
B8.5 Graph Theory
Michaelmas Term 2022, 16 lectures

Paul Balister

Last updated: September 1, 2022

These notes are to accompany the lectures in MT 2022 on graph theory for Part B
Mathematics, and are adapted from notes by Oliver Riordan, which in turn were adapted
from notes by Alex Scott and Colin McDiarmid. They also owe much to the book Modern
Graph Theory, Springer-Verlag, 1998 by Béla Bollobás, and are not for distribution. The
notes may possibly be updated as the course proceeds, although no major changes are
planned. If you spot any errors, email: Paul.Balister@maths.ox.ac.uk.

Relationship to Part A Graph Theory

Part A Graph Theory is recommended but not required as a prerequisite. The course as
lectured should be self-contained, though a few key results covered in Part A will be stated
as exercises to complete yourself if you did not do Part A.

1 Introduction

We need some preliminary definitions and notation (see the separate handout for a sum-
mary). We write [n] for the set {1, 2, . . . , n}. For any set S, we write

(
S
k

)
for the set of

subsets of S of size k, that is,
(
S
k

)
= {A ⊆ S : |A| = k} (and has cardinality

(|S|
k

)
). Some

authors write S(k) instead of
(
S
k

)
.

A (simple) graph G is an ordered pair (V,E), where V is a set and E ⊆
(
V
2

)
. In

this course V will almost always be finite and non-empty – this is assumed unless stated
otherwise. The elements of V are called the vertices of G and the elements of E the edges
of G.

We often write uv for an edge {u, v} (so uv means the same as vu). We say that u and
v are adjacent in G if uv is an edge of G. A vertex v and an edge e are incident if v is one
of the endvertices of e, i.e., one of the two vertices in e. Two edges meet if they intersect,
i.e., share a vertex. Graphically, we represent vertices as points (or more often blobs) and
edges as lines or curves joining pairs of points (blobs); how a graph is drawn is irrelevant
as far as the structure of the graph itself is concerned. The reason for using blobs is that it
makes clear in the drawing where the vertices are: we may have to draw the lines/curves
for two edges so that they cross even though the edges do not share a vertex.

a b

cd

a

b c

d

Figure 1: Two ways of drawing the same graph G = ({a, b, c, d}, {ab, ac, ad, bd, cd}).

1

K4 E4 C4 P4

Figure 2: Some special graphs.

If G = (V,E), we write V (G) for V and E(G) for E. The order of a graph G, denoted
by |G| or v(G), is the number of vertices, so |G| = v(G) = |V (G)|. The size of G is the
number of edges, e(G) = |E(G)|; however, sometimes ‘size’ is used to mean ‘order’, so it is
safest to avoid this term.

Graphs G and H are isomorphic if there exists a bijection φ : V (G) → V (H) such that,
for each x, y ∈ V (G), we have xy ∈ E(G) iff φ(x)φ(y) ∈ E(H). We say that φ is an
isomorphism,1 and write G ∼= H. It is easy to check that isomorphism of graphs is an
equivalence relation, and simply amounts to a ‘relabeling’ of the vertices. Often we do not
make a distinction between isomorphic graphs, treating them as the same.2

A graph G is complete if E(G) =
(
V (G)
2

)
. We write Kn = ([n],

(
[n]
2

)
) for the complete

graph on the vertex set [n]. Clearly any complete graph of order n is isomorphic to Kn.
A graph G is empty if E(G) = ∅. We write En = ([n], ∅) for the empty graph on the
vertex set [n]. Clearly any empty graph of order n is isomorphic to En. A graph G
is a cycle on n vertices, or a cycle of length n, (n ⩾ 3) if it is isomorphic to Cn :=
([n], {12, 23, . . . , (n−1)n, n1}). A graph G is a path on n vertices, or a path of length n−1
(n ⩾ 1) if it is isomorphic to Pn := ([n], {12, 23, . . . , (n− 1)n}).

Warning. Some authors define Pn as a path with n edges, while in this course Pn has n
vertices. Similarly, the length of a path is usually the number of edges, but some use it to
mean the number of vertices. Always check which definitions are being used! Sometimes
the term edge length is used to emphasise that it is the number of edges being counted.

A graph H is a subgraph of G if V (H) ⊆ V (G) and E(H) ⊆ E(G). A spanning
subgraph is one that includes all the vertices: V (H) = V (G). An induced subgraph is one
that includes all possible edges, i.e., all edges with both endvertices in V (H): E(H) =
E(G) ∩

(
V (H)

2

)
. Indeed, given any W ⊆ V (G) there is a unique induced subgraph with

vertex set W which we write as G[W], which we call the subgraph of G induced by W .
We often say that H is a subgraph of G (or more precisely that G contains a copy of

H) to mean that G has a subgraph isomorphic to H.3

The complement of a graph G = (V,E) is G = (V,
(
V
2

)
\ E). Thus Kn = En and

En = Kn. For an edge e, we write4 G − e for the subgraph (V,E \ {e}), obtained by
deleting the edge e from G. For e ∈ E(G), G + e = (V,E ∪ {e}) is the graph obtained by
adding the edge e to G. For a vertex v, we write G−v for the subgraph induced by V \{v},
i.e., the subgraph obtained from G by deleting v and (as we must) all edges incident with v.

1More generally we can define a graph homomorphism as a map φ : V (G) → V (H) such that xy ∈ E(G)
implies φ(x)φ(y) ∈ V (H). An isomorphism is then just an invertible map φ such that both φ and φ−1 are
homomorphisms.

2Sometimes we talk of ‘labelled graphs’, meaning the actual values of vertices are important, and
‘unlabelled graphs’ for graphs considered only up to isomorphism.

3Equivalently, there is an injective homomorphism from H to G.
4Some people write G \ e for G− e. Not to be confused with G/e, defined later.

2

In much of the following, unless otherwise indicated, the implicitly assumed setting is
an arbitrary graph G = (V,E).

Degrees

The degree of a vertex v is the number of incident edges,

d(v) =
∣∣{w ∈ V : vw ∈ E}

∣∣.
We write dG(v) if we want to specify the graph. A vertex w is a neighbour of v if v and w are
adjacent, i.e., vw ∈ E. The set N(v) = NG(v) = {w ∈ V : vw ∈ E} is the neighbourhood
of v, so d(v) = |N(v)|. Some authors write Γ(v) instead of N(v).

A graph G is r-regular if every vertex has degree r. If d(v) = 0, v is an isolated vertex.
If V = {v1, . . . , vn}, the degree sequence of G is the sequence d(v1), d(v2), . . . , d(vn), often
arranged in nondecreasing order.

Lemma 1.1 (Handshaking Lemma). For any graph G = (V,E),∑
v∈V

d(v) = 2e(G).

Proof. Consider the number of pairs (v, e) where v is a vertex of G and e is an edge of G
incident with v. We count them in two different ways. Firstly, each vertex v is in exactly
d(v) such pairs, so there are

∑
v∈V d(v) pairs in total. Secondly, each edge e of G is in

exactly two such pairs, so there are 2|E| = 2e(G) pairs.

Corollary 1.2. For any graph G, the number of vertices with odd degree is even.

Paths, cycles and walks in graphs

A path on t vertices in G is a subgraph of G isomorphic to Pt; a cycle of length t in G is
a subgraph isomorphic to Ct. We usually just list the vertices to describe a path or cycle.
Thus v1v2 · · · vt is a path of length t in G if and only if v1, . . . , vt are distinct vertices of
G and v1v2, . . . , vt−1vt are edges of G.5 Similarly, v1v2 · · · vtv1 is a cycle in G if and only
if t ⩾ 3, v1, . . . , vt are distinct vertices of G, and v1v2, . . . , vt−1vt, vtv1 are edges of G. A
graph is acyclic if it contains no cycles.

We say v0v1 · · · vt is a walk in G if v0, v1, . . . , vt are (not necessarily distinct) vertices of
G such that vivi+1 ∈ E for each i = 0, 1, . . . , t − 1. The length of a walk is the number of
steps, here t. If x = v0 and y = vt then we speak of a walk from x to y, or an x-y walk; an
x-y path is defined similarly. A walk v0v1 · · · vt is closed if vt = v0.

Exercise. Let G be a graph and x, y ∈ V (G). Then G contains an x-y walk if and only if
G contains an x-y path.

5The two definitions of path in G are not quite the same: for existence, they are equivalent, but for
counting paths, they differ by a factor of 2 for t ⩾ 2 as the subgraph corresponding to v1v2 . . . vt is the
same as for vtvt−1 . . . v1. A similar comment applies to cycles with a different factor.

3

In other words, if we want to get from x to y, then allowing ourselves to revisit vertices
does not help. This simple observation is useful, allowing us to switch back and forth
between using paths and walks to define connectedness, at any point using whichever
definition is easiest to work with. The cleanest proof of the exercise is to consider a
shortest x-y walk and show that it is a path.

A graph G is connected if for all x, y ∈ V there is at least one x-y path in G. The
components of a general graph G are the maximal connected subgraphs. It is easy to check
that G is the disjoint union of its components. Indeed, consider the relation ∼ on V (G)
defined by “x ∼ y iff there exists an x-y walk”. (Equivalently, there exists an x-y path.)
It is easy to check that this is an equivalence relation, and that the components are the
subgraphs induced by the equivalence classes.

We finish this section with a simple lemma giving a condition under which we are
guaranteed that G contains a cycle.

Lemma 1.3. Let G be a finite graph in which every vertex has degree at least 2. Then G
contains a cycle.

Proof. Pick v0 ∈ V (G) and v1 ∈ N(v0). Now for each i ⩾ 1 we can successively pick vi+1 ∈
N(vi) such that vi+1 ̸= vi−1 (since |N(vi)| ⩾ 2). Thus we have a sequence v0, v1, v2, . . .
such that vi−1vi ∈ E(G) for every i, and vi−1, vi and vi+1 are always distinct. Since G has
only finitely many vertices, some vertex must appear more than once. Pick i < j such that
vi = vj and j is minimal. Then j− i ⩾ 3, and by minimality vi, . . . , vj−1 are distinct. Thus
vi · · · vj−1vi is a cycle in G.

2 Trees

A tree is simply an acyclic connected graph. A general acyclic graph, or equivalently, a
graph in which each component is a tree, is called a forest.

Lemma 2.1. The following are equivalent, where minimality/maximality is with respect to
deleting/adding edges.

(a) T is a tree,

(b) T is a minimal connected graph,

(c) T is a maximal acyclic graph.

The precise meaning of (b) is that T = (V,E) is connected, but that for any strict
subset E ′ of E, (V,E ′) is not connected. Equivalently, T is connected, but for any edge e
of T , T − e is not connected. Similarly in (c), T = (V,E) is acyclic, but (V,E ′) contains
a cycle for any strict superset E ′ ⊃ E. Equivalently, T is acyclic, but for any edge e of T ,
T + e is not acyclic.

Proof. Revision from Part A or exercise, as applicable.

A spanning tree of a graph G is a spanning subgraph of G that is a tree, i.e., a subgraph
of G that is a tree containing all the vertices of G.

Corollary 2.2. Every connected graph G has at least one spanning tree.

4

Proof. Remove edges one-by-one, keeping the graph connected, until we can remove no
more. The graph T that remains is a minimal connected graph with vertex set V (G); by
Lemma 2.1, T is a tree.

A vertex v of any graph G is called a leaf if d(v) = 1. This term is most often used in
the context of trees/forests.

Lemma 2.3. Every tree on n ⩾ 2 vertices has at least one leaf.

Proof. T is connected, so it has no isolated vertices (vertices of degree 0). But T has no
cycle, so by Lemma 1.3 it must have a vertex of degree less than 2. Therefore it has a
vertex v with degree 1.

In fact, every tree with at least 2 vertices has at least two leaves; there are many
proofs of this fact. One involves modifying the argument above slightly. Another way is to
consider a longest path v1 . . . vt in the tree. Clearly t ⩾ 2 as the tree is connected and has
at least two vertices (and so must have an x-y path for some x ̸= y). If v1 we adjacent to
any vi, i > 2, we would obtain a cycle v1 . . . viv1, a contradiction, while if v1 were adjacent
to any v /∈ {v1, . . . , vt} then vv1 . . . vt would be a longer path. Thus the only neighbour of
v1 is v2 and so v1 is a leaf. However, exactly the same argument also applies to vt, so we
have at least two leaves.

The significance of leaves is shown by the following simple result.

Lemma 2.4. Let v be a leaf of a graph G. Then G is a tree iff G− v is a tree.

Proof. Revision/Exercise.

Lemma 2.5. If T is a tree on n vertices, then e(T) = n− 1.

Proof. We use induction on n; the case n = 1 is trivial. Let T be any tree with n ⩾ 2
vertices. By Lemma 2.3, T has a leaf v. By Lemma 2.4, T ′ = T − v is a tree. Since T ′ has
n− 1 vertices, by induction it has n− 2 edges. Thus T has n− 1 edges.

Combining Lemmas 2.1 and 2.5 gives some further characterisations of trees.

Corollary 2.6. Let G be a graph with n vertices. TFAE (the following are equivalent):
(a) G is a tree,

(b) G is connected and e(G) = n− 1,

(c) G is acyclic and e(G) = n− 1.

Proof. (a) implies (b) and (c) by the definition of a tree and Lemma 2.5. Suppose that (b)
holds. Then G has a spanning tree T which, by Lemma 2.5, has n − 1 = e(G) edges. A
spanning subgraph includes all the vertices by definition, and since e(T) = e(G), in this
case it includes all the edges too. Thus T = G and so G is a tree, completing the proof
that (b) implies (a). Now suppose that (c) holds. Each component Ci of G is a tree. Now
e(Ci) = |Ci| − 1, so e(T) =

∑
e(Ci) =

∑
(|Ci| − 1) = n − c, where c is the number of

components. Thus c = 1 and G is connected.

5

Counting trees

Let’s start with a simpler question: how many graphs G = (V,E) are there with vertex set
[n]? Each of the

(
n
2

)
possible edges may or may not be included in E, with all possibilities

allowed, so the answer is 2(
n
2). Note that we are not asking how many isomorphism classes

there are: this is a much harder question. (Sometimes, counting graphs on a given vertex
set is referred to as ‘counting labelled graphs’; counting isomorphism classes is referred to
as ‘counting unlabelled graphs’.)

Counting trees is much harder than counting all graphs. The answer was found (but
not really proved) by Cayley in 1889, though implicitly earlier by Borchardt in 1860; it is
now known as Cayley’s formula.

Theorem 2.7. For any n ⩾ 1 there are exactly nn−2 trees T with vertex set [n].

Proof. The result is trivial for n = 1 and 2, so fix n ⩾ 3. We shall map each tree on [n] to
its Prüfer code c = (c1, c2, . . . , cn−2), where 1 ⩽ ci ⩽ n. (The ci need not be distinct.) Since
there are nn−2 possible codes, it suffices to show that the map gives a bijection between
trees on [n] and codes.

Given a tree T on [n] we construct its code as follows:
T1 := T has at least one leaf. Find the leaf v1 with the smallest number, remove it,

and write down the number c1 of the (unique) vertex v1 was adjacent to. Repeat until
exactly two vertices remain. Thus, for example, v2 is the smallest leaf of T2 := T − v1,
and c2 is the vertex of T2 that v2 is adjacent to. In general vi is the smallest leaf of
Ti := T − v1 − · · · − vi−1 and ci is the vertex of Ti it is adjacent to. Note that c1, . . . , cn−2

form the code, not v1, . . . , vn−2.

i leaves of Ti vi ci
1 {2, 3, 5, 6} 2 4
2 {3, 5, 6} 3 4
3 {4, 5, 6} 4 1
4 {5, 6} 5 1

Code: 4411
6

1

5 4

3 2

T = T1

6

1

5 4

3

T2

6

1

5 4

T3

6

1

5

T4

6

1

T5

Figure 3: Example of a Prüfer code.

The following observation is key to the proof: a vertex w with degree d in T appears
exactly d−1 times in the code c. Indeed, we write w down in the code each time we delete
a neighbour of w, i.e., each time its degree decreases. The final degree of w is always 1:
either w is deleted when it is a leaf, or w is left at the end as one of the two final vertices,
which are then leaves. More generally, if the degree of w in T − v1 − v2 − · · · − vi−1 is d,

6

then w occurs d− 1 times in ci, . . . , cn−2. It follows from this that

v1 = min
{
[n] \ {c1, . . . , cn−2}

}
v2 = min

{
[n] \ {v1, c2 . . . , cn−2}

}
. . .

vi = min
{
[n] \ {v1, . . . , vi−1, ci, . . . , cn−2}

}
i ⩽ n− 2. (1)

Let us write vn−1 and vn (with WLOG vn−1 < vn) for the two vertices left at the end when
we constructed the code, so

{vn−1, vn} = [n] \ {v1, . . . , vn−2}. (2)

Then, since we deleted the edge vici at step i, and were left with the edge vn−1vn between
the final two vertices,

E(T) = {v1c1, . . . , vn−2cn−2, vn−1vn}. (3)

The formulae above describe T , the tree that we started with, in terms of its code
c = (c1, . . . , cn−2). Does this mean that the proof is complete? No! We started by
assuming that T was a tree, with code c, and then showed that given c, we could identify
T (i.e., the map from trees to codes is injective). So for any code coming from a tree, there
is a unique tree with that code. We still need to show that for every code c, there is a tree
with code c (i.e., the map from trees to codes is surjective).

The formulae above tell us where to look: if there is a tree with code c, it must be as
described above. So let us check.

Formally, let c be any possible code (c1, . . . , cn−2). Then we may use (1) to define
v1, . . . , vn−2. (Each time we take the minimum of a non-empty set, which makes sense.)
Also, from (1) we see that vi is not equal to any of v1, . . . , vi−1. Thus v1, . . . , vn−2 are
distinct.

Next, we define vn−1 < vn to be the two remaining elements of [n], as in (2), so v1, . . . , vn
are distinct; they are 1, 2, . . . , n in some order.

Finally, we let T be the graph with vertex set [n] and edge set given by (3). We need
to check that T is indeed a tree, and that it has code c. We do this step-by-step: first note
that from our definition (1) of vi, it is distinct from cj, j ⩾ i. Thus cj is distinct from vi,
i ⩽ j, so for each j, cj ∈ {vj+1, . . . , vn}. Let Ti be the graph with

V (Ti) = {vi, . . . , vn} and E(Ti) = {vici, . . . , vn−2cn−2, vn−1vn}.

(This makes sense since the ends of the edges are distinct and lie in V (Ti).) Then Tn−1 is
a tree with two vertices. Also, Ti is constructed from Ti+1 by adding a new vertex vi and
one edge vici. So, by Lemma 2.4, Ti is a tree for i = n − 2, n − 3, . . . , 2, 1. In particular,
T = T1 is a tree. That the code of T is c is an exercise; see Problem Sheet 1.

3 Long circuits, paths and cycles

An Euler circuit (Euler tour)6 in a graph G is a closed walk that contains every edge of G
exactly once. (If |G| = 1 we say that G has a trivial Euler circuit.)

6A trail in a graph is a walk which does not repeat edges (although it may repeat vertices). A circuit
in a graph is a closed trail, i.e., a closed walk that is a trail. Hence an Euler circuit is just a circuit that
uses every edge of the graph. Warning: some authors use ‘circuit’ to mean ‘cycle’ and vice versa.

7

Theorem 3.1. Let G be a connected graph. Then G has an Euler circuit if and only if the
degree of every vertex is even.

Proof. For the (easier) ‘only if’ direction, pick v ∈ V (G). If an Euler circuit enters v k
times then it leaves v k times, and so it uses 2k edges incident with v. Thus d(v) must be
even.

For the converse, we proceed by induction on e(G), with the result being trivial for
e(G) = 0. For the induction step, take any G with e(G) > 0 and assume the result holds
for all graphs with fewer edges than G. Since G is connected, each vertex has degree at
least 1. As all degrees are even, all vertices have degree at least 2. By Lemma 1.3, G
contains a cycle C. The graph H obtained from G by removing the edges of C still satisfies
the condition that all of its vertices have even degree. It is possibly no longer connected,
but all of its components Hi are, and have fewer edges than G. Therefore, by the induction
hypothesis, we can find an Euler circuit Ei in each component Hi. Moreover, each of the
components Hi must have at least one vertex in common with the cycle C, otherwise G
would have been disconnected in the first place. (Consider a path in G from any vertex in
Hi to any vertex in C. The first vertex of this path that lies in C also lies in Hi.) Thus
each Ei must be of the form xixi,1xi,2 . . . , xi,ni

xi with xi some vertex of C. We can thus
‘merge’ each of the Ei into C by, e.g., replacing the first occurrence of xi in C by the walk
xixi,1xi,2 . . . , xi,ni

xi, to obtain an Euler circuit of the original graph G.

a

b
c

d

e f

C = ebcdfce, Ei = badb =⇒ ebadbcdfce

Ei

C

Figure 4: Inserting circuit Ei into circuit C.

A Hamilton cycle in a graph G is a cycle in G that contains every vertex; a graph is
called Hamiltonian if it has a Hamilton cycle.

Superficially, the following two problems may seem similar: in a given graph G, is there
a closed walk using every edge exactly once (Euler circuit), and is there a closed walk using
every vertex exactly once (Hamilton cycle)? But it’s easy to tell (using Theorem 3.1) what
the answer to the first question is. The second is much harder; for those interested in
complexity theory, it is an NP-complete problem.

The minimum degree of a graph G is δ(G) = minv∈V d(v), the maximum degree is
∆(G) = maxv∈V d(v), and the average degree is

d̄(G) =
1

|G|
∑
v∈V

d(v) =
2 e(G)

|G|
.

It is not hard to see that any graph with δ(G) ⩾ d contains a path of edge length at
least d: start at any v0 and, given v0 · · · vi with i < d, choose vi+1 to be a neighbour of vi

8

not among v0, . . . , vi−1. In fact, for connected graphs with many more than d vertices, we
can find a path of roughly twice this length.

Lemma 3.2. If G is a connected graph which is not Hamiltonian, then the edge length of
a longest path in G is at least the length of a longest cycle.

Proof. Let C be a longest cycle in G, with length ℓ. We have ℓ < n since G is not
Hamiltonian, so there are vertices not on C. Since G is connected, there is at least one
edge vw with v ∈ V (C) and w /∈ V (C) (pick x ∈ V (C), y /∈ V (C), and take the first edge
of an x-y walk that leaves V (C)). But then the edge vw and C between them contain a
path of length ℓ.

v

z

w
C

Path of length ℓ: z · · · vw

Theorem 3.3. Let G be a connected graph with n ⩾ 3 vertices in which every pair v, w
of non-adjacent vertices satisfies d(v) + d(w) ⩾ k. If k < n then G contains a path of edge
length k; if k ⩾ n then G is Hamiltonian.

Proof. If G has a Hamilton cycle, then it also has a path of edge length n−1 (the maximum
possible k < n) and we are done. So suppose not. Let P = v0v1 · · · vℓ be a longest path in G.
Since G is connected and has at least 3 vertices, ℓ ⩾ 2. By Lemma 3.2, G contains no cycle
of length ℓ+1. In particular, v0vℓ /∈ E(G), so d(v0)+d(vℓ) ⩾ k. If, for some 1 ⩽ i ⩽ ℓ, both
v0vi and vi−1vℓ were edges, then we would have a cycle v0v1 · · · vi−1vℓvℓ−1 · · · vi of length
ℓ+ 1.

v0 vi−1 vi vℓ

Hence A = {i ∈ [ℓ] : v0vi ∈ E(G)} and B = {i ∈ [ℓ] : vi−1vℓ ∈ E(G)} are disjoint
subsets of [ℓ]. Thus, noting that all neighbours of v0 and vℓ are on P (otherwise we would
have a longer path), we have

ℓ ⩾ |A|+ |B| = d(v0) + d(vℓ) ⩾ k.

This is impossible if k = n as ℓ ⩽ n − 1. If k < n it shows that G contains a path of
length k, as required.

Corollary 3.4. If G is connected, |G| = n, and δ(G) ⩾ d, then G contains a path of edge
length (at least) min{2d, n− 1}.

Proof. Trivial for n = 1, 2. For n ⩾ 3, apply Theorem 3.3 with k = 2d.

As another corollary we obtain the following result.

Theorem 3.5 (Dirac’s Theorem). Let G be a graph with n ⩾ 3 vertices. If δ(G) ⩾ n
2
,

then G contains a Hamilton cycle.

9

Proof. If δ(G) ⩾ n/2 then any two non-adjacent vertices have at least one common neigh-
bour, so G is connected. (Or: if G is not connected then there is a component C with
at most n/2 vertices. Then any v ∈ V (C) has degree at most |C| − 1 < n/2.) Now
Theorem 3.3 applies with k = n.

This result is best possible, in that we cannot replace the lower bound by ⌈n
2
⌉− 1. (For

n even, consider the disjoint union of two complete graphs Kn/2. For n ⩾ 5 odd, consider
two K(n+1)/2s sharing a single vertex.)

Theorem 3.3 of course implies a slightly stronger result than Dirac’s Theorem, known
as Ore’s Theorem.

Theorem 3.6 (Ore’s Theorem). If G has order n ⩾ 3, and if d(x) + d(y) ⩾ n whenever
xy ∈ E(G), then G has a Hamilton cycle.

Theorem 3.3 also lets us relate the length of the longest path in G to the average degree
of G.

Theorem 3.7. If G is a graph with n vertices containing no path of edge length k, k ⩾ 2,
then e(G) ⩽ k−1

2
n.

Proof. Induction on n. For n ⩽ k we have e(G) ⩽ e(Kn) = n−1
2
n ⩽ k−1

2
n, so we are

done. Now suppose n > k. We may assume G is connected; otherwise apply the induction
hypothesis to the components (which do not contain Pk+1). Then G is connected with no
Pk+1 and n > k ⩾ 2. So by Theorem 3.3 there are (non-adjacent) vertices v, w of G such
that d(v) + d(w) ⩽ k − 1. WLOG d(v) ⩽ d(w), so d(v) ⩽ k−1

2
. Since G − v has n − 1

vertices and contains no Pk+1, applying the induction hypothesis to G− v we have

e(G) = d(v) + e(G− v) ⩽ k−1
2

+ k−1
2
(n− 1) = k−1

2
n,

completing the proof.

The result above can be rephrased to say that G always contains a path of edge-length
at least d̄(G). We do not get the extra factor of 2 we had in Corollary 3.4, but we assuming
something only about average degree, not about the degree of every vertex.

4 Vertex colourings

A proper vertex colouring (or simply a colouring) of a graph G is an assignment of a colour
to each vertex such that adjacent vertices receive different colours. The least number
of colours in such a colouring is the chromatic number χ(G). For example χ(Kn) = n,
χ(En) = 1, χ(C4) = 2 and χ(C5) = 3. In fact, any even cycle (cycle of even length) has
chromatic number 2, and any odd cycle has chromatic number 3.

Often we use positive integers as the colours: a (proper) k-colouring of G is a function
f : V (G) → {1, . . . , k} so that f(u) ̸= f(v) whenever uv ∈ E(G). G is k-colourable if it has
a k-colouring, so χ(G) is the least k for which G is k-colourable.

10

1 2

34
χ(K4) = 4

1 1

11
χ(E4) = 1

1 2

12
χ(C4) = 2

1

2

3

1

2
χ(C5) = 3

Figure 5: Chromatic numbers of some small graphs.

As an example of an application, suppose we have to schedule exams, where each exam
takes one period. Construct a graph G with a vertex for each exam and an edge uv
whenever one or more students need to take both exams u and v. Then a feasible exam
schedule corresponds to a colouring of G, and the least number of periods possible is χ(G).

Certainly, if H is a subgraph of G, then χ(H) ⩽ χ(G). Clearly, a disconnected graph
is k-colourable if and only if its components are, so the chromatic number of G is the
maximum of the chromatic numbers of its components. In fact, we can extend this to
graphs overlapping in certain ways.

The union of two graphs G1 and G2 is the graph with vertex set V (G1) ∪ V (G2) and
edge set E(G1) ∪ E(G2).

Lemma 4.1. Let G1 and G2 be graphs with V (G1) ∩ V (G2) = W such that G1[W] and
G2[W] are complete. Then χ(G1 ∪G2) = max{χ(G1), χ(G2)}.

Proof. As each Gi is a subgraph of G1 ∪ G2, χ(G1 ∪ G2) ⩾ max{χ(G1), χ(G2)} is trivial.
Now let k = max{χ(G1), χ(G2)} so that both G1 and G2 are k-colourable; we must show
that G1 ∪G2 is also k-colourable. Let ci be a k-colouring of Gi, and let W = {w1, . . . , wr}.
Since c1 assigns distinct colours to w1, . . . , wr, we may permute the colours (i.e., keep fixed
which sets of vertices get the same colour, but assign different colours to these sets) to
obtain a new k-colouring c̃1 of G1 in which w1, . . . , wr get colours 1, 2, . . . , r in this order.
Do the same for G2, and then combine the colourings c̃1 and c̃2, which agree on W , to
obtain a colouring of G1 ∪G2. As the colouring is proper on both G1 and G2 and there are
no edges from G1 −W to G2 −W , this is a proper k-colouring of G1 ∪G2.

A cutvertex v in a connected graph G is a vertex such that G− v is disconnected. (In
a general graph, it’s a vertex whose deletion increases the number of components of the
graph.) Lemma 4.1 may be applied in particular to any graph G with a cutvertex.

Now we consider what happens when G is k-colourable for small k.
A graph G has χ(G) = 1 if and only if G has no edges, so is an empty graph.
A graph G = (V,E) is bipartite if V can be split into disjoint sets X and Y such that

E ⊆ {xy : x ∈ X, y ∈ Y }. (We allow one of X or Y to be empty, so K1 is bipartite.)
The complete bipartite graph Km,n has V = {a1, . . . , am, b1, . . . , bn} and E = {aibj : i =
1, . . . ,m, j = 1, . . . , n}. The connection to colouring is that χ(G) ⩽ 2 if and only if G is
bipartite: consider X = {v : c(v) = 1} and Y = {v : c(v) = 2}.

Deciding whether a (connected) graph is 2-colourable (i.e., bipartite) is very easy: start
somewhere with one colour (it doesn’t matter which) and work outwards from there –
having coloured a vertex, the colours of its neighbours are forced, and we either get stuck
or we don’t. The next simple lemma gives a criterion.

Lemma 4.2. A graph G is 2-colourable (bipartite) if and only if it contains no odd cycles.

11

Proof. If G is 2-colourable then, in any 2-colouring, the colours around any cycle C alter-
nate, implying that C has even length.

For the reverse implication we use induction on |G|; the base case |G| = 1 is trivial.
For the induction step let G be a graph with n ⩾ 2 vertices with no odd cycle. We may
assume that G is connected (else colour its components). It follows that there is (at least)
one vertex v such that G − v is connected (take v to be a leaf of a spanning tree of G).
By induction we may 2-colour G − v. If all neighbours of v have the same colour in this
colouring, then we may extend the colouring to G by using the opposite colour for v. So we
may suppose that v has neighbours x and y with different colours. Then G− v contains a
path P from x to y; along this path the colours alternate, so P has odd length and together
with vx and vy forms an odd cycle in G, contradicting our assumption.

In general, finding the chromatic number of a graph is very hard; even the question ‘is
χ(G) ⩽ 3’ is hard. However, we can give some general bounds on χ(G).

A copy of Kk in a graph G is called a complete subgraph or a clique. The clique number
ω(G) of G is the largest k such that G contains a copy of Kk. A set S of vertices is an
independent set in G (or stable set) if G[S] has no edges, i.e., no two vertices of S are
adjacent in G. Thus, a (proper) colouring of G corresponds to a partition of V (G) into
independent sets. The independence number α(G) is the maximum size of an independent
set in G. For example, ω(C5) = α(C5) = 2. Note that α(G) = ω(G).

Lemma 4.3. χ(G) ⩾ max{ω(G), |G|
α(G)

}.

Proof. All vertices in a clique must get different colours in any colouring, so χ(G) ⩾ ω(G).
Also, since the vertices of each colour form an independent set, each colour is used on at
most α(G) vertices, so we need at least |G|

α(G)
colours.

Given an ordering v1, . . . , vn of the vertices of a graph G, the greedy algorithm constructs
a (proper) colouring of G with positive integers by colouring the vertices in order: each
vertex receives the least colour not already assigned to one of its neighbours.

Lemma 4.4. χ(G) ⩽ ∆(G) + 1.

Proof. Take any ordering of the vertices and apply the greedy algorithm: each vertex has
at most ∆(G) forbidden colours, and so will get a colour from {1, 2, . . . ,∆(G) + 1}.

This bound is tight in some cases: in particular if G is complete or an odd cycle. But
usually we can do better; we start with two simple lemmas.

Lemma 4.5. Let G be a connected graph with n vertices and let v ∈ V (G). Then we may
order the vertices as v1, . . . , vn−1, vn = v so that each vertex other than v has at least one
neighbour coming after it.

Proof. See problem sheet 2.

Lemma 4.6. Let G be a connected graph with ∆(G) ⩽ d and δ(G) < d. Then χ(G) ⩽ d.

Proof. Pick a vertex v with d(v) < d, take an ordering as in the last lemma, and apply the
greedy algorithm: each vertex has at most d− 1 forbidden colours.

12

x

y︸ ︷︷ ︸
G1

︸ ︷︷ ︸
G2

A B

x

y︸ ︷︷ ︸
G+

1
︸ ︷︷ ︸

G+
2

A B

Figure 6: Decomposition of G into G1, G2, overlapping in {x, y}, and definition of G+
1 , G

+
2 .

(We won’t need this lemma in the proof that follows, but it encapsulates one key idea
of that proof.)

Dealing with the d-regular case will be significantly harder, though we now have the
tools we need.

Theorem 4.7 (Brooks’ Theorem). Let G be a connected graph. If G is neither an odd
cycle nor a complete graph then χ(G) ⩽ ∆(G).

Proof. For ∆(G) ⩽ 2 the result is easy as the graph is either a cycle or a path, so suppose
∆(G) ⩾ 3. It is convenient to restate the result slightly as follows: let d ⩾ 3 and let G be
any graph with ∆(G) ⩽ d which does not contain a copy of Kd+1. Then χ(G) ⩽ d. Since a
connected graph with maximum degree d that contains a copy of Kd+1 must be Kd+1, this
restatement (applied with d = ∆(G)) implies the theorem. We prove the restated result
by induction on n = |G|.

If G is disconnected we are done by induction, so suppose G is connected. If G has a
cutvertex v, then we may write G = G1 ∪G2 where G1 and G2 overlap precisely in v and
|G1|, |G2| < n. By induction χ(G1) ⩽ d and χ(G2) ⩽ d, so by Lemma 4.1 χ(G) ⩽ d. Hence
we may assume G has no cutvertex.

Let v be a vertex of G with degree d. (If there is none, then χ(G) ⩽ ∆(G) + 1 ⩽ d
by Lemma 4.4.) Since G contains no Kd+1, we can find neighbours x and y of v such that
xy /∈ E(G). Suppose that G − x − y is connected. Then we may order the vertices of
G−x− y as in Lemma 4.5, ending at v. Putting x and y at the beginning of this ordering,
we obtain an ordering of the vertices of G in which each vertex apart from v precedes at
least one of its neighbours. Moreover, the greedy algorithm gives x and y the same colour,
so when it comes to assign a colour to v, at most d − 1 colours are forbidden. Therefore
the greedy algorithm uses at most d colours with this ordering.

Suppose instead that G−x−y is not connected. Then V (G)\{x, y} can be partitioned
into non-empty sets A and B with e(A,B) = 07. Let G1 = G[A ∪ {x, y}] and G2 =
G[B ∪ {x, y}], so G consists of its subgraphs G1 and G2 overlapping in the non-adjacent
vertices x and y (see Figure 6). Both x and y must have neighbours in each of A and B
(if say x had no neighbours in A then G − y would be disconnected, so G would have a
cutvertex). Hence x and y have degree at most d− 1 in G1 and in G2. Let G

+
j = Gj + xy.

Then ∆(G+
j) ⩽ d. If neither G+

1 nor G+
2 contains Kd+1 then by Lemma 4.1 and induction

χ(G) ⩽ χ(G+ xy) = χ(G+
1 ∪G+

2) = max{χ(G+
1), χ(G

+
2)} ⩽ d.

So suppose that one, say G+
1 , contains a copy of Kd+1. Note that this copy must include x

and y, since G1 ⊆ G contains no Kd+1. Since G is connected, in fact G+
1 is isomorphic to

7e(A,B) is the number of edges ab of G with a ∈ A and b ∈ B

13

Kd+1. Since x and y have degree d− (d− 1) = 1 in G2, we can d-colour G2 with x and y
having the same colour. Indeed, by induction we can d-colour G[B], and each of x and y
has only one colour ruled out, so since d ⩾ 3 we can choose the same colour for both. But
now we can extend this colouring to G1, and hence to all of G.

The chromatic polynomial

Given a graph G, for k = 1, 2, . . . , let PG(k) be the number of (proper) k-colourings of G,
i.e., colourings with [k] as the set of available colours (not all colours have to be used). For
example, PKn(k) = k(k − 1)(k − 2) · · · (k − n+ 1) and, trivially, PEn(k) = kn.

It turns out that with k fixed we can calculate PG(k) inductively, using two operations
on graphs.

If e = uv is an edge in a graph G, we let G/e denote the graph obtained by contracting e;
that is, G/e is obtained from G by deleting the vertices u and v and adding a new vertex
adjacent to each vertex in (N(u)∪N(v)) \ {u, v}. In other words, we ‘merge’ u and v into
a single vertex and each vertex z ̸= u, v is joined to this merged vertex if and only if either
zu or zv was originaly an edge of G. (There is a slightly different notion of contraction for
multigraphs.)

Lemma 4.8. For each edge e of G and positive integer k, PG−e(k) = PG(k) + PG/e(k).

Proof. Suppose that e = uv. Let S be the set of k-colourings of G − e, let S1 = {c ∈ S :
c(u) ̸= c(v)} and let S2 = {c ∈ S : c(u) = c(v)}. Clearly |S| = |S1|+ |S2|. Also, PG−e(k) =
|S|, PG(k) = |S1| (since these are exactly the colourings of G), and PG/e(k) = |S2| (since
these correspond to the colourings of G/e, taking the common colour of u and v for the
new vertex and vice versa).

Theorem 4.9. For every graph G there is a unique polynomial pG(x) ∈ Z[x], the chromatic
polynomial of G, such that

pG(k) = PG(k) for each k = 1, 2, (4)

Moreover, for every edge e of G we have pG(x) = pG−e(x)− pG/e(x).

Proof. Uniqueness is immediate since two polynomials that agree on all positive integers
must be the same. For existence we use induction on e(G). For the base case e(G) = 0,
G ∼= En for some n, so PG(k) = kn for every k and the polynomial xn has the required
properties.

For the inductive step, pick any edge e of G and note that G − e and G/e have fewer
edges than G. So by induction there are polynomials pG−e and pG/e satisfying (4) for the
corresponding graphs. Consider pG = pG−e−pG/e; this is a polynomial. By Lemma 4.8, for
every positive integer k we have pG(k) = pG−e(k)− pG/e(k) = PG−e(k)− PG/e(k) = PG(k),
as required. The final statement follows immediately: we have shown that there is a
polynomial pG satisfying (4), and know that it is unique. We have also shown that for any
edge e, pG−e − pG/e is such a polynomial, so pG−e − pG/e = pG.

From now on we write pG(k) for the number of k-colourings of G, since this number is an
evaluation of the chromatic polynomial. In general, identities for numbers of k-colourings

14

valid for all k give polynomial identities. As a simple example, if G has components
G1, . . . , Gj then pG(x) = pG1(x) · · · pGj

(x); this is valid for each x ∈ N (since pH(k) is the
number of k-colourings of H), and both sides are polynomials.

Theorem 4.10. Let G be a graph with n vertices and m edges. Then

pG(x) =
n−1∑
i=0

(−1)iaix
n−i = a0x

n − a1x
n−1 + · · ·+ (−1)n−1an−1x

where a0 = 1, a1 = m and ai ⩾ 0 for all i.

Proof. We argue by induction on m. For m = 0 we have G ∼= En, so pG(x) = xn, and we
are done. For m > 0, pick an edge e of G. Then |G− e| = n and e(G− e) = m− 1 so by
the induction hypothesis,

pG−e(x) = xn − (m− 1)xn−1 +
n−1∑
i=2

(−1)iaix
n−i,

where each ai ⩾ 0. Also |G/e| = n− 1 and e(G/e) ⩽ m− 1, so

pG/e(x) = xn−1 +
n−2∑
j=1

(−1)jbjx
n−1−j = xn−1 +

n−1∑
i=2

(−1)i−1bi−1x
n−i

where each bj ⩾ 0. By the last part of Theorem 4.9,

pG(x) = pG−e(x)− pG/e(x) = xn −mxn−1 +
n−1∑
i=2

(−1)i(ai + bi−1)x
n−i,

and ai + bi−1 ⩾ 0 for each i.

5 Edge colourings

A function f : E(G) → [k] is a proper edge-colouring of G if edges that meet (i.e., share an
endvertex) always receive distinct colours. The edge-chromatic number χ′(G) (also called
the chromatic index) is the smallest k such that G has such an edge-colouring.

Proposition 5.1. If e(G) > 0, then ∆(G) ⩽ χ′(G) ⩽ 2∆(G)− 1.

Proof. Since the edges incident with a given vertex must get different colours we have
χ′(G) ⩾ ∆(G). For the upper bound, list the edges in any order and apply the greedy
algorithm to colour the edges. When we come to colour an edge uv, the number of colours
unavailable is at most d(u)− 1 + d(v)− 1 ⩽ 2∆(G)− 2.

Amazingly, given the maximum degree ∆ of a graph, there are only two possible values
for the edge-chromatic number, ∆ and ∆ + 1. The proof involves a ‘colour chasing’ argu-
ment. (More precisely, the proof combines two simple colour chasing arguments in a clever
way.)

15

Theorem 5.2 (Vizing’s Theorem). χ′(G) = ∆(G) or ∆(G) + 1.

Proof. We need to prove that χ′(G) ⩽ ∆(G) + 1. We argue by induction on m = e(G).
The result is trivial if m is 0 (or 1), so let G be a graph with m > 0 edges, let xy1 be
any edge of G, and assume (applying the induction hypothesis to G − xy1) that we have
coloured every edge of G except xy1 with colours 1, . . . ,∆(G)+ 1. Our aim is to show that
we can recolour so that we can colour the edge xy1 as well.

For any vertex v, since d(v) < ∆(G) + 1, there is at least one colour missing at v, i.e.,
not appearing on any edges incident with v. Let t1 be a colour missing at y1. We define a
sequence y1, y2, . . . , yj of distinct neighbours of x and a sequence t1, t2, . . . , tj of colours as
follows.

If colour t1 is missing at x, colour xy1 with t1 and we are done. If not, there is an edge
xy2 with colour t1, and some colour t2 (̸= t1) is missing at y2. If t2 is missing at x, colour
xy2 with t2 and xy1 with t1, and we are done. Otherwise, there is an edge xy3 with colour
t2, and there is a colour t3 missing at y3. If t3 is missing at x we can recolour as above;
otherwise there is an edge xy with colour t3. This could be a ‘new’ edge, but it could
instead be xy2.

x
missing tj

y1
missing t1

?
y2

missing t2
t1

y3
missing t3t2

...

yj
missing tj

tj−1

=⇒
x

y1

t1
y2

t2

y3
t3

...

yjtj

Figure 7: Recolouring a fan when some tj is missing at x.

In general, suppose that we have distinct neighbours y1, . . . , yj of x and distinct colours
t1, . . . , tj−1 such that ti is missing at yi for each i = 1, . . . , j−1, the edge xy1 is uncoloured,
and xyi has colour ti−1 for each i = 2, . . . , j. We call this a fan of size j. Note that there
is a fan of size 1, consisting of the uncoloured edge xy1. Let tj be a colour missing at yj.

If tj is missing at x, then recolour xyi with ti for each i = 1, . . . , j, and we are done.
(There are no conflicts at the yi since ti was missing at yi, and no conflicts at x since
t1, . . . , tj−1 were already present on xy2, . . . , xyj and tj was missing.) Otherwise there is an
edge xy with colour tj. Note that y ̸= y1 (since xy1 is uncoloured), and y ̸= yj, since tj is
missing at yj. If y /∈ {y2, . . . , yj−1} then y is a ‘new’ vertex, so let yj+1 = y – we now have
a fan of size j + 1.

The process must terminate (consider a fan of maximal size), and if we are not done
then we have distinct neighbours y1, . . . , yj of x and colours t1, . . . , tj such that (a) ti is
missing at yi for each i = 1, . . . , j, (b) xy1 is uncoloured and xyi has colour ti−1 for each
i = 2, . . . , j, and (c) the colour t := tj appears on xyi for some 2 ⩽ i < j (and so t = ti−1).

16

x
missing s

y1
missing t1

?
...

yi−1

missing t = ti−1
ti−2

yi
missing titi−1

...

yj
missing t = tj

tj−1

=⇒
x

missing s

y1

t1
...

yi−1

t = ti−1

yi
missing t?

...

yj
missing t

tj−1

Figure 8: Recolouring a fan when some t = tj = ti−1.

Let s be a colour missing at x. Note for later that t = ti−1 = tj and ti, . . . , tj−1 appear
on distinct edges incident with x, and s is missing at x, so

the colours s, t, ti, . . . , tj−1 are distinct. (5)

For k = 1, . . . , i− 1 we recolour xyk with tk, and we remove the colour from xyi (so now t
is missing at yi). We now have:

• t is missing at yj and also at yi (since previously xyi had colour t),

• xyi is the only uncoloured edge,

• for k = i+ 1, . . . , j the edge xyk has colour tk−1,

• for k = i, . . . , j − 1 colour tk is missing at yk, and

• colour s is missing at x.
We can of course swap the colours s and t everywhere in the colouring, without causing

any conflicts. But this doesn’t gain anything. Let H be the spanning subgraph of G
consisting of all edges coloured s or t. Then we can swap s and t within any component
of H without causing conflicts. Since ∆(H) ⩽ 2, H consists of paths and cycles. At each
of x, yi and yj, at least one of s and t is missing, so each of these vertices has degree ⩽ 1
in H. Hence the components of H containing x, yi and yj are paths (possibly of length 0),
with each of x, yi and yj being an end of one of these paths. One of the two following
possibilities must occur.
Case 1: x and yi are in different components of H. Swap s and t in the component
containing x. Now t is missing at x, and is still missing at yi, so we can colour xyi with t.
Case 2: x and yi are in the same component of H. Since a path has at most two ends,
it cannot be that x, yi and yj are all in the same component of H. Thus x and yj are in
different components of H. Swap s and t in the component containing x. Now t is missing
at x, and is still missing at yj. We can colour xyk with tk for each k = i, i + 1, . . . , j − 1
(since, recalling (5), swapping s and t did not affect which edges have colours tk, i ⩽ k < j,
or which vertices these colours are missing at) and colour xyj with t, and we are done.

Proper edge colourings of any graph G correspond exactly to proper vertex colourings
of the line graph L(G). This is (as it must be for the previous sentence to be true) the
graph with a vertex for each edge of G in which two vertices are adjacent if and only

17

if the corresponding edges of G meet. So in a sense, edge colouring is a special case of
vertex colouring, though this viewpoint is not likely to be helpful in proving results such
as Vizing’s Theorem.

6 Planar Graphs

The graph K4 may be drawn in the plane with no edges crossing. What about K3,3

(Dudeney’s problem), or K5? We first need to define clearly what we mean by such a
drawing of a graph.

Figure 9: A plane drawing of K4.

A simple curve in the plane is the image of a continuous injection ϕ : [0, 1] → R2. Its
endpoints are ϕ(0) and ϕ(1). A simple closed curve is the image of a continuous map
ϕ : [0, 1] → R2 that is injective except that ϕ(0) = ϕ(1). A curve is polygonal if it is formed
from a finite number of straight-line segments, i.e., ϕ is piecewise linear.

A drawing of a graph G = (V,E) in the plane is a representation consisting of distinct
points xv for the vertices v ∈ V , and simple polygonal curves cuv for the edges uv ∈ E,
such that cuv has xu and xv as its endpoints, and the interiors of the curves (i.e., the curves
without their endpoints) are disjoint from each other and from the xv. In other words,
the points and curves meet only ‘as they should’ according to the incidence relation of the
graph.

In fact, the usual definition allows the edges to be drawn as simple curves that need
not be polygonal; it is an exercise in analysis (that we will not do) to show that the two
definitions coincide: a general drawing can be ‘converted’ into a polygonal drawing.8

A graph together with a drawing in the plane is often called a plane graph. We tend to
use the notation G for a plane graph without explicitly indicating the drawing. A graph is
planar if it has a drawing in the plane.

Given a plane graph, if we omit from the plane the points corresponding to the vertices
and edges, what remains falls into open connected components, the faces, exactly one
of which is unbounded. To study plane (and planar) graphs we need surprisingly little
topology. The next lemma may seem obvious, but not all drawings of planar graphs are
as simple as one might hope. (E.g., we may have one face inside another, meeting at a
cutvertex.)

8In fact drawings of simple graphs can be converted to ones where all the edges are straight line segments
– this is Fáry’s Theorem.

18

1

2

3

Figure 10: A plane graph with three faces.

Lemma 6.1. Let e be an edge of a plane graph G. Then e is in the boundary of two
distinct faces if and only if e is in a cycle in G. Moreover, if G is not a forest, then the
boundary of every face contains a cycle.

Proof. Suppose e is in a cycle C. Then the drawing of C is a simple closed (polygonal)
curve in the plane, which separates the plane into its inside and outside. (This is the easy
part of the Jordan curve theorem.) The face on one side of e is inside, the other outside.

In the other direction, let F and F ′ be the faces with e in the boundary. Let H be the
spanning subgraph of G consisting of all edges h such that h is in the boundary of F and
some other face, i.e., h separates F from non-F . Going around a small circle centred at a
vertex v, so that we cross each of the d(v) edges incident with v exactly once and do not
cross any other edges, we enter and leave F the same number of times. Thus dH(v) is even.
It is easy to check (exercise) that in a graph with all degrees even, every edge is in a cycle.
So e is in a cycle in H, and hence in G.

For the last part, if G is not a forest, then it contains a cycle and so has more than one
face. For any face F define H as above; then H contains a cycle which consists of edges in
the boundary of F .

A bridge in a graph G is an edge whose deletion would disconnect the component of G
that it lies in. Note that e is a bridge if and only if e is not in any cycle. The result above
shows that that in a plane graph, e has the same face on both sides if and only if it is a
bridge. Note that being a bridge is an abstract graph property, that does not depend on
the drawing in the plane.

Theorem 6.2 (Euler’s Formula). Let G be a connected plane graph with n vertices, m
edges and f faces. Then

n−m+ f = 2.

Proof. By induction on f . If f = 1 then G does not contain a cycle, so it is a tree, and
m = n− 1.

Suppose now that f ⩾ 2 and the result holds for smaller values of f . Pick an edge e
in the boundary of two faces. By Lemma 6.1, there is a cycle C in G containing e. Thus
G− e is connected. When we delete e from the drawing, two faces join up to form a new
face, while all other faces remain unchanged. So by induction n − (m − 1) + (f − 1) = 2
and hence n−m+ f = 2 as required.

Corollary 6.3. Let G be a planar graph with n ⩾ 3 vertices. Then e(G) ⩽ 3n− 6.

Proof. We may assume G is connected (otherwise consider each component and sum) and
not a tree (as n − 1 ⩽ 3n − 6 for n ⩾ 3). Let m = e(G). Consider a drawing of G in the
plane, with f faces F1, . . . , Ff . Let e(Fi) be the number of edges in the boundary of Fi

19

counting any bridges twice. Since each non-bridge is in the boundary of two faces and each
bridge of only one, we have

∑
i e(Fi) = 2m. By the last part of Lemma 6.1, e(Fi) ⩾ 3 for

every face Fi, so 3f ⩽ 2m. Hence 2 = n − m + f ⩽ n − m + 2m/3 = n − m/3 and the
result follows.

We now see that K5 is not planar, since e(K5) = 10 > 9 = 3× 5− 6. It is an exercise
to show that any triangle-free planar graph with n ⩾ 3 vertices has at most 2n− 4 edges;
this shows that K3,3 is not planar.

Dual graphs

Slightly informally, a multigraph consists of a set V of vertices and a set E of edges, where
each e ∈ E either joins some vertex v to itself (such an edge is called a loop) or joins some
(unordered) pair {u, v} of vertices. There may be several edges joining the same pair of
vertices, and there may be several loops at a given vertex v. (Formally, we may define
a multigraph as a triple (V,E, ϕ), where V and E are finite sets, and ϕ : E →

(
V
2

)
∪
(
V
1

)
encodes the ends (or end for a loop) of an edge e ∈ E.) It is clear how to extend the
definition of a drawing in the plane to multigraphs; for example, a loop at v is drawn as a
(polygonal) simple closed curve from xv to itself meeting the other edges only at xv.

If G is a plane (multi-)graph then G has a dual G∗ obtained as follows: take one vertex
F ∗ for each face F of G, and one edge e∗ for each edge e of G, joining the vertices F ∗

1 and F ∗
2

corresponding to the faces F1 and F2 of G on the two sides of e. (For a bridge e, F1 = F2,
so e∗ is a loop.) We may draw G∗ so that each vertex F ∗ is a point in the corresponding
face F of G, and each edge e∗ crosses the corresponding edge e of G at one point, and is
otherwise disjoint from G. We note that G∗ is always connected, and if G is connected,
then it is easy to check that G∗ has one face for every vertex of G, and indeed that (G∗)∗ is
isomorphic to G. Note that the dual of a connected simple graph (i.e., a graph – no loops
or multiple edges) may be a multigraph.

Figure 11: A planar graph and its dual. The dual is a multigraph.

A map is a connected bridgeless plane (multi-)graph. One of the most famous problems
in graph theory, posed in 1852, is: can the faces of every map be coloured with 4 colours
so that faces sharing an edge get different colours? Taking duals, it is not hard to check
that this is equivalent to asking whether every planar (simple) graph G has χ(G) ⩽ 4. The
answer is yes; the result is known as the ‘Four Colour Theorem’.

If G is planar and has n ⩾ 3 vertices, then e(G) ⩽ 3n − 6, so
∑

v d(v) = 2e(G) < 6n,
and G must have δ(G) ⩽ 5. It follows easily by induction on |G| that every planar graph
G has χ(G) ⩽ 6. With not too much work, we can improve this by one, to obtain the ‘Five
Colour Theorem’.

20

Theorem 6.4 (Heawood, 1890). If G is planar then χ(G) ⩽ 5.

Proof. We argue by induction on n = |G|. If n ⩽ 5 then the result is trivial, so suppose G
is planar and has n ⩾ 6 vertices, and every planar graph with fewer vertices is 5-colourable.

As shown above, G has some vertex v with d(v) ⩽ 5. Draw G in the plane, and let c
be a 5-colouring of the plane graph G − v. If any of the 5 colours does not appear on a
neighbour of v we can extend the colouring to G, and we are done. So we may assume that
d(v) = 5 and that the colours of the neighbours of v are distinct. Let the neighbours of v
be v1, v2, . . . , v5 in cyclic order, and without loss of generality suppose that c(vi) = i.

1

2

3

4

5

Let H be the subgraph of G − v induced by the vertices with colour 1 or 3. If v1 and
v3 are in different components of H then, swapping colours 1 and 3 in the component of
H containing v3, say, we find a new 5-colouring c′ of G − v in which c′(v1) = c′(v3) = 1;
this colouring extends to all of G and we are done. Thus we may assume there exists a
path P1 in G− v joining v1 to v3 in which all vertices have colour (in c) 1 or 3. Similarly,
there exists a path P2 in G− v joining v2 to v4 in which all vertices have colour (in c) 2 or
4. The paths P1 and P2 are vertex disjoint, so in the drawing they do not cross. Since the
cycle vP1v separates the plane and P2 starts and ends on different sides of this cycle this
gives a contradiction.

The paths described above are often called ‘Kempe chains’. Kempe thought he had
proved the four colour theorem in 1879. The theorem was actually first proved by Appel
and Haken in 1977 making extensive use of computers. A simpler, but still computer-based,
proof was given by Robertson, Sanders, Seymour and Thomas in 1997. As of today there
is no simple proof known.

7 Flows, connectivity and matchings

Imagine a road network in which each road has a certain ‘capacity’, or maximum flow in
cars/hour. How can we work out the maximum traffic flow from one or more ‘sources’ to
one or more ‘sinks’ or target destinations? Since the capacity of a road may not be the
same in the two directions (for example if it is one-way) it makes sense to consider this
question in the context of directed graphs.

Formally, a directed graph or digraph
−→
G = (V,

−→
E) consists of a set V , the set of vertices,

and a set
−→
E of ordered pairs of distinct elements of V , the (directed) edges. We write

−→
E to

remind ourselves the graph is directed; often the edge-set is just denoted E. We think of

(x, y) ∈
−→
E as an edge from x to y, and write −→xy or simply xy. Note that a directed graph

cannot contain more than one edge from x to y, but can contain both edges xy and yx.
We write

N+(x) = {y ∈ V : xy ∈
−→
E }

21

for the out-neighbourhood of x ∈ V , and

N−(x) = {y ∈ V : yx ∈
−→
E }

for its in-neighbourhood.

A flow in G with source s and sink t is a function f :
−→
E → [0,∞) such that for every

x ∈ V \ {s, t} we have ∑
y∈N+(x)

f(xy) =
∑

y∈N−(x)

f(yx),

i.e., the flow out of x is equal to the flow into x. Here s and t are distinct vertices.

Given any function f :
−→
E → R, for x ∈ V let

If (x) =
∑

y∈N+(x)

f(xy)−
∑

y∈N−(x)

f(yx).

We may think of If (x) as the amount of flow that must be injected into the graph at x to
maintain balance; in a flow, If (x) = 0 for x ∈ V \ {s, t}.

For any flow (or, indeed, any function on
−→
E),∑

x∈V

If (x) =
∑
x∈V

(∑
y∈N+(x)

f(xy)−
∑

y∈N−(x)

f(yx)
)
= 0,

since for every uv ∈
−→
E , f(uv) appears exactly twice, once with x = u and once with x = v.

For a flow, the terms with x ̸= s, t are zero, so If (s) = −If (t), i.e.,∑
y∈N+(s)

f(sy)−
∑

y∈N−(s)

f(ys) =
∑

y∈N−(t)

f(yt)−
∑

y∈N+(t)

f(ty).

In other words, the net flow leaving s equals the net flow arriving at t. This common value
is called the value of f , and written v(f). (Usually, v(f) = If (s) = −If (t) is positive –
otherwise we would regard the flow as having t as source and s as sink.) We can think of
flow as being ‘conserved’ at every vertex, but with flow v(f) injected into the graph at s
and flow v(f) extracted at t.

A capacity function on a directed graph G = (V,
−→
E) is just a function c :

−→
E → [0,∞).

A flow f is feasible (w.r.t. c) if f(xy) ⩽ c(xy) for every xy ∈
−→
E . The key question in the

theory of flows is: what is the maximum value of a feasible flow in a given graph with given
source s, sink t and capacity function c? To avoid repeating the definitions, we shall call a
directed graph with a given sink, source and capacity function a network. (Of course, the
word ‘network’ has many different meanings, depending on the context.) When we say f
is a flow in a given network, it is always understood that f is feasible.

Given sets S and T of vertices of a directed graph (V,
−→
E), let

−→
E (S, T) = {xy ∈

−→
E :

x ∈ S, y ∈ T} be the set of edges from S to T .
A cut in a network is a partition of the vertex set into disjoint sets S and T with s ∈ S

and t ∈ T . (Alternatively, we may say that a corresponding set
−→
E (S, T) of edges is a cut.)

The capacity of a cut (S, T) is

c(S, T) =
∑

xy∈
−→
E (S,T)

c(xy),

22

i.e., the maximum conceivable flow from S to T (ignoring what happens within S and T).
Clearly, in any feasible flow f , v(f) ⩽ c(S, T). Indeed,

v(f) = If (s) =
∑
x∈S

If (x) =
∑
x∈S

(∑
y∈N+(x)

f(xy)−
∑

y∈N−(x)

f(yx)
)

=
∑

xy∈
−→
E (S,T)

f(xy) +
∑

xy∈
−→
E (S,S)

f(xy)−
∑

yx∈
−→
E (T,S)

f(yx)−
∑

yx∈
−→
E (S,S)

f(yx)

=
∑

xy∈
−→
E (S,T)

f(xy)−
∑

yx∈
−→
E (T,S)

f(yx) ⩽ c(S, T). (6)

Thus the maximum value of a feasible flow is at most the minimum capacity of a cut. The
remarkable ‘max-flow min-cut’ theorem tells us that we have equality.

Theorem 7.1 (Max-Flow Min-Cut). In any network (
−→
G, s, t, c) we have

sup
{
v(f) : f is a feasible flow

}
= min

{
c(S, T) : (S, T) is a cut

}
.

Moreover, the supremum is attained.

The key ingredient of the proof is the notion of an augmenting path, or ‘slack path’. Let

f be a flow in a network. We say that an ordered pair (x, y) is ε-slack if either xy ∈
−→
E

and f(xy) ⩽ c(xy) − ε or yx ∈
−→
E and f(yx) ⩾ ε (or both). A path x0x1 · · ·xr in the

undirected graph associated to
−→
G is ε-slack if xi−1xi is ε-slack for 1 ⩽ i ⩽ r, and slack (or

augmenting) if it is slack for some ε > 0.

Lemma 7.2. Let f be a flow in a network. If x0x1 · · ·xr is an ε-slack path with x0 = s
and xr = t then v(f) is not maximal; in particular, there is a flow f ′ with v(f ′) = v(f)+ε.

Proof. For each i we can either increase the flow along xi−1xi by ε, or decrease the flow
along xixi−1 by ε. Doing either increases If (xi−1) by ε and decreases If (xi) by the same
amount. Making such a change for each i = 1, 2, . . . , r, we see that If (x) is unchanged
for every x ̸= s, t (so we still have a flow), and that v(f) = If (s) = −If (t) is increased
by ε.

Proof of Theorem 7.1. First, we show that the supremum is attained. As noted earlier, for
any flow f and cut (S, T) we have v(f) ⩽ c(S, T). In particular, v(f) ⩽

∑
y∈N+(s) c(sy) < ∞

so the set {v(f) : f a flow} is bounded. So there are flows fi with v(fi) → M < ∞, where

M is the supremum. Let xy ∈
−→
E . Then, passing to a subsequence, we may assume

that fi(xy) converges. Repeating this for each edge, we find a (sub)sequence of flows with

v(fi) → M such that fi(xy) converges for each xy ∈
−→
E . But then f(xy) = limi→∞ fi(xy)

defines a flow with value limi→∞ v(fi) = M .
Let f be a flow attaining the supremum. It suffices to find a cut with capacity v(f).

Let
S = {x ∈ V : there is a slack path from s to x},

and let T = V \ S. Clearly s ∈ S (consider a path of length 0). By Lemma 7.2, t /∈ S.
Thus (S, T) is a cut. Suppose x ∈ S and y ∈ T with (x, y) slack. Then taking a slack path

23

s = x0 · · ·xr = x and appending xr+1 = y gives a slack path ending at y, contradicting

y ∈ T . Hence, for every xy ∈
−→
E (S, T) we have f(xy) = c(xy), and for every yx ∈

−→
E (T, S)

we have f(yx) = 0. I.e., equality holds in (6), so c(S, T) = v(f).

A maximal flow is one with maximum value. A function (here f or c) is integral if all
its values are integers.

Theorem 7.3. Let (
−→
G, s, t, c) be a network in which the capacity function c is integral.

Then there is a maximal flow f which is integral.

Proof. We have essentially described an algorithm to find such an f ; the key point is that
if the capacity function c and flow f are integral, then any slack path is 1-slack. Start with
the flow with f(xy) = 0 for all edges, and repeat the following: if there is a slack (and
hence 1-slack) path from s to t augment the flow along this path by 1 as above, obtaining a
new integral flow with larger value; repeat. Otherwise, by the last part of the proof above,
there is a cut (S, T) with v(f) = c(S, T), so f is maximal.

The algorithm defined above is in fact reasonably efficient: it is easy to check for the
existence of slack paths by (for example) breadth-first search.

A directed path in a directed graph
−→
G = (V,

−→
E) is a sequence x0x1 · · ·xr of distinct

vertices such that x0x1, . . . , xr−1xr ∈
−→
E . A set

−→
X ⊆

−→
E of edges separates s from t if−→

G −
−→
X contains no directed path (or, equivalently, no directed walk) from s to t. If (S, T)

is a cut, then
−→
E (S, T) separates s from t. Conversely, if

−→
X separates s from t then it

contains
−→
E (S, T) for some cut (S, T) – for example, take S to be the set of vertices x such

that
−→
G −

−→
X contains a directed s-x path. Let c(

−→
X) =

∑
xy∈

−→
X
c(xy). Then we see that

min
{
c(S, T) : (S, T) is a cut

}
= min

{
c(
−→
X) :

−→
X separates s from t

}
. (7)

This gives an alternative formulation of the max-flow min-cut theorem. Note, however,
that cuts arise in the proof in an essential way, and it is necessary to consider reducing flow
along backwards edges as well as increasing it along forwards ones.

The max-flow min-cut theorem has many variants, some of which we leave as exercises.
For example, we may consider several sources s1, . . . , sk and several sinks t1, . . . , tℓ. In this
context, a cut (S, T) is a partition of the vertices with all sources in S and all sinks in T .
A flow must satisfy If (x) = 0 for every vertex that is neither a source nor a sink, and its

value is
∑k

i=1 If (si). Theorems 7.1 and 7.3 apply mutatis mutandis to this setting.
Another important variation allows some edges to have infinite capacity, meaning that

the flow along xy can take any finite value. The results hold in this setting too, with the
proviso that if there is no cut with finite capacity, then {v(f)} is unbounded, so of course
there is no flow with maximum value.

One more substantial variant is to impose capacity restrictions on the vertices rather

than edges. Let
−→
G be a directed graph with source s and sink t, and let c be a (vertex)

capacity function assigning every vertex x ̸= s, t a capacity c(x) ∈ [0,∞). A flow in
−→
G is

feasible if for each vertex x ̸= s, t we have∑
y∈N−(x)

f(yx) =
∑

y∈N+(x)

f(xy) ⩽ c(x),

24

i.e., the flow through x is at most c(x). (The equality is the definition of a flow; feasibility
is the inequality.)

A vertex-cut is a set S ⊆ V \ {s, t} of vertices such that in
−→
G − S there is no directed

path from s to t. The capacity of S is
∑

x∈S c(x).

Theorem 7.4. Let
−→
G be a directed graph with source s, sink t and vertex capacity func-

tion c. Then the maximum value of a feasible flow from s to t is the minimum capacity of
any vertex-cut. Furthermore, if c is integral, then there is a flow with maximum value that
is integral.

Proof. Rather than modify the proof of Theorem 7.1, we modify the network so that we
can apply that result.

Form a directed graph
−→
H with source s and sink t by replacing each vertex x ̸= s, t by

two vertices x− and x+ joined by an edge x−x+ with capacity c(x). For each edge of
−→
G

there is an edge of
−→
H with infinite (or very large) capacity; edges that start/end at s/t

in
−→
G do so in

−→
H ; every edge of

−→
G ending at x ̸= s, t now ends at x−, and every edge

starting at x now starts at x+. It is easy to check that feasible flows in
−→
G are in 1-to-1

correspondence with feasible flows in
−→
H . In

−→
H , a set

−→
X of edges with c(

−→
X) finite must be

of the form
−→
X S = {x−x+ : x ∈ S} for some S ⊆ V \ {s, t}. Moreover,

−→
X S is separating if

and only if S is a vertex-cut. The result thus follows from Theorem 7.1 and (7) and, for
integrality, Theorem 7.3.

Connectivity and Menger’s Theorem

Let G be an (undirected) graph and S ⊆ V (G). We say that S separates G if G − S is
disconnected. For vertices x, y of G, S separates x and y if they are in different components
of G− S.

For a non-negative integer k, a graph G is k-connected if |G| ⩾ k + 1 and no set of (at
most) k − 1 vertices separates G. (Every graph is 0-connected. A graph G is 1-connected
iff it is connected and |G| ⩾ 2. The only k-connected graph with |G| = k + 1 is Kk+1.)

The (vertex) connectivity of a graph G is defined as

κ(G) = max
{
k : G is k-connected

}
.

Equivalently, κ(G) is the minimum number of vertices that must be deleted to either
disconnect G, or reduce it to a single vertex. It follows easily from the definition that
κ(G− x) ⩾ κ(G)− 1, and that if H is a spanning subgraph of G then κ(G) ⩾ κ(H). It is
an exercise to check that if e is an edge of G then κ(G− e) ⩾ κ(G)− 1.

We now define a ‘local’ version of connectivity. For distinct non-adjacent vertices x and
y of G we write

κ(x, y) = κG(x, y) = min{|S| : S separates x and y}.

Note that adjacent vertices can never be separated by deleting other vertices. Also, it is
easy to check that for any non-complete graph G,

κ(G) = min
xy∈E(G)

κG(x, y).

25

Two distinct x-y paths are independent (or internally vertex-disjoint) if the only ver-
tices they share are x and y. A set of x-y paths is independent if the paths are pairwise
independent.

Theorem 7.5 (Menger’s Theorem). Let x and y be distinct non-adjacent vertices of G.
Then the maximum size of an independent set of x-y paths is κG(x, y).

Proof. If there are k independent x-y paths then κG(x, y) ⩾ k as we must remove at least
one vertex from each path to separate x from y. So it is enough to show that there are
κG(x, y) independent paths.

Turn G into a network with source x and sink y by replacing each edge uv by two
directed edges −→uv and −→vu, and assigning each vertex other than x and y capacity 1. Then
a vertex-cut S is simply a set of vertices separating x and y, and its capacity is just |S|.
Hence, by Theorem 7.4, there is an integral flow f from x to y with value κG(x, y). Given
the vertex capacities, f can only take values 0 and 1, so f corresponds to a set of edges
consisting of independent x-y paths and perhaps some directed cycles. The value of f is
the number of paths, so there are κG(x, y) paths as required.

Corollary 7.6. A graph G is k-connected iff |G| ⩾ k + 1 and every pair of non-adjacent
vertices is joined by k independent paths.

We can also define edge connectivity, and prove a form of Menger’s Theorem for edge-
disjoint paths. More specifically, we say a graph with at least 2 vertices is k-edge-connected
if removing at most k−1 edges cannot disconnect the graph. We define the edge connectivity
as

λ(G) = max{k : G is k-edge-connected.}
Given distinct vertices x and y, define λG(x, y) to be the minimum number of edges one
needs to remove from G so that x and y are no longer in the same component (i.e., the
minimum size of a separating set of edges). Clearly λ(G) = minx ̸=y λG(x, y).

Theorem 7.7 (Menger’s Theorem, edge version). Let x and y be distinct vertices of G.
Then the maximum number of pairwise edge-disjoint x-y paths is λG(x, y).

Proof. Exercise.

Hall’s Theorem

A matching M in a graph G is a set of pairwise disjoint edges of G; its size |M | is the
number of edges. Let G be a bipartite graph with vertex classes V1 and V2. A complete
matching from V1 to V2 is a matching such that every vertex in V1 is incident with some
edge in the matching, i.e., a matching of size |V1|.

Given a set S of vertices in a graph G, we write N(S) =
⋃

s∈S N(s) for the set of vertices
with at least one neighbour in S.9

Theorem 7.8 (Hall’s Marriage Theorem). Let G be a bipartite graph with bipartition
(V1, V2). Then G contains a complete matching from V1 to V2 iff |N(S)| ⩾ |S| for each
S ⊆ V1.

9Some authors exclude elements of S from N(S). In the present context, where G is bipartite and
S ⊆ V1, it makes no difference.

26

The condition that |N(S)| ⩾ |S| for each S ⊆ V1 is called Hall’s condition. It is trivially
necessary as each element of S must be matched to a different element of N(S). We give
two proofs of sufficiency.

Proof. We can deduce the result from Menger’s Theorem. Instead, here is an outline of a
proof directly from Theorem 7.3.

Form a directed graph by orienting every edge from V1 to V2, and adding a new vertex
s with an edge sx for every x ∈ V1 and a new vertex t with edges xt, x ∈ V2. Assign
all the new edges capacity 1, and the edges from V1 to V2 some very large (or infinite)
capacity; |V1|+1 is large enough. Let (S, T) be a cut, and let Si = S ∩ Vi and Ti = T ∩ Vi.

Either (i)
−→
E (S, T) contains some edge from V1 to V2. Then c(S, T) > |V1|. Or (ii) not, i.e.,

N(S1) ⊆ S2. Then

c(S, T) = |T1|+ 0 + |S2|
= |V1| − |S1|+ |S2|
⩾ |V1| − |S1|+ |N(S1)|
⩾ |V1|,

s t

S1

T1

S2

T2

↗

↘ ↗

↘
↗

→

→

by Hall’s condition. Hence the capacity of any cut is at least |V1|, so by Theorem 7.3 there
is an integral flow f with value |V1|. But it is easy to check that f can only take the values 0
and 1, and that the edges e from V1 to V2 with f(e) = 1 correspond to a complete matching
in G.

Here is a direct proof of Hall’s Theorem.

Proof. We argue by induction on n = |V1|. If n = 1, the result is trivial. For the induction
step, let n ⩾ 2 and suppose that the result holds for all graphs with |V1| < n. Consider a
graph G with |V1| = n and assume that Hall’s condition holds. There are two cases.
(a) Suppose first that |N(S)| > |S| for each ∅ ≠ S ⊊ V1. Let xy be any edge of G with
x ∈ V1 and y ∈ V2. Form G′ by deleting the vertices x and y from G. Then G′ satisfies
Hall’s condition (since if ∅ ≠ S ⊆ V1 \{x} then |N ′(S)| = |N(S)\{y}| ⩾ |N(S)|−1 ⩾ |S|),
and so by induction G′ has a complete matching from V1 \ {x} to V2 \ {y}. Now adding
the edge xy gives the required matching.
(b) If case (a) does not hold then |N(S)| = |S| for some ∅ ≠ S ⊊ V1. The bipartite
subgraph induced by S ∪ N(S) still satisfies Hall’s condition, so by induction there is a
complete matching M1 from S to N(S). Now consider T = V1 \ S and U = V2 \N(S). We
shall see that the bipartite subgraph H induced by T ∪ U also satisfies Hall’s condition.
For each A ⊆ T we have

|NH(A)| = |N(A) ∩ U |
= |N(A ∪ S) \N(S)|
= |N(A ∪ S)| − |N(S)|
⩾ |A ∪ S| − |S| = |A|,

S

T

N(S)

U

↗

→

→

27

since |N(A ∪ S)| ⩾ |A ∪ S| and |N(S)| = |S|. So Hall’s condition holds in H, and by
induction there is a complete matching M2 from T to U . Then M1 ∪ M2 is the required
matching from V1 to V2.

Tutte’s 1-factor Theorem

Although especially natural in bipartite graphs, it makes perfect sense to consider matchings
in general graphs. A k-factor in a graph G is a spanning k-regular subgraph. Thus a 1-
factor is exactly the same as a matching covering all vertices.

We call a component of a graph G odd if it has an odd number of vertices, and even
otherwise. Let q(G) denote the number of odd components of G, and note that q(G) ≡
|G| mod 2.

Theorem 7.9 (Tutte’s 1-factor theorem). A graph G has a 1-factor if and only if, for
every S ⊆ V (G), we have

q(G− S) ⩽ |S|. (8)

Proof. In any 1-factor (complete matching) M , every odd component C of G− S contains
at least one vertex paired with some vertex outside C. Since the only edges leaving C in
G go to S, a vertex of C must be paired with a vertex of S, and so |S| ⩾ q(G− S). This
shows that (8) is necessary. We prove sufficiency by induction on |G|. The case |G| = 1
(or |G| = 2) is trivial.

Suppose then that G satisfies (8), and that the result holds for all smaller graphs.
Taking S = ∅ in (8) we see that q(G) = 0, and in particular |G| is even. Also, for any
vertex v of G, q(G − v) is odd (since |G − v| is). Hence q(G − v) ⩾ 1 and (since we are
assuming (8)), for S = {v} we have q(G− S) = |S|.

Let S be a subset of V (G) for which q(G − S) = |S| with s = |S| maximal. From the
above, s ⩾ 1, so S is not empty. Let O1, . . . , Os be the odd components of G − S and
E1, . . . , Ek, k ⩾ 0, the even components (if there are any). We shall prove the following
three statements.

(a) each Ei has a 1-factor,

(b) if v is any vertex of any Oi, then Oi − v has a 1-factor, and

(c) there is a matching s1v1, . . . , ssvs in G such that {s1, . . . , ss} = S and vi ∈ Oi for
1 ⩽ i ⩽ s.

Clearly, if (a)–(c) hold then G has a 1-factor: apply (c) first, then (b) and (a). It remains
to prove (a)–(c).

To see (a), let A ⊆ V (Ei). The components of G− (A∪ S) are O1, . . . , Os, all Ej other
than Ei, and the components of Ei − A, so q(G− (A ∪ S)) = s+ q(Ei − A) and

q(Ei − A) = q(G− (A ∪ S))− s ⩽ |A ∪ S| − s = |A|+ s− s = |A|.

Hence Ei satisfies (8) and by induction Ei has a 1-factor.

For (b), let v be a vertex of Oi. Let A ⊆ V (Oi − v). Then the components of G− (A∪
{v} ∪ S) are the Ej, all Oj other than Oi, and the components of (Oi − v)− A. Hence

q((Oi − v)− A) = q(G− (A ∪ {v} ∪ S))− (s− 1) < |A ∪ {v} ∪ S| − s+ 1 = |A|+ 2,

28

where the inequality is from (8) and the maximality of |S|. Modulo 2,

q((Oi − v)− A) ≡ |(Oi − v)− A| = |Oi| − 1− |A| ≡ |A|,

since Oi is odd. Since x < y+2 and x ≡ y mod 2 imply x ⩽ y, it follows that q((Oi − v)−
A) ⩽ |A|, so Oi − v satisfies (8), and (b) follows by induction.

Finally, for (c) let H be the bipartite graph with V1 = S and V2 = {o1, . . . , os}, with
an edge xoi whenever x ∈ S and there is at least one edge in G from x to Oi. It suffices
to find a complete matching in H, so we check Hall’s condition. Let A ⊆ V1 = S. If
oi ∈ V2 \ NH(A) then in G there are no edges from A to Oi, so Oi is a component of
G− (S \ A). Hence, q(G− (S \ A)) ⩾ |V2 \NH(A)| = s− |NH(A)|. Thus, by (8),

s− |NH(A)| ⩽ q(G− (S \ A)) ⩽ |S \ A| = s− |A|.

Hence |NH(A)| ⩾ |A|, so Hall’s condition holds in H, and by Hall’s Theorem H has the
required complete matching.

8 Extremal Problems

If G has a subgraph isomorphic to H we say ‘G contains (a copy of) H’ for short, and
sometimes write G ⊇ H.10 For a graph H with e(H) > 0 and n ⩾ 1 an integer, define

ex(n,H) = max
{
e(G) : |G| = n, G contains no copy of H

}
and

EX(n,H) =
{
G : |G| = n, e(G) = ex(n,H), G contains no copy of H

}
.

The graphs in EX(n,H) are called the extremal graphs ; we often describe EX(n,H) by
listing one graph from each isomorphism class. ex(n,H) is the extremal number for H (a
function of n, of course).

For example, if G contains no copy of P3 then all edges must be disjoint. Thus
ex(n, P3) = ⌊n

2
⌋, and EX(n, P3) is {n

2
K2} if n is even and {n−1

2
K2 ∪ K1} if n is odd,

where mK denotes the disjoint union of m copies of K.
What is ex(n,K3)? Good candidate extremal graphs are the complete bipartite graphs

Kk,n−k; to maximize the number k(n − k) of edges we take k = ⌊n/2⌋. More generally,
what is ex(n,Kr+1)?

A graph G is r-partite if V (G) is the disjoint union of r sets V1, . . . , Vr (the vertex
classes) with e(G[Vi]) = 0 for each i, i.e., no edges within each Vi. In other words, all edges
go between parts. This is exactly the same as saying that G is r-colourable. A graph G is
complete r-partite if in addition every possible edge between parts is present.

Note that empty parts are allowed: the key point is that inside any part with at least
two vertices, edges are forbidden. Clearly, any r-partite graph does not contain a copy of
Kr+1 as two of the vertices of the Kr+1 would have to lie in the same part.

10Perhaps we should not write this, since in other contexts it means that H itself is a subgraph of G, i.e.,
that the particular vertices and edges of H are present in G. But usually it is clear from context whether
or not we are considering isomorphic copies.

29

Before continuing we make a trivial observation: if a1, . . . , ar are integers with average
ā = 1

r

∑
ai then all ai are within 1 of each other (i.e., max ai ⩽ min ai + 1) if and only if

every ai is equal to ⌊ā⌋ or ⌈ā⌉. (There are two cases: all ai = m = ā for some integer m, or
some ai = m, some ai = m+1; then m < ā < m+1.) Moreover, given r and

∑
ai, there is

only one way (up to reordering) to choose the ai so that these conditions hold. I.e., there
is only one way to divide a given number of (indivisible) objects among r people ‘as fairly
as possible’.

For n, r ⩾ 1, the Turán graph Tr(n) is the complete r-partite graph on n vertices with
the vertex class sizes as equal as possible, i.e., each is ⌊n

r
⌋ or ⌈n

r
⌉. The Turán number tr(n)

is e(Tr(n)). Note that if n ⩽ r then Tr(n) = Kn.
For example, T2(n) is K⌊n/2⌋,⌈n/2⌉. Thus t2(n) is n2

4
if n is even, and n2−1

4
if n is odd:

t2(n) = ⌊n2

4
⌋.

T3(10) has class sizes 3, 3 and 4, and 9 + 12 + 12 = 33 edges, so t3(10) = 33. T1(n) has
no edges, so t1(n) = 0.

Facts about Turán graphs

1. Among all r-partite graphs with n vertices, Tr(n) is the unique (up to isomorphism)
one with the largest number of edges. Indeed, only complete r-partite graphs are
candidates, and if two classes differ in size by 2 or more, moving a vertex from the
larger to the smaller gains at least one edge (since it reduces the number of vertices
it is not adjacent to).

2. Since each vertex class has size ⌊n
r
⌋ or ⌈n

r
⌉, δ(Tr(n)) = n−⌈n

r
⌉ and ∆(Tr(n)) = n−⌊n

r
⌋,

so ∆ − δ ⩽ 1. Hence δ(Tr(n)) = ⌊d̄(Tr(n))⌋ and ∆(Tr(n)) = ⌈d̄(Tr(n))⌉, where
d̄(G) = 2e(G)/|G| is the average degree of a graph G.

3. To get from Tr(n) to Tr(n− 1) we delete any vertex from a largest vertex class, i.e.,
any vertex of minimum degree. So tr(n)− δ(Tr(n)) = tr(n− 1).

Theorem 8.1 (Turán’s Theorem). For all positive integers n and r we have

ex(n,Kr+1) = tr(n) and EX(n,Kr+1) = {Tr(n)}.

Proof. We fix r and use induction on n. If n ⩽ r then ex(n,Kr+1) =
(
n
2

)
= tr(n), and

EX(n,Kr+1) = {Kn} = {Tr(n)}, as required.
Now let n > r and suppose that the result holds for n − 1. Let G be a graph with n

vertices and tr(n) edges containing no copy of Kr+1. We will show that G ∼= Tr(n), from
which the result follows. (If H had |H| = n, e(H) > tr(n) and contained no copy of Kr+1,
then some spanning subgraph G would have tr(n) edges; so G ∼= Tr(n) and then H would
contain a copy of Kr+1 as adding any edge to Tr(n) forms a Kr+1.)

First note that by Fact 2

δ(G) ⩽ ⌊d̄(G)⌋ = ⌊d̄(Tr(n))⌋ = δ(Tr(n)).

Let v ∈ V (G) have degree d(v) = δ(G). Then for H = G− v we have

e(H) = e(G)− d(v) = tr(n)− δ(G) ⩾ tr(n)− δ(Tr(n)) = tr(n− 1),

30

using Fact 3. But H contains no Kr+1 so by the induction hypothesis, H ∼= Tr(n− 1).
Now v cannot have a neighbour in each vertex class of H (or we would get a copy of

Kr+1), so its neighbours must miss some vertex class Vi completely. Adding v to this class,
we see that G is r-partite. Now by Fact 1, G ∼= Tr(n).

The density of a graph G is e(G)/
(|G|

2

)
. For r fixed and n → ∞, Tr(n) has density

1− 1
r
+ o(1). Thus by Turán’s Theorem, ex(n,Kr+1)/

(
n
2

)
= 1− 1

r
+ o(1). We say that Kr+1

‘appears’ at density 1− 1
r
. Thus K3 appears at density 1

2
, K4 at density 2

3
, K5 at density

3
4
, and so on.
What about other graphs? If χ(H) ⩾ r + 1, then, since H is not r-partite, Tr(n)

contains no copy of H. Thus for any H, letting r = χ(H)− 1 we have

ex(n,H) ⩾ tr(n) = (1− 1
r
+ o(1))

(
n
2

)
.

In particular, H cannot appear before the density 1− 1
r
at which Kr+1 appears. Are there

‘big’ graphs with a given chromatic number that appear significantly later? Amazingly,
the answer turns out to be no.

For s, t ⩾ 1 let Ks(t) be the complete s-partite graph with t vertices in each class.
For example, K1(t) is the empty graph Et, K2(t) is the complete bipartite graph Kt,t, and
Ks(1) = Ks. In general Ks(t) = Ts(st).

Theorem 8.2 (Erdős–Stone Theorem). Let r, t ⩾ 1 be integers and let ε > 0. There is a
constant n0 = n0(r, t, ε) such that every graph G with n ⩾ n0 vertices and

e(G) ⩾
(
1− 1

r
+ ε

)(
n
2

)
contains a copy of Kr+1(t).

Note that for t = 1 this follows (and is somewhat weaker than) Turán’s theorem. We
prove this theorem in two steps. We first show that any graph with a given density contains
a subgraph with a relatively large minimum degree.

Lemma 8.3. Let 0 ⩽ α < β ⩽ 1. If G is a graph with |G| = n and e(G) ⩾ β
(
n
2

)
then G

has an (induced) subgraph H with

δ(H) ⩾ α(|H| − 1)

and |H| ⩾
√
εn, where ε = β − α.

Proof. Define a sequence Gn, Gn−1, . . . of graphs with |Gt| = t as follows. Set Gn = G. If
δ(Gt) ⩾ α(t − 1) then stop. Otherwise, remove a vertex of Gt with minimum degree to
get Gt−1. The construction must stop at some point (G1 at the latest); let Gk be the final
graph, so δ(Gk) ⩾ α(|Gk| − 1) by construction. Now

e(Gk) = e(Gn)− δ(Gn)− δ(Gn−1)− · · · − δ(Gk+1)

⩾ β

(
n

2

)
− α

(
(n− 1) + (n− 2) + · · ·+ k

)
= β

(
n

2

)
− α

(
n

2

)
+ α

(
k

2

)
⩾ ε

(
n

2

)
.

Since e(Gk) ⩽
(
k
2

)
it follows that

(
k
2

)
⩾ ε

(
n
2

)
. Multiplying by 2k/(k− 1) ⩾ 2n/(n− 1) gives

k2 ⩾ εn2, so k ⩾
√
εn.

31

Lemma 8.4. Let r, t ⩾ 1 be integers and let ε > 0. There is a constant n1 = n1(r, t, ε)
such that every graph G with n ⩾ n1 vertices and

δ(G) ⩾
(
1− 1

r
+ ε

)
(n− 1)

contains a copy of Kr+1(t).

Note that Theorem 8.2 will follow easily: apply Lemma 8.3 with β = 1 − 1
r
+ ε and

α = 1− 1
r
+ ε

2
, and then Lemma 8.4 with ε/2 in place of ε.

Proof. We use induction on r, proving the base case and induction step together. More
precisely, for r ⩾ 1 let Hr be the statement that for every t ⩾ 1 and ε > 0 there is an n1

such that We shall prove Hr assuming, for r ⩾ 2, that Hr−1 holds. Then we will have
shown that H1 holds, and that Hr−1 implies Hr for all r ⩾ 2, so by induction Hr holds for
all r ⩾ 1. A key point is that in proving Hr, r ⩾ 2, we must consider all t and all ε > 0;
but for a given t we may use the fact that Hr−1 holds for some other, perhaps much larger
value of t.

Let r ⩾ 1. To prove Hr, let t ⩾ 1 and ε > 0 be given, and let G be a graph with |G| = n
and δ(G) ⩾ (1− 1

r
+ ε)(n− 1). Set

T = ⌈2t/(εr)⌉.

If r ⩾ 2 then since

δ(G) ⩾ (1− 1
r
+ ε)(n− 1) ⩾ (1− 1

r−1
+ ε)(n− 1),

we know by the induction hypothesis Hr−1 that, if n is large enough (depending on r, t, ε),
G must contain a copy of Kr(T). If r = 1 then Kr(T) is an empty graph with T vertices,
so if n is large enough (i.e., n ⩾ T) then G certainly contains a copy of this graph.

In either case, let H be a subgraph of G isomorphic to Kr(T). Denote its vertex classes
by S1, . . . , Sr and let S = V (H) be their union. Let U be the set of vertices in V (G) \ S
which have at least t neighbours in each class Si; these vertices are the useful ones.

If |U | > (t− 1)
(
T
t

)r
then there are at least t vertices in U that have at least t common

neighbours in each Si, giving a Kr+1(t); to see this assign to each u ∈ U an r-tuple
(A1, . . . , Ar) where Ai ⊆ Si ∩ N(u) and |Ai| = t. As there are

(
T
t

)r
possible r-tuples, the

average number of times an r-tuple is chosen is |U |/
(
T
r

)t
> t − 1, and so some r-tuple is

chosen ⩾ t times, i.e., we have t vertices in U all joined to the same copy H ′ ⊆ H of Kr(t).
So we may suppose that |U | ⩽ (t − 1)

(
T
t

)r
. Let B = V (G) \ (S ∪ U). We count the

number N of edges of G between S and B in two different ways. Firstly, the degree in G
of any vertex v is

n− 1− dG(v) ⩽ n− 1− δ(G) ⩽ (n− 1)
(
1
r
− ε

)
⩽

(
1
r
− ε

)
n,

so counting from S we find that

N ⩽ |S|
(
1
r
− ε

)
n = rT

(
1
r
− ε

)
n = (T − εrT)n.

32

On the other hand, for each u ∈ B there is a vertex class Si of H such that, in G, the
vertex u has at most t−1 ⩽ t neighbours in Si. Then, in G, u has at least T − t neighbours
in Si ⊆ S. Hence, counting from B, we see that

N ⩾ |B|(T − t).

Since we chose T so that εrT ⩾ 2t, it follows that

|B| ⩽ T − εrT

T − t
n ⩽

T − 2t

T − t
n = (1− c)n

for some constant c > 0 (depending on r, t, ε). But now in total there are

n = |S|+ |B|+ |U | ⩽ rT + (1− c)n+ (t− 1)
(
T
t

)r
= (1− c)n+O(1)

vertices, a contradiction if n is large enough.

Corollary 8.5. Let H be any graph with e(H) > 0. Then

ex(n,H) =
(
1− 1

χ(H)−1
+ o(1)

)(
n
2

)
as n → ∞, where χ(H) is the chromatic number of H.

Proof. Let r = χ(H)−1, so H has chromatic number r+1. Since H is not r-partite, Tr(n)
does not contain any copies of H, so

ex(n,H) ⩾ tr(n) =
(
1− 1

r
+ o(1)

)(
n
2

)
.

On the other hand, for large enough t (e.g., t = |H|), the graph Kr+1(t) does contains a
copy of H. Therefore

ex(n,H) ⩽ ex(n,Kr+1(t)) ⩽
(
1− 1

r
+ o(1)

)(
n
2

)
,

where the second inequality is from Theorem 8.2.

Corollary 8.5 answers, at some level, the basic extremal question for any graph H.
However, there is a weak point: while for χ(H) ⩾ 3 it tells us asymptotically what value
ex(n,H) has, for χ(H) = 2 it only tells us that ex(n,H) = o(n2), leaving a wide range
of possible functions (e.g., roughly n2/ log n, roughly n, roughly n3/2 etc). Can we say
something more precise in this case?

The Zarankiewicz Problem

Let G be a bipartite graph where the vertex classes have a given size n. How many edges
can G have if it does not contain a copy of some given graph H? This makes sense only if
H is bipartite, and in particular we consider H = K2(t) = Kt,t, i.e., the bipartite analogue
of the Turán problem. Formally, let

z(n, t) = max
{
e(G) : G ⊆ Kn,n and G contains no copy of Kt,t

}
.

33

Theorem 8.6. If n ⩾ t ⩾ 2 then

z(n, t) ⩽ (t− 1)1/tn2−1/t + (t− 1)n

In particular, as n → ∞ with t fixed we have z(n, t) = O(n2−1/t).

Proof. Let G be a maximal bipartite graph with vertex classes X and Y such that |X| =
|Y | = n and G contains no Kt,t. Note that by maximality, d(v) ⩾ t− 1 for every vertex v.
(Otherwise, add a new edge incident with v. The degree of v would still be less than t, so
the new edge cannot be in any Kt,t.)

We say that a vertex v covers a set S of vertices if S ⊆ N(v). A vertex v ∈ X covers
exactly

(
d(v)
t

)
t-element subsets of Y . On the other hand, a t-element subset of Y is covered

by at most t− 1 vertices in X; otherwise we have a Kt,t. Hence,∑
v∈X

(
d(v)

t

)
⩽ (t− 1)

(
n

t

)
.

From here on it is just calculation. Firstly, the polynomial x(x− 1) · · · (x− t+1) is convex
on [t− 1,∞), so

(
x
t

)
= x(x− 1) · · · (x− t+1)/t! is convex as a function of the real variable

x when x ⩾ t − 1. Let d = 1
n

∑
v∈X d(v) be the average degree in X. Then, by Jensen’s

inequality, (
d

t

)
⩽

1

n

∑
v∈X

(
d(v)

t

)
⩽

t− 1

n

(
n

t

)
. (9)

Hence
t− 1

n
⩾

(
d

t

)
/

(
n

t

)
=

d(d− 1) · · · (d− t+ 1)

n(n− 1) · · · (n− t+ 1)
⩾

(d− t+ 1

n

)t

.

Rearranging gives
d− t+ 1 ⩽ (t− 1)1/tn1−1/t

and so
e(G) = dn ⩽ (t− 1)1/tn2−1/t + (t− 1)n.

Remark. The same method of proof works to show that ex(n,Kt,t) = O(n2−1/t); we count
the number of copies of K1,t in two ways. (As in the proof above, but in the bipartite case
we had the extra restriction that the special vertex of K1,t should be in X.)

The special case t = 2 is the same but with simpler calculations.

Theorem 8.7. For n ⩾ 2 we have

z(n, 2) ⩽
n

2
(1 +

√
4n− 3) ∼ n3/2

as n → ∞.

Proof. We have (9) as before. With t = 2 this becomes d(d− 1) ⩽ n− 1, rearranging and
noting as before that e(G) = nd gives the result.

34

The bounds just given are only upper bounds. Are they close to the truth? In general,
this is an open question. The case t = 2 is particularly nice. Here we have equality if and
only if G is regular, any two vertices in Y have exactly one common neighbour in X, and
vice versa. A structure with these properties is called a finite projective plane: think of the
vertices in X as points, those in Y as lines, and edges of G as representing incidence.

It turns out that, except for some degenerate cases, for equality we must have n =
q2 + q + 1, each point on q + 1 lines and each line having q + 1 points. Is this possible?
For q any prime power the answer is yes: take the projective plane over a finite field with
q elements. (This is enough to show that in fact z(n, 2) ∼ n3/2). However, for n not of this
form, even the value of z(n, 2) is unknown in general.

35

