- 1 Take x = (1, 3, 0, 0, ...) and y = (-1, 0, 0, ...). Then ||x|| = ||y|| = 1 but x + y = (0, 3, 0, 0, ...) and ||x + y|| = 3 so the Triangle Inequality fails.
- **2** (i)

$$||x + y||^2 + ||x - y||^2 = \langle x + y, x + y \rangle + \langle x - y, x - y \rangle$$

= $2\langle x, x \rangle + 2\langle y, y \rangle + 2\langle x, y \rangle - 2\langle y, x \rangle$
= $2||x||^2 + 2||y||^2$.

- (ii) In \mathbb{R}^n with ∞ -norm let x and y be defined by $x_j = \delta_{1j}$ respectively $y = \delta_{2j}$) for $j = 1, \ldots, n$. Then, $||x||_{\infty} = ||y||_{\infty} = 1$ and $||x + y||_{\infty} = ||x y||_{\infty} = 1$. So the Parallelogram Law fails for $||\cdot||_{\infty}$ and this norm therefore cannot come from an inner product.
- **3** (i) Take $\lambda \in [0,1]$ and $y,z \in B_r(x_0)$. Then

$$||x_0 - (\lambda y + (1 - \lambda)z)|| = ||\lambda x_0 - \lambda y + (1 - \lambda)x_0 - (1 - \lambda)z||$$

$$\leq ||\lambda(x_0 - y)|| + ||(1 - \lambda)(x_0 - z)||$$

$$= \lambda ||x_0 - y|| + (1 - \lambda)||x_0 - z||$$

$$\leq r.$$

Likewise $\overline{B}_r(x_0)$ is convex.

(ii) We can use the characterisations of the closure \overline{F} of a set F obtained in metric spaces that $x \in \overline{F}$ if and only if $x \in F$ or x is a limit point, and hence if and only if there exists a sequence (x_n) so that $x_n \in F$ and $x_n \to x$ (in case $x \in F$ such a sequence can be chosen as $x_n = x$, otherwise its existence follows from the definition of limit point). Given $x \in \overline{B}_r(x_0)$ we can choose $x_n = (1 - \frac{1}{n})(x - x_0) + x_0 \in B_r(x_0)$ to get $x_n \to x$ and hence $\overline{B}_r(x_0) \subset \overline{B}_r(x_0)$, while conversely if (x_n) is a sequence such that each $x_n \in B_r(x_0)$ and $x_n \to x$ then

$$||x - x_0|| \le ||x - x_n|| + ||x_n - x_0|| < ||x - x_n|| + r.$$

Letting $n \to \infty$, we get $||x - x_0|| \le r$. Hence $\overline{B_r(x)} \subseteq \overline{B}_r(x_0)$.

- (iii) In \mathbb{R}^2 , consider x=(1,0) and y=(0,1) so $\frac{1}{2}x+\frac{1}{2}y=(\frac{1}{2},\frac{1}{2})$. The "p-norm" formula with p=1/2 would give $||x+y||=(2/\sqrt{2})^2=2$ so that x+y would not belong to the closed ball centre 0 and radius 1. But x and y do belong to this ball. This contradicts convexity. [A sketch of the set of points $(s,t)\in\mathbb{R}^2$ for which $|s|^{1/2}+|t|^{1/2}\leqslant 1$ is instructive.]
- **4.** (i) Linearity of T implies |Tx Ty| = |T(x y)|. So $|Tx Ty| \le ||x y||$, i.e. T is Lipschitz continuous and hence of course continuous.
 - (ii) Fix k. Note that for any of $1 \leq p \leq \infty$, we have $|x_k| \leq ||(x_j)||_p$. Therefore π_k is norm-reducing and so continuous by (i).
 - (iii) We use that the constant function $g \equiv 1$ is an element of $L^2([0,1])$ with $||g||_{L^2([0,1])} = (\int_0^1 1 dx)^{\frac{1}{2}} = 1$. By Hölder's inequality we thus get that $|T(f)| = |\int_0^1 f| \leq ||f||_{L^1} = ||f \cdot g||_{L^1} \leq ||f||_{L^2} \cdot ||g||_{L^2} = ||f||_{L^2}$ so continuity follows from (i).
 - (iv) Because vector space operations in X are defined coordinatewise, it follows from the Subspace Test (routine calculations!) that Y is a subspace.

To see that Y is closed, there are different arguments possible:

Variant 1: We know that a set $F \subset X$ is closed if for any sequence (f_j) with $f_j \in F$ which converges $x_j \to x \in X$, the limit x is again an element of F. Given a sequence

 $(x_j^{(k)}) \subset Y$ which converges to some limit $(x_j^{(k)}) \to (x_j)$ as $k \to \infty$ we must have that also the components converge and hence $x_{2j} = \lim x_{2j}^{(k)} = \lim a_j x_{2j-1}^{(k)} = a_j x_{2j-1}$ so $(x_j) \in Y$. Variant 2: We recall that for continuous maps the preimage of any closed set is again closed. For each k the map $\rho_k \colon y \mapsto \pi_{2k}(y) - a_k \pi_{2k-1}(y)$ is continuous, so $\rho_k^{-1}(\{0\})$ is closed. Then

$$Y = \bigcap_k \rho_k^{-1}(\{0\})$$

is an intersection of closed sets and hence is closed.

5. Suppose that Y is closed and that there exists $x_0 \in X \setminus Y$ so that $\operatorname{dist}(x_0, Y) = 0$. Then there exists a sequence $y_n \in Y$ so that $||x - y_n|| \to 0$, i.e. so that $y_n \to x$. But since Y is closed this implies that $x \in Y$ leading to a contradiction.

Supose instead that Y is a subspace which is not closed. Then there exists an element $x \in X \setminus Y$ which is a limit point of Y and hence for which $\operatorname{dist}(x,Y) = 0$.