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Part A Probability: Non-examinable proofs

This appendix provides additional technical detail for each chapter of the Part A Probability

notes. Since we have not added systematic references from within the chapters to maintain

the flow there at the intended level of the course, we use the same structure here for ease

of reference. Specifically, Section H.j corresponds to Chapter j, and we mostly restate any

relevant claims here. Subdivisions in Section H.3 are not aligned with subdivisions of Chapter

3, though. As with anything in the previous appendices that goes beyond the prerequisites

of this course, the material of this appendix goes beyond the syllabus and is non-examinable.

H.1 Review of Prelims Probability

We refer to Appendix D for a discussion of Prelims Probability, Appendix E for some further

developments based on Prelims Analysis and Probability. As discussed in the final remark of

Appendix E, this leaves three items, two of which are discussed in Appendix G using results

from Part A Integration previewed in Appendix F. The final unproven detail is that the weak

law of large numbers holds with only a first moment. As noted previously, this is proved in

Part B Probability, Measure and Martingales using martingale methods, but is also included

here by rigorously establishing and using generating function methods, which does not require

martingales but uses the measure-theoretic approach to expectations of Section G.5.

H.2 Convergence of random variables, limit theorems

Remark H.1. In the (review) proof of Markov’s inequality in Section 2.4, we proceed slightly

differently from the Prelims proof, but we still use the order properties of expectation without

restricting the random variable to be either discrete or continuous or assuming the finiteness

of the expectation. In the proof of the weak law of large numbers, we use the additivity of

variance for independent random variables. This was all set up in Section E.2, specifically

Theorems E.5 and Theorem E.13, as well as the discussion after Theorem E.8.

Remark H.2. The (non-examinable) proof of the strong law of large numbers in Section 2.5.1

is under the additional assumption that fourth moments are finite. For a general proof, we
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refer to Part B Probability, Measure and Martingales. In our special case, we also use the

general linearity of expectation of Theorem E.8, as well as Corollary E.14.

The appropriate pointer for interchanging series and expectation is to Part B Probability,

Measure and Martingales. Recall the sketch provided in Sections G.4–G.5.

With this setup, Tonelli’s theorem yields in the context of Section 2.5.1 that

E

[ ∞∑
n=1

(
Sn
n
− µ

)4
]

=

∫
ω∈Ω

∫
n∈N

(
Sn(ω)

n
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)4
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∫
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)4
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Sn
n
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)4
]
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Remark H.3. The central limit theorem has been stated without proof in Chapter 2, indicating

that proofs based on generating functions will be provided in Chapter 3.

H.3 Generating functions

H.3.1 The convergence theorem for probability generating functions

The convergence theorem for probability generating functions is stated without proof, but

we do remark that this can be proved “with a bit more work” than the uniqueness theorem,

which was proved in Prelims Probability, all based on the theory of power series.

Theorem H.4. For N-valued random variables X and Xn, n ≥ 1, with probability mass

functions (pmfs) p and pn, n ≥ 1, and probability generating functions (pgfs) G and Gn,

n ≥ 1,

∀k ≥ 0 pn(k)→ p(k) ⇐⇒ ∀s ∈ [0, 1] Gn(s)→ G(s).

Proof. “⇒”: Let s ∈ [0, 1]. Let ε > 0. Since p : N→ [0, 1] is a pmf, there is k0 such that

k0−1∑
k=0

p(k) ≥ 1− ε

4
.

Since pn(k)→ p(k), there is n0 such that

∀n ≥ n0,

k0−1∑
k=0

pn(k) ≥ 1− ε

2
and ∀n ≥ n0 ∀0 ≤ k ≤ k0 − 1, |pn(k)− p(k)| < ε

4k0
.

But then

|Gn(s)−G(s)| ≤
k0−1∑
k=0

sk|pn(k)− p(k)|+
∞∑

k=k0

pn(k) +

∞∑
k=k0

p(k) < k0
ε

4k0
+
ε

2
+
ε

4
= ε.

“⇐”: Clearly the s = 0 case yields pn(0)→ p(0). But then

� either p(0) = 1 and 0 ≤ Gn(s) − pn(0) ≤
∑∞
k=1 pn(k) = 1 − pn(0) → 0 implies that

pn(k)→ 0 for all k ≥ 1,
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� or p(0) < 1 and for all n ≥ n0, also pn(0) < 1, and for all s ∈ [0, 1],

∞∑
k=0

pn(k + 1)

1− pn(0)
sk =

Gn(s)− pn(0)

1− pn(0)
→ G(s)− p(0)

1− p(0)
=

∞∑
k=0

p(k + 1)

1− p(0)
sk.

An induction shows that pn(k)→ p(k) for all k ≥ 0.

H.3.2 Moment generating functions, characteristic functions and

their uniqueness theorems

Remark H.5. The only reason why the proof of Theorem H.5 is an ”informal proof” is that

we interchange expectation and series. To formalise this, we recall the argument in Remark

H.2, where a similar interchange is justified for non-negative random variables, using Tonelli’s

theorem. In the case here where the random variables can take positive and negative values,

the product space of counting measure and probability measure is the same, but we need to

establish integrability to apply Fubini’s Theorem. To this end, we may compute the repeated

integral in either order, by Tonelli’s Theorem, and the finiteness of the mgf at ±t yields∫
ω∈Ω

∫
k∈N

∣∣∣∣ tkk!
(X(ω))k

∣∣∣∣µ1(dk)P(dω) =

∫
ω∈Ω

e|tX(ω)|P(dω)

= E[e|tX|] ≤ E[etX + e−tX ] = E[etX ] + E[e−tX ] <∞.

This establishes that the function f(k, ω) = (k!)−1tk(X(ω))k is integrable with respect to the

product measure of µ1 and P, and we may interchange to find, when |t| ≤ t0,

MX(t) = E[etX ] = E

[∑
k∈N

tk

k!
Xk

]
=

∫
ω∈Ω

∫
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=
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∑
k∈N

E
[
tk
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]
=
∑
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tkE[Xk]
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Turning to moment generating functions and characteristic functions, it is instructive to

combine them into an analytic transform, as follows.

Definition H.6. Let X be a real-valued random variable. We define the analytic transform

MX(w) = E[ewX ] = E[cos(vX)euX ] + iE[sin(vX)euX ]

for all w = u+ iv ∈ C for which these expectations exist. We denote the set of such w-values

by DX .

This extends the moment generating function for w = u ∈ R and relates to the character-

istic function for w = iv ∈ iR as φX(v) = MX(iv).

Lemma H.7. For any real-valued random variable, DX = I + iR for some interval I that

contains 0.

Proof. The observation 0 ∈ DX is elementary. If a, c ∈ DX ∩R with a ≤ 0 ≤ c and a ≤ b ≤ c,
then ebX ≤ eaX1{X<0}+ ecX1{X≥0} and by order properties of expectation we conclude that

[a, c] ⊂ DX ∩ R and hence that DX ∩ R is an interval I.

Similarly, | cos(vX)euX | ≤ evX and | sin(vX)euX | ≤ evX , hence I+ iR ⊆ DX . Conversely,

if u+ iv ∈ DX , then euX ≤ (| cos(vX)|+ | sin(vX)|)euX , so u ∈ DX .
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Theorem H.8. Consider a real-valued random variable X such that (−t0, t0) ⊆ DX ∩R for

some t0 > 0. Then the function MX : (−t0, t0) + iR→ C is holomorphic.

Proof. The argument in Remark H.5 applies with t ∈ (−t0, t0) replaced by z ∈ (−t0, t0) + iR.

Hence, MX is a power series in z and therefore holomorphic in the disk of radius t0 around

the origin. Similarly, for all w ∈ (−t0, t0) + iR,

E[ezX ] = E

[
ewX

∑
k∈N

(z − w)k

k!
Xk

]
=
∑
k∈N

E[XkewX ]

k!
(z − w)k

has positive radius of convergence, so MX is holomorphic on (−t0, t0) + iR.

Corollary H.9. The standard normal distribution has characteristic function φ(v) = e−v
2/2.

Proof. For the moment generating function M(u) = eu
2/2, u ∈ R, we recognise the unique

(by the identity theorem, Theorem F.47) holomorphic extension M(w) = ew
2/2, w ∈ C, that

includes the characteristic function φ(v) = M(iv) = e(iv)2/2 = e−v
2/2, v ∈ R, as claimed.

Let us now first consider characteristic functions. We will deduce the uniqueness theorem

for characteristic functions from the following inversion formula.

Theorem H.10 (Inversion formula for characteristic functions). Consider any real-valued

random variable X and its characteristic function φX . Then for all a, b ∈ R with a < b, we

have, as m→∞,

1

2π

∫ m

−m

e−iat − e−ibt

it
φX(t)dt→ 1

2
P(X = a) + P(a < X < b) +

1

2
P(X = b).

Proof. We write the integral on the left-hand side as a double integral against the product

measure of P and Lebesgue measure on [−m,m], in the sense of Section G.4, with integrand

f(ω, t) =
e−iat − e−ibt

it
eitX(ω), (ω, t) ∈ Ω× [−m,m].

Since this function is bounded measurable and the product measure is finite on Ω× [−m,m],

the function f is integrable and Fubini’s Theorem applies to give∫
[0,m]

∫
Ω

f(ω, t)P(dω)dt =

∫
Ω

∫
[0,m]

f(ω, t)dtP(dω) = E

[∫
[0,m]

eit(X−a) − eit(X−b)

it
dt

]

and, after change of variables∫
[−m,0]

∫
Ω

f(ω, t)P(dω)dt =

∫
Ω

∫
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f(ω, t)dtP(dω) = E

[∫
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e−it(X−b) − e−it(X−a)
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dt

]
.

By linearity of expectation and integration, they sum to∫ m

−m

e−iat − e−ibt

it
φX(t)dt = 2E

[∫ m

0

sin(t(X − a))− sin(t(X − b))
t
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]
= E

[
2

∫ m(X−a)

0

sin(u)

u
du− 2

∫ m(X−b)

0

sin(u)

u
du

]
,
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with the convention that
∫ −r

0
g(u)du = −

∫ 0

−r g(u)du for r > 0, and for even functions g

this further equals −
∫ r

0
g(u)du. Borrowing from Complex Analysis that

∫ r
0

sin(u)
u → π/2 as

r → ∞, we find that the term under the expectation converges to 2π on {a < X < b}, to

π on {X = a} and {X = b} and to 0 on {X < a} and {X > b}. To apply the Dominated

Convergence Theorem and let m→∞, we further check that the term under the expectation

is bounded by 4
∫ π

0
(sin(u)/u)du, so that

1

2π

∫ m

−m

e−iat − e−ibt

it
φX(t)dt→ 1

2
P(X = a) + P(a < X < b) +

1

2
P(X = b).

Corollary H.11 (Uniqueness theorem for characteristic functions). If X and Y are random

variables with the same characteristic function, then X and Y have the same distribution.

Proof. By Theorem H.10, we have

1

2
P(X = a) + P(a < X < b) +

1

2
P(X = b) =

1

2
P(Y = a) + P(a < Y < b) +

1

2
P(Y = b)

Letting a → −∞, and b ↓ x, using Theorem D.46 and Lemma E.11, this yields equality of

cumulative distribution functions, which completes the proof.

As a consequence of the analyticity of Theorem H.8, we obtain a Complex Analysis proof

of the uniqueness theorem for moment generating functions, which we restate here.

Corollary H.12 (Uniqueness theorem for moment generating functions). If X and Y are

random variables with the same moment generating function, which is finite on [−t0, t0] for

some t0 > 0, then X and Y have the same distribution.

Proof. The two holomorphic functions MX and MY coincide on (−t0, t0). By the identity

theorem of Complex Analysis, Theorem F.47, MX and MY coincide on the domain (−t0, t0)+

iR. In particular, φX = φY , and by Corollary H.11, X and Y have the same distribution.

H.3.3 Convergence theorems for moment generating functions and

characteristic functions

Turning to convergence theorems, let us first establish the Skorokhod representation theorem.

Theorem H.13 (Skorokhod representation theorem). Let Y and X1, X2, . . . be random vari-

ables such that Xn converges to Y in distribution. Then there exists a probability space and

random variables Ỹ and X̃1, X̃2, . . . with the same distributions as Y and X1, X2, . . ., such

that X̃n converges to Ỹ almost surely.

Proof. Consider a probability space with a uniform random variable U on [0, 1]. We use the

construction of Corollary G.2 and define Ỹ = QY (U) where QY (u) = inf{x ∈ R : FY (x) > u}
and similarly define X̃n = QXn(U), using the same uniform random variable U .

By assumption, we have FXn
(x)→ FY (x) for all x ∈ R where FY is continuous. Now fix

any u ∈ [0, 1] such that the pre-image F−1
Y ({u}) has at most one element. Then x := QY (u)
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is the unique x ∈ R such that FY (x−) ≤ u ≤ FY (x). In particular, for all ε > 0, we have

FY (x+ ε) > u, there is a continuity point x′ < x+ ε of FY such that

FXn
(x′)→ FY (x′) > u ⇒ FXn

(x+ ε) ≥ FXn
(x′) > u for n sufficiently large.

Hence QXn(u) ≤ x + ε for n sufficiently large. Similarly, FY (x − ε) < u and there is a

continuity point x′′ > x− ε of FY such that

FXn(x′′)→ FY (x′′) < u ⇒ FXn(x− ε) ≤ FXn(x′′) < u for n sufficiently large.

But then QXn(u) ∈ [x−ε, x+ε] for all n sufficiently large, i.e. QXn(u)→ x = QY (u). The set

of u-values that we excluded is countable, so this entails that X̃n = QX̃n
(U) → QY (U) = Ỹ

almost surely.

The first convergence theorem we establish characterises convergence in distribution in

terms of the convergence of a much wider class of expectations which includes the real and

imaginary parts of characteristic functions. The equivalent condition in this theorem often

serves as the definition of convergence in distribution and generalises straightforwardly to

random variables taking values in Rd or other topological spaces.

Theorem H.14. Suppose X1, X2, . . . and Y are random variables. Then

Xn
d→ Y as n→∞ ⇐⇒ ∀g : R→ R bounded continuous, E[g(Xn)]→ E[g(Y )] as n→∞.

Proof. “⇒”: If Xn
d→ Y , we may instead consider X̃n

a.s.→ Ỹ where X̃n
d
= Xn for each n ≥ 1

and Ỹ
d
= Y , by Theorem H.13. Then for any bounded continuous g : R→ R, the Dominated

Convergence Theorem then yields E[g(Xn)] = E[g(X̃n)]→ E[g(Ỹ )] = E[g(Y )].

“⇐”: Let x ∈ R be such that FY is continuous at x. We have to show that FXn
(x) →

FY (x), i.e. E[g(Xn)] → E[g(Y )] for the discontinuous function g = 1(−∞,x]. To this end, let

ε > 0. By continuity of FY at x, there is δ > 0 such that

FY (x+ δ)− ε/2 ≤ FY (x) ≤ FY (x− δ) + ε/2.

There are continuous g± with 1(−∞,x−δ] ≤ g− ≤ 1(−∞,x] ≤ g+ ≤ 1(−∞,x+δ], to which our

hypothesis applies and yields E[g±(Xn)]→ E[g±(Y )]. In particular,

∃n0 ≥ 0 ∀n ≥ n0, E[g−(Y )]− ε/2 ≤ E[g−(Xn)] ≤ FXn
(x) ≤ E[g+(Xn)] ≤ E[g+(Y )] + ε/2.

such that, as required,

∀n ≥ n0, FY (x)− ε ≤ FY (x− δ)− ε/2 ≤ E[g−(Y )]− ε/2

≤ FXn(x) ≤ E[g+(Y )] + ε/2 ≤ FY (x+ δ) + ε/2 ≤ FY (x) + ε.

We will use the following convergence criterion.

Lemma H.15. A sequence of random variables Xn, n ≥ 1, converges in distribution to Y if

and only if the following two conditions hold.
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A. The family of distributions of Xn, n ≥ 1, is tight in that

∀ε > 0 ∃c0 ≥ 0 such that ∀n ≥ 1, P(|Xn| ≥ c0) < ε.

B. All subsequences of (Xn) that converge in distribution, converge in distribution to Y .

Proof. “⇒”: For condition A, let ε > 0. By properties of the limiting cumulative distribution

function, there is c0 such that P(|Y | ≥ c0) < ε/2, without loss of generality such that

P(|Y | = c0) = 0. By convergence in distribution,

P(Xn ≤ −c0) ≤ P(Y ≤ −c0) + ε/4 and P(Xn ≤ c0) ≥ P(Y ≤ c0)− ε/4.

Hence, P(|Xn| ≥ c0) ≤ P(|Y | ≥ c0) + ε/2 < ε. Condition B is straightforward.

“⇐”: Assume that Xn does not converge to X in distribution, then there is x ∈ R where

FY is continuous but such that FXn
(x) does not converge to FY (x). We can therefore find

ε > 0 and a subsequence (Xn(m)) along which |FXn(m)
(x)−FY (x)| > ε for all m ≥ 1. To find

the desired contradiction (to Condition B), it suffices to show that (Xn(m)) has a subsequence

that converges in distribution.

To this end, consider an enumeration qi, i ≥ 1, of Q. Since [0, 1] is compact, the Bolzano-

Weierstrass Theorem, Theorem B.12, allows us to extract convergent subsequences that we

can inductively refine to have cumulative distribution functions converge at q1, . . . , qk along

the kth subsequence. From this kth subsequence, we take the kth term, denoted by Xn(m(k)),

for each k ≥ 1, to build a “diagonal” subsequence (Xn(m(k))) along which cumulative distri-

bution functions FXn(m(k))
converge at all qi, i ≥ 1, to some limit F̃ : Q → [0, 1], which is

increasing as a limit of increasing functions.

For convergence in distribution of (Xn(m(k))), we will not care about the value of F̃

where left and right limits differ and define the right-continuous modification and extension

F (r) = inf{F̃ (q) : q ∈ Q ∩ (r,∞)}, r ∈ R. Now consider any r ∈ R where F is continuous.

By continuity, we can find three rationals q < q− ≤ r < q+ such that

F (r)− ε < F (q) ≤ F (q−) ≤ F (r) ≤ F (q+) < F (r) + ε.

By convergence of FXn(m(k))
to F̃ ≤ F at q± and noting that F̃ (q−) ≥ F (q), we conclude that

for all k sufficiently large

F (r)− ε < FXn(m(k))
(q−) ≤ FXn(m(k))

(r) ≤ FXn(m(k))
(q+) < F (r) + ε.

For (Xn(m(k))) to converge in distribution, we need to further ensure that the limit F is a

cumulative distribution function. As F is increasing and right-continuous, it remains to show

that F (r) tends to 0 and 1 as r → −∞ and r → ∞, respectively. By monotonicity and

boundedness in [0, 1], the limits always exist in [0, 1], so the only way they can fail to be 0 or

1 is if they are δ or 1− δ for some δ > 0. But this contradicts Condition A for ε = δ/2 since

for k sufficiently large, Condition A entails for any c1 > c0 such that F is continuous at ±c1

FXn(m(k))
(−c1) ≤ P(|Xn(m(k))| ≥ c0) < ε = δ/2 < δ

and FXn(m(k))
(c1) ≥ 1− P(|Xn(m(k))| ≥ c0) > 1− ε = 1− δ/2 > 1− δ,

and these inequalities are preserved in the limit as k → ∞ giving F (−c1) ≤ δ/2 < δ and

F (c1) ≥ 1− δ/2 > 1− δ.
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Theorem H.16 (Convergence theorem for characteristic functions). Suppose X1, X2, . . . and

Y are random variables. Then

Xn
d→ Y as n→∞ ⇐⇒ ∀t ∈ R, φXn

(t)→ φY (t) as n→∞.

Proof. “⇒”: This follows from Theorem H.14, applied to real and imaginary parts.

“⇐”: We apply Lemma H.15. For Condition A, note that characteristic functions are

continuous, by the Dominated Convergence Theorem. In particular φY (t) → φY (0) = 1 as

t ↓ 0. Now let ε > 0. Then we can find m > 0 such that

1

2m

∫ m

−m
(1− φY (t))dt <

ε

4
.

By hypothesis, we have φXn(t) → φY (t), so by dominated convergence, we have, for n suffi-

ciently large,
1

2m

∫ m

−m
(1− φXn

(t))dt <
ε

2
,

where Fubini’s theorem applied to the bounded measurable function f(t, ω) = (1− eitXn(ω))

on [−m,m]× Ω yields

1

2m

∫ m

−m
(1− φXn

(t))dt = E
[

1

2m

∫ m

−m
(1− eitXn)dt

]
= E

[
1− sin(mXn)

mXn

]
.

Hence

P(|Xn| ≥ 2/m) ≤ E
[
2

(
1− 1

|mXn|

)
1{|Xn|≥2/m}

]
≤ 2E

[
1− sin(mXn)

mXn

]
< ε.

For Condition B we just note that the convergence in distribution of any subsequence (Xn(k))

entails the convergence of their characteristic functions to the characteristic function of the

limiting distribution, by Theorem H.14, as argued in the “⇒” direction. But the characteristic

functions of (Xn(k)) converge to the characteristic function of Y by hypothesis. By the

uniqueness theorem, the limiting distribution of (Xn(k)) is the distribution of Y .

Theorem H.17 (Convergence theorem for moment generating functions). Suppose X1, X2, . . .

and Y are random variables whose moment generating functions MX1
,MX2

, . . . and MY are

all finite on [−t0, t0] for some t0 > 0. Then

∀t ∈ [−t0, t0], MXn
(t)→MY (t) as n→∞ ⇒ Xn

d→ Y as n→∞.

Proof. We apply Lemma H.15. For Condition A, we obtain from Markov’s inequality

∀c ≥ 0 P
(
|Xn| ≥ c

)
= P

(
et0|Xn| ≥ et0c

)
≤ e−t0cE

[
et0|Xn|

]
≤ e−t0c

(
MXn(t0) +MXn(−t0)

)
.

Now let ε > 0. By hypothesis, the sequence (MXn(t0) + MXn(−t0)) converges and is hence

bounded, by C, say, so that we can find c = c0 sufficiently large to make the right-hand side

smaller than ε for all n ≥ 1.
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For Condition B, consider any subsequence (Xn(k)) with Xn(k)
d→ Z for some random

variable Z. Note that g(r) = C exp(−t0 log(r)/t) = Cr−t0/t is integrable over [1,∞) for all

t ∈ (0, t0) and the Dominated Convergence Theorem applies to fn(r) = P(|Xn| > log(r)/t),

n ≥ 1, by the display above. Then applying Proposition E.9 to et|Xn(k)|, [1,∞)-valued, yields

E[et|Xn(k)|] = 1 +

∫ ∞
1

P
(
|Xn(k)| >

log(r)

t

)
dr → 1 +

∫ ∞
1

P
(
|Z| > log(r)

t

)
dr = E[et|Z|].

Extending g(r) = 1 on [0, 1), the same argument for one-sided tails P(Xn(k) > log(r)/t) ≤
P(|Xn(k)| > log(r)/t) yields E[etXn(k) ]→ E[etZ ] for all t ∈ (0, t0), and similarly for t ∈ (−t0, 0).

The case t = 0 is trivial. By uniqueness of limits, E[etY ] = E[etZ ] for all t ∈ [−t0/2, t0/2] and

by the Uniqueness Theorem for moment generating functions, Z
d
= Y , as required.

H.3.4 Further details relevant for the generating functions chapter

Remark H.18. In Section 3.2.2 we use that (1+a/n+o(1/n))n → ea. In other words, if an → a,

then (1+an/n)n → ea. In anticipation of applications for characteristic functions, let us here

consider an ∈ C, n ≥ 1, and a ∈ C. By continuity of exp and of the holomorphic log on the

ball of radius 1 around 1 with log(1) = 0, this is equivalent to n log(1 + an/n)→ a. Taylor’s

theorem gives log(1 + z)/z → 1 as z → 0. For a 6= 0, this entails (n/an) log(1 + an/n) → 1,

which is, as required. For a = 0, log(1 + z)/z → 1 gives in particular that | log(1 + z)| ≤ 2|z|
for |z| sufficiently small. This entails that |n log(1 + an/n)| ≤ 2|an| → 2|a| = 0, as required.

Remark H.19. In (3.2), we claim a Taylor expansion for characteristic functions. Whereas

for moment generating functions, the existence of moments followed from the existence of the

moment generating function on some [−t0, t0], t0 > 0, this does not translate to characteristic

functions, which always exist regardless of the existence of moments. We therefore assume

that E[|X|k] <∞ and then note that |ikXkeitX | = |X|k for all t ∈ R, and the Differentiability

Lemma, Theorem G.20, yields that φX is k times continuously differentiable with

φ
(k)
X (t) = ikE[XkeitX ]

Since clearly φ
(k)
X (0) = ikE[Xk] and φX(0) = 1, Taylor’s theorem (for the real and imaginary

parts) yields, as t→ 0,

φX(t) = 1 + itE[X] + i2t2
E[X2]

2!
+ · · ·+ ik−1tk−1E[Xk−1]

(k − 1)!
+ o(tk−1).

where we stress that the argument so far has only provided an expansion up to order k − 1,

not k. In particular, the case k = 2 relevant for the weak law of large numbers requires

E[X2] <∞ and the case k = 3 relevant for the central limit theorem requires E[|X|3] <∞.

This can be improved, though, and we will prove the expansion up to order k in (3.2)

under the assumption E[|X|k] <∞. Let us restate this here.

Proposition H.20. Let X be a random variable with characteristic function φX and finite

kth moment E[|X|k] <∞. Then

φX(t) = 1 + itE[X] + i2t2
E[X2]

2!
+ · · ·+ iktk

E[Xk]

(k)!
+ o(tk).
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Proof. Rather than applying the Taylor expansion to φX directly, we will use a Taylor expan-

sion inside the expectation. Specifically, we expand eiy around 0, and we derive an alternative

remainder term directly. We set

hk(y) = eiy −
k∑

m=0

(iy)m

m!
,

and we note that hk(0) = 0 and h′k(y) = ihk−1(y) for all k ≥ 1. We also note that |h0(y)| ≤ 2.

We proceed inductively and obtain bounds for all k ≥ 1

|hk−1(y)| ≤ 2
|y|k−1

(k − 1)!
⇒ |hk(y)| =

∣∣∣∣∫ y

0

ihk−1(s)ds

∣∣∣∣ ≤ 2

∫ |y|
0

|s|k−1

(k − 1)!
ds = 2

|y|k

k!
.

Similarly, we can start from the estimate

|h0(y)| = |eiy − 1| =
∣∣∣∣∫ y

0

1

i
eisds

∣∣∣∣ ≤ ∫ |y|
0

|eis|ds = |y|

and show inductively that |hk(y)| ≤ |y|k+1/(k + 1)! for all k ≥ 0. In particular, this entails∣∣∣∣∣φX(t)−
k∑

m=0

imtm
E[Xm]

m!

∣∣∣∣∣ ≤ E
[∣∣hk(itX)

∣∣] ≤ tkE[min{t|X|k+1, 2(k + 1)|X|k}]
(k + 1)!

where on the one hand the expectation is finite provided that just E[|X|k] < ∞, and on the

other hand it tends to 0 as t→ 0, by the Dominated Convergence Theorem.

Remark H.21. We then also say “Apart from working with complex power series instead of

real power series, there are no additional complications when translating the proof from mgfs

to cfs.” This is now easily checked, by replacing all mgfs by cfs and t by it, as appropriate.

Proposition H.22. The Cauchy distribution with probability density function f(x) = 1
π(1+x2) ,

x ∈ R, has characteristic function φ(t) = e−|t|.

Proof. Let t > 0. Consider the holomorphic function

g(z) =
eitz

π(1 + z2)
=

1

z − i
eitz

π(z + i)
with Resi(g) =

e−t

2πi
at the simple pole i.

Consider the semi-circular contour of radius R > 1 in the upper half-plane. Then the integral

along the (anti-clockwise) semi-circle γR vanishes as R → ∞ by Jordan’s Lemma, applied

to the meromorphic function f(z) = 1
π(1+z2) that satisfies f(z) → 0 as |z| → ∞. The only

singularity inside the semi-circular contour is at z = i. By the Residue Theorem,

e−t = 2πiResi(g) =

∫ R

−R
g(x)dx+

∫
γR

g(z)dz →
∫ ∞
−∞

eitxf(x)dx.

By symmetry, φ(−t) = φ(t) = e−t. Since also φ(0) = 1, this gives altogether φ(t) = e−|t| for

all t ∈ R.
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H.4 Joint distribution for continuous random variables

In Section 4.1 we express probabilities as bivariate integrals over bivariate Borel sets for

bivariate jointly continuous random variables. More formally, the Borel σ-algebra is defined

to be the smallest σ-algebra that contains all rectangles of the form I1 × · · · × In where

I1, . . . , In ⊆ R are intervals. Recall that all intervals can be expressed via complements,

countable unions and countable intersections in terms of intervals of the form (−∞, b]. An

analogous statement holds for rectangles in Rn, which can be expressed in terms of rectangles

of the form (−∞, b1] × · · · × (−∞, bn]. Specifically, for A = (a1, b1] × · · · × (an, bn] for

−∞ ≤ aj < bj <∞, we can achieve this by taking differences noting that

(a1, b1]× · · · (aj−1, bj−1]× (aj , bj ]× (−∞, bj+1]× · · · (−∞, bn]

=
(

(a1, b1]× · · · (aj−1, bj−1]× (−∞, bj ]× (−∞, bj+1]× · · · (−∞, bn]
)

\
(

(a1, b1]× · · · (aj−1, bj−1]× (−∞, aj ]× (−∞, bj+1]× · · · (−∞, bn]
)
.

Theorem H.23. Let X = (X1, . . . , Xn) be a jointly continuous random vector with joint

p.d.f. fX . Then for all Borel sets A ∈ MBor(Rn), the set {X ∈ A} = {ω ∈ Ω: X(ω) ∈ A} is

an event (in F) and we have

P(X ∈ A) =

∫
A

fX(x)dx,

where this integral is against Lebesgue measure on Rn.

Proof. We adapt the proof of Theorem G.7, which covers the case n = 1. For n ≥ 2, the

claim holds for A = (−∞, x1] × · · · × (−∞, xn] by definition. Since the Borel σ-algebra of

Rn is generated by the collection of subsets of this form, the remainder of the argument of

Theorem G.7 can be read verbatim as an argument in Rn.

Remark H.24. The Probability part of the proof of Theorem 4.1 is complete. As mentioned

before in a different context, what has not been proved rigorously is the change of variables

formula for two- or higher-dimensional integrals. A version of the two-dimensional case was

stated but not proved in Theorem F.26 within Part A Integration.

Let us state here the version provided as a non-examinable 15-page document in the Part

A Integration course. This is sufficient for our purposes.

Theorem H.25. Consider two open sets D,R ⊆ Rn and a bijective transformation T : D →
R that is continuously differentiable with continuously differentiable inverse. Then a function

f : R → R is Lebesgue integrable over R if and only if (f ◦ T )|detJT | is Lebesgue integrable

over D. In that case ∫
R

f =

∫
D

(f ◦ T )|detJT |.

Remark H.26. The heuristic derivation of conditional densities in (4.3) is claimed to be

justified if fX,Y is “sufficiently smooth.” Let us explore conditions under which this holds.

In fact, it suffices to have the following limits

lim
ε↓0

1

ε

∫ x+ε

u=x

fX(u)du = fX(x) and lim
ε↓0

1

ε

∫ x+ε

u=x

∫ y

v=−∞
fX,Y (u, v)dvdu =

∫ y

v=−∞
fX,Y (x, v)dv.
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The first one holds if fX is right-continuous at x. In the same way, the second one follows if we

establish that u 7→
∫ y
v=−∞ fX,Y (u, v)dv is continuous at u = x. This holds by the Dominated

Convergence Theorem if we assume that u 7→ fX,Y (u, v) is right-continuous at x for all v and

fX,Y (u, v) ≤ g(v) for some function g that is integrable on (−∞, y] for all y. If we strengthen

the integrability of g to integrability on R, this also includes the right-continuity of fX at x.

Remark H.27. The purpose of Section 4.4.3 is to avoid getting bogged down in lengthy

transformation formula arguments for bivariate normal distributions. We claim that having

Y = ρ
σ2

σ1
(X − µ1) +

√
1− ρ2σ2Z2 + µ2 =: gX(Z2)

for independent X and Z2 entails that the conditional distributions of Y = gX(Z2) given

X = x is just the distribution of gx(Z2). You may feel that this makes intuitive sense since

when X = x, all randomness of Z2 still remains. More formally, we can easily check that by

a quick argument involving the transformation formula for probability density functions,

fY |X=x(y) =
fX,Y (x, y)

fX(x)
=
fX,Z2(x, g−1

x (y))|(g−1
x )′(y)|

fX(x)
= fZ2

(g−1
x (y))|(g−1

x )′(y)| = fgx(Z2)(y).

H.5 Markov chains: Introduction

Lemma H.28. Consider a countable set I, an initial distribution λ and a transition matrix

P = (pij)i,j∈I . Then there is a probability space (Ω,F ,P) on which we can define a Markov

chain (Yn)n≥0 with initial distribution λ and transition matrix P .

Proof. Without loss of generality, I is countably infinite (the finite case being analogous). Fix

bijections f : I → N and write g = f−1. Then, pi,g(n), n ∈ N, pi,x = 0, x 6∈ N, is a probability

mass function on R, for each i ∈ I. Consider the associated cumulative distribution functions

Fi : R→ [0, 1], i ∈ I and let Qi(u) = inf{x ∈ R : Fi(x) > u}, u ∈ [0, 1].

Let U be uniformly distributed on [0, 1]. Recall from Corollary G.2 that Qi(U) has

cumulative distribution function Fi, and hence P(g(Qi(U)) = j) = P(Qi(U) = f(j)) = pij for

all i, j ∈ I. Similarly, the cumulative distribution function Fλ associated with λg(n), n ∈ N,

and Qλ(u) = inf{x ∈ R : Fλ(x) > u}, u ∈ [0, 1], gives access to a random variable g(Qλ(U))

with the initial distribution.

Now consider the setting of Corollary G.4, where Xk−1 := Uk, k ≥ 1, is a sequence of

independent uniform random variables. We claim that the process Y0 = g(Qλ(X0)), Yn =

g(QYn−1
(Xn)), n ≥ 1, is a Markov chain with initial distribution λ and transition matrix P .

To see this, note that for all n ≥ 0 and all i0, . . . , in ∈ I

{Y0 = i0, Y1 = i1, . . . , Yn = in}

= {g(Qλ(X0)) = i0, g(Qi0(X1)) = i1, . . . , g(Qin−1(Xn)) = in}

= {Fλ(f(i0)) < X0 ≤ Fλ(f(i0) + 1),

Fi0(f(i1)) < X1 ≤ Fi0(f(i1) + 1), . . . , Fin−1(f(in)) < Xn ≤ Fin−1(f(in) + 1)}

and hence by independence of X0, . . . , Xn,

P(Y0 = i0, Y1 = i1, . . . , Yn = in)
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= P(g(Qλ(X0)) = i0)P(g(Qi0(X1)) = i1) · · ·P(g(Qin−1(Xn)) = in)

= λi0pi0,i1 · · · pin−1,in ,

as required for a Markov chain with initial distribution λ and transition matrix P .

Remark H.29. One may question why we only considered the joint distributions of finitely

many random variables, not of the entire sequence. We are interested in events of the form

E = {Wn 6= i for all n ≥ 0} or E′ = {W visits i infinitely often}

that depend on infinitely many random variables. While E is easily well-approximated by

events only depending on finitely many random variables, this may at first not seem to be

the case for E′ since E′ poses no restriction on any finite number of Wn. However, this can

still be done:

E′ =
⋂
k≥1

⋃
1≤n1<···<nk

{Wnj = i, 1 ≤ j ≤ k}

so the probabilities of such events of interest to us are determined by the distributions of any

finite family of random variables. This can be formalised further in Kolmogorov’s consistency

theorem which in our context essentially says that (a consistent system of) distributions of

any finite family of random variables gives rise to a unique distribution of the sequence of

random variables, and this means that probabilities of all events that depend on the sequence

are indeed determined by this unique extension. We will not make precise what the meaning

of this statement is nor how to prove anything like this.

Remark H.30. We use the term “transition matrix” also when the state space is countably

infinite. This means that the entries of products of transition matrices are (convergent!) series.

Most prominently, in the setting of Theorem 5.2, we use notation Pn for the nth power of P .

In general, such “matrix” products require certain assumptions, but in our context all entries

and the row sums are bounded by 1, so even before the identification with n-step transition

probabilities, the convergence of the series is guaranteed by simple comparison tests.

Remark H.31. Sections 5.7 ad 5.8 involve successive hitting times. The fact that the process

after the hitting time is independent of the process before the hitting time (and that the

process after the hitting time is another Markov chain) can be proved directly using the

Markov property as discussed in Seciton 5.2, or it is an instance of the Strong Markov property

that generalises the (simple) Markov property from fixed times to certain random times.

Definition H.32. Consider a Markov chain W with state space S. A stopping time is a

random variable N : Ω → {0, 1, 2, . . .} ∪ {∞}, for which the event {N = n} depends only on

W0, . . . ,Wn, for all n ≥ 0.

Lemma H.33. For any B ⊆ S, the first hitting time HB = inf{n ≥ 0: Wn ∈ B} is a

stopping time

This is an (elementary) optional exercise in Part A Probability.

Theorem H.34 (Strong Markov property). Let W be a Markov chain and N a stopping

time. Then conditionally given {N < ∞,WN = i}, the post-N process (WN+k, k ≥ 0) is a

Markov chain starting from i that is conditionally independent of (Wj , 0 ≤ j ≤ N − 1).



Probability Part A, version of 26 October 2021 133

This is a (harder) optional exercise in Part A Probability. Let us explore the meaning of

this statement here.

Remark H.35. In the exploration of the (simple) Markov property (the case N = n determin-

istic in Theorem H.34) in Section 5.2, we expressed the conditional independence in several

ways relating joint (conditional) distributions. As noted in Remark H.29, it is natural and

indeed sufficient for our purposes and much more generally to consider distributions of finitely

many random variables. In the statement of the strong Markov property, this remark applies

to both the post-N process and the pre-N process, which has a random length.

Specifically, if P(N = ∞) = 0, the random process (Wj , 0 ≤ j ≤ N − 1) takes values in

the countable set
⋃
n≥0 S

n, except on an event {N =∞} of probability 0, so its distribution

is naturally expressed as the probability mass function

P((Wj , 0 ≤ j ≤ N − 1) = (ij , 0 ≤ j ≤ n− 1)), (ij , 0 ≤ j ≤ n− 1) ∈ Sn, n ≥ 0.

More generally, we can use events of the form

E =
⋃

0≤n<∞

{
W0 ∈ A(n)

0 , . . . ,Wn−1 ∈ A(n)
n−1

}
∩ {N = n}.

If P(N =∞) > 0, the statement of the Markov is still conditional given N <∞ and the above

probability mass function expresses the relevant part of the distribution of the pre-N process

(Wj , 0 ≤ j ≤ N − 1), on {N < ∞}, while for the sake of also capturing the distribution

on {N = ∞}, we remark that we can continue to rely on the observation in Remark H.29

that the (consistent) specification of the joint distributions of finitely many random variables

also identifies probabilities of events of interest that depend on the entire sequence. For

applications beyond the strong Markov property, we may therefore complement the above by

events of the form

E = {W0 ∈ A(∞)
0 , . . . ,Wk−1 ∈ A(∞)

k−1, N =∞}.

or combine the above events more generally into events of the form

E = {W0 ∈ A0, . . . ,Wk−1 ∈ Ak−1, N ≥ k}.

Let us note three corollaries of the strong Markov property that clarify steps of arguments

respectively in the remark offering an alternative approach at the end of the gambler’s ruin

example in Section 5.7, in the setup of recurrence and transience at the beginning of Section

5.8, and when we revisit the gambler’s ruin in Section 5.10.1.

Corollary H.36. Let X be a general birth-and-death chain with non-trivial transition prob-

abilities

pi,i+1 = pi, i ≥ 0, pi,i−1 = 1− pi, i ≥ 1, p0,0 = 1− p0

for some pi ∈ [0, 1], i ≥ 0. Let ri = Pi(hit i− 1), i ≥ 1. Then Pi(hit 0) = ri · · · i1, i ≥ 1.

Proof. For i = 1, this is trivial. Inductively assuming the claim for some i ≥ 1, we note that

with probability 1, birth-and-death processes starting from i + 1 must visit i before visiting

0, i.e. H{i} ≤ H{0}. We apply the strong Markov property at the stopping time H{i} to
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find that conditionally given {H{i} < ∞} = {H{i} < ∞, XH{i} = i}, the post-H{i} process

(XH{i}+k, k ≥ 0) is distributed like X starting from i and

Pi+1(hit 0) = Pi+1(H{0} <∞) = Pi+1(H{i} <∞)Pi+1(H{0} <∞|H{i} <∞)

= Pi+1(hit i)Pi(H{0} <∞) = ri+1ri · · · r1.

Corollary H.37. Suppose that (Xn, n ≥ 0) is a Markov chain on a state space S and that

i ∈ S is a state that is transient in the sense that

Pi(Xn = i for some n ≥ 1) = p < 1.

Then the total number of visits to i has geometric distribution with parameter 1− p.

Proof. Let R
{i}
0 = 0 and denote by R

{i}
m = inf{n ≥ R{i}m−1 +1: Xn = i}, m ≥ 1, the successive

return times, with the conventions that inf ∅ = ∞ and that R
{i}
m = ∞ if R

{i}
m−1 = ∞. Then

the number G of returns to i satisfies

Pi(G = 0) = Pi(R{i}1 =∞) = Pi(Xn 6= i for all n ≥ 1) = 1− p and Pi(G ≥ 1) = p.

The strong Markov property at R
{i}
m , which is easily seen to be a stopping time, yields

that conditionally given {R{i}m < ∞} = {R{i}m < ∞, X
R
{i}
m

= i}, the post-R
{i}
m process

(X
R
{i}
m +k

, k ≥ 0) has the same distribution as X, starting from i. Note that the (m + 1)st

return time of X is finite if and only if the first return time of the post-R
{i}
m process is finite.

Inductively, assuming that P(G ≥ m) = pm for some m ≥ 1, this yields

Pi(G ≥ m+ 1) = Pi(R{i}m+1 <∞) = Pi(R{i}m <∞)Pi(R{i}m+1 <∞|R{i}m <∞)

= Pi(R{i}m <∞)Pi(R{i}1 <∞) = pm+1.

Corollary H.38. In the setting of Corollary H.36, let di = Ei[H{i−1}], i ≥ 1. Then

Ei[H{0}] = d1 + · · ·+ di, i ≥ 1.

To deduce this carefully from the strong Markov property is an optional exercise in Part

A Probability.

Remark H.39. In the proof of Theorem 5.8, interchanging expectation and series is justified

by Tonelli’s theorem.

Proposition H.40. (a) Let C be a recurrent communicating class. Either all states in C

are positive recurrent, or all are null recurrent (so we may refer to the whole class as

positive recurrent or null recurrent).

(b) Every finite recurrent class is positive recurrent.

(c) If C is positive recurrent, then Ej [inf{n ≥ 1: Xn = i}] <∞ for all i, j ∈ C.

This is an optional exercise in Part A Probability.
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H.6 Markov chains: stationary distributions and conver-

gence to equilibrium

Remark H.41. In the proof of the ergodic theorem for Markov chains, there are three points

of detail that we would like to clarify.

1. In the recurrent case, we claim that the times between successive visits of a state i are

i.i.d.. To prove this, we proceed as in the proof of Corollary H.37, where now {R(i)
m <

∞} = {R(i)
m < ∞, X

R
(i)
m

= i} has probability 1. Hence, the strong Markov property

yields that (X
R

(i)
m +k

, k ≥ 0) is (unconditionally!) independent of (Xj , 0 ≤ j ≤ R(i)
m − 1)

and hence of (R
(i)
1 , R

(i)
2 − R

(i)
1 , . . . , R

(i)
m − R(i)

m−1). Furthermore, (X
R

(i)
m +k

, k ≥ 0) is a

Markov chain starting from i whose first return time to i is R
(i)
m+1−R

(i)
m , which therefore

has a distribution that does not depend on m. By induction, R
(i)
1 , R

(i)
2 −R

(i)
1 , . . . , R

(i)
m −

R
(i)
m−1, R

(i)
m+1 −R

(i)
m are independent.

2. We use the strong law of large numbers for these i.i.d. random variables, which may

or may not have finite fourth moment, indeed even for random variables with infinite

expectation. In order to have a complete proof of the ergodic theorem, we therefore

need to establish a sufficiently general strong law of large numbers. For finite mean,

we leave this to Part B Probability, Measure and Martingales. For infinite mean, we

explore this in the following theorem.

3. We claim that the asymptotics Tk/k → mi ∈ (0,∞] for the time Tk of the kth visit to i

implies the asymptotics Vi(n)/n→ 1/mi ∈ [0,∞) for the number Vi(n) of visits to i by

time n. To prove this formally, we first note that recurrence implies that Vi(n) → ∞
almost surely. Furthermore, we note that TVi(n) ≤ n ≤ TVi(n)+1, and on the event

{Vi(n)→∞}, this yields

TVi(n)

Vi(n)
≤ n

Vi(n)
≤

TVi(n)+1

Vi(n) + 1

Vi(n) + 1

Vi(n)
.

By algebra of limits we conclude that on the event {Vi(n) → ∞} ∩ {Tk/k → mi} of

probability 1, we have sandwiched n/Vi(n) between two sequences that converge to mi.

Hence, Vi(n)/n converges to 1/mi almost surely.

Theorem H.42 (Strong law of large numbers for non-negative random variables with infinite

mean). Let Xn, n ≥ 1, be i.i.d. non-negative random variables with µ := E[X1] = ∞. Let

Sn = X1 + · · ·+Xn, n ≥ 1. Then

Sn
n
→ µ =∞ almost surely, as n→∞.

Proof. For any K ∈ [0,∞), consider the sequence X
(K)
n := min{Xn,K}, n ≥ 1, of i.i.d.

random variables with finite mean µK := E[X
(K)
1 ] < ∞ and E

[(
X

(K)
1

)4] ≤ K4 < ∞. Let

S
(K)
n = X

(K)
1 + · · ·+X

(K)
n , n ≥ 1. By the strong law of large numbers for random variables

with finite fourth moment,

Sn
n
≥ S

(K)
n

n
→ µK almost surely, as n→∞.
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Now note that X
(K)
1 , K ≥ 1, is an increasing sequence of random variables with limit X1.

The monotone convergence theorem yields that µK = E[X
(K)
1 ] → E[X1] = µ = ∞. Now fix

M ≥ 1. Then µK ≥ M + 1 for all K sufficiently large and Sn/n ≥ M for all n sufficiently

large, except possibly on a set AM of probability 0. But then Sn/n→∞ except possibly on⋃
M≥1AM , which also has probability zero by countable subadditivity.

Remark H.43. In the informal proof of Lemma 6.11, we use the ergodic theorem to obtain

the asymptotics for the number of visits to i and j, but we also rely on the observation that

a proportion pi,j of the visits to i is followed by a transition into j. There are several ways

to make this rigorous. Maybe the quickest is to make the second statement precise using the

strong law of large numbers and then to carefully combine the two almost sure limits. In

the following, we work out an alternative proof that is more explicit about the dependence

structure induced by the repeated trials of transitioning to j after visiting i.

Indeed, our aim is to apply the ergodic theorem directly. We consider S = {(i, j) ∈
I2 : pi,j > 0} ⊂ I2 and the S-valued process Wn = (Xn, Xn+1), n ≥ 1. It is easy to see that

this is an irreducible Markov chain with (non-zero) transition probabilities, for (i, j), (j, k) ∈
S, given by

q(i,j),(j,k) = P(Wn+1 = (j, k)|Wn = (i, j)) = P(Xn+2 = k|Xn+1 = j,Xn = i) = pj,k.

Then the expected return time m(i,j) by W from (i, j) back to itself can be split at the

successive visits of X to i, each of which has probability pi,j of being followed by a tran-

sition to j, independently of previous visits to i, by the strong Markov property. Hence,

the number G of visits to i before the first transition from i to j is geometrically dis-

tributed with success probability pi,j . The first visit to i takes a number of steps with

mean Ej [H{i}] = Ei
[
R
{i}
1 |X1 = j

]
− 1, the unsuccessful trials take independent identically

distibuted numbers Nm of steps with mean Ei
[
R
{i}
1 |X1 6= j

]
, and the successful trial adds 1,

so that

m(i,j) = Ei
[
R
{i}
1 |X1 = j

]
− 1 + E

[
G−1∑
m=1

Nm

]
+ 1

= Ei
[
R
{i}
1 |X1 = j

]
+ E[G− 1]E[N1]

= Ei
[
R
{i}
1 |X1 = j

]
+

1− pi,j
pi,j

Ei
[
R{i}|X1 6= j

]
=

1

pi,j

(
Ei
[
R
{i}
1 |X1 = j

]
Pi(X1 = j) + Ei

[
R
{i}
1 |X1 6= j

]
Pi(X1 6= j)

)
=

1

pi,j
Ei
[
R
{i}
1

]
=
mi

pi,j
.

This allows us to relate proportions Vj(n) of X and V(i,j)(n− 1) of W as

1

mj
← Vj(n)

n
=

1{X0 = j}
n

+
∑
i∈I

V(i,j)(n− 1)

n− 1

n− 1

n
→
∑
i∈I

pi,j
mi

,

certainly when I is finite, and for counably infinite I by the argument presented at the end

of the proof of Lemma 6.11.
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Remark H.44. In the proof of Lemma 6.12, we indicate an argument based on convergence

in probability to see that for all ε > 0 and n sufficiently large

E
[
Vn(i)

n

]
= E

[
Vn(i)

n
1

{∣∣∣∣Vn(i)

n
− 1

mi

∣∣∣∣ > ε

}]
+ E

[
Vn(i)

n
1

{∣∣∣∣Vn(i)

n
− 1

mi

∣∣∣∣ ≤ ε}]
≤ P

(∣∣∣∣Vn(i)

n
− 1

mi

∣∣∣∣ > ε

)
+

1

mi
+ ε ≤ 1

mi
+ 2ε

≥ 0 +

(
1

mi
− ε
)
P
(∣∣∣∣Vn(i)

n
− 1

mi

∣∣∣∣ ≤ ε) ≥ 1

mi
− (1 +

1

mi
)ε,

since 0 ≤ Vi(n)/n ≤ 1, and hence

E[Vn(i)]

n
→ 1

mi
as n→∞.

Alternatively, this follows straight from the dominated convergence theorem.

Recall that the proof of the ergodic theorem was based on the strong law of large num-

bers, whose proof is only completed in Part B Probability, Measure and Martingales, so the

advantage of the above argument is that the strong law of large numbers, while not yet fully

proved, is a key result for both theory and applications, while the dominated convergence

theorem is a key result in a measure-theoretic approach to Probability.

Remark H.45. Lemma 6.12 shows that the existence of a stationary distribution on a class

C ⊆ I implies that mi <∞ for some i ∈ C, i.e. that some i ∈ C is positive recurrent. Since

positive recurrence is a class property, the same holds for all i ∈ C. Conversely, in the setting

of the ergodic theorem, we note that
∑
i∈I Vi(n)/n = 1 for all n ≥ 1, and as the terms under

the sum converge to 1/mi, we obtain that
∑
i∈I(1/mi) = 1 for finite I, by algebra of limits.

For countably infinite I, this is more delicate. One way to extend to this case is to note

that
∑
i∈J(1/mi) ≤ 1 for all finite J ⊂ I. But then, in the positive recurrent case, we have

0 < M :=
∑
i∈I(1/mi) ≤ 1 and πi = 1/(miM), i ∈ I, is a stationary distribution, which by

Lemma 6.12 is actually πi = 1/mi, so M = 1.

Proposition H.46. Let X be an irreducible Markov chain with transition matrix P and state

space S. Then i ∈ S is aperiodic if and only if p
(n)
i,i > 0 for all sufficiently large n.

This is an optional exercise in Part A Probability, which is useful to formalise a step in

the rather informal proof of the Markov chain convergence theorem given in the main body

of the lecture notes. Another optional exercise is to make all informal steps in that proof

formal.

H.7 Poisson processes

Remark H.47. Poisson processes are families of uncountably many random variables. How-

ever, they do not require any bigger probability spaces because these uncountably many

random variables can all be expressed as functions of a countable family of random variables.

Specifically, the definition based on i.i.d. exponentially distributed inter-arrival times does

precisely this. As we have demonstrated previously, there is a probability on which these
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i.i.d. exponentially distributed random variables Yn : Ω→ [0,∞), n ≥ 1, can be defined. The

construction

Nt(ω) = #{n ≥ 1: Y1(ω) + · · ·+ Yn(ω) ≤ t} =
∑
n≥1

1{Y1(ω) + · · ·+ Yn(ω) ≤ t}, t ≥ 0,

then specifies all Nt : Ω → {0, 1, 2, . . .} ∪ {∞}, t ≥ 0, and these are random variables since

sums and limits (series) of random variables are also random variables.

Remark H.48. The main body of the lecture notes has an informal proof that the increments

in the setting of the definition based on independent inter-arrival times are independent. This

is informal, because it involves conditioning infinitely many random variables on finitely many

continuously distributed random variables. Rather than formalising this, we give a technically

simpler alternative proof based on conditioning on the event {Ns = k} of positive probability.

We claim that conditionally given {Ns = k}, the post-s process Ñu = Ns+u − Ns, u ≥ 0,

is a Poisson process of rate λ in the sense that its inter-arrival times Ỹn, n ≥ 1, which on

{Ns = k} satisfy

Ỹ1 = Yk+1 − (s− Tk), Ỹ2 = Yk+2, Ỹ3 = Yk+3, . . .

are i.i.d. Exp(λ). Since {Ns = k} = {Tk ≤ s, Tk + Yk+1 > s} and also {Ỹ1 ≤ z} only depend

on Y1, . . . , Yk+1, the intersection of these events is independent of the random variables Ỹn,

n ≥ 2, and it suffices to show that the conditional distribution of Ỹ1 given {Ns = k} is also

Exp(λ). To this end, we calculate P(Ỹ1 > z|Ns = k) as

P(Yk+1 − (s− Tk) > z|Tk ≤ s, Tk + Yk+1 > s) =
P(Yk+1 > (s− Tk) + z, Tk ≤ s)
P(Yk+1 > (s− Tk) , Tk ≤ s)

.

Numerator and denominator are of the same form, and written as an integral, this gives

P(Yk+1 > (s− Tk) + z, Tk ≤ s) =

∫ s

0

∫ ∞
s−t+z

fTk
(t)fYk+1

(y)dydt = e−λs
λk

(k − 1)!

sk

k
e−λz.

After cancellation, the preceding equation further equals e−λz, as required to identify Exp(λ)

as the conditional distribution of Ỹ1 given {Ns = k}. Since this conditional distribution does

not depend on k, it is also the unconditional distributio, by the law of total probability

P(Ỹ1 > z) =

∞∑
k=0

P(Ỹ1 > z|Ns = k)P(Ns = k) =

∞∑
k=0

e−λzP(Ns = k) = e−λz,

and so P(Ns = k, Ỹ1 > z) = P(Ns = k)P(Ỹ1 > z). Hence, Ns and Ỹ1 are independent and Ñ

is a Poisson process of rate λ that is independent of Ns. An induction establishes independent

Poisson increments.

Remark H.49. Our proof of the claim that a Poisson process in the sense of independent

Poisson increments has independent Exp(λ) inter-arrival times is not a formal proof either.

Indeed, there is a non-trivial question about whether Y1 = inf{t > 0: Nt > 0} is even a

random variable in the sense that sets like {Y1 < z} = {ω ∈ Ω: Nt > 0 for some t ∈ (0, z)} =⋃
t∈(0,z){Nt > 0} are in the σ-algebra F of the probability space (Ω,F ,P) on which Nt, t ≥ 0,

are defined. The subtlety is that {Y1 < z} depends on uncountably many random variables,

and uncountable unions of events need not be events in F .
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If we further stipulate that (Nt, t ≥ 0) is a counting process with values in {0, 1, 2, . . .}
that is increasing in the sense that Ns ≤ Nt, the answer to this question is “yes” as it

suffices to restrict the union to t ∈ Q, and we then similarly find that Tk, k ≥ 1, and hence

Yk = Tk−Tk−1, k ≥ 2, are also random variables. Clearly, the existence of such a process has

been proved by the construction from independent Exp(λ) inter-arrival times, but the further

question that is being asked here is whether the independent Poisson increments uniquely

identify the distribution of the inter-arrival times. In the setting of (increasing) counting

processes, the answer is “yes,” because we can re-express events such as

{T1 ≤ s1, T2 ≤ s2, . . . , Tk ≤ sk} = {Ns1 ≥ 1, Ns2 ≥ 2, . . . , Nsk ≥ k}.

so the joint distribution of any finite number of arrival times, or equivalently inter-arrival

times, is uniquely identified by the joint distributions of (Nt, t ≥ 0) at finitely many times,

or equivalently the increments between those times.

Theorem H.50. Definition 7.4 via infinitesimal increments defines a rate-λ Poisson process.

Proof. In the setting where (Nt, t ≥ 0) is a counting process that satisfies the Poisson in-

crements definition, (Nt, t ≥ 0) already satisfies conditions (i) and (ii) of Definition 7.4. For

(iii), just note that the Poisson increments yield that the distribution of N(s, s+ h] does not

depend on s ≥ 0 and that

P(N(s, s+ h] = 0) = e−λh = 1− λh+ o(h)

P(N(s, s+ h] = 1) = λhe−λh = λh+ o(h)

P(N(s, s+ h] ≥ 2) = 1− P(N(s, s+ h] ≤ 1) = 1− e−λh − λhe−λh = o(h).

It remains to prove that (i)–(iii) suffice to uniquely characterise the Poisson process of rate

λ. Indeed, as the distribution of N(s, s+ h] does not depend on s, it suffices to identify the

distribution of Nt for all t > 0. We find from the i.i.d. increments that for all k ∈ {0, 1, 2, . . .},

P(Nt = k) = P

(
n∑
i=1

N

(
i− 1

n
t,
i

n
t

]
= k

)

≥ P
(
N

(
i− 1

n
t,
i

n
t

]
= 1 for k values of i and N

(
i− 1

n
t,
i

n
t

]
= 0 otherwise

)
=

(
n

k

)(
λ
t

n
+ o

(
t

n

))k (
1− λ t

n
+ o

(
t

n

))n−k
=
n(n− 1) · · · (n− k + 1)

nk
(λt+ o(1))k

k!

(
1− λt+ o(1)

n

)n−k
→ (λt)k

k!
e−λt.

This is a lower bound since we ignored the possibility that any of the n intervals contributes

2 or more to Nt. We obtain an upper bound by adding to the above a term that includes all

of these possibilities (and even drops the requirement to sum to k). Specifically, we add

P

(
n⋃
i=1

{
N

(
i− 1

n
t,
i

n
t

]
≥ 2

})
≤

n∑
i=1

P
(
N

(
i− 1

n
t,
i

n
t

]
≥ 2

)
= n o

(
t

n

)
→ 0,

and a sandwich argument completes the proof.
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Remark H.51. In the statement of Theorem 7.6 on thinning, we mark points of a Poisson

process independently with probability p. Formally, we can use an independent sequence of

Bernoulli variables Ik, k ≥ 1, such that Ik is associated with the point at Tk = Y1+· · ·+Yk, on

a probability space with a sequence of independent uniform variables Um, m ≥ 1, where we use

the even subsequence to construct Yk = −(log(U2k))/λ ∼ Exp(λ) and the odd subsequence

to construct the Ik = 1{U2k−1 ≤ p} ∼ Bernoulli(p), k ≥ 1.

This notation for Bernoulli variables works well to show (i)–(iii) in the Poisson increments

definition. Specifically, for (ii), the events

Ej := {N(tj−1, tj ] = nj , In1+···+nj−1+1 = ij,1, . . . , In1+···+nj = ij,nj}, 1 ≤ j ≤ k,

are independent for all nj ∈ {0, 1, 2, . . .} and ij,1, . . . , ij,nj
∈ {0, 1}, 1 ≤ j ≤ k. Summing

their probabilities over the nj and ij,r, for fixed sums ij,1 + · · · + ij,nj
= mj , 1 ≤ j ≤ k, we

conclude the independence of events {M(tj−1, tj ] = mj}, 1 ≤ j ≤ k, as required.

In Remark 7.7 we claim that the process of unmarked points is an independent Poisson

process. Indeed, the independence of events {M(tj−1, tj ] = mj , L(tj−1, tj ] = `j} can be read

as above, just also fixing nj = mj + `j , 1 ≤ j ≤ k. We then revisit the calculation for (iii) in

the proof of Theorem 7.6 and find

P(M(0, t] = m,L(0, t] = `) = P

N(0,t]∑
r=1

Ir = m

∣∣∣∣∣∣N(0, t] = m+ `

P(N(0, t] = m+ `)

= P

(
m+∑̀
r=1

Ir = m

∣∣∣∣∣N(0, t] = m+ `

)
P(N(0, t] = m+ `)

= P

(
m+∑̀
r=1

Ir = m

)
P(N(0, t] = m+ `)

=

(
m+ `

m

)
pm(1− p)` e

−λλm+`

(m+ `)!

=

(
e−λp(pλ)m

m!

)(
e−(1−p)λ((1− p)λ)`

`!

)
.

Proposition H.52. Let B
(n)
r , r ≥ 1, be independent Bernoulli variables with success proba-

bility λ/n, for each n ≥ 1. Define

� the discrete-time counting process X
(n)
m = B

(n)
1 + · · ·+B

(n)
m , m ≥ 0,

� the discrete-time arrival times R
(n)
k = inf{m ≥ 0: X

(n)
m ≥ k}, k ≥ 1, and also R

(n)
0 = 0,

� the discrete-time inter-arrival times G
(n)
j = R

(n)
j −R(n)

j−1.

Then the increments X
(n)
mj −X

(n)
mj−1 , 1 ≤ j ≤ k, are independent Binomial(mj −mj−1, λ/n)

for all 0 = m0 ≤ m1 ≤ · · · ≤ mk and k ≥ 1. Also, the discrete-time inter-arrival times form

a sequence of independent Geometric(λ/n) random variables.

Proof. This is elementary.

Corollary H.53. In the setting of Proposition H.52, consider continuous-time counting pro-

cesses N
(n)
t := X

(n)
bntc, t ≥ 0, that incorporate n discrete time steps per unit time, with
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arrival times T
(n)
k := inf{t ≥ 0: N

(n)
t ≥ k} = R

(n)
k /n, k ≥ 1, and inter-arrival times

Y
(n)
j := T

(n)
j − T (n)

j−1 = G
(n)
j /n, j ≥ 1. Then we have, as n→∞,

P(N (n)(0, t1] = m1, . . . , N
(n)(tk−1, tk] = mk)→ P(N(0, t1] = m1, . . . , N(tk−1, tk] = mk)

and

P(Y
(n)
1 ≤ y1, . . . , Y

(n)
k ≤ yk)→ P(Y1 ≤ y1, . . . , Yk ≤ yk),

where N is a Poisson process of rate λ with inter-arrival times Yj, j ≥ 1.

Proof. Just note that the independence observations in Proposition H.52 and the indepen-

dence properties of Poisson increments and inter-arrival times allow us to split the joint

probabilities into products of probabilities, which each converge by the convergence theorems

of Binomial to Poisson and Geometric to Exponential as noted in Section 7.4.

We can view these as simple instances of multivariate convergence in distribution. Specifi-

cally, they can be seen as “finite-dimensional convergence” of the processesN (n) to the limiting

process N . Other instances of multivariate convergence in distribution can be obtained by

combining two applications of the central limit theorem to pairs of random variables that are

independent within each pair, which comes up in Question 8 on Problem Sheet 2. It takes

more development of this notion to deduce the convergence of probabilities that relate the two

random variables in ways that do not factorise. While this was applied in an informal way in

the problem sheet question, we refer to the Part C course on Limit Theorems and Large De-

viations in Probability for relevant theory in the much higher generality of weak convergence

of probability measures on metric spaces, which also allows to strengthen the convergence in

Corollary H.53 to a convergence of distributions on a the space of right-continuous functions

with left limits equipped with the Skorokhod topology.



I

Prelims Algebra: Relevant material

This appendix contains a selection of statements of definitions and theorems from the Prelims

Linear Algebra courses that are relevant for Part A Probability. Most importantly, what we

need are eigenvalues and eigenvectors of square matrices. Relevant for some examples are also

some properties of permutations (borrowed from the Groups and Groups Actions course) and

the notion of diagonalisability of a square matrix. Again for the sake of dealing with certain

examples, we add material on recurrence relations that was essentially included in the Prelims

Probability course. Specifically, we state results on solutions to recurrence relations for first

and second order with constant coefficients, and we include a proof in the case of second order

results, extrapolating slightly from the special cases covered in Prelims Probability.

I.1 Linear Algebra I

Definition I.1. Let m,n be positive integers. An m× n matrix is an array of real numbers

arranged into m rows and n colums. Row vectors in Rn are 1×n matrices and column vectors

in Rncol are n× 1 matrices.

Definition I.2 (Matrix multiplication). If A = (aij) is an m × n matrix and B = (bjk) an

n× p matrix, then the product C = AB is the m× p matrix with entries

cik =

n∑
j=1

aijbjk, 1 ≤ i ≤ m and 1 ≤ k ≤ p.

When m = n = p, we write A2 for the product AA and inductively Aq+1 = AqA for q ≥ 2.

We also define A0 = In, where In = (δij) is the identity matrix with entries δij = 1 if i = j

and δij = 0 if i 6= j. Note that AqAr = Aq+r for all q, r ≥ 0.

Definition I.3. We say that vectors v1, . . . , vm ∈ Rn are linearly independent if the only

solution to the equation

α1v1 + · · ·+ αmvm = 0, where α1, . . . , αm ∈ R,

is α1 = · · · = αm = 0.

142
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I.2 Linear Algebra II

Let Mn(R) be the set of n × n matrices with real entries. For A ∈ Mn(R) we write A =

[a1, . . . ,an] where ai ∈ Rncol, 1 ≤ i ≤ n, are the columns of A.

Definition I.4. A function D : Mn(R)→ R is determinantal if it is

(a) multilinear in the columns:

D[. . . , cai + bi, . . .] = cD[. . . ,ai, . . .] +D[. . . ,bi, . . .],

(b) alternating: D[. . . ,ai,ai+1, . . .] = 0 if ai = ai+1,

(c) and D(In) = 1.

Proposition I.5. Let D : Mn(R)→ R be a determinantal map. Then

(a) D[. . . ,ai, . . . ,aj , . . .] = −D[. . . ,aj , . . . ,ai, . . .],

(b) and D[. . . ,ai, . . . ,aj , . . .] = 0 when ai = aj, i 6= j.

Definition I.6. Let S be a set. A bijection S → S is called a permutation of S and the

set of permutations of S is denoted Sym(S). If n is a positive integer, then we write Sn for

Sym({1, . . . , n}). An element σ ∈ Sn which switches two elements 1 ≤ i < j ≤ n and fixes

the others is called a transposition.

Theorem I.7. Let S be a set.

(a) Then Sym(S) forms a group under composition. It is called the symmetric group of S.

(b) The cardinality of Sn is n!.

Definition I.8. A permutation is said to be odd (resp. even) if it can be written as a com-

position of an odd (resp. even) number of transpositions. We define the sign of σ ∈ Sn as

sign(σ) = 1 if σ is even and sign(σ) = −1 if σ is odd.

Theorem I.9. (a) Every permutation can be written as a composition of transpositions.

(b) Every permutation is either even or odd, but not both.

Theorem I.10. For each n ∈ N there exists a unique determinantal function D : Mn(R)→ R
and it is explicitly given by

D[a1, . . . ,an] =
∑
σ∈Sn

sign(σ)aσ(1),1 · · · aσ(n),n.

Definition I.11. For an A ∈Mn(R), a column vector v ∈ Rncol is a right eigenvector if v 6= 0

and Av = cv for some c ∈ R. We call c ∈ R an eigenvalue of A if Av = cv for some nonzero

v ∈ Rncol. We call a row vector λ ∈ Rn a left eigenvector if λ 6= 0 and λA = cλ.

Definition I.12. For A ∈ Mn(R) the characteristic polynomial of A is defined as χA(x) =

det(A− xIn).
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Theorem I.13. Let A ∈ Mn(R). Then c is an eigenvalue of A if and only if c is a root of

the characteristic polynomial χA(x) of A.

Theorem I.14. Let c1, . . . , cm, for m ≤ n, be the distinct eigenvalues of A and v1, . . . , vm

corresponding eigenvectors. Then v1, . . . , vm are linearly independent.

Definition I.15. A matrix A ∈ Mn(R) is diagonalisable if there is an invertible matrix U

such that B := U−1AU is a diagonal matrix.

Proposition I.16. If A ∈ Mn(R) is diagonalisable with diagonal matrix B = U−1AU , then

the diagonal entries of B are the eigenvalues, and the colums in U corresponding eigenvectors.

Corollary I.17. If A ∈Mn(R) has n distinct eigenvalues, then A is diagonalisable.

Corollary I.18. If A ∈ Mn(R) is diagonalisable with diagonal matrix B = U−1AU , then

An = UBnU−1, where Bn is the diagonal matrix whose entries are the nth powers of the

corresponding entries of B, for all n ≥ 0.

I.3 Recurence relations

Definition I.19. Let k ≥ 1. A kth order linear recurrence relation (or difference equation )

has the form
k∑
j=0

ajun+j = f(n) (I.1)

with a0 6= 0 and ak 6= 0, where a0, . . . , ak are constants independent of n. A solution to (I.1)

is a sequence (un)n≥0 satisfying (I.1) for all n ≥ 0. The equation (I.1) is called homogeneous

if f(n) = 0 for all n ≥ 0 and inhomogeneous otherwise.

Theorem I.20. The general solution (un) of (I.1) can be written as un = vn + wn where

(vn) is a particular solution to (I.1) and (wn) solves the associated homogeneous equation

k∑
j=0

ajwn+j = 0. (I.2)

Corollary I.21. For k = 1, the general solution to un+1 = aun + c is given by

un = Aan +
c

1− a
if a 6= 1 and un = A+ nc if a = 1,

for n ≥ 0 and an arbitrary constant A ∈ R.

Proposition I.22. For k = 2, the general solution to

un+1 = aun + bun−1 + c, n ≥ 1,

is given in terms of the solutions λ1 and λ2 of the auxiliary equation λ2 = aλ+ b, by

un = A1λ
n
1 +A2λ

n
2 +

c

1− a− b
if λ1 6= λ2 and a+ b 6= 1,

un = A1λ
n
1 +A2λ

n
2 +

c

1 + b
n if λ1 6= λ2 and a+ b = 1,

un = (A1 +A2n)λn +
c

(λ− 1)2
if λ1 = λ2 = λ 6= 1,

un = A1 +A2n+
c

2
n2 if λ1 = λ2 = 1.
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Proof. Factorise the auxiliary equation λ2 = aλ+ b into λ2 − aλ− b = (λ− λ1)(λ− λ2) = 0

identifying two roots λ1, λ2 ∈ C, not necessarily distinct. Then λ1+λ2 = a and b = λ1(λ1−a).

Now consider any (real) solution (xn) to the homogeneous equation xn+1 = axn + bxn−1.

Then yn = xn − λ1xn−1 satisfies for n ≥ 1

yn+1 = xn+1 − λ1xn = (a− λ1)xn + bxn−1 = (a− λ1)(xn − λ1xn−1) = λ2yn.

Inductively, yn+1 = Bλn2 for some B ∈ R. But then (xn) solves the first order equation

xn+1 = λ1xn +Bλn2 . (I.3)

The general solution to the associated homogeneous equation zn+1 = λ1zn is zn = A1λ
n
1 .

Case 1: λ1 6= λ2. A particular solution of (I.3) is vn = yn+1/(λ2 − λ1) since for n ≥ 1

vn+1 =
B

λ2 − λ1
λn+1

2 =
B

λ2 − λ1
(λ1 + λ2 − λ1)λn2 = λ1vn +Bλn2 .

Let A2 = B/(λ2 − λ1). By Theorem I.20,

xn = zn + vn = A1λ
n
1 +A2λ

n
2

is the general solution of the inhomogeneous first-order equation (I.3), for each fixed B =

A2(λ2−λ1), and of the homogeneous second order equation xn+1 = axn+bxn−1, for arbitrary

constants A1, A2 ∈ R.

We can find a constant particular solution tn = s of the inhomogeneous second order

equation if a+ b 6= 1 as then

atn + btn−1 + c = (a+ b)s+ c = s = tn+1 ⇐⇒ s =
c

1− a− b
.

If a+ b = 1, then λ1 = 1 and λ2 = −b 6= 1, so there is a particular solution tn = rn as then

atn + btn−1 + c = arn+ b(rn− r) + c = (a+ b)rn+ c− br = r(n+ 1) ⇐⇒ r =
c

1 + b
.

Case 2: λ1 = λ2 = λ. Then a = 2λ and b = −λ2. If λ = 0, this all degenerates to

u0 = A1, u1 = A2 and un = c, n ≥ 2. Now suppose that λ 6= 0. A particular solution of (I.3)

is vn = nyn+1/λ since then

avn + bvn−1 = 2λnyn+1/λ− λ2(n− 1)yn/λ = Bλn(2n− (n− 1)) = (n+ 1)yn+2/λ = vn+1.

By Theorem I.20, the general solution of (I.3) can be written as xn = zn+vn = (A1 +nA2)λn

for fixed B = λA2, and similarly for the general solution of xn+1 = axn + bxn−1, now for

arbitrary constants A1, A2 ∈ R.

As in Case 1, a constant particular solution tn = c/(λ−1)2 exists bar one exception λ = 1.

When λ = 1, tn = cn2/2 is easily seen to be a particular solution.


