Problem Sheet 2

Problem 1. Let $f, g \in C^1(\mathbb{R})$ and define

$$u(x) = \begin{cases} f(x) & \text{if } x < 0\\ g(x) & \text{if } x \ge 0. \end{cases}$$

Explain why $u \in \mathscr{D}'(\mathbb{R})$ and calculate the distributional derivative u'. What can you say about the function

$$v(x) = \begin{cases} f(x) & \text{if } x < 0\\ a & \text{if } x = 0\\ g(x) & \text{if } x > 0, \end{cases}$$

where $a \in \mathbb{R}$ is a constant that is different from both f(0) and g(0)?

Problem 2. (a) Prove that if $f: \mathbb{R} \to \mathbb{R}$ is piecewise continuous and $k \in \mathbb{R}$, then the function u(x,t) = f(x-kt), $(x,t) \in \mathbb{R}^2$, is locally integrable on \mathbb{R}^2 . Conclude that it defines a distribution and show that it satisfies the one-dimensional wave equation:

$$\frac{\partial^2 u}{\partial t^2} = k^2 \frac{\partial^2 u}{\partial x^2}$$

in the sense of distributions on \mathbb{R}^2 .

(b) Prove that $u(x,y) = \log(x^2 + y^2)$ is locally integrable on \mathbb{R}^2 , and that we have

$$\Delta u = 4\pi \delta_0$$

in the sense of distributions on \mathbb{R}^2 , where δ_0 is the Dirac delta function on \mathbb{R}^2 concentrated at the origin.

Problem 3. Let a > 0. For each $\varphi \in \mathscr{D}(\mathbb{R})$ we let

$$\langle T_a, \varphi \rangle = \left(\int_{-\infty}^{-a} + \int_a^{\infty} \right) \frac{\varphi(x)}{|x|} dx + \int_{-a}^a \frac{\varphi(x) - \varphi(0)}{|x|} dx.$$

Show that T_a hereby is well-defined and that it is a distribution on \mathbb{R} .

Now assume that $\varphi \in \mathscr{D}(\mathbb{R})$ satisfies $\varphi(0) = 0$. Show that then

$$\langle T_a, \varphi \rangle = \int_{-\infty}^{\infty} \frac{\varphi(x)}{|x|} dx.$$

What distribution is $T_a - T_b$ for 0 < b < a?

Problem 4. (a) Let $\alpha \in (-n, \infty)$ and $u_{\alpha}(x) = |x|^{\alpha}$ for $x \in \mathbb{R}^n \setminus \{0\}$. Show that u_{α} is a regular distribution on \mathbb{R}^n . (*Hint: Use polar coordinates.*)

(b) For each r>0 we define the r-dilation of a test function $\varphi\in\mathscr{D}(\mathbb{R}^n)$ by the rule

$$(d_r\varphi)(x) = \varphi(rx), \quad x \in \mathbb{R}^n.$$

Extend the r-dilation to distributions $u \in \mathcal{D}'(\mathbb{R}^n)$.

- (c) Show that for the distribution u_{α} defined in (a) we have $d_r u_{\alpha} = r^{\alpha} u_{\alpha}$ for all r > 0. We express this by saying that u_{α} is homogeneous of degree α .
- (d) Show that the Dirac delta function δ_0 concentrated at the origin $0 \in \mathbb{R}^n$ is homogeneous of degree -n.
- (e) Let $u \in \mathscr{D}'(\mathbb{R}^n)$ be homogeneous of degree $\beta \in \mathbb{R}$: $d_r u = r^\beta u$ for all r > 0. Show that for each $j \in \{1, \ldots, n\}$ the distribution $x_j u$ is homogeneous of degree $\beta + 1$ and that the distribution $D_j u$ is homogeneous of degree $\beta 1$. Finally show that

$$\sum_{j=1}^{n} x_j D_j u = \beta u. \tag{1}$$

This PDE is known as Euler's relation for β -homogeneous distributions.

(f) (Optional) Show that a distribution $u \in \mathscr{D}'(\mathbb{R}^n)$ that satisfies (1) must be homogeneous of degree β .

Problem 5. Show that δ_a , the Dirac delta function concentrated at $a \in \mathbb{R}$, satisfies the equation

$$(x-a)u = 0. (2)$$

Find the general solution $u \in \mathscr{D}'(\mathbb{R})$ to (2). (Hint: See Corollary 1.10 in the Lecture Notes.)

Problem 6. (Distribution defined by principal value integral) Define for each $\varphi \in \mathcal{D}(\mathbb{R})$,

$$\langle \operatorname{pv}\left(\frac{1}{x}\right), \varphi \rangle = \lim_{a \to 0^+} \left(\int_{-\infty}^{-a} + \int_{a}^{\infty} \right) \frac{\varphi(x)}{x} \, \mathrm{d}x.$$

(a) Show that hereby $\operatorname{pv}\left(\frac{1}{x}\right) \in \mathscr{D}'(\mathbb{R})$ and that it is homogeneous of order -1 (see Problem 4). Check that

$$\frac{\mathrm{d}}{\mathrm{d}x}\log|x| = \mathrm{pv}\left(\frac{1}{x}\right).$$

(b) Show that $u = pv(\frac{1}{x})$ solves the equation

$$xu = 1 \tag{3}$$

in the sense of $\mathscr{D}'(\mathbb{R})$. What is the general solution $u \in \mathscr{D}'(\mathbb{R})$ to (3)?