
A

Overview of appendices

These appendices were written in response to questions about rigour in the Oxford Proba-

bility courses. The obvious place to point to is the Part B course on Probability, Measure

and Martingales, where a general measure-theoretic approach is presented, which allows to

streamline the main developments at an abstract level and to specialise to the setting of Pre-

lims and Part A Probability. At this stage, however, this is a rather unsatisfactory answer to

the sometimes rather specific questions on technical detail and fails to acknowledge that most

of the developments in Prelims and Part A Probability are already rigorous with only very

occasional use of tools that have not yet been rigorously established in the Analysis courses.

Indeed, Probability meets Analysis almost immediately. As Prelims Probability is taught

before or in parallel to the Analysis courses, we are slightly pragmatic about series and

integrals, but (discrete and continuous) random variables are introduced as functions on a

probability space, and the Prelims Analysis courses then give these developments the same

rigorous meaning (in the generality presented) that they have (after considerably more effort)

in a general measure-theoretic approach. There are just a few technical gaps on the Analysis

side that are best identified and can then be addressed in the context of Part A Integration.

The aim of these (non-examinable) appendices is to fill any Analysis gaps left in the

Prelims and Part A Probability courses, by pointing to relevant developments in the Analysis

courses, where available, by revisiting arguments that were not fully justified at the time and

by adding a few arguments to fill gaps that may benefit from a bit more than a pointer.

As far as Prelims material is concerned, Appendix B collects mainly statements of relevant

definitions and theorems taken often directly from

� Analysis I lecture notes by Vicky Neale (Michaelmas Term 2020), Hilary Priestley (2016),

� Analysis II lecture notes by Zhongmin Qian (Hilary Term 2021),

� Analysis III lecture notes by Marc Lackenby (Trinity Term 2021).

Appendix C records some consequences, notably about the notion of countable sums, but also

discussing some relevant integrals. Appendix D reviews, in the context of Appendices B–C

where relevant, all definitions and essentially all theorems of the

� Prelims Probability lecture notes by James Martin (Michaelmas Term 2020).

Appendix D is also useful reading before Part A Probability when not chasing gaps.
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Before turning to Part A material, we include in Appendix E some further developments

that allow to address at the level of Prelims Analysis and Probability some more points that

have arisen in the discussion of Prelims Probability in Appendix D.

The Part A Integration course is the key course that fills or allows to fill almost all

remaining gaps in the Prelims and Part A Probability courses. In Part A Probability, we also

state some theorems without proof (analyic characterisations of probability distributions and

their convergence), which can be proved using material from the Part A Metric Spaces and

Complex Analysis course. Our preview in Appendix F contains relevant material from

� Part A Integration lecture notes by Charles Batty (Hilary Term 2021),

� Part A Metric Spaces lecture notes by Ben Green (Michaelmas Term 2021),

� Part A Complex Analysis lecture notes by Ben Green and Panos Papazoglou (Michael-

mas Term 2021).

Appendix G records some consequences notably about the existence of suitable probability

spaces, expectations of functions of continuous random variables and some further integrals,

which were already justified less formally in Prelims Probability. We also include sections

on (probability and other) measure spaces and the measure-theoretic approach to define

expectations as integrals against probability measures. These latter developments are strictly

parallel to the material quoted from the Part A Integration course in Appendix F. These

parallels will be evident in their statements, and while we do not provide proofs, these parallels

do extend to their proofs, too. The purpose here is to provide clear statements of some

theorems that we later apply to provide proofs of the results mentioned above. A slightly

different approach to these theorems is given in Part B Probability, Measure and Martingales.

Appendix H turns to Part A Probability and includes a chapter-by-chapter discussion,

revisiting informal proofs and results stated without proof, as appropriate. This perspective

of Part A Probability is non-examinable.

Markov chain theory in Part A Probability is formulated in terms of matrices and vectors,

finite-dimensional, as well as (infinite-dimensional) vector spaces of sequences. Appendix I

contains a small amount of material from the algebraic Prelims courses also including material

on linear recurrence relations, which was included in the Prelims Probability course:

� Linear Algebra I lecture notes by Richard Earl (Michaelmas Term 2020),

� Linear Algebra II lecture notes by James Maynard (Hilary Term 2021),

� Groups and Group Actions lecture notes by Vicky Neale (Hilary Terms 2020),

� Prelims Probability lecture notes by James Martin (Michaelmas Term 2020).

Any proofs included in any of the appendices are either extrapolating from material from the

various lecture notes or from textbooks on the reading list or from

� R. Durrett: Probability: Theory and Examples. CUP 2019 (or earlier editions).

These appendices are all new in Michaelmas Term 2021. If you spot any typos or mistakes

or have other suggestions or comments, please email me at winkel@stats.ox.ac.uk.

Matthias Winkel, October 2021



B

Prelims Analysis: Relevant material

This appendix contains a selection of statements of definitions and theorems from the Prelims

Analysis courses that are relevant for Prelims and Part A Probability.

B.1 Sequences and series

We denote by N the set of positive integers (not including 0) and by R the set of real numbers.

Definition B.1. A sequence of real numbers is a function b : N → R. We usually write bn

for the real number b(n) and (bn)n≥1 or (bn) for the sequence.

Definition B.2. Let (bn) be a sequence of real numbers and let L ∈ R. We say that (bn)

converges to L as n→∞ if

∀ε > 0 ∃N ∈ N such that ∀n ≥ N, we have |bn − L| < ε.

In this case, we write limn→∞ bn = L or bn → L as n→∞, and we say L is the limit of (bn).

Definition B.3. Let (bn) be a sequence of real numbers. We say that (bn) is convergent if

there is L ∈ R such that bn → L. If (bn) is not convergent, then we say it is divergent.

Theorem B.4 (Uniqueness of limits). Let (bn) be a convergent sequence of real numbers.

Then the limit is unique.

Theorem B.5 (Algebra of Limits). Let (an) and (bn) be sequences with an → K and bn → L.

Then an + bn → K + L and anbn → KL.

Definition B.6. Let (an) be a sequence. We say that (an) is bounded if

∃M ∈ R such that ∀n ≥ 1, we have |an| ≤M.

Proposition B.7. Let (an) be convergent. Then (an) is bounded.

Definition B.8. Let (an) be a real sequence. We say that (an) is increasing if an ≤ an+1

for all n ≥ 1. We say that (an) is strictly increasing if an < an+1 for all n ≥ 1.

Theorem B.9 (Monotone Sequences Theorem). Let (an) be a real sequence. If (an) is

increasing and bounded, then (an) converges.
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Definition B.10. Let (an)n≥1 be sequence. A subsequence (br)r≥1 of (an)r≥1 is defined by

a function f : N → N such that f is strictly increasing (if p < q then f(p) < f(q)), and

br = af(r) for r ≥ 1. We often write f(r) as nr. Then (nr)r≥1 is a strictly increasing sequence

of natural numbers, and br = anr
.

Proposition B.11. Let (an) be a sequence. If (an) converges, then every subsequence (anr
)

of (an) converges. Moreover, if an → L as n→∞, every subsequence also converges to L.

Theorem B.12 (Bolzano–Weierstrass Theorem). Let (an) be a bounded sequence. Then (an)

has a convergent subsequence.

Definition B.13. Let (bn) be a sequence of real numbers. We say that (bn) diverges to

infinity if

∀M ∈ R ∃N ∈ N such that ∀n ≥ N, we have an > M.

In this case, we write limn→∞ bn =∞ or bn →∞.

Remark B.14. Uniqueness of limits extends to include the limit infinity. “Algebra of Limits”

with infinite limits requires appropriate definitions, constraints and separate proofs. Although

this was not presented in this way in Prelims Analysis, it is sometimes useful to define

∞ +∞ = a +∞ = ∞ + a = ∞ and b∞ = ∞b = ∞∞ = ∞ for a ∈ R and b > 0. If

one or both of the limits K and L of (an) and (bn) are infinite in the sense of Definition B.13

and their sum or product are defined in this way, Algebra of Limits extends to these cases.

We leave the proofs as an exercise to the reader. We also stress that we leave the product

0∞ undefined in general, because Algebra of Limits does not extend to this case, in general.

Definition B.15. Let (bn) be a sequence of real numbers. Its sequence (sn) of partial sums

is given by s1 = b1 and sn+1 = sn + bn, n ∈ N. We usually write this as

sn =

n∑
j=1

bj , n ∈ N.

We say the series of (bn) is convergent if its sequence of partial sums converges. In this case,

we write the limit as

lim
n→∞

sn =

∞∑
j=1

bj ,

and we also say the series
∑
bj converges. A series is divergent if its sequence of partial sums

diverges, and we also say the series
∑
bj diverges. If the sequence of partial sums diverges to

infinity, we say the series
∑
bj diverges to infinity and write

∑
bj =∞.

A series
∑
bj is absolutely convergent if

∑
|bj | is convergent.

Theorem B.16 (Comparison test). Let (bj) and (cj) be real sequences that satisfy 0 ≤ |bj | ≤
cj for all j ≥ 1. Then the convergence of

∑
cj implies the convergence of

∑
bj.

Theorem B.17 (Cauchy convergence criterion for series). Let (bj) be a sequence. Then
∑
bj

converges if and only if

∀ε > 0 ∃N ∈ N such that ∀n > m ≥ N, we have

∣∣∣∣∣∣
n∑

j=m+1

bj

∣∣∣∣∣∣ < ε.
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Theorem B.18 (Absolute convergence implies convergence). Let (bj) be a sequence. If the

series
∑
bj is absolutely convergent, the series is also convergent.

The notions of sequence, series and their convergence remain meaningful if we replace the

set R of real numbers by the set C of complex numbers, giving rise to sequences and series of

complex numbers. All theorems stated above extend to this setting. Specifically, in Theorem

B.16, (cn) will still be a real sequence and 0 ≤ |bj | ≤ cj are inequalities between real numbers.

Definition B.19. A real power series is a series of the form
∑∞
k=0 ckx

k, where ck ∈ R for

all k ≥ 0 and x is a real variable.

A complex power series is a series of the form
∑∞
k=0 ckz

k where ck ∈ C for all k ≥ 0 and

z is a complex variable.

Definition B.20. Let
∑
ckz

k be a power series. We define its radius of convergence to be

R :=

{
sup{|z| : z ∈ C and

∑
|ckzk| converges} if the sup exists

∞ otherwise.

Proposition B.21. Let
∑
ckz

k be a power series with radius of convergence R.

(i) If R > 0 and |z| < R, then
∑
ckz

k converges absolutely and hence converges.

(ii) If R <∞ and |z| > R, then
∑
ckz

k diverges.

Example B.22. The exponential series
∑∞
k=0(1/k!)zk has radius of convergence R =∞.

B.2 Function limits, continuity and differentiability

Definition B.23. Let E ⊆ C. Then p ∈ C is called a limit point of E if

∀ε > 0 ∃z ∈ E \ {p} such that |z − p| < ε.

Proposition B.24. Let a, b ∈ R with a < b. Then p ∈ R is a limit point of the open interval

(a, b) if and only if p ∈ [a, b]. The closed and half-open intervals [a, b], [a, b) and (a, b] have

the same limit points as the open interval (a, b).

Definition B.25 (Function limits). Let E ⊆ C and f : E → C a function. Let p be a limit

point of E, and L a number. We say f converges to L as x tends to p if

∀ε > 0 ∃δ > 0 such that ∀x ∈ E : 0 < |x− p| < δ, we have |f(x)− L| < ε.

In this case, we write limx→p f(x) = L or f(x)→ L as x→ p.

Proposition B.26 (Uniqueness of limits). Let f : E → C be a function and p a limit point

of E. If f has a limit as x→ p, then the limit is unique.

Proposition B.27 (Algebra of Limits). Let p be a limit point of E ⊆ C, and f, g : E → C
two functions. Suppose that limx→p f(x) = A and limx→p g(x) = B. Then

(1) limx→p(f(x)± g(x)) = A±B;

(2) limx→p f(x)g(x) = AB.
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Definition B.28. Let f : (a, b] → C be a function and let p ∈ (a, b]. Then we say the

left-hand limit of f at p exists and equals L if

∀ε > 0 ∃δ > 0 such that ∀x ∈ (a, b] : 0 < p− x < δ, we have |f(x)− L| < ε.

In this case, we write limx↑p f(x) = L or limx→p− f(x) = L. Right-hand limits denoted by

limx↓p f(x) or limx→p− f(x) are defined analogously.

Definition B.29. Let E ⊆ C. Consider a function f : E → C and p ∈ E. We say that f is

continuous at p if

∀ε > 0 ∃δ > 0 such that ∀x ∈ E : |x− p| < δ, we have |f(x)− f(p)| < ε.

We say that f is right-continuous at p if

∀ε > 0 ∃δ > 0 such that ∀x ∈ E : 0 ≤ x− p < δ, we have |f(x)− f(p)| < ε.

We say that f is (right-)continuous on E if f is (right-)continuous at p for all p ∈ E.

Proposition B.30. If f, g : E → C are continuous at p ∈ E, then so are f ± g and fg.

Example B.31. Let f : C→ C be a polynomial. Then f is continuous on C.

Definition B.32. Let f and fn, n ∈ N, be complex-valued functions on E.

(1) We say that fn converges to f uniformly on E if

∀ε > 0 ∃N ∈ N such that ∀x ∈ E ∀n > N, we have |fn(x)− f(x)| < ε.

(2) We say that the series
∑∞
n=1 fn converges uniformly on E if the sequence sn =

∑n
k=1 fk

of partial sums converges uniformly on E.

Theorem B.33 (The uniform limit of continuous functions is continuous). Let fn, f : E → C
be functions with fn → f uniformly in E. Suppose that all fn are continuous at x0 ∈ E, then

the limit function f is also continuous at x0.

Corollary B.34. Suppose
∑∞
n=0 anz

n has radius of convergence R, where 0 < R ≤ ∞.

Then for every 0 ≤ r < R, the power series
∑∞
n=0 anz

n converges uniformly on the closed

disk {z ∈ C : |z| ≤ r}, and f(z) =
∑∞
n=0 anz

n is continuous on the open ball {z ∈ C : |z| < R}.

Example B.35. The function f : R→ R defined by the convergent power series

f(x) =

∞∑
n=0

(1/n!)xn

is continuous and equal to ex, for all x ∈ R, where e := f(1).

Theorem B.36 (Abel’s theorem). If the series
∑∞
n=0 an converges, then

∑∞
n=0 anx

n con-

verges uniformly on [0, 1]. In particular, f(x) =
∑∞
n=0 anx

n is continuous on [0, 1] with

lim
x↑1

∞∑
n=0

anx
n =

∞∑
n=0

an.
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Definition B.37. (1) Let (a, b) ⊆ R be an open interval, f a real- or complex-valued function

defined on (a, b), and x0 ∈ (a, b). If

lim
x→x0

f(x)− f(x0)

x− x0

exists (a real or complex number), then the limit is called the derivative of f at x0 and is

denoted by f ′(x0) or df
dx (x0).

(2) If f : (a, b]→ C and x0 ∈ (a, b], then the left-derivative of f at x0 is defined by

f ′(x0−) = lim
x↑x0

f(x)− f(x0)

x− x0

provided the limit exists.

(3) Let D ⊆ C and z0 ∈ D such that B(z0, δ) := {z ∈ C : |z − z0| < δ} ⊆ D for some

δ > 0. We define the complex derivative of f : D → C at z0 to be

f ′(z0) = lim
z→z0

f(z)− f(z0)

z − z0

provided the limit exists.

Theorem B.38. If f, g : (a, b)→ C are differentiable at x0 ∈ (a, b), then

(1) (f ± g)′(x0) = f ′(x0)± g′(x0),

(2) (Product rule) (fg)′(x0) = f ′(x0)g(x0) + f(x0)g′(x0).

Theorem B.39 (Chain rule). Suppose f : (a, b) → R is differentiable at x0 ∈ (a, b) and

g : (c, d) → R is differentiable at y0 = f(x0) ∈ (c, d), and f((a, b)) ⊆ (c, d), then h = g ◦ f is

differentiable at x0 and

h′(x0) = g′(f(x0))f ′(x0).

Theorem B.40. Consider the power series

f(z) =

∞∑
n=0

anz
n.

Let R be its radius of convergence, and assume that 0 < R ≤ ∞. Then

(1) the power series obtained by differentiating f term by term

g(z) =

∞∑
n=1

nanz
n−1

has the same radius of convergence R. In particular, for any 0 ≤ r < R

∞∑
n=1

n|an|rn−1 <∞,

(2) the derivative

f ′(z) = lim
w→z

f(w)− f(z)

w − z
exists for every z ∈ C satisfying that |z| < R, and f ′(z) = g(z). That is

d

dz

∞∑
n=0

anz
n =

∞∑
n=1

nanz
n−1 ∀z ∈ C : |z| < R.
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Theorem B.41 (L’Hôpital’s rule). Suppose that f, g → (a− δ, a)→ R are differentiable for

some a ∈ R, δ > 0, and that limx↑a f(x) = limx↑a g(x) = 0, then

lim
x↑a

f(x)

g(x)
= lim

x↑a

f ′(x)

g′(x)
,

provided that the limit on the right-hand side exists.

B.3 Riemann Integration

Definition B.42. Let [a, b] be an interval. A partition P of [a, b] is a finite sequence a = x0 ≤
x1 ≤ · · · ≤ xn = b. A function φ : [a, b]→ R is called a step function if there is a partition P
given by a = x0 ≤ x1 ≤ · · · ≤ xn = b such that φ is constant on each open interval (xi−1, xi),

1 ≤ i ≤ n. We then say that φ is adapted to the partition P.

Lemma B.43. The set Lstep[a, b] of all step functions on [a, b] is a vector space.

Definition B.44. Let φ be a step function adapted to some partition P given by a = x0 ≤
x1 ≤ · · · ≤ xn = b, and suppose that φ(x) = ci on the interval (xi−1, xi), 1 ≤ i ≤ n. Then we

define

I(φ) =

n∑
i=1

ci(xi − xi−1).

Lemma B.45. The map I : Lstep[a, b] → R is well-defined in the sense that I(φ) does not

depend on the choice of partition P to which φ is adapted. Furthermore, the map I is linear:

I(λφ1 + µφ2) = λI(φ1) + µI(φ2).

Definition B.46. A bounded function f : [a, b]→ R is Riemann integrable if

sup
φ−

I(φ−) = inf
φ+

I(φ+)

where the sup is over all minorant step functions φ− ≤ f , and the inf is over all majorant

step functions φ+ ≥ f . In this case, we define the Riemann integral
∫ b
a
f to be the common

value of the two quantities in the display.

Proposition B.47. Suppose that f is Riemann integrable on [a, b]. Then, for any c with

a < c < b, f is Riemann integrable on [a, c] and on [c, b]. Moreover
∫ b
a
f =

∫ c
a
f +

∫ b
c
f .

Proposition B.48. The Riemann integrable functions on [a, b] form a vector space and the

Riemann integral is a linear functional on it:
∫ b
a

(λf + µg) = λ
∫ b
a
f + µ

∫ b
a
g.

Corollary B.49. If f is Riemann integrable on [a, b], and if f̃ differs from f in finitely many

points, then f̃ is also Riemann integrable, and
∫ b
a
f =

∫ b
a
f̃ .

Proposition B.50. Suppose that f is Riemann integrable on [a, b]. If g is another Riemann

integrable function on [a, b], and if f ≤ g pointwise, then
∫ b
a
f ≤

∫ b
a
g. In particular, |

∫ b
a
f | ≤∫ b

a
|f |.

Theorem B.51. Continuous functions f : [a, b]→ R are Riemann integrable.
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Theorem B.52. Bounded continuous functions f : (a, b) → R, arbitrarily extended to [a, b],

are Riemann integrable.

Theorem B.53. Increasing functions and decreasing functions f : [a, b] → R are Riemann

integrable.

Theorem B.54 (First fundamental theorem of calculus). Suppose that f is Riemann inte-

grable on (a, b). Define a new function F : [a, b]→ R by

F (x) :=

∫ x

a

f.

Then F is continuous. Moreover, if f is continuous at c ∈ (a, b), then F is differentiable at

c and F ′(c) = f(c).

Theorem B.55 (Second fundamental theorem of calculus). Suppose that F : [a, b] → R is

continuous on [a, b] and differentiable on (a, b). Suppose furthermore that its derivative F ′ is

Riemann integrable on (a, b). Then∫ b

a

F ′ = F (b)− F (a).

Proposition B.56 (Integration by parts). Suppose that f, g : [a, b]→ R are continuous func-

tions, differentiable on (a, b). Suppose that the derivatives f ′, g′ are Riemann integrable on

(a, b). Then fg′ and f ′g are Riemann integrable on (a, b), and∫ b

a

fg′ = f(b)g(b)− f(a)g(a)−
∫ b

a

f ′g.

Proposition B.57 (Substitution). Suppose f : [a, b]→ R is continuous and g : [c, d]→ [a, b]

is continuous on [c, d], has g(c) = a and g(d) = b, and maps (c, d) to (a, b). Suppose moreover

that g is differentiable on (c, d) and that its derivative g′ is Riemann integrable on this interval.

Then ∫ b

a

f =

∫ d

c

(f ◦ g)g′.

Definition B.58. Let −∞ ≤ a < d ≤ ∞ and f : (a, b) → R such that for all [b, c] ⊂ (a, d),

the function f is Riemann integrable on [b, c]. If the limit limb↓a
∫ c
b
f exists, we denote this

limit by
∫ c
a
f . Similarly, if the limits limc↑d

∫ c
b
f or limc↑d

∫ c
a
f exist, we denote them by

∫ d
b
f

or
∫ d
a
f . Such limits of Riemann integrals are referred to as improper Riemann integrals.

Proposition B.59. If
∫ d
a
f exists as an improper Riemann integral and a < b < c < d, then∫ d

a
f =

∫ b
a
f +

∫ c
b
f +

∫ d
c

Proof. This follows from Proposition B.47 before taking limits, and from Algebra of Limits

(Proposition B.27).



C

Prelims Analysis: Relevant consequences

This appendix contains further developments that build on the Prelims Analysis courses and

are relevant for rigorously following the general theory developed in Prelims and Part A

Probability. This material is non-examinable.

C.1 Rearrangements and countable sums

We now formalise the theory of countable sums, which we implicitly use in Probability. The

starting point is the definition of rearrangements of a series given in Analysis I. The purpose

there was the following theorem, but it was given as a remark without proof.

Definition C.1. Let g : N → N be a bijection. Given a series
∑
bj , write b′j = bg(j), j ∈ N.

Then
∑
b′j is a rearrangement of

∑
bj .

Theorem C.2. Let
∑
bj be a series that converges to L. If

∑
bj is absolutely convergent,

then any rearrangement of
∑
bj also converges to L.

Proof. Let g : N → N be a bijection. We denote its inverse by g−1 : N → N. Let b′j = bg(j),

j ∈ N and consider the sequences (sk) and (s′k) of partial sums of (bj) and (b′j). Then we have

sk → L by hypothesis and need to show that s′k → L. By Algebra of Limits, cf. Theorem

B.5, it suffices to show that (s′k − sk) converges to 0.

Fix ε > 0. Since
∑
|bj | is convergent, the Cauchy criterion of Theorem B.17 ensures that

there is N ∈ N such that

∀n > m ≥ N,
n∑

j=m+1

|bj | =

∣∣∣∣∣∣
n∑

j=m+1

|bj |

∣∣∣∣∣∣ < ε/2.

Let K = max{g−1(j) : 1 ≤ j ≤ N}. Then K ≥ N and for all k ≥ K, the finite sums sk and

s′k have common terms bj = b′g−1(j), 1 ≤ j ≤ N , which cancel in the difference s′k − sk of

finite sums. The other terms bj with j ≥ N + 1 and b′j = bg(j) with g(j) ≥ N + 1 are small.

Specifically, for m = N and n = max{g(j) : 1 ≤ j ≤ k}, we have

|s′k − sk| ≤ 2

n∑
j=m+1

|bj | < ε,

by the triangle inequality. We conclude that (s′k − sk) converges to 0, as required.
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Remark C.3. Let
∑
bj be a series that converges to L, but does not converge absolutely.

Then it can shown that there are rearrangements of
∑
bj that do not converge. In fact, for

every L′ ∈ R, there are also rearrangements of
∑
bj that converge to L′. We do not need this

result, but mention it as a warning that absolute convergence is important in Theorem C.2.

Theorem C.4. Let
∑
bj be a series that diverges to infinity. If bj ≥ 0 for all j ∈ N, then

any rearrangement of
∑
bj also diverges to infinity.

Proof. With g, g−1, b′j , (sk) and (s′k) as in the proof of Theorem C.2, we have sk → ∞ by

hypothesis and need to show that s′k →∞.

Fix M ∈ R. Since sk → ∞, there is N ∈ N such that sk ≥ sN ≥ M for all k ≥ N . Let

K = max{g−1(j) : 1 ≤ j ≤ N}. Then for all k ≥ K, the finite sum s′k has non-negative terms

b′j = bg(j) ≥ 0 including all bj = b′g−1(j), 1 ≤ j ≤ N . Hence s′k ≥ sN ≥M , as required.

Definition C.5. Let I be a finite set with n ∈ N elements and f : I → R a function. Let

h : {j ∈ N : 1 ≤ j ≤ n} → I be a bijection and bj = f(h(j)). We define the finite sum∑
i∈I

f(i) =

n∑
j=1

bj .

Let I be a countably infinite set and f : I → R a function. Let h : N → I be a bijection and

bj = f(h(j)). If
∑
bj either converges absolutely or if bj ≥ 0 for all j ∈ N, we define the

countably infinite sum ∑
i∈I

f(i) =

∞∑
j=1

bj .

If both absolute convergence and non-negativity fail, we leave
∑
i∈I f(i) undefined, in general.

We refer to both finite sums and countably infinite sums as countable sums.

Proposition C.6. In the setting of Definition C.5, the countable sum
∑
i∈I f(i) is well-

defined, i.e. the definition of
∑
i∈I f(i) does not depend on the choice of the bijection h.

More precisely, if I is countably infinite and
∑
f(h(j)) converges absolutely for one bijection

h : N→ I, it converges absolutely for all bijections h : N→ I and the limits coincide.

Proof. In the countably infinite case, consider two bijections h, h′ : N → I, set bj = f(h(j))

and b′j = f(h′(j)), and consider the two series
∑
bj and

∑
b′j . Suppose that

∑
bj is absolutely

convergent with limit L. We want to show
∑
b′j is also absolutely convergent with limit L.

Let g = h−1 ◦ h′ : N→ N. Then g is a bijection and b′j = f(h′(j)) = f(h(g(j))) = bg(j), so

that
∑
b′j is a rearrangement of

∑
bj , and also

∑
|b′j | is a rearrangement of

∑
|bj |. Applying

Theorem C.2 first to
∑
|bj |, we find that

∑
|b′j | also converges, i.e.

∑
b′j converges absolutely.

Applying Theorem C.2 to
∑
bj , we conclude that

∑
bj and

∑
b′j have the same limit.

The case of finite I with n ∈ N elements is more elementary, but also follows as above if

we start from h, h′ : {j ∈ N : 1 ≤ j ≤ n} → I, and set bj = b′j = 0 and g(j) = j for j ≥ n+ 1.

The case f ≥ 0 with infinite countable sum follows similarly from Theorem C.4.

Proposition C.6 provides flexibility to add the terms in a countable sum in any order.

However, we need to take a further step to handle double and higher order multiple countable

sums, which by definition, may involve multiple limits, but are covered by natural extensions

of the Algebra of Limits, as in the following two results.
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Proposition C.7. Consider U × V for countable sets U and V , and let f : U × V → R be a

function. Then ∑
u∈U

∑
v∈V
|f(u, v)| =

∑
(u,v)∈U×V

|f(u, v)| =
∑
v∈V

∑
u∈U
|f(u, v)|,

with the convention that a double countable sum diverges to infinity whenever any of its

constituent countable sums (such as
∑
v∈V |f(u, v)| for some u ∈ U) diverges to infinity.

Furthermore, if any of the three terms is finite (and hence all are finite), then we also have∑
u∈U

∑
v∈V

f(u, v) =
∑

(u,v)∈U×V

f(u, v) =
∑
v∈V

∑
u∈U

f(u, v).

Proof. This is elementary when U and V are finite. More generally, this is an instance of the

theorems of Fubini and Tonelli in measure theory. Other instances are in Part A Integration

and in Part B Probability, Measure and Martingales (under further technical assumptions).

In our context, let us first suppose that
∑

(u,v)∈U×V |f(u, v)| is infinite and M ∈ R. Let

I = U ×V , and fix a bijection h : N→ I as in Definition C.5. Let bj = |f(h(j))| and consider

the partitial sums sk. Then there is N ∈ N such that sk ≥ sN ≥M for all k ≥ N . Moreover,

there are finite U0 ⊆ U and V0 ⊆ V such that h({j ∈ N : 1 ≤ j ≤ N}) ⊆ U0 × V0. But then

we have ∑
u∈U

∑
v∈V
|f(u, v)| ≥

∑
u∈U0

∑
v∈V0

|f(u, v)| ≥ sN ≥M,

and similarly
∑
v∈V

∑
u∈U |f(u, v)| ≥M , as required.

Now suppose L =
∑
u∈U

∑
v∈V |f(u, v)| < ∞. This means Lu =

∑
v∈V |f(u, v)| < ∞ for

all u ∈ U and L =
∑
u∈U Lu <∞. Let ε > 0. Then there are finite U1 ⊆ U and V1 ⊆ V with∑

u∈U\U1

Lu = L−
∑
u∈U1

Lu <
ε

4
and

∑
v∈V \V1

|f(u, v)| = Lu −
∑
v∈V1

|f(u, v)| < ε

4|U1|
, u ∈ U1.

By the equality
∑
u∈U1

∑
v∈V1

|f(u, v)| =
∑
v∈V1

∑
u∈U1

|f(u, v)| =
∑

(u,v)∈U1×V1
|f(u, v)| of

finite sums, we have for all finite I1 ⊂ U × V with U1 × V1 ⊆ I1,

0 ≤ L−
∑

(u,v)∈I1

|f(u, v)| ≤

(
L−

∑
u∈U1

Lu

)
+
∑
u∈U1

(
Lu −

∑
v∈V1

|f(u, v)|

)
<
ε

2
.

For Lu =
∑
v∈V f(u, v), u ∈ U , and L =

∑
u∈U Lu =

∑
u∈U

∑
v∈V f(u, v), we similarly get∣∣∣∣∣∣L−

∑
(u,v)∈I1

f(u, v)

∣∣∣∣∣∣ ≤
∣∣∣∣∣L− ∑

u∈U1

Lu

∣∣∣∣∣+
∑
u∈U1

∣∣∣∣∣Lu −∑
v∈V1

f(u, v)

∣∣∣∣∣+
∑

(u,v)∈I1\(U1×V1)

|f(u, v)|

≤ ε

4
+
∑
u∈U1

ε

4|U1|
+

∑
u∈U\U1

Lu +
∑
u∈U1

∑
v∈V \V1

|f(u, v)| < ε.

For any bijection h : N→ U ×V , there is N ∈ N such that U1×V1 ⊆ h({j ∈ N : 1 ≤ j ≤ N}).
Then for all n ≥ N and I1 = h({j ∈ N : 1 ≤ j ≤ n}), we have

0 ≤ L−
n∑
j=1

|f(h(j))| = L−
∑

(u,v)∈I1

|f(u, v)| < ε

2
and

∣∣∣∣∣∣L−
n∑
j=1

f(h(j))

∣∣∣∣∣∣ < ε,

as required for the left-hand equalities. The others follow similarly, with roles of u and v

swapped.
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Corollary C.8. Let Q and Iq, q ∈ Q, be countable sets that are pairwise disjoint, and let

I =
⋃
q∈Q Iq. Consider a function g : I → R such that the countable sum

∑
i∈I g(i) is defined

in the sense of Definition C.5. Then the countable sums
∑
i∈Iq g(i) and

∑
q∈Q

∑
i∈Iq g(i) are

also defined. Furthermore, ∑
i∈I

g(i) =
∑
q∈Q

∑
i∈Iq

g(i).

Proof. This follows from Proposition C.7 if we set U = Q and V = I, setting f(q, i) = g(i) if

i ∈ Iq and f(q, i) = 0 if i ∈ I \ Iq. Specifically, we observe that∑
i∈I

g(i) =
∑

(q,i)∈Q×I

f(q, i) =
∑
q∈Q

∑
i∈I

f(q, i) =
∑
q∈Q

∑
i∈Iq

g(i).

C.2 Some integrals

Unfortunately, the theory of Riemann integration as covered in the Prelims Analysis course

is not sufficient to justify in any reasonable generality the change of the order of integration

in a way analogous to the change of the order of summation in Proposition C.7. This is one

of the two main obstacles to making the Prelims Probability course rigorous, which we will

postpone until tools from Part A Integration are available. In this section we will merely

establish some integrals that are relevant for Prelims Probability.

Proposition C.9. Let α > 0. Consider the function fα : (0,∞) → R given by fα(u) =

uα−1e−u. Then the improper Riemann integral Γ(α) :=
∫∞

0
fα(u)du exists.

Proof. As a product of continuous functions, fα is continuous, hence Riemann integrable

on [ε,R] for all 0 < ε < R < ∞. Both limits, as ε → 0 and as R → ∞ are increasing

limits and hence either exist or diverge to infinity. First consider R = 1 and ε → 0. Then

fα(u) ≤ uα−1 =: gα(u) and since Gα(u) = uα/α is continuously differentiable on [ε, 1] with

derivative gα, order properties of integrals and the fundamental theorem of calculus yield∫ 1

ε

fα(u)du ≤
∫ 1

ε

gα(u)du = Gα(1)−Gα(ε) =
1

α
− 1

α
εα → 1

α

as ε → 0. Now consider ε = 1 and R → ∞. Then let m = dα − 1e. Then dropping all but

one (positive) terms from a power series yields

2mm!eu/2 = 2mm!

∞∑
k=0

(u/2)k

k!
≥ um

and hence, for all u ≥ 1,

fα(u) ≤ ume−u ≤ 2mm!eu/2e−u = 2mm!e−u/2 =: hα(u).

Since Hα(u) = −2m+1m!e−u/2 has derivative hα, we similarly integrate∫ R

1

fα(u)du ≤
∫ R

1

hα(u)du = Hα(R)−Hα(1) = 2m+1m!
(
e−1/2 − e−R/2

)
→ 2m+1m!e−1/2.

Hence, the increasing limits defining the improper Riemann integrals are bounded and hence

remain finite.
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Corollary C.10. The improper Riemann integral
∫∞
−∞ e−x

2/2dx converges to
√

2Γ
(

1
2

)
.

Proof. First note that for all 0 < ε < R < ∞, the Substitution rule (Proposition B.57)

applies with the continuous function f(x) = e−x
2/2 on [ε,R] and the differentiable function

g(u) =
√

2u on [ε2/2, R2/2], giving∫ R

ε

e−x
2/2dx =

∫ R2/2

ε2/2

1√
2u
e−udu.

By the preceding proposition, the limits as ε → 0 and R → ∞ exist and give the improper

Riemann integral ∫ ∞
0

e−x
2/2dx =

1√
2

Γ

(
1

2

)
.

By symmetry, we also have
∫ 0

−∞ e−x
2/2dx = Γ( 1

2 )/
√

2 and their sum is as claimed.

Remark C.11. Of course, the integral
∫∞
−∞ e−x

2/2dx can also be shown to converge to
√

2π,

so that the corollary yields Γ( 1
2 ) =

√
π. However, in Prelims Probability, a proof based on

changing to polar coordinates in a two-dimensional integral was given. Since this (as well

as various similar proofs based on two-dimensional changes of variables) is beyond Prelims

Analysis, we postpone a rigorous proof until the tools of Part A Integration are available, and

then we first show that Γ( 1
2 ) =

√
π to deduce that

∫∞
−∞ e−x

2/2dx =
√

2π.



D

Prelims Probability: Definitions and theorems

This appendix contains all definitions and essentially all theorems of the Prelims Probability

course, as a reminder of where we got to regarding theory. Most of the course was taught

before relevant concepts from Analysis were available. This included a few informal proofs

and pragmatic use of series and integrals, which we reassess now by revisiting those points,

in remarks and proofs. We include references to Appendices B and C, as appropriate, and we

explicitly postpone to Part A Integration any points that still remain unresolved.

D.1 Events and probability

Definition D.1 (The axioms of probability). A probability space is a triple (Ω,F ,P) where

1. Ω is a set, called the sample space,

2. F is a collection of subsets of Ω, called events, satisfying the σ-algebra axioms

F1: Ω ∈ F .

F2: If A ∈ F , then also Ac ∈ F .

F3: If {Ai, i ∈ I} is a countable collection of members of F , then
⋃
i∈I Ai ∈ F .

3. P is a probability measure, which is a function P : F → R satisfying axioms

P1: For all A ∈ F , P(A) ≥ 0.

P2: P(Ω) = 1.

P3: If {Ai, i ∈ I} is a countable collection of members of F , and Ai ∩Aj = ∅ for i 6= j,

then P
(⋃

i∈I Ai
)

=
∑
i∈I P(Ai).

Remark D.2. In P3, the index set I can be finite and the sum
∑
i∈I P(Ai) is a finite sum, or

I = N and the sum
∑
i∈I P(Ai) is a convergent series of non-negative real numbers, or I is a

more general countable set and
∑
i∈I P(Ai) is a countable sum in the sense of Definition C.5.

Remark D.3. If Ω is finite or countable, we often take F to be the set of all subsets of Ω (the

power set of Ω). If Ω is uncountable, however, the set of all subsets typically turns out to

be too large: it ends up containing sets to which we cannot consistently assign probabilities.

This issue is discussed properly in Part A Integration.

87
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Theorem D.4. Suppose that (Ω,F ,P) is a probability space and that A,B ∈ F . Then

1. P(Ac) = 1− P(A);

2. If A ⊆ B then P(A) ≤ P(B).

Definition D.5. Let (Ω,F ,P) be a probability space. If A,B ∈ F and P(B) > 0 then the

conditional probability of A given B is

P(A|B) =
P(A ∩B)

P(B)
.

(If P(B) = 0, then P(A|B) is not defined.)

Theorem D.6. Let (Ω,F ,P) be a probability space and let B ∈ F satisfy P(B) > 0. Define

a new function Q : F → R by Q(A) = P(A|B). Then (Ω,F ,Q) is also a probability space.

From now on, we always suppose that (Ω,F ,P) is a probability space.

Definition D.7. A countable family of events {Bi, i∈I} is a partition of Ω if

1. Ω =
⋃
i∈I Bi, and

2. Bi ∩Bj = ∅ whenever i 6= j.

Theorem D.8 (The law of total probability or partition theorem). Suppose {Bi, i ∈ I} is a

partition of Ω with Bi ∈ F and P(Bi) > 0 for all i ∈ I. Then for any A ∈ F ,

P(A) =
∑
i∈I

P(A|Bi)P(Bi).

Remark D.9. This slightly extends the cases I = N and finite I from Prelims Probability.

Definition D.10. 1. Two events A and B are independent if P(A ∩B) = P(A)P(B).

2. More generally, a family of events {Ai, i ∈ I} is independent if

P

(⋃
i∈J

Ai

)
=
∏
i∈J

P(Ai) for all finite subsets J of I.

3. The family {Ai, i∈I} is pairwise independent if P(Ai∩Aj) = P(Ai)P(Aj) whenever i 6=j.

Theorem D.11. Suppose that A and B are independent events. Then A and Bc are inde-

pendent.

D.2 Discrete random variables

Definition D.12. A discrete random variable X on a probability space (Ω,F ,P) is a function

X : Ω→ R such that

(a) {X = x} := X−1({x}) = {ω ∈ Ω: X(ω) = x} ∈ F for each x ∈ R,

(b) ImX := {X(ω) : ω ∈ Ω} is a countable subset of R.
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Definition D.13. The probability mass function (p.m.f.) of X is the function pX : R→ [0, 1]

defined by

pX(x) = P(X = x) := P({X = x}).

Remark D.14. In fact, given any function p : R→ R that satisfies p(x) ≥ 0 for all x ∈ R and∑
x∈I p(x) = 1 where I = {x ∈ R : p(x) > 0}, we can write down a probability space (Ω,F ,P)

and a random variable X defined on it whose probability mass function is p. Most directly,

we could take Ω = I, take F to consist of all subsets of Ω, define

P({ω}) = p(ω) for each ω ∈ Ω

and more generally

P(S) =
∑
ω∈S

p(ω) for each S ⊆ Ω,

and then take X to be the identity function, i.e. X(ω) = ω.

Remark D.15. We have been quite explicit in describing our sample space Ω. This can

quickly become impractical. Although the concept of a probability space (Ω,F ,P) underlies

everything, in practice it will be rare that we think about Ω itself – instead we will talk

directly about events and their probabilities, and random variables and their distributions

(and we can do that without assuming any particular structure for Ω).

From a theoretical perspective, two points are important. First we need to ensure that

suitable probability spaces exist for all our purposes. Second we need to ensure that the

subsets of Ω that we consider are indeed events in F . For a single discrete random variable,

the first is covered by the preceding remark. The second will hold on any probability space

(Ω,F ,P) where a discrete random variable X with given p.m.f. can be defined, since the only

events relevant for X are countable unions (in F by F3!) of events of the form {X = x} ∈ F .

Definition D.16. The expectation (or expected value or mean) of X is

E[X] =
∑

x∈ImX

xP(X = x)

provided that
∑
x∈ImX |x|P(X = x) converges. If

∑
x∈ImX |x|P(X = x) diverges, we say that

the expectation does not exist (or if only the series of positive terms diverges, we may say that

E[X] = ∞). Often, ImX ⊆ N ∪ {0} and the sums are finite sums or (convergent) series. In

general, these sums are countable sums in the sense of Definition C.5.

Theorem D.17. If h : R→ R, then

E[h(X)] =
∑

x∈ImX

h(x)P(X = x)

provided that E[h(X)] =
∑
x∈ImX |h(x)|P(X = x) converges.

Proof. We split I = ImX into subsets Iy = {x ∈ ImX : h(x) = y} according to the values

y ∈ Q = h(ImX) = ImY that h and hence Y = h(X) can take. Then Corollary C.8 yields∑
x∈ImX

h(x)P(X = x) =
∑
y∈Q

∑
x∈Iy

h(x)P(X = x) =
∑
y∈Q

∑
x∈ImX : h(x)=y

yP(X = x)

=
∑
y∈Q

y
∑

x∈ImX : h(x)=y

P(X = x) =
∑

y∈ImY

yP(h(X) = y) = E[h(X)].
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Example D.18. Take h(x) = xk. Then E[Xk] is called the kth moment of X, when it exists.

Theorem D.19. Let X be a discrete random variable such that E[X] exists.

(a) If X is non-negative then E[X] ≥ 0.

(b) If a, b ∈ R then E[aX + b] = aE[X] + b.

Definition D.20. For a discrete random variable X, the variance of X is defined by

var(X) = E[(X − E[X])2]

provided that this quantity exists in the sense of Definition D.16 applied to random variables

X and (X−E[X])2, or, for the latter, equivalently in the sense of Theorem D.17 applied with

h(x) = (x− E[X])2.

Theorem D.21. For a discrete random variable X whose variance exists,

var(X) = E[X2]− (E[X])2.

Theorem D.22. Suppose that X is a discrete random variable whose variance exists. Then

if a and b are (finite) fixed real numbers, then the variance of the discrete random variable

Y = aX + b is given by

var(Y ) = var(aX + b) = a2var(X).

Definition D.23. Suppose that B is an event such that P(B) > 0. Then the conditional

p.m.f. of X given B is

pX|B(x) = P(X = x|B) =
P({X = x} ∩B)

P(B)
, x ∈ R.

The conditional expectation of X given B is

E[X|B] =
∑

x∈ImX

xP(X = x|B),

whenever the sum converges absolutely.

Theorem D.24 (The law of total probability or partition theorem for expectations). If

{Bi, i ∈ I} is a partition of Ω with Bi ∈ F and P(Bi) > 0 for all i ∈ I then

E[X] =
∑
i∈I

E[X|Bi]P(Bi)

whenever E[X] exists.

Proof. By the law of total probability (Theorem D.8) and interchanging sums (Proposition

C.7),

E[X] =
∑

x∈ImX

xP(X = x) =
∑

x∈ImX

x

(∑
i∈I

P(X = x|Bi)P(Bi)

)
=

∑
x∈ImX

∑
i∈I

xP(X = x|Bi)P(Bi) =
∑
i∈I

∑
x∈ImX

xP(X = x|Bi)P(Bi)

=
∑
i∈I

P(Bi)

( ∑
x∈ImX

xP(X = x|Bi)

)
=
∑
i∈I

E[X|Bi]P(Bi).
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Definition D.25. Given two discrete random variables X and Y their joint p.m.f. is

pX,Y (x, y) = P(X = x, Y = y) := P({X = x} ∩ {Y = y}), x, y ∈ R.

Theorem D.26. Given two discrete random variables X and Y with joint p.m.f. pX,Y ,

pX(x) =
∑

y∈ImY

pX,Y (x, y), x ∈ R, and pY (y) =
∑

x∈ImX

pX,Y (x, y), y ∈ R.

Definition D.27. Discrete random variables X and Y are independent if

P(X = x, Y = y) = P(X = x)P(Y = y) for all x, y ∈ R.

Theorem D.28. Suppose X and Y are discrete random variables and h : R2 → R. Then

h(X,Y ) is itself a discrete random variable, and

E[h(X,Y )] =
∑

x∈ImX

∑
y∈ImY

h(x, y)P(X = x, Y = y),

provided that these sums converge absolutely.

Proof. We adapt the proof of Theorem D.17. Specifically, we use Proposition C.7 to combine

the double sum into a single countable sum and then split the countable set I = ImX × ImY

into subsets Iz = {(x, y) ∈ I : h(x, y) = z}, z ∈ ImZ := h(X,Y ) to apply Corollary C.8 and

proceed as in the proof of Theorem D.17.

Theorem D.29 (Linearity of expectation). Suppose X and Y are discrete random variables

and a, b ∈ R are constants. Then

E[aX + bY ] = aE[X] + bE[Y ]

provided that both E[X] and E[Y ] exist.

Proof. Setting h(x, y) = ax+by and applying Algebra of Limits, Proposition C.7 and Theorem

D.26, we have

E[aX + bY ] = E[h(X,Y )] =
∑

x∈ImX

∑
y∈ImY

(ax+ by)pX,Y (x, y)

= a
∑

x∈ImX

∑
y∈ImY

xpX,Y (x, y) + b
∑

x∈ImX

∑
y∈ImY

ypX,Y (x, y)

= a
∑

x∈ImX

x

 ∑
y∈ImY

xpX,Y (x, y)

+ b
∑

y∈ImY

y

( ∑
x∈ImX

pX,Y (x, y)

)

= a
∑

x∈ImX

xpX(x) + b
∑

y∈ImY

ypY (y) = aE[X] + bE[Y ].

Theorem D.30. If X and Y are independent discrete random variables whose expectations

exist, then

E[XY ] = E[X]E[Y ].
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Definition D.31. For discrete random variables X and Y , their covariance is defined by

cov(X,Y ) = E[(X − E[X])(Y − E[Y ])]

provided that this quantity exists.

Theorem D.32. For discrete random variables X and Y we have

cov(X,Y ) = E[XY ]− E[X]E[Y ]

provided that these expectations exist. If X and Y have variances var(X) and var(Y ) then

var(X + Y ) = var(X) + var(Y ) + 2cov(X,Y ).

Furthermore, var(X + Y ) = var(X) + var(Y ) if X and Y are independent.

Remark D.33. Independence implies that cov(X,Y ) = 0, but the reverse implication fails in

general.

Definition D.34. We can define the multivariate p.m.f. of discrete random variables Xi,

1 ≤ i ≤ n, as

pX1,...,Xn
(x1, . . . , xn) = P(X1 = x1, . . . , Xn = xn), x1, . . . , xn ∈ R.

Definition D.35. A family {Xi, i ∈ I} of discrete random variables is independent if for all

finite sets J ⊆ I and all collections {Ai, i ∈ J} of subsets of R,

P

(⋂
i∈J
{Xi ∈ Ai}

)
=
∏
i∈J

P(Xi ∈ Ai).

Remark D.36. Remark D.14 generalises to the setting of multivariate p.m.f.s of any finite

number of discrete random variables. Specifically, for any given p → Rn → R that satisfies

p(x1, . . . , xn) ≥ 0 for all (x1, . . . , xn) ∈ Rn and
∑

(x1,...,xn)∈I p(x1, . . . , xn) = 1 where I =

{(x1, . . . , xn) ∈ Rn : p(x1, . . . , xn) > 0}, we take (Ω,F ,P) as in Remark D.14, just using the

new p and I. Then each ω ∈ Ω ⊂ Rn is of the form ω = (ω1, . . . , ωn) and we take Xi to be

the coordinate maps Xi(ω) = ωi, 1 ≤ i ≤ n. Then X1, . . . , Xn are random variables with

P(X1 = x1, . . . , Xn = xn) = P({ω ∈ Ω: ω = (x1, . . . , xn)) = p(x1, . . . , xn).

This construction does not extend to infinite numbers of discrete random variables, in

general, since a countable set Ω may not suffice. Even in one of the simplest examples of a

sequence of independent ({0, 1}-valued) Bernoulli variables Xi, i ≥ 1, with pXi
(0) = pXi

(1) =

1/2 for all i ≥ 1, there are uncountably many {0, 1}-valued sequences (xi), none of which has

positive probability in the sense that we must require (due to part 2. of Theorem D.4) that

for all n ≥ 1

P(Xi = xi for all i ≥ 1) ≤ P(X1 = x1, . . . , Xn = xn) =

n∏
i=1

P(Xi = xi) =

(
1

2

)n
.

Indeed, the existence of a suitable probability space is beyond the scope of Prelims. We

postpone it until the tools of Part A Integration are available. We will, however, assume the

existence of a suitable probability space that allows us to consider a sequence of independent

discrete random variables with prescribed distributions. The axioms and the theory we have

built give us sufficient tools to establish results about sequences of independent random

variables (subject only to the existence of a suitable probability space).
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D.3 Probability generating functions

Definition D.37. Let X be a non-negative integer-valued random variable. Let

S :=

{
s ∈ R :

∞∑
k=0

|s|kP(X = k) <∞

}
.

Then the probability generating function (p.g.f.) of X is GX : S → R defined by

GX(s) = E[sX ] =

∞∑
k=0

skP(X = k).

Theorem D.38. The distribution of X is uniquely determined by its probability generating

function GX .

Proof. First note that GX(0) = P(X = 0). As GX(1) =
∑∞
k=0 P(X = k) = 1, Proposition

B.21 entails that the power series GX(s) has radius of convergence R ≥ 1. For |s| < 1,

Theorem B.40 allows us to differentiate GX(s) term-by-term to find that the derivative is a

power series – with the same radius of convergence R ≥ 1 – given by

G′X(s) =

∞∑
k=1

ksk−1P(X = k).

Inductively, we see that the nth derivative exists also for all n ≥ 2 and is given by

G
(n)
X (s) =

∞∑
k=n

k(k − 1) · · · (k − n+ 1)sk−nP(X = k).

In particular, G
(n)
X (0) = n!P(X = n) for all n ≥ 0. So, we can recover the p.m.f. and hence

the distribution of X from GX .

Theorem D.39. If X and Y are independent non-negative integer-valued random variables,

then GX+Y (s) = GX(s)GY (s).

Theorem D.40. If X is a non-negative integer-valued random variable for which E[X] exists,

then G′X(1) = E[X].

More generally, if E[Xn] <∞ for some n ≥ 1, then G
(n)
X (1) = E[X(X−1) · · · (X−n+1)].

In particular, for n = 2, we have var(X) = G′′X(1) +G′X(1)− (G′X(1))2.

Proof. If GX(s) has a radius of convergence R > 1, this follows from the derivatives calculated

in the proof of Theorem D.38, since

∞∑
k=n

k(k − 1) · · · (k − n+ 1)sk−nP(X = k)

∣∣∣∣∣
s=1

=

∞∑
k=n

k(k − 1) · · · (k − n+ 1)P(X = k)

= E[X(X − 1) · · · (X − n+ 1)]

is finite as a derivative of a power series within its radius of convergence as in Theorem B.40.

In particular, we easily obtain G′X(1) = E[X] and G′′X(1) = E[X(X − 1)] = E[X2]− E[X] =

E[X2]−G′X(1) by linearity of expectation (Theorem D.29). Hence

var(X) = E[X2]− (E[X])2 = G′′X(1) +G′X(1)− (G′X(1))2.
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In the case R = 1, the derivative G′X(1) cannot exist in the strict sense of Definition B.37(1),

but may exist as a left-derivative G′X(1−) in the weaker sense of Definition B.37(2). However,

if E[X] =
∑∞
k=1 kP(X = k) exists, Abel’s theorem (Theorem B.36) yields that this still

equals the left limit lims↑1G
′
X(s), and applying l’Hôpital’s rule (Theorem B.41) with f(x) =

GX(x)−GX(1) and g(x) = x as x ↑ a = 1, this also equals the left-derivative G′X(1−).

The formulas for higher derivatives in the case R = 1 follow similarly, noting that the

existence of E[Xn] =
∑∞
k=1 k

nP(X = k) entails the existence of all lower moments E[Xm]

for m ≤ n by the comparison test (Theorem B.16) since 0 ≤ bk := km ≤ kn =: ck for all

k ≥ 1. Hence E[X(X − 1) · · · (X − n+ 1)] exists and the previous reasoning for n = 1, based

on Abel’s theorem and l’Hôpital’s rule, applies inductively.

Theorem D.41. Let N and Xn, n ≥ 1, be jointly independent non-negative integer-valued

random variables. Denote by GN the p.g.f. of N and suppose that Xn, n ≥ 1, are identically

distributed with p.g.f. GX . Then the p.g.f. of
∑N
i=1Xi is given by GN ◦GX .

D.4 Continuous random variables

Definition D.42. A random variable X defined on a probability space (Ω,F ,P) is a function

X : Ω→ R such that {ω ∈ Ω: X(ω) ≤ x} ∈ F for each x ∈ R.

Definition D.43. The cumulative distribution function (c.d.f.) of a random variable X is

the function FX : R→ [0, 1] defined by FX(x) = P(X ≤ x).

Theorem D.44. 1. FX is non-decreasing.

2. P(a < X ≤ b) = FX(b)− FX(a) for a < b.

3. As x→ −∞, FX(x)→ 0.

4. As x→∞, FX(x)→ 1.

Remark D.45. Conversely, any function F satisfying conditions 1, 3 and 4 of Theorem D.44

plus right-continuity (Definition B.29) is the c.d.f. of some random variable defined on some

probability space, although a full proof of this fact is beyond the tools available from Prelims.

If F is a step function, we can show that there is a discrete random variable with c.d.f.

F . More generally (cf. Remark D.14), if F has a countable set xq, q ∈ Q, of jumps of sizes

p(xq) = F (xq)− F (xq−) that sum to
∑
q∈Q p(xq) = 1, then as F is non-decreasing,

F (x) ≥ sup
J⊆Q finite

∑
q∈J : xq≤x

(F (xq)−F (xq−)) =
∑

q∈Q : xq≤x

p(xq) and 1−F (x) ≥
∑

q∈Q : xq>x

p(xq).

As both sides sum to 1, equalities hold. Let Ω = {xq, q ∈ Q} ⊂ R with the power set F and

probability measure P(S) =
∑
x∈S p(x), S ⊆ Ω, and define X : Ω→ R by X(ω) = ω. Then

FX(x) = P(X ≤ x) = P

 ⋃
q∈Q : xq≤x

{xq}

 =
∑

q∈Q : xq≤x

P({xq}) = F (x), x ∈ R.

This is, of course, the same (Ω,F ,P) in the same generality as in Remark D.14, but we did

start from F rather than p. In any case, an explicit probability space (Ω,F ,P) is usually

neither necessary nor helpful once its existence has been proved (or accepted as a fact).
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Theorem D.46. If An, n ≥ 1, is an increasing sequence of events in the sense that An ⊆
An+1 for all n ≥ 1, then

P

(⋃
n∈N

An

)
= lim
n→∞

P(An).

Proof of Theorem D.44. Part 4. Let (xn) be any increasing sequence that diverges to infinity.

Let An = {X ≤ xn}. Then
⋃
n∈NAn = Ω since X is R-valued, so for all ω ∈ Ω, there is n ∈ N

such that xn ≥ X(ω) and hence ω ∈ An. By Theorem D.46,

1 = P(Ω) = lim
n→∞

P(An) = lim
n→∞

FX(xn).

Part 3. can be proved in the same way by showing that 1− FX(x)→ 1 as x→ −∞.

Definition D.47. A continuous random variable X is a random variable whose c.d.f. satisfies

FX(x) = P(X ≤ x) =

∫ x

−∞
fX(u)du,

where fX : R→ R is a function such that

(a) fX(u) ≥ 0 for all u ∈ R,

(b) the (improper Riemann) integral
∫∞
−∞ fX(u)du exists and equals 1.

Then fX is called probability density function (p.d.f.) of X or, sometimes, just its density.

Remark D.48. In the setting of Definition D.47, the fundamental theorem of calculus (The-

orem B.55 in conjuction with Proposition B.59 to reduce the problem to proper Riemann

integrals) yields that FX is differentiable with

F ′X(x) = fX(x)

at any point x ∈ R where fX is continuous.

The name “continuous random variable” is not a good name since X : Ω → R need not

be continuous (indeed Ω might not be a set on which continuity has a meaning), and neither

does fX : R→ R, while the continuity of FX is not sufficient for X to be a continuous random

variable. Rather, “continuous random variable” can be seen as an abbreviation of “random

variable with an absolutely continuous distribution.” Indeed, the notion of a continuous

random variable can be generalised by replacing the Riemann integrals by Lebesgue integrals

as developed in Part A Integration, and “absolute continuity” refers to a certain relationship

between a suitable “probability measure” A 7→ P(X ∈ A) and Lebesgue measure on R.

Theorem D.49. If X is a continuous random variable with p.d.f. fX then

P(X = x) = 0 for all x ∈ R

and

P(a ≤ X ≤ b) =

∫ b

a

fX(x)dx.
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Definition D.50. Let X be a continuous random variable with p.d.f. fX . The expectation

or mean of X is defined to be

E[X] =

∫ ∞
−∞

xfX(x)dx

whenever
∫∞
−∞ |x|fX(x)dx < ∞. Otherwise, we say that the mean is undefined (or as in the

discrete case, if only the positive part diverges, we might say that E[X] =∞).

Theorem D.51. Let X be a non-negative continuous random variable with finite expectation

E[X] and with p.d.f. fX . Then

E[X] =

∫ ∞
0

P(X > x)dx.

Remark D.52. An outline proof was given in Prelims Probability, based on changing the order

of integration. This tool is developed rigorously in Part A Integration.

Remark D.53. The conclusions of Theorem E.1 in the non-negative case and of Corollary E.2

in the general case also hold for discrete random variables. Furthermore, the formulas could

be used to define E[X] of any random variable X : Ω → R, provided that the two improper

Riemann integrals exist. By Theorem B.53, this includes all bounded random variables, and

in the unbounded case, the limits defining the improper Riemann integrals are increasing

limits (and if only the first integral diverges, we might say that E[X] =∞).

Theorem D.54. Let X be a continuous random variable with p.d.f. fX , and let h : R → R
be a function for which h(X) is a random variable. Then

E[h(X)] =

∫ ∞
−∞

h(x)fX(x)dx

provided that the integral
∫∞
−∞ |h(x)|fX(x)dx exists and is finite.

Remark D.55. An outline proof was given in Prelims Probability, based on changing the order

of integration and handling sets {x ∈ R : h(x) > y} as range of integration. This is developed

rigorously in Part A Integration.

On the back of this theorem, we define var(X) = E[(X−E[X])2] and show that var(X) =

E[X2]− (E[X])2 and note that these expectations can be worked out without first calculating

the p.d.f.s of the random variables (X − E[X])2 and X2.

Theorem D.56. Suppose X is a continuous random variable with p.d.f. fX . Then if a, b ∈ R,

then E[aX + b] = aE[X] + b and var(aX + b) = a2var(X).

Theorem D.57. Suppose that X is a continuous random variable with density fX and that

h : R → R is differentiable with positive derivative. Then Y = h(X) is a continuous random

variable with p.d.f.

fY (y) = fX(h−1(y))
d

dy
h−1(y),

where h−1 is the inverse function of h.

Definition D.58. Let X and Y be random variables such that

FX,Y (x, y) =

∫ y

−∞

∫ x

−∞
fX,Y (u, v)dudv =

∫ x

−∞

∫ y

−∞
fX,Y (u, v)dvdu

for some function fX,Y : R2 → R such that
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(a) fX,Y (u, v) ≥ 0 for all u, v ∈ R,

(b) the (repeated improper Riemann) integrals
∫∞
−∞

∫∞
−∞ fX,Y (u, v)dudv exist and yield 1.

Then X and Y are jointly continuous and fX,Y is their joint density function.

Theorem D.59. For a pair of jointly continuous random variables X and Y , we have

P(a < X ≤ b, c < Y ≤ d) =

∫ d

c

∫ b

a

fX,Y (x, y)dxdy =

∫ b

a

∫ d

c

fX,Y (x, y)dydx,

for a < b and c < d.

Theorem D.60. Suppose X and Y are jointly continuous with joint density fX,Y . Then X

is a continuous random variable with density

fX(x) =

∫ ∞
−∞

fX,Y (x, y)dy,

and similarly Y is a continuous random variable with density

fY (y) =

∫ ∞
−∞

fX,Y (x, y)dx.

In this context, the one-dimensional densities fX and fY are called the marginal densities

of the joint distribution with density fX,Y .

Definition D.61. Jointly continuous random variables X an Y with joint density fX,Y are

independent if

fX,Y (x, y) = fX(x)fY (y)

for all x, y ∈ R.

Theorem D.62. For a pair of jointly continuous random variables X and Y and a function

h : R2 → R such that h(X,Y ) is a random variable, we have

E[h(X,Y )] =

∫ ∞
−∞

∫ ∞
−∞

h(x, y)fX,Y (x, y)dxdy =

∫ ∞
−∞

∫ ∞
−∞

h(x, y)fX,Y (x, y)dydx,

provided that the integrals exist.

Remark D.63. The proof of Theorem D.62 is postponed until tools from Part A Integration

are available, but the parallels to the discrete case are pointed out.

Proposition D.64. For a pair of jointly continuous random variables X and Y and a, b ∈ R,

we have E[aX + bY ] = aE[X] + bE[Y ] and var(X + Y ) = var(X) + var(Y ) + 2cov(X,Y ).

A proof of Proposition D.64 based on Theorem D.62 is straightforward.

The definitions and results above generalise straightforwardly to the case of n random

variables Xi, 1 ≤ i ≤ n.

Remark D.65. Rules for calculating expectations and variances are the same for discrete

and continuous random variables. This is not a coincidence. We can make a more general

definition of expectation which covers both cases (and more besides) but in order to do so

in a satisfactory way, we need a more general theory of integration, which is developed in

Part A Integration and Part B Probability, Measure and Martingales. There are other (less

satisfactory) approaches to expectations for general random variables, by approximation by

discrete random variables, but at this stage, this notion is left as an unproven fact.
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D.5 Random samples and the weak law of large numbers

Definition D.66. Let X1, . . . , Xn denote independent identically distributed random vari-

ables. Then these random variables are said to constitute a random sample of size n from the

distribution.

Remark D.67. In this definition, “random variable” may be understood as “either discrete or

continuous random variable,” and “independence” has been defined in Definitions D.35 and

D.61, respectively. However, the arguments of this section make sense in higher generality

subject to defining notions of independence and expectation for general random variables

including those that are neither discrete nor continuous.

Definition D.68. The sample mean is defined to be Xn =
1

n

n∑
i=1

Xi.

Theorem D.69. Suppose that X1, . . . , Xn form a random sample from a distribution with

mean µ and variance σ2. Then the expectation and variance of the sample mean are

E
[
Xn

]
= µ and var

(
Xn

)
=

1

n
σ2.

Remark D.70. Inductive proofs of Theorem D.69 based on Proposition D.64 in the continuous

case and on Theorems D.29 and D.32 in the discrete case are straightforward, also for general

random variables, subject only to a notion of expectation that satisfies linearity of expectation.

Theorem D.71 (Weak law of large numbers). Suppose that Xi, i ≥ 1, are independent and

identically distributed random variables with mean µ. Then for any fixed ε > 0,

P

(∣∣∣∣∣ 1n
n∑
i=1

Xi − µ

∣∣∣∣∣ > ε

)
→ 0.

Remark D.72. The proof provided in Prelims Probability covers only the case of finite vari-

ance. A proof of the general result is given in Part B Probability, Measure and Martingales,

where the stronger “strong law of large numbers” is proved in the setting stated here. Differ-

ent modes of convergence including the ones for the weak and strong laws of large numbers

are introduced in Part A Probability. Generating function proofs of the weak law of large

numbers are also presented, subject to proving convergence theorems for generating functions.

Theorem D.73 (Markov’s inequality). Suppose that Y is a non-negative random variable

whose expectation exists. Then for all t > 0

P(Y ≥ t) ≤ E[Y ]

t
.

Remark D.74. The proof provided in Prelims Probability uses the law of total probability

for expectations (for finite partitions) and order properties of expectation, which have been

established for discrete and continuous random variables. This proof is general, subject only

to a theory of expectation that includes these two results for general random variables.

Theorem D.75 (Chebyshev’s inequality). Suppose that Z is a random variable with a finite

variance. Then for any t > 0,

P(|Z − E[Z]| ≥ t) ≤ var(Z)

t2
.



E

Prelims Probability: Further developments

This appendix explores some of the less immediate points raised in remarks in Appendix D,

notably the notions of expectation and independence for general random variables including

order and linearity properties, a law of total probability for expecations and product form of

expectations of powers of independent random variables such as they appear in the general

definition of covariance, as well as in variance calculations for independent random variables.

E.1 Expectations of continuous random variables

The developments of expectations of continuous random variables in Prelims Probability

were informal, using rules about interchanging the order of integration that are only available

rigorously after Part A Integration. We demonstrate here that some of those developments can

also be carried out using only the methods of Prelims Analysis, subject to some constraints.

Theorem E.1. Let X be a non-negative continuous random variable with finite expectation

E[X] and with p.d.f. fX that is piecewise continuous with left and right limits at its disconti-

nuities. Then

E[X] =

∫ ∞
0

P(X > x)dx.

Proof. First note from Remark D.48 that P(X > x) = 1 − FX(x) has derivative −fX(x)

provided that fX is continuous at x. If 0 ≤ c < d and fX is continuous on [c, d], we may

integrate by parts (Theorem B.56) to find∫ d

c

xfX(x)dx = −
[
xP(X > x)

]d
c

+

∫ d

c

P(X > x)dx.

If fX vanishes outside [c, d], this completes the proof since then P(X > x) = 0 for all x ≥ d

and, in this case, cP(X > c) =
∫ c

0
P(X > x)dx.

In the general case, if fX is continuous on (c, d) but not at c or d, we consider the

modification f̃X of fX with f̃X(c) = fX(c+) and f̃X(d) = fX(d−) that is continuous on [c, d].

Then
∫ d
c
xfX(x)dx =

∫ d
c
xf̃X(x)dx and the display equation still holds. Since fX has at most

finitely many discontinuities on [0, c], linearity and cancellations yield∫ d

0

xfX(x)dx = −dP(X > d) +

∫ d

0

P(X > x)dx.

99
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Before we let d → ∞, note that the existence of the improper Riemann integral E[X] =∫∞
0
xfX(x)dx entails

dP(X > d) =

∫ ∞
d

dfX(x)dx ≤
∫ ∞
d

xfX(x)dx→ 0 as d→∞.

Now letting d→∞ in the previous display completes the proof.

Corollary E.2. Let X be a continuous random variable whose expectation E[X] exists, and

with p.d.f. fX that is piecewise continuous with left and right limits at its discontinuities.

Then

E[X] =

∫ ∞
0

P(X > x)dx−
∫ ∞

0

P(X < −x)dx.

Proof. As in the proof of Theorem E.1, we obtain∫ ∞
0

xfX(x)dx =

∫ ∞
0

P(X > x)dx.

Also, Z = −X has c.d.f. P(−X ≤ z) = P(X ≥ −z) = 1− P(X ≤ −z), using P(X = −z) = 0.

By differentiation, p.d.f. f−X(z) = fX(−z). Substituting z = g(x) = −x and taking care

with the finitely many discontinuities by linearity of the integral, and taking care with the

improper nature of integrals by letting finite bounds tend to ±∞, the above also entails∫ 0

−∞
xfX(x)dx = −

∫ ∞
0

zf−X(z)dz = −
∫ ∞

0

P(−X > z)dz = −
∫ ∞

0

P(X < −x)dx.

Theorem E.3. Let X be a continuous random variable with p.d.f. fX as in Corollary E.2,

and let h : R→ R be the function h(x) = xm for some m ≥ 1. Then

E[h(X)] =

∫ ∞
−∞

h(x)fX(x)dx

provided that the integral
∫∞
−∞ |h(x)|fX(x)dx exists and is finite.

Proof. We adapt the proofs of Theorem E.1 and Corollary E.2. Specifically, if fX is continuous

on [c, d] for some 0 ≤ c < d, then integration by parts and substituting z = xm yield∫ d

c

xmfX(x)dx = −
[
xmP(X > x)

]d
c

+

∫ d

c

mxm−1P(X > x)dx

= −
[
xmP(X > x)

]d
c

+

∫ d

c

mxm−1P(X > 0, Xm > xm)dx

= −
[
xmP(X > x)

]d
c

+

∫ dm

cm
P(X > 0, Xm > z)dz.

If fX vanishes outside [c, d], this completes the proof. Otherwise, linearity, cancellations and

dmP(X > d) ≤
∫∞
d
xmfX(x)dx→ 0 as d→∞ yield∫ ∞

0

xmfX(x)dx =

∫ ∞
0

P(X > 0, Xm > x)dx.

If m is odd, then Xm > x⇒ X > 0 and
∫ 0

−∞ xmfX(x)dx =
∫∞

0
P(Xm < −x)dx.

If m is even, then
∫ 0

−∞ xmfX(x)dx =
∫∞

0
P(X < 0, Xm > x)dx.

In either case, summing the left-hand sides gives
∫∞
−∞ xmfX(x)dx and summing the right-

hand sides gives E[Xm], by an application of Corollary E.2 with X replaced by Xm.
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A similar argument establishes further cases h(x) = ax+ b and h(x) = (x−µ)2. Together

with the special case h(x) = x2, the definition var(X) = E[(X −E[X])2] makes sense and the

consequence var(X) = E[X2] − (E[X])2 follows, both without reference to the p.d.f.s of the

random variables (X−E[X])2 and X2, which are not usually helpful in variance calculations.

E.2 Expectations of general random variables

Perhaps the most accessible way to define general expectations at this stage is to use discrete

approximation. Specifically, we can approximate any random variable X : Ω → R, by Xn =

2−nb2nXc, i.e. by the next lower multiple of 2−n. Then, clearly Xn(ω) → X(ω) as n → ∞,

as an increasing limit. For non-negative X : Ω → [0,∞), the expected value of the discrete

random variable Xn is either finite or infinite, and we can note that (E[Xn]) is an increasing

sequence. This leads to the following definition.

Definition E.4. Let X : Ω → [0,∞) be any non-negative random variable. Consider the

discretisations Xn = 2−nb2nXc, n ≥ 0. Then either E[Xn] = ∞ for some n ≥ 0, and we

define E[X] =∞, or (E[Xn]) is a finite sequence, and we define E[X] as the increasing limit

E[X] := lim
n→∞

∞∑
k=0

k2−nP(Xn = k2−n) ∈ [0,∞].

If X : Ω→ R is any (real-valued) random variable, we consider X+ = max{X, 0} and X− =

max{−X, 0} so that X = X+ − X−. If both of E[X+] and E[X−] are finite, we define

E[X] := E[X+]− E[X−]. (If just one is finite, we assign the value −∞ or ∞, respectively.)

These limits of series are not very elegant compared to the more direct definition of Part

B Probability, Measure and Martingales, where we will make sense of E[X] =
∫

Ω
X(ω)P(dω)

once the notion of integration against a probability measure P is available (as a generalisation

of integration against Lebesgue measure, which is introduced in Part A Integration). On the

back of that general theory, some of the following results, in this section and the next will

have shorter proofs. However, the following arguments only use Prelims Analysis.

Theorem E.5 (Order property of expectation). Let X and Y be two random variables whose

expectations exist in the sense of Definition E.4. Then X ≤ Y implies E[X] ≤ E[Y ].

This is left as an optional exercise in Part A Probability.

Corollary E.6. Let X be any random variable whose expectation exists in the sense of

Definition E.4. Then E[Xn] ≤ E[X] ≤ E[Xn] + 2−n for all n ≥ 0.

Proof. If E[X] is finite, then so are E[X±]. By definition, X±n ≤ X± ≤ X±n + 2−n. Since

Xn ≤ X+
n − (X−n +2−n) ≤ X+−X− = X ≤ (X+

n +2−n)−X−n ≤ Xn+2−n, this follows from

the proposition, and from the linearity of expections in the sense of the previous definition

for discrete random variables.

Proposition E.7. If X is a discrete or continuous random variable, the new definition of

E[X] is consistent with the previous definitions.
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This is left as an optional exercise in Part A Probability.

The law of total probability for expectations for finite partitions applies to Xn and extends

to X by a sandwich argument noting that E[X|Bi] is defined to be limn→∞ E[Xn|Bi] and

sandwiched between E[Xn|Bi] and E[Xn|Bi] + 2−n.

Theorem E.8 (Linearity of expectation). Suppose X and Y are any random variables and

a, b ∈ R. Then E[aX + bY ] = aE[X] + bE[Y ], provided that both E[X] and E[Y ] exist.

This is left as an optional exercise in Part A Probability.

Moments E[Xk] and E[XkY m] are just expectations of the random variables Xk and

XkY m, similarly var(X) = E[(X − E[X])2] and cov(X,Y ) = E[(X − E[X])(Y − E[Y ])].

Results var(X) = E[X2]− (E[X])2, var(aX + b) = a2var(X), cov(X,Y ) = E[XY ]−E[X]E[Y ]

and var(X + Y ) = var(X) + var(Y ) + 2cov(X,Y ) follow by linearity of expectation.

Proposition E.9. E[X] =
∫∞

0
P(X > x)dx holds for any random variable X : Ω→ [0,∞).

This is left as an optional exercise in Part A Probability.

E.3 Independence of general random variables

Recall the notion of independence of infinitely many discrete random variables in Definition

D.35. We separately defined independence of two continuous random variables in Definition

D.61, but for general random variables, it is easiest here to define independence in terms of

cumulative distribution functions.

Definition E.10. A family {Xi, i ∈ I} of random variables is independent if for all finite

J ⊆ I

P

(⋂
i∈J
{Xi ≤ xi}

)
=
∏
i∈J

P(Xi ≤ xi) for all xi ∈ R, i ∈ J.

Before relating this to Definitions D.35 and D.61, we record a consequence of Theorem D.46.

Lemma E.11. If En, n ≥ 1, is a decreasing sequence of events in the sense that En ⊇ En+1

for all n ≥ 1, then

P

(⋂
n∈N

En

)
= lim
n→∞

P(En).

Proof. Let An = Ecn = Ω \ En, n ≥ 1. Then An, n ≥ 1, is an increasing sequence of events

and Theorem D.46 yields

P

(⋂
n∈N

En

)
= 1− P

(⋃
n∈N

An

)
= 1− lim

n→∞
P(An) = lim

n→∞
P(En).

Remark E.12. Definition E.10 is compatible with Definition D.61 if the marginal densities are

continuous (up to finitely many discontinuities), by integrating the factorising joint densities

on the one hand, and on the other hand by differentiating the display here w.r.t. all xi, i ∈ J .

We can also see that this is compatible with Definition D.35 since we can choose Ai =

(−∞, xi] ⊆ R in Definition D.35, and it was shown on problem sheets (for #J = 2, which
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generalises easily) that it suffices to check the condition in Definition D.35 for Ai = {bi} for

all bi ∈ R, i ∈ J . This check can be done in a few steps, by passing from Ai = (−∞, xi] to sets

of the form Bi = (−ai, bi], replacing the Ai one by one by the Bi taking set differences, then

noting that
⋂
n∈N{Xi ∈ (bi − 1/n, bi], i ∈ J} = {Xi = bi, i ∈ J}, then applying Lemma E.11

ensures that the probability of the infinite intersection is limn→∞ P(Xi ∈ (bi−1/n, bi], i ∈ J).

We leave the details to the reader.

Alternative proofs are available after a more systematic development of measure theory.

Theorem E.13. If X and Y are independent random variables with finite expectation, then

E[XY ] = E[X]E[Y ], i.e. cov(X,Y ) = 0.

Proof. First note that the independence of X and Y entails the independence of X+ or X− on

the one hand and of Y + or Y − on the other. By linearity of expectation, it suffices to consider

the case of non-negative X and Y . Now proceed as in the proof of Theorem E.8 to write

XnYn ≤ (XY )2n ≤ (Xn+2−n)(Yn+2−n) and taking expectations, factorising the outer terms

by Theorem D.30 and then letting n→∞, we find E[X]E[Y ] ≤ E[XY ] ≤ E[X]E[Y ].

Corollary E.14. If ri ∈ N, 1 ≤ i ≤ k, and if Wi, 1 ≤ i ≤ k, are independent random

variables so that Wi has finite rith moment E[W ri
i ], 1 ≤ i ≤ k, then

E

[
k∏
i=1

W ri
i

]
=

k∏
i=1

E [W ri
i ] .

Proof. The case r1 = · · · = rk = 1 follows by the argument of Theorem E.13. It therefore

suffices to show that W ri
i are independent. If all ri are odd, this follows from the definition

of independence which entails that for all J ⊆ {1, . . . , k},

P

(⋂
i∈J

{
W ri
i ≤ zi

})
= P

(⋂
i∈J

{
Wi ≤ z1/ri

i

})
=
∏
i∈J

P
(
Wi ≤ z1/ri

i

)
=
∏
i∈J

P
(
W ri
i ≤ zi

)
.

If some of the ri are even, we note that{
W ri
i ≤ zi

}
=
{
− z1/ri

i ≤Wi ≤ z1/ri
i

}
=
{
Wi ≤ z1/ri

i

}
\
{
Wi < z

1/ri
i

}
,

so it suffices to note that factorisations as in the display also hold if either one of the inequal-

ities is strict (by Theorem D.46) or if the set is replaced by what is needed here. Inductively,

this follows if this replacement is done for more than one i.

Remark E.15. These results and the methods of proof are not very satisfactory. Methods

from Part A Integration will give access to more efficient and more general proofs of the

claim that functions of independent random variables are independent and that expectations

of independent random variables factorise.

However, at this point, we have reduced the technical gaps to three items. The first is

the existence of probability spaces beyond (finitely many) discrete random variables. The

second is proving generalisations of formulas for expectations of functions of one or more

(jointly) continuous random variables beyond powers and beyond requirements that variables

are independent with piecewise continuous densities. The third is lifting the finite variance

condition in the proof of the weak law of large numbers. We will deduce the first two from

Part A Integration, but leave the third to Part B Probability, Measure and Martingales. See

also the discussion of technical gaps in Part A Probability.
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Part A Analysis: Relevant material

In this appendix we provide a preview of Part A Integration and some relevant material from

Part A Metric Spaces and Complex Analysis. Most importantly, we introduce the σ-algebra

of Lebesgue measurable subsets of R and Lebesgue measure with its main properties, and we

introduce the Lebesgue integral and main results. The relevance of the former for us is that it

provides a probability space for all random variables in Prelims and Part A Probability. The

latter provides a theorem analogous to Proposition C.7 that allows interchanging the order

of integration. This is the key to rigorously proving the remaining results about continuous

random variables stated in Prelims Probability. We record those consequences in Appendix G.

F.1 Lebesgue measure on R

The aim of Lebesgue measure is to extend the notion of the length of an interval to other

subsets of R.

Definition F.1. For any interval with endpoints a and b, define the length as m(I) = b− a.

For A ⊆ R, we define the outer measure of A to be

m∗(A) = inf

{ ∞∑
n=1

m(In) : In intervals, A ⊆
∞⋃
n=1

In

}
.

Remark F.2. This definition assigns with every subset of R the smallest sum of lengths of

intervals that allows to cover A (in the sense of the approximation property of the infimum

that any value slightly larger than m∗(A) allows such a cover).

Proposition F.3. 1. m∗(∅) = 0 and m∗({x}) = 0;

2. m∗ assigns the length to intervals: m∗(I) = b− a for intervals I with endpoints a, b;

3. m∗ is translation invariant: m∗(A+ x) = m∗(A)

4. m∗ behaves well under scaling: m∗(αA) = |α|m∗(A)

5. m∗ is increasing: m∗(A) ≤ m∗(B) if A ⊆ B;

6. m∗ is subadditive: m∗(A ∪B) ≤ m∗(A) +m∗(B) and m∗
(⋃∞

n=1An
)
≤
∑∞
n=1m

∗(An).

104
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Definition F.4. A subset E of R is said to be null if m∗(E) = 0.

Corollary F.5. 1. Any subset of a null set is null.

2. If En is a null set for all n ≥ 1, then
⋃∞
n=1En is null.

3. Any countable subset of R is null.

Using the Axiom of Choice, it can be shown that the outer measure m∗ is not countably

additive. Indeed, Lebesgue measure will be defined as the restriction of m∗ to a smaller

collection of subsets of R on which it can then be shown that countable additivity holds.

Definition F.6. A subset E of R is said to be measurable if

m∗(A) = m∗(A ∩ E) +m∗(A \ E)

We denote by MLeb(R), or just MLeb the set of all measurable subsets of R.

Proposition F.7. 1. If E is null, then E ∈MLeb.

2. If I is any interval, then I ∈MLeb.

3. If E ∈MLeb, then R \ E ∈MLeb.

4. If En ∈MLeb for all n ≥ 1, then
⋃∞
n=1En ∈MLeb.

5. If En ∈MLeb, n ≥ 1, and En∩Ek = ∅ when n 6= k, then m∗(
⋃∞
n=1En) =

∑∞
n=1m

∗(En).

Remark F.8. In particular, MLeb satisfies the σ-algebra axioms of Definition D.1 and the

restriction of m∗ to MLeb satisfies the measure axioms that m∗(∅) = 0, that m∗(E) ≥ 0

for all E ∈ MLeb and that countable additivity in the sense of 5. above holds when m∗ is

restricted to MLeb.

Definition F.9. We call m : MLeb → [0,∞] given by m(E) = m∗(E), for E ∈ MLeb,

Lebesgue measure on R.

Corollary F.10. Let Ω = [0, 1], F = MLeb|[0,1] := {E ∈ MLeb : E ⊆ [0, 1]} and let P be

the restriction m|F of Lebesgue measure m to F . Then (Ω,F ,P) is a probability space in the

sense of Definition D.1.

Lemma F.11. Let B ⊂ P(R). Then there is a unique σ-algebra FB on R which is generated

by B in the following sense:

(i) FB is a σ-algebra and B ⊆ FB.

(ii) If F is a σ-algebra on R and B ⊆ F then FB ⊆ F .

Definition F.12. The σ-algebraMBor(R) generated by the intervals is the Borel σ-algebra.

Proposition F.13. 1. Let B be any one of the following classes of subsets of R.

(i) All intervals of the form (a,∞).

(ii) All intervals of the form [a, b].

(iii) All open sets.

Then MBor(R) is is generated by B, i.e. is the smallest σ-algebra on R containing B.

2. MBor(R) is a strict subset of MLeb(R).
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F.2 Lebesgue integral

Definition F.14. A function f : R→ R is (Lebesgue) measurable if f−1(I) ∈MLeb for each

interval I. It is Borel measurable if f−1(I) ∈MBor for each interval I.

A function φ : R → R is simple if it is measurable and it takes only finitely many real

values, i.e. if it can be written as

φ =

k∑
i=1

ci1Bi

for some distinct non-zero ci ∈ R and disjoint Bi ∈MLeb, 1 ≤ i ≤ k.

Proposition F.15. Let f, g : R → R be measurable and h : R → R continuous (or Borel

measurable). Then f + g, fg, max{f, g} and h ◦ f are measurable.

Definition F.16 (Lebesgue integral). For a non-negative simple function φ =
∑k
i=1 ci1Bi

,∫
R
φ :=

∫ ∞
−∞

φ(x)dx :=

k∑
i=1

cim(Bi) ∈ [0,∞].

For a non-negative measurable function f : R→ [0,∞),∫
R
f := sup

{∫
R
φ : φ simple, 0 ≤ φ ≤ f

}
∈ [0,∞] and

∫
E

f :=

∫
R
f1E , E ∈MLeb.

A measurable function f : R→ R is called Lebesgue integrable over E if
∫
E
|f | <∞, and then∫

E

f :=

∫
E

f+ −
∫
E

f− where f+ := max{f, 0} and f− := max{−f, 0}.

Theorem F.17 (Monotone Convergence Theorem). If (fn) is an increasing sequence of non-

negative measurable functions and f = limn→∞ fn, then
∫
R f = limn→∞

∫
R fn.

Corollary F.18. Let f : [a, b]→ [0,∞) be continuous. Then the Lebesgue integral
∫

[a,b]
f as

defined above equals the Riemann integral
∫ b
a
f as defined in Prelims Analysis.

Proposition F.19. The set L1(R) of Lebesgue integrable functions on R forms a vector space

and the Lebesgue integral is a linear functional on it:
∫
R(αf + βg) = α

∫
R f + β

∫
R g.

Proposition F.20. Riemann integrable functions on [a, b] are Lebesgue integrable over [a, b].

Theorem F.21 (Dominated Convergence Theorem). If (fn) is a sequence of integrable func-

tions, A a null set and f such that fn(x)→ f(x) for all x 6∈ A, and such that |fn| ≤ g for an

integrable function g, then f is integrable and
∫
f = limn→∞

∫
fn.

Theorem F.22 (Substitution). Let g : I → R be a monotonic function with a continuous

derivative on an interval I, and let J be the interval g(I). A measurable function f : J → R
is Lebesgue integrable over J if and only if (f ◦ g)g′ is Lebesgue integrable over I. Then∫

J

f(x)dx =

∫
I

f(g(y))|g′(y)|dy.

Theorem F.23 (Differentiability Lemma). For intervals I, J and f : I×J → R such that x 7→
f(x, y) is integrable over I for all y ∈ J and y 7→ f(x, y) is differentiable with |∂f∂y (x, y)| ≤ g(x)

for all x ∈ I and integrable g, F (y) =
∫
I
f(x, y)dx is differentiable with F ′(y) =

∫
J
∂f
∂y (x, y)dx.
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F.3 Double integrals

The class L1(R2) of Lebesgue integrable functions f : R2 → R is defined in exactly the same

way as L1(R), except that intervals (a, b), and their lengths b− a, are replaced by rectangles

(a, b)× (c, d) and their areas (b− a)(d− c). Then one defines outer measure, measurable sets,

measurable functions, simple functions, Lebesgue integrable functions and (double) integrals

just as in Sections F.1–F.2. The (double) Lebesgue integral of a Lebesgue integrable function

f over R2 will be denoted by either of the following∫
R2

f,

∫
R2

f(x, y)d(x, y).

Theorem F.24 (Fubini’s Theorem). Let f ∈ L1(R2). Then, there is a null set A such that

for all y 6∈ A, the function x 7→ f(x, y) is Lebesgue integrable. Moreover, if F (y) is defined by

F (y) =
∫
R f(x, y)dx for y 6∈ A and by F (y) = 0 for y ∈ A, then F is Lebesgue integrable, and∫

R

(∫
R
f(x, y)dx

)
dy =

∫
R2

f(x, y)d(x, y) =

∫
R

(∫
R
f(x, y)dy

)
dx,

where the last repeated integral also exists in the sense described above.

Theorem F.25 (Tonelli’s Theorem). Let f : R2 → [0,∞) be a measurable function, and

suppose that either of the following repeated integrals is finite:∫
R

(∫
R
|f(x, y)|dx

)
dy,

∫
R

(∫
R
|f(x, y)|dy

)
dx,

Then f is integrable. Hence, Fubini’s Theorem is applicable to both f and |f |.

If E is a measurable subset of R2 and f : E → R is any function, then F is said to be

Lebesgue integrable over E if f̃ is integrable over R2 where f̃(x, y) = f(x, y) if (x, y) ∈ E,

f̃(x, y) = 0 otherwise. Then
∫
E
f is defined to be

∫
R2 f̃ .

For a function T : E′ → R2 defined on an open subset of R2, let T (u, v) = (x(u, v), y(u, v)).

We consider partial derivatives, as follows. If u 7→ x(u, v) is differentiable, we write this

derivative as ∂x
∂u (u, v). With analogous notation ∂x

∂v , ∂y
∂u , ∂y

∂v , let JT be the Jacobian matrix:

JT =

(
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

)
.

Theorem F.26. Let E′ be an open subset of R2, T : E′ → R2 be a one-to-one differentiable

function of E′ onto a subset E of R2, and f : E → R be a function. Then f is Lebesgue

integrable over E if and only if (f ◦ T )|detJT | is Lebesgue integrable over E′. In that case,∫
E

f =

∫
E′

(f ◦ T )|detJT |.

Remark F.27. A 15-page proof is provided for the k-dimensional case assuming that both T

and T−1 are continuously differentiable. Part A Multidimensional Analysis and Geometry

establishes a chain rule, but this does not entail the substitution rule as in one dimension.

Remark F.28. Section F.3 extends from R2 to Rn. Moreover, for any (σ-finite) measure spaces

(Ω1,F , µ1) and (Ω2,F2, µ2), one can define a product (Ω1 × Ω2,F1 ⊗ F2, µ1 × µ2) such that

Fubini’s and Tonelli’s theorems hold. (Here, µ is called a σ-finite measure on (Ω,F) if there

are An ∈ F with
⋃
n≥1An = Ω and µ(An) <∞ for all n ≥ 1.)
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F.4 Metric spaces

This section is only relevant for Sections F.5–F.6, which we only use to prove the uniqueness

and convergence theorems for moment generating functions and to compute the characteristic

function of the Cauchy distribution, which are stated without proof in Part A Probability.

Definition F.29. Let X be a set. Then a distance function on X is a function d : X×X → R
with the following properties:

(i) (positivity) d(x, y) ≥ 0, and d(x, y) = 0 if and only if x = y;

(ii) (symmetry) d(x, y) = d(y, x);

(iii) (triangle inequality) if x, y, z ∈ X then we have d(x, z) ≤ d(x, y) + d(y, z).

The pair (X, d) consisting of a set X together with a distance function d on it is called a

metric space.

Definition F.30 (Norms). Let V be any vector space (over the reals). A function ‖ · ‖ : V →
[0,∞) is called a norm if the following are all true:

� ‖x‖ = 0 if and only if x = 0;

� ‖λx‖ = |λ| ‖x‖ for all λ ∈ R, x ∈ V ;

� ‖x+ y‖ ≤ ‖x‖+ ‖y‖ whenever x, y ∈ V .

We call a vector space endowed with a norm ‖ · ‖ a normed space. Whenever we talk about

normed spaces it is understood that we are also thinking of them as metric spaces with the

metric being defined by d(v, w) = ‖v − w‖.

Example F.31. Take X = Rn. Then each of the following functions define metrics on X.

d1(v, w) =

n∑
j=1

|vj−wj |, d2(v, w) =

 n∑
j=1

(vj − wj)2

1/2

, d∞(v, w) = max
j∈{1,2,...,n}

|vj−wj |.

These are called the `1-, `2- (or Euclidean) and `∞-distances, repectively. The Euclidean

norm ‖v‖2 of a vector v = (v1, . . . , vn) ∈ Rn is

‖v‖2 :=

 n∑
j=1

|vj |2
1/2

.

Lemma F.32. If x, y ∈ Rn, then ‖x+ y‖2 ≤ ‖x‖2 + ‖y‖2.

Suppose that (X, d) is a metric space and let Y be a subset of X. Then the restriction of

d to Y × Y gives a metric so that (Y, d|Y×Y ) is a metric space. We call Y equipped with this

metric a subspace.

Definition F.33 (Continuity). Let (X, dX) and (Y, dY ) be metric spaces. We say a function

f : X → Y is continuous at a ∈ X if for any ε > 0 there is a δ > 0 such that for any x ∈ X
with dX(a, x) < δ we have dY (f(x), f(a)) < ε.
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Definition F.34 (Balls). Let X be a metric space. If a ∈ X and ε > 0 then we define the

open ball of radius ε to be the set

B(a, ε) = {x ∈ X : d(x, a) < ε}.

Definition F.35 (Open sets). If X is a metric space then we say a subset U ⊆ X is open if

for each y ∈ U there is some δ > 0 such that the open ball B(y, δ) is contained in U .

Lemma F.36. Every open ball in a metric space is an open set.

Definition F.37. We say that a metric space is disconnected if we can write it as the disjoint

union of two nonempty open sets. We say that a space is connected if it is not disconnected.

Theorem F.38. A subset of R is connected if and only if it is an interval.

Definition F.39. Let X be a metric space. Then we say that X is path-connected if the

following is true: for any a, b ∈ X there is a continuous map γ : [−0, 1] → X with γ(0) = a

and γ(1) = b.

Theorem F.40. A path-connected metric space is connected.

Theorem F.41. A connected open subset of a normed space is path-connected.

F.5 Holomorphic functions on domains

We can identify C with the plane R2 by recording real and imaginary parts. Thus we have

mutually inverse bijections

z 7→ (<(z),=(z)) and (x, y) 7→ x+ iy,

respectively from C to R2 and from R2 to C. The metric induced by the Euclidean norm

on R2 also gives a metric on C by the identification of C and R2 described by the mutually

inverse bijections above.

If z = <(z) + i=(z) is a complex number, we write |z| (called the modulus) for this

Euclidean norm, that is,

|z| =
√

(<(z))2 + (=(z))2.

The distance between two points z, w ∈ C is then |z − w|.

Definition F.42. A connected open subset D ⊆ C of the complex plane is called a domain.

Suppose that a ∈ C, and that U is a neighbourhood of a, that is, U contains some ball

B(a, η), η > 0, but U itself need not be open. Suppose F : U \ {a} → C is a function. Then

we say that limz→a F (z) = L if the following is true: for all ε > 0, there is some δ > 0 such

that if 0 < |z − a| < δ then |F (z)− L| < ε.

Definition F.43 (Complex differentiability). Let a ∈ C, and suppose that f : U → C is a

function, where U is a neighbourhood of a. In particular, f is defined on some ball B(a, η).

Then we say that f is (complex) differentiable at a if

lim
z→a

f(z)− f(a)

z − a
exists. If the limit exists, we write f ′(a) for it and call this the derivative of f at a.
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Lemma F.44. Let a ∈ C, let U be a neighbourhood of a and let f, g : U → C.

(1) (Sums, products) If f, g are differentiable at a then f + g and fg are differentiable at a

and (f + g)′(a) = f ′(a) + g′(a), (fg)′(a) = f ′(a)g(a) + f(a)g′(a).

(2) (Quotients) If f, g are differentiable at a and g(a) 6= 0 then f/g is differentiable at a

and

(f/g)′(a) =
f ′(a)g(a)− f(a)g′(a)

g(a)2
.

(3) (Chain rule) If V ⊃ f(U) is a neighbourhood of f(a) and h : V → C is a function that

is differentiable at f(a), then h ◦ f is differentiable at a with

(h ◦ f)′(a) = h′(f(a))f ′(a).

Proposition F.45 (Differentiation of power series). . Let
∑∞
n=0 anz

n be a power series, with

radius of convergene R. Let s(z) be the function to which this series converges on B(0, R).

Then the power series t(z) =
∑∞
n=1 nanz

n−1 also has radius of convergence R and on B(0, R)

the power series s is complex differentiable with s′(z) = t(z). In particular, a power series is

infinitely complex differentiable within its radius of convergence.

Definition F.46. Let U ⊆ C be an open set (for example, a domain). Let f : U → C be a

function. If f is complex differentiable at every a ∈ U , we say that f is holomorphic on U .

A function f : U → C is called holomorphic at z0 ∈ U if f is holomorphic on a ball

B(z0, r) := {z ∈ C : |z − z0| < r} around z0 of radius r > 0.

Note that power series are holomorphic on the open disk inscribed by their radius of

convergence.

Theorem F.47 (Identity theorem). Let U be a domain and suppose that f1, f2 are holomor-

phic functions defined on U . Then if S = {z ∈ U : f1(z) = f2(z)} has a limit point in U , we

must have S = U , that is f1(z) = f2(z) for all z ∈ U .

F.6 Contour integration and the Residue theorem

A path in the complex plane is a continuous function γ : [a, b]→ C. A path is said to be closed

if γ(a) = γ(b). If γ is a path, we will write γ∗ for its impage, that is

γ∗ = {γ(t), t ∈ [a, b]}.

Definition F.48. We will say that a path γ : [a, b] → C is differentiable if its real and

imaginary parts are differentiable as real-valued functions. Equivalently, γ is differentiable at

t0 ∈ [a, b] if

lim
t→t0

γ(t)− γ(t0)

t− t0
exists, and the we denote this limit as γ′(t0). (If t = a or t = b, then we interpret the above

as a one-sided limit.) We say that a path is C1 if it is differentiable and its derivative γ′ is

continuous.
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We will say that a path is piecewise-C1 if it is continuous on [a, b] and the interval [a, b]

can be divided into subintervals on each of which γ is C1. That is, there is a finite sequence

a = a0 < a1 < · · · < am = b such that γ|[aj−1,aj ] is C1 for all 1 ≤ j ≤ m. Thus in particular,

the left-hand and right-hand derivatives of γ at aj , 1 ≤ j ≤ m− 1 may not be equal.

If γ1 : [a, b]→ C and γ2 : [c, d]→ C are two paths such that gamma1(b) = γ2(c) then they

can be concatenated to give a path γ1 ? γ2 which traverses first γ1 and then γ2. Formally,

γ1 ? γ2 : [a, b+ d− c]→ C where

γ1 ? γ2(t) =

{
γ1(t), a ≤ t ≤ b,
γ2(b+ t− c), b ≤ t ≤ b+ d− c.

So a piecewise C1 path is precisely a finite concatenation of C1 paths.

To define the integral of functions F : [a, b] → C, we write F (t) = G(t) + iH(t), where

G,H : [a, b] → R. Then we say that F is Riemann integrable if both G and H are, and we

define ∫ b

a

F (t)dt =

∫ b

a

G(t)dt+ i

∫ b

a

H(t)dt.

It is easy to check that the integral is then complex-linear, that is, if F1, F2 : [a, b] → C are

both Riemann integrable on [a, b] and α, β ∈ C, then αF1 + βF2 is Riemann integrable and∫ b

a

(αF1(t) + βF2(t))dt = α

∫ b

a

F1(t)dt+ β

∫ b

a

F2(t)dt.

Lemma F.49. Let [a, b] be a closed and bounded interval and S ⊂ [a, b] a finite set. If f is a

bounded continuous function (taking real or complex values) on [a, b] \ S then it is Riemann

integrable on [a, b].

Lemma F.50. Suppose that F : [a, b]→ C is a function. Then we have∣∣∣∣∣
∫ b

a

F (t)dt

∣∣∣∣∣ ≤
∫ b

a

∣∣F (t)
∣∣dt.

Definition F.51. If γ : [a, b]→ C is a piecewise-C1 path and f : C→ C, then we define the

integral of f along γ to be ∫
γ

f(z)dz =

∫ b

a

f(γ(t))γ′(t)dt.

Proposition F.52. Let f : U → C be a continuous function on an open subset U ⊆ C and

γ1 : [a, b]→ C and γ2 : [c, d]→ C be piecewise-C1 paths whose images lie in U . Then we have∫
γ1?γ2

f(z)dz =

∫
γ1

f(z)dz +

∫
γ2

f(z)dz.

Lemma F.53. Let γ : [0, 1] → C \ {0} be a path. Then there is a continuous function

a : [0, 1]→ R such that

γ(t) = |γ(t)|e2πia(t)

Moreover, if a and b are two such functions, then there exists n ∈ Z such that a(t) = b(t) +n

for all t ∈ [0, 1].
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Definition F.54. If γ : [0, 1] → C \ {0} is a closed path and γ(t) = |γ(t)|e2πia(t) as in the

previous lemma, then since γ(0) = γ(1), we must have a(1) − a(0) ∈ Z. This integer is

called the winding number I(γ, 0) of γ around 0. If γ is a closed path with z0 6∈ γ∗, then let

T : C→ C be given by T (z) = z − z0 and define I(γ, z0) = I(T ◦ γ, 0).

Theorem F.55 (Riemann’s removable singularity theorem). Suppose that U is an open

subset of C and z0 ∈ U . If f : U \ {z0} → C is holomorphic on U \ {z0} and bounded in a

neighbourhood of z0, then f extends to a holomorphic function on all of U .

Definition F.56. Let f : U → C be a function, where U is open. We say that z0 ∈ U is a

regular point of f if f is holomorphic at z0. Otherwise we say that z0 is singular.

We say that z0 is an isolated singularity of f if f is holomorphic on B(z0, r) \ {z0} for

some r > 0.

Suppose that z0 is an isolated singularity of f . If f is bounded near z0, we say that f

has a removable singularity at z0. If f is not bounded near z0, but the function 1/f(z) has a

removable singularity at z0, then we say that f has a pole at z0. If 1/f(z) = (z − z0)mg(z)

for z ∈ B(z0, r) \ {z0} for some r > 0, some m ≥ 1 and some holomorphic g : B(z0, r) → C
with g(z0) 6= 0. If m = 1 we say that f has a simple pole at z0.

Lemma F.57. Let f be a holomorphic function with a pole of order m at z0. then there is

an r > 0 such that for all z ∈ B(z0, r) \ {z0}, we have

f(z) =

∞∑
n=−m

cn(z − z0)n.

Definition F.58. The series
∑∞
n=−m cn(z − z0)n is called the Laurent series for f at z0. A

function on an open set U which has only isolated singularities all of which are poles is called

a meromorphic function on U .

Definition F.59. Let z0 ∈ C, k ∈ N and cn ∈ C, n ≥ −k. Suppose that the series

f(z) =

∞∑
n=−k

cn(z − z0)n

converges on {z ∈ C : 0 < |z − z0| < r} for some r > 0. The residue of f at z0 is defined to

be the coefficient c−1 and denoted Resz0(f).

Theorem F.60 (Residue theorem). Suppose that U is an open set in C and γ is a path whose

inside is contained in U , so that for all z 6∈ U we have I(γ, z) = 0. Then if S ⊂ U is a finite

set such that S ∩ γ∗ = ∅ and f is a holomprphic function on U \ S we have∫
γ

f(z)dz = 2πi
∑
a∈S

I(γ, a)Resa(f).

Lemma F.61 (Jordan’s Lemma). Let f : H→ C∞ be a meromorphic function on the upper-

half plane H = {z ∈ C : =(z) > 0}. Suppose that f(z) → 0 as z → ∞ in H. Then if

γR(s) = Reis for s ∈ [0, π] we have

∀t > 0

∫
γR

f(z)eiαzdz → 0 as R→∞.

Example F.62.
∫ r
−r

sin(x)
x dx→ π as r →∞.



G

Part A Analysis: Relevant consequences

This appendix contains further developments that build on Part A Integration and are relevant

for rigorously following the general theory developed in Prelims and Part A Probability. This

material is non-examinable. Indeed, particularly Section G.2 interacts quite strongly with

subtle methods as well as definitions and theorems from Part A Integration.

G.1 Sequences of independent random variables

Consider the probability space (Ω,F ,P) of Corollary F.10. Specifically, Ω = [0, 1], the σ-

algebra F =MLeb|[0,1] of Lebesgue-measurable sets contains all intervals (and their countable

unions etc.), and P = m|F is the (unique) probability measure on F that, when applied

specifically to intervals, assigns their length.

Proposition G.1. The function U : Ω→ R, U(ω) = ω, is a random variable that is uniformly

distributed on [0, 1].

Proof. For all x ∈ R, we have

{U ≤ x} =


∅ for x < 0,

[0, x] for x ∈ [0, 1],

[0, 1] for x ≥ 1,

and P(U ≤ x) =


0 for x < 0,

x for x ∈ [0, 1],

1 for x > 1.

We recognise this as the cumulative distribution function of the uniform distribution on [0, 1].

Hence, X is a random variable that is uniformly distributed on [0, 1].

Corollary G.2. Consider any right-continuous function F : R→ R that satisfies conditions

1, 3 and 4 of Theorem D.44. Let Q(u) = inf{x ∈ R : F (x) > u}. In the setting of Proposition

G.1, X := Q(U) is a random variable that has c.d.f. F .

Proof. For x ∈ R and u ∈ [0, 1], we have implications F (x) > u ⇒ Q(u) ≤ x ⇒ F (x) ≥ u,

since F is non-decreasing and right-continuous. Hence {Q(U) ≤ x} = {u ∈ [0, 1] : Q(u) ≤ x}
is an interval, and therefore in F . Since, P(U = F (x)) = 0, by Theorem D.49, we have

F (x) = P(U ≤ F (x)) = P(F (x) > U) ≤ P(Q(U) ≤ x) ≤ P(F (x) ≥ U) = F (x).

Hence Q(U) is a random variable and has c.d.f. F , as required.

113
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This means we have constructed one random variable with any given distribution.

Lemma G.3. Consider the setting of Proposition G.1. For n ≥ 1, let Bn = 1 if b2nUc is an

odd integer and Bn = 0 otherwise. Then Bn, n ≥ 1, is a sequence of independent Bernoulli

random variables with P(Bn = 0) = P(Bn = 1) = 1/2.

This is left as an optional exercise in Part A Probability.

Corollary G.4. In the setting of Lemma G.3, we have U =
∑
n≥1Bn2−n, on the event

{U < 1} of probability 1. Now consider the strictly increasing sequence (pk)k≥1 of all prime

numbers (p1 = 2, p2 = 3, p3 = 5 etc.) and let Uk =
∑
n≥1Bpnk 2−n for all k ≥ 1. Then Uk,

k ≥ 1, is a sequence of independent uniform random variables on [0, 1].

This is left as an optional exercise in Part A Probability.

Corollary G.5. Consider any sequence of right-continuous functions Fk : R → R, k ≥ 1,

that satisfy conditions 1, 3 and 4 of Theorem D.44. Then there is a probability space (Ω,F ,P)

on which we can define a sequence (Xk)k≥1 of independent random variables such that Xk

has c.d.f. Fk for each k ≥ 1.

Proof. Consider the probability space (Ω,F ,P) = ([0, 1],MLeb|[0,1],m|F ), and the family

{Uk, k ≥ 1} of independent uniform random variables of the preceding corollary. Let Qk(u) =

inf{x ∈ R : Fk(x) > u}, u ∈ [0, 1). Then the argument of the proof of Corollary G.2 shows

that Qk(Uk) has c.d.f. Fk for all k ≥ 1. Furthermore, for any finite J ⊂ N and xk ∈ R, k ∈ J ,

P(Xk ≤ xk,∀k ∈ J) = P(Uk ≤ Fk(xk),∀k ∈ J) =
∏
k∈J

P(Uk ≤ Fk(xk)) =
∏
k∈J

P(Xk ≤ xk),

i.e. independence of Uk, k ≥ 1, entails the independence of Xk, k ≥ 1.

G.2 Random variables with continuous distributions

As we will use the theory of Lebesgue integration to rigorously establish results about expec-

tations of continuous random variables, it is natural to generalise the notion of a continuous

random variable to allow Lebesgue integrable (rather than Riemann integrable) densities.

Definition G.6. A continuous random variable X is a random variable whose c.d.f. satisfies

FX(x) = P(X ≤ x) =

∫
(−∞,x]

fX(u)du,

where fX : R→ R is a function such that

(a) fX(u) ≥ 0 for all u ∈ R,

(b) the Lebesgue integral
∫
R fX(u)du exists and equals 1.

Then fX is called probability density function (p.d.f.) of X or, sometimes, just its density.

Theorem G.7. Let X be a continuous random variable with p.d.f. fX . Then for all Borel

sets A ∈MBor(R), the set {X ∈ A} = {ω ∈ Ω: X(ω) ∈ A} is an event (in F) and we have

P(X ∈ A) =

∫
A

fX(x)dx.
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Proof. By definition, the claims hold when A = (−∞, x]. This extends to closed intervals as

in Theorem D.49. By Proposition F.13, the Borel σ-algebra is generated by the class of closed

intervals. To show that our claims holds for all A ∈ MBor(R), we consider the collection A
of sets A for which the claims hold. The proof is complete if we can show that A is a σ-

algebra. First note that {X ∈ R} = Ω ∈ F , {X ∈ A} ∈ F ⇒ {X ∈ Ac} = {X ∈ A}c ∈ F ,

and {X ∈ An} ∈ F , n ≥ 1, implies {X ∈
⋃∞
n=1An} =

⋃∞
n=1{X ∈ An} ∈ F , since F is a

σ-algebra. It remains to study the representations of probabilities as integrals.

� Clearly, P(X ∈ R) = 1 =
∫
R fX(x)dx, hence R ∈ A.

� If A ∈ A, then P(X ∈ Ac) = 1− P(X ∈ A) =
∫
R fX(x)dx−

∫
A
fX(x)dx =

∫
Ac fX(x)dx,

by linearity of the Lebesgue integral, hence Ac ∈ A.

� Before handling countable unions, consider the special case of disjoint B1, . . . , Bn ∈ A,

then
⋃n
k=1Bk ∈ A by additivity on both sides of the claim. In the general case of

An ∈ A, n ≥ 1, the sets B1 := A1 and, inductively, Bn+1 := An+1 \
⋃n
k=1Bk are in A,

by what we have already shown and by the argument of the previous bullet point, for

all n ≥ 2. Furthermore, we have
⋃∞
n=1An =

⋃∞
n=1Bn. By countable additivity on the

left and the Monotone Convergence Theorem on the right hand side, we conclude that

P
(
X ∈

⋃∞
n=1An

)
=
∑∞
n=1 P(X ∈ Bn) =

∑∞
n=1

∫
Bn

fX(x)dx =
∫⋃∞

n=1 An
fX(x)dx.

Remark G.8. A quicker proof of Theorem E.1 than the Riemann integration proof we pro-

vided was sketched in Prelims Probability, interchanging the order of integrals. Formally, we

apply Tonelli’s theorem (Theorem F.25) to the non-negative measurable function (x, y) 7→
fX(x)1S(x, y) where S = {(x, y) ∈ [0,∞)2 : x ≤ y}. This argument also allows us to lift the

piecewise continuity of fX . Let X be any non-negative continuous random variable in the

sense of Definition G.6. Then

E[X] =

∫
x∈[0,∞)

xfX(x)dx =

∫
x∈[0,∞)

∫
y∈[0,x]

fX(x)dydx =

∫
y∈[0,∞)

∫
x∈[y,∞)

fX(x)dxdy

=

∫ ∞
0

P(X > y)dy

where the final integral is still an improper Riemann integral since y 7→ P(X > y) is monotonic

and hence Riemann integrable on [0, x] for all x ≥ 0, the limit x→∞ exists as an increasing

limit and coincides with the Lebesgue integral by the Monotone Convergence Theorem.

We can now rephrase and prove Theorem E.3:

Theorem G.9. Let X be a continuous random variable with p.d.f. fX , and let h : R→ R be

a Borel measurable function. Then

E[h(X)] =

∫
R
h(x)fX(x)dx

provided that the integral
∫
R |h(x)|fX(x)dx is finite.

Proof. Again, the proof sketched in Prelims Probability for the case of non-negative h in-

terchanges the order of integrals. Using Theorem E.1 and Theorem G.7, and applying
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Tonelli’s theorem to the measurable function (x, y) 7→ fX(x)1H(x, y) with H = {(x, y) ∈
R× [0,∞) : h(x) > y}, we get

E[h(X)] =

∫ ∞
0

P(h(X) > y)dy =

∫ ∞
0

P(X ∈ h−1(y,∞)) =

∫
y∈[0,∞)

∫
x∈h−1(y,∞)

fX(x)dxdy

=

∫
x∈R

∫
y∈[0,h(x))

fX(x)dydx =

∫
x∈R

h(x)fX(x)dx.

Note that h(X) does not have to be a continuous random variable if we use the first step as

the definition of E[h(X)]. For general h, the above applies with h replaced by h+ = max{h, 0}
and h− = max{−h, 0}. Since h = h+−h−, this completes the proof by linearity of expectation

and integration.

Remark G.10. The same proof also establishes Theorem D.62 and its generalisation to Borel

measurable h : R2 → R, i.e. for functions h such that h−1(I) is in the σ-algebra on R2

generated by rectangles in R2. Specifically, we establish as in Theorem G.7 that

P(h(X,Y ) > z) =

∫
(x,y)∈h−1(z,∞)

fX,Y (x, y)d(x, y),

and Tonelli’s theorem, which generalises to R3 (or to R× R2), applies to the resulting triple

integrals.

G.3 Some integrals

The final remaining detail from Prelims Probability that we postponed is the identification

of the normalisation of the standard normal distribution. In Corollary C.10, we showed that∫ ∞
−∞

e−x
2/2dx =

√
2Γ

(
1

2

)
, where Γ

(
1

2

)
=

∫ ∞
0

u−1/2e−udu.

In Prelims Probability, the standard expression
√

2π was proved using a change to polar

coordinates. Since we have not yet rigorously established the two-dimensional substitution

rule, we instead give a proof based on Fubini’s theorem.

Theorem G.11. Γ( 1
2 ) =

√
π.

Proof. By Tonelli’s theorem, f(u, v) = u−1/2e−uv−1/2e−v is Lebesgue integrable over (0,∞)2.

Writing this as a repeated integral, we can apply the one-dimensional substitution rule with

g1 : (u,∞)→ (0,∞), v = g1(w) = w − u, g′1(w) = 1. As this preserves integrability, Fubini’s

theorem then allows us to change the order of integration to obtain(
Γ

(
1

2

))2

=

∫
u∈(0,∞)

∫
v∈(0,∞)

f(u, v)dvdu =

∫
u∈(0,∞)

∫
w∈(u,∞)

f(u,w − u)dwdu

=

∫
w∈(0,∞)

∫
u∈(0,w)

u−1/2(w − u)−1/2e−wdwdu.

Applying the one-dimensional substitution rule with g2 : (0, 1) → (0, w), u = g2(s) = sw,

g′2(s) = w, the integrand factorises and we obtain(
Γ

(
1

2

))2

=

∫
w∈(0,∞)

∫
s∈(0,1)

s−1/2(1− s)−1/2e−wdwds
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=

(∫
(0,1)

s−1/2(1− s)−1/2ds

)(∫
(0,∞)

e−wdw

)
.

By the Monotone Convergence Theorem, we can view both integrals as improper Riemann

integrals and apply the fundamental theorem of calculus to find that(
Γ

(
1

2

))2

= lim
ε↓0

lim
t↑1

(
arcsin

√
t− arcsin

√
ε
)

lim
z→∞

(1− e−z) = π.

Since Γ( 1
2 ) ≥ 0, this completes the proof.

Together with Corollary C.10, this immediately yields the desired normalisation constant

of the standard normal distribution.

Corollary G.12. We have
∫∞
−∞ e−x

2/2dx =
√

2π.

G.4 Integration theory for σ-finite measure spaces

Picking up on Remark F.28, we consider a σ-finite measure space (Ω,F , µ), i.e. a set Ω with

a σ-algebra F and a set function µ : F → [0,∞] satisfying

1. µ(∅) = 0.

2. If En ∈ F , n ≥ 1, and En ∩ Ek = ∅ when n 6= k, then µ(
⋃∞
n=1En) =

∑∞
n=1 µ(En).

3. There are An ∈ F with
⋃∞
n=1An = Ω and µ(An) <∞ for all n ≥ 1.

Example G.13. So far, we have introduced the measure space (R,MLeb,m), which is σ-

finite, as we can choose An = [−n, n] ∈ MLeb, n ≥ 1. We have also considered general

probability spaces (Ω,F ,P), as well as specific ones to establish the existence of random vari-

ables with given distributions. Implicitly, we have also studied the measure space (N,P(N),#)

of natural numbers N equipped with the power set P(N) and counting measure #, for which

#(A) = #A is the number of elements of A ⊆ N. This measure space is also σ-finite as we

can choose An = {1, . . . , n}, n ≥ 1.

While we will not require any other σ-finite measure spaces, several product spaces combin-

ing these examples will be relevant. The general setup of σ-finite measure spaces is both

economical and can be read with particular special cases in mind.

Mimicking Sections F.2 and F.3, we obtain the following theory, which we will specialise

to provide justifications to interchange expectation with series and other limits. This is

relevant to formalise the (non-examinable) proof of the strong law of large numbers given in

Part A Probability, and also to prove the uniqueness and convergence theorems for moment

generating functions and characteristic functions.

Definition G.14. A function f : Ω→ R is F-measurable if f−1(I) ∈ F for each interval I.

A function φ : Ω → R is simple if it is F-measurable and it takes only finitely many real

values, i.e. if it can be written as

φ =

k∑
i=1

ci1Bi

for some distinct non-zero ci ∈ R and disjoint Bi ∈ F , 1 ≤ i ≤ k.
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Proposition G.15. Let f, g : Ω → R be F-measurable and h : R → R continuous (or Borel

measurable). Then f + g, fg, max{f, g} and h ◦ f are F-measurable.

Definition G.16 (µ-integral). For a non-negative simple function φ =
∑k
i=1 ci1Bi

,∫
Ω

φdµ :=

∫
Ω

φ(ω)µ(dω) :=

k∑
i=1

ciµ(Bi) ∈ [0,∞].

For a non-negative F-measurable function f : Ω→ [0,∞),∫
Ω

fdµ := sup

{∫
Ω

φ : φ simple, 0 ≤ φ ≤ f
}
∈ [0,∞] and

∫
E

fdµ :=

∫
Ω

f1Edµ, E ∈ F .

An F-measurable function f : Ω→ R is called µ-integrable over E if
∫
E
|f |dµ <∞, and then∫

E

fdµ :=

∫
E

f+dµ−
∫
E

f−dµ where f+ := max{f, 0} and f− := max{−f, 0}.

Theorem G.17 (Monotone Convergence Theorem). If (fn) is an increasing sequence of

non-negative F-measurable functions and f = limn→∞ fn, then
∫

Ω
fdµ = limn→∞

∫
Ω
fndµ.

Proposition G.18. The set L1(µ) := L1(Ω,F , µ) of µ-integrable functions on Ω forms a

vector space and the µ-integral is a linear functional on it:
∫

Ω
(αf + βg) = α

∫
R f + β

∫
R g.

Theorem G.19 (Dominated Convergence Theorem). If (fn) is a sequence of µ-integrable

functions, A ∈ F with µ(A) = 0 and f such that fn(ω)→ f(ω) for all ω 6∈ A, and such that

|fn| ≤ g for a µ-integrable function g, then f is µ-integrable and
∫

Ω
fdµ = limn→∞

∫
Ω
fndµ.

Theorem G.20 (Differentiability Lemma). For an interval J , a set I ∈ F and f : I×J → R
such that ω 7→ f(ω, y) is integrable over I for all y ∈ J and y 7→ f(ω, y) is differentiable

with |∂f∂y (ω, y)| ≤ g(ω) for all ω ∈ I and a µ-integrable function g : Ω → [0,∞), the function

F (y) =
∫
I
f(ω, y)µ(dω) is differentiable on J with F ′(y) =

∫
I
∂f
∂y (ω, y)µ(dω), y ∈ J .

For σ-finite measure spaces (Ωi,Fi, µi), i = 1, 2, we define the Cartesian product Ω1×Ω2

equipped with the σ-algebra F1 ⊗ F2 generated by the set R of all rectangles of the form

A1×A2 with Ai ∈ Fi, i = 1, 2. For A ⊆ Ω1×Ω2, we define the (µ1×µ2)-outer measure of A

(µ1 × µ2)∗(A) = inf

{ ∞∑
n=1

µ1(I
(n)
1 )µ2(I

(n)
2 ) : I

(n)
i ∈ Fi, i = 1, 2, A ⊆

∞⋃
n=1

(
I

(n)
1 × I(n)

2

)}
.

Then we can show as in the construction of Lebesgue measure from the (Lebesgue) outer

measure in Section F.1 that the restriction µ1 × µ2 of (µ1 × µ2)∗ to F1 ⊗ F2 is a σ-finite

measure, which we call the product measure of µ1 and µ2.

Theorem G.21 (Fubini’s Theorem). Let f ∈ L1(µ1 × µ2). Then, there is A ∈ F2 with

µ2(A) = 0 such that for all ω2 6∈ A, the function ω1 7→ f(ω1, ω2) is µ1-integrable. Moreover,

if F (ω2) is defined by F (ω2) =
∫

Ω1
f(ω1, ω2)µ1(dω1) for ω2 6∈ A and by F (ω2) = 0 for ω2 ∈ A,

then F is µ2-integrable, and∫
Ω2

(∫
Ω1

f(ω1, ω2)µ1(dω1)

)
µ2(dω2) =

∫
Ω1×Ω2

fd(µ1 × µ2)

=

∫
Ω1

(∫
Ω2

f(ω1, ω2)µ2(dω2)

)
µ1(dω1),

where the last repeated integral also exists in the sense described above.
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Theorem G.22 (Tonelli’s Theorem). Let f : Ω1 × Ω2 → [0,∞) be a (F1 ⊗ F2)-measurable

function, and suppose that either of the following repeated integrals is finite:∫
Ω2

(∫
Ω1

|f(ω1, ω2)|µ1(dω1)

)
µ2(dω2),

∫
Ω1

(∫
Ω2

|f(ω1, ω2)|µ2(dω2)

)
µ1(dω1),

Then f is (µ1 × µ2)-integrable. Hence, Fubini’s Theorem is applicable to both f and |f |.

G.5 Integration theory and expectations

Specifically, we can apply Fubini’s and Tonelli’s Theorems with Ω1 = N, F1 the power set,

µ1 counting measure µ1(A) = #A and (Ω2,F2, µ2) = (Ω,F ,P). Integration with respect to

counting measure is summation
∫
N f(n)µ1(dn) =

∑
n∈N f(n). Integration with respect to P

is an alternative approach to expectation setting for P-integrable X : Ω→ R

E[X] =

∫
Ω

XdP =

∫
Ω

X(ω)P(dω).

In the present notation, the definitions in the preceding section give for simple functions

X =

k∑
i=1

ci1Bi
, Bi ∈ F , 1 ≤ i ≤ k, disjoint,

the integral E[X] :=

∫
Ω

X(ω)P(dω) =

k∑
i=1

ciP(Bi) ∈ [0,∞), and generalising to non-negative

random variables by defining

E[X] :=

∫
Ω

X(ω)P(dω) := sup

{∫
Ω

φ(ω)P(dω) : φ simple, 0 ≤ φ ≤ X
}
∈ [0,∞].

This notion of expectation is clearly compatible with our definition of expectation of discrete

random variables for simple functions since Bi = {X = ci}, if we choose a representation of

X with minimal k, so that ci, 1 ≤ i ≤ k, are distinct. We claim compatibility for all non-

negative random variables. Integration theory provides a Monotone Convergence Theorem,

linearity of expectation, order properties and allows to adapt the sandwich arguments of

Section E.2 to show our claim for bounded non-negative random variables. Then for all non-

negative random variables, E[X ∧m] increases to E[X] in the new sense, by the Monotone

Convergence Theorem. In the old sense, order properties yield limm→∞ E[X ∧ m] ≤ E[X].

But if this was a strict inequality, there would be a strict inequality for Xn = 2−nb2nXc
instead of X for n sufficiently large. But we can write this limit as a series

lim
m→∞

E[Xn ∧m] =

∞∑
j=1

j2n∑
k=(j−1)2n+1

k2−nP(Xn = k2−n) =

∞∑
k=0

P(Xn = k2−n) = E[Xn]

by Corollary C.8, so there cannot be a strict inequality and the general case of our claim

follows from the bounded case. We could now restate all propositions and theorems of the

preceding section in expectation notation. Here is an example. Others are left to the reader.

Theorem G.23 (Dominated Convergence Theorem). If Xn : Ω → R, n ≥ 1, is a sequence

of random variables, A ∈ F with P(A) = 0 and Y such that Xn(ω) → Y (ω) for all ω 6∈ A,

and such that |Xn| ≤ Z for a random variable Z with finite expectation E[Z] < ∞, then the

expectation of Y exists and E[Xn]→ E[Y ], as n→∞.


