Problem Sheet 1

Problem 1. Define $\phi \colon \mathbb{R} \to \mathbb{R}$ by

$$\phi(x) = \begin{cases} e^{-\frac{1}{x}} & \text{if } x > 0\\ 0 & \text{if } x \le 0. \end{cases}$$

Show that ϕ is C^{∞} , and deduce that

$$\psi(x) = \phi(2(1-x))\phi(2(1+x))$$

belongs to $\mathcal{D}(\mathbb{R})$. Does the restriction to (-1,1), $\psi|_{(-1,1)}$, belong to $\mathcal{D}(-1,1)$?

Calculate the Taylor series for ϕ about 0 (note: not for ψ). Does the series converge, and if so, then what is its sum?

Problem 2. In this question all functions are real-valued.

(a) Let K be a compact proper subset of the open interval (a,b). Show carefully that there exists $\rho \in \mathcal{D}(a,b)$ such that $0 < \rho < 1$ and $\rho = 1$ on K.

(b) Give an example of φ , $\psi \in \mathscr{D}(\mathbb{R})$ such that $\max(\varphi, \psi)$, $\min(\varphi, \psi)$ are *not* smooth compactly supported test functions. Here we define $\max(\varphi, \psi)(x) = \max\{\varphi(x), \psi(x)\}$ for each x and similarly for $\min(\varphi, \psi)$.

Next, let $u \in \mathcal{D}(a,b)$. Show that there exist $u_1, u_2 \in \mathcal{D}(a,b)$ with $u_1 \geq 0, u_2 \geq 0$ and $u = u_1 - u_2$.

(c) Generalize the last statement to n dimensions as follows. Let Ω be a nonempty open subset of \mathbb{R}^n and $u \in \mathscr{D}(\Omega)$. Show that there exist $u_1, u_2 \in \mathscr{D}(\Omega)$ with $u_1 \geq 0$ and $u_2 \geq 0$ such that $u = u_1 - u_2$.

(Hint: You may for instance note that $4u = (u+1)^2 - (u-1)^2$ and if v is a cut-off function between the support of u and the boundary of Ω , then vu = u.)

Problem 3. Let Ω be a nonempty and open subset of \mathbb{R}^n , $1 \leq p < \infty$ and $f \in L^p(\Omega)$. Show that for each $\varepsilon > 0$ there exists $g \in \mathscr{D}(\Omega)$ such that $\|f - g\|_p < \varepsilon$.

(Hint: One approach is to do it in two steps. First choose an appropriate open subset $O \subset \Omega$ so that $h = f \mathbf{1}_O$ is a good L^p approximation of f. Then use a result from lectures.)

Problem 4. Let $p, q \in [1, \infty]$ with $\frac{1}{p} + \frac{1}{q} = 1$. Show that if $f \in L^p(\mathbb{R})$, $g \in L^q(\mathbb{R})$, then $f * g \in C(\mathbb{R})$. Next, show that if $p \in (1, \infty)$, then $f * g \in C_0(\mathbb{R})$, that is, f * g is continuous and $(f * g)(x) \to 0$ as $|x| \to \infty$. What happens when p = 1 and $q = \infty$?

Problem 5. In each of the following 3 cases decide whether or not u_j is a distribution:

$$\langle u_1, \varphi \rangle = \sum_{j=1}^{\infty} 2^{-j} \varphi^{(j)}(0), \quad \langle u_2, \varphi \rangle = \sum_{j=1}^{\infty} 2^{j} \varphi^{(j)}(j), \quad \langle u_3, \varphi \rangle = \varphi(0)^2,$$

where $\varphi \in \mathscr{D}(\mathbb{R})$ is so that the expression makes sense.

Problem 6. (Optional and harder)

- (i) Construct $g \in \mathcal{D}(\mathbb{R})$ supported in [-1,1] such that g(0)=1 and $g^{(j)}(0)=0$ for all $j \in \mathbb{N}$. (Hint: First find $\varphi \in \mathcal{D}(\mathbb{R})$ supported in [0,1] with $\int_{\mathbb{R}} \varphi = 1$. Then consider the solution to $y'(x) = \varphi(-x) \varphi(x)$ with support in [-1,1].)
- (ii) Let $(a_n)_{n=0}^{\infty}$ be an arbitrary sequence of real numbers. Define for $n \in \mathbb{N}_0$ and positive numbers $\varepsilon_n > 0$ the functions

$$g_n(x) = g\left(\frac{x}{\varepsilon_n}\right) \frac{a_n x^n}{n!}, \quad x \in \mathbb{R}.$$

Check that g_n is C^{∞} with support contained in $[-\varepsilon_n, \varepsilon_n]$ and $g_n^{(k)}(0) = a_n \delta_{n,k}$, where $\delta_{n,k}$ is the Kronecker delta.

Show that for each $n \in \mathbb{N}_0$ it is possible to choose $\varepsilon_n > 0$ so small that

$$|g_n^{(k)}(x)| \le 2^{-n} \tag{1}$$

holds for all $x \in \mathbb{R}$ and each $0 \le k < n$.

(iii) We now fix each ε_n so that (1) holds. With these choices we define

$$f(x) = \sum_{n=0}^{\infty} g_n(x), \quad x \in \mathbb{R}.$$

Check that $f \in \mathcal{D}(\mathbb{R})$ with support contained in [-1,1] and that $f^{(n)}(0) = a_n$ for all $n \in \mathbb{N}_0$. (This is a particular case of a result due to Emile Borel.)

Problem 7. (Optional and harder)

This problem gives an alternative construction of a smooth compactly supported test function. We start with a rough convolution kernel $h = \mathbf{1}_{(0,1)}$ and put as usual for each r > 0,

$$h_r(x) = \frac{1}{r}h\left(\frac{x}{r}\right) = \frac{1}{r}\mathbf{1}_{(0,r)}(x), \quad x \in \mathbb{R}.$$

(i) Let $0 < r \le s$. Show that $h_r * h_s$ is continuous, $\operatorname{spt}(h_r * h_s) = [0, r+s]$ and $0 \le h_r * h_s \le \frac{1}{s}$. (ii) Let $k \in \mathbb{N}_0$ and assume $u \in \mathrm{C}^k_c(\mathbb{R})$ with $\operatorname{spt}(u) \subseteq [a,b]$. Prove that $h_r * u \in \mathrm{C}^{k+1}_c(\mathbb{R})$ with $\operatorname{spt}(h_r * u) \subseteq [a,b+r]$ and

$$(h_r * u)^{(k+1)}(x) = \frac{u^{(k)}(x) - u^{(k)}(x-r)}{r}.$$

(iii) Let $(r_j)_{j=0}^{\infty}$ be a decreasing sequence of positive numbers and put

$$R_n = \sum_{j=0}^n r_j.$$

Define $u_n = h_{r_0} * h_{r_1} * \cdots * h_{r_n}$ for each $n \in \mathbb{N}$. Show that $u_n \in C_c^{n-1}(\mathbb{R})$ with $\operatorname{spt}(u_n) \subseteq [0, R_n]$ and

$$|u_n^{(k)}(x)| \le \frac{2^k}{r_0 r_1 \cdots r_k}$$

for all $x \in \mathbb{R}$ and $0 \le k < n$. (Hint: Proceed by induction on n and write $u_n = h_{r_0} * v_n$ for some suitable v_n .)

(iv) Assume that

$$R = \sum_{j=0}^{\infty} r_j < \infty.$$

Show that (u_n) is a uniform Cauchy sequence. By suitable iteration of this, deduce that the limit function

$$u(x) = \lim_{n \to \infty} u_n(x), \quad x \in \mathbb{R},$$

belongs to $\mathscr{D}(\mathbb{R})$ with $\operatorname{spt}(u) \subseteq [0, R]$ and

$$|u^{(k)}(x)| \le \frac{2^k}{r_0 r_1 \cdots r_k}$$

for all $x \in \mathbb{R}$ and $k \in \mathbb{N}_0$. In particular, $u \in \mathscr{D}(\mathbb{R})$, $0 \le u \le \frac{1}{r_0}$ and $\int_{\mathbb{R}} u = 1$.