using a result you’ll see in Analysis II) that h is
constant.
But we know from the power series that sin 0 = 0 and cos 0 = 1,
so h(0) = 1.
So h(x) = 1 for all x ∈ R.



Remark
It would not be a good plan to try to do this by squaring power
series and manipulating terms — this would need a lot of
justification.





Example

Claim
ea+b = eaeb for all a, b ∈ R.

Proof.
Fix c ∈ R, and define g : R → R by g(x) = exec−x .
Then (Analysis II) g is differentiable on R, and

g ′(x) = exec−x − exec−x = 0 for all x ∈ R.

This means (Analysis II) that g is constant.
But we know from the power series that e0 = 1, so g(0) = ec .
So g(x) = ec for all x ∈ R.
This argument works for all c ∈ R. Take a, b ∈ R, and apply it
with x = a, c = a+ b to get ea+b = eaeb.



Remark
This shows that for all x ∈ R we have exe−x = e0 = 1. From the
power series, we see that ex > 0 for x ⩾ 0, and hence in fact
ex > 0 for all x ∈ R.

Remark
These examples illustrate a really useful strategy, which can also be
used to prove results like trig identities. Watch out for more on
this in Analysis II next term!



What is π?

We have defined sine and cosine using power series, without
mentioning right-angled triangles.

We can then define π to be the smallest positive x such that
sin x = 0, or π

2 as the smallest positive x such that cos x = 0. It is
not obvious that smallest such values exist; you’ll look at this in
more detail in Analysis II.

You’ll then be able to go on and prove that sine and cosine are
2π-periodic, for example.



Example

We see that if x , y ∈ R then

ex+iy = ex(cos y + i sin y).

We can then use properties of π to see that e2πi = 1.

You’ll study differentiability in C as part of the Part A Complex
Analysis course, when you’ll go on to explore many interesting
(and surprising) properties of complex functions.



Building on your knowledge of analysis so far, you might like to
consider the following questions, as a warm up for Analysis II.

▶ Given a function f : R → R and a, L ∈ R, what does it mean
to say that f (x) → L as x → a?

▶ What does it mean to say that f : R → R is continuous at a
point x ∈ R?

▶ Define f : R → R by f (x) =

{
x if x ∈ Q
0 otherwise.

At which points

(if any) is f continuous?

▶ What does it mean to say that f : R → R is differentiable at a
point x ∈ R?



To be continued. . . (in Analysis II)


