Chapter 5-Travelling waves

$$
\frac{\partial u}{\partial t}=\frac{D \partial^{2} u}{\partial x^{2}}+f(u)
$$

5.1 fisher-KPP equation

Non-dimensionalise

$$
\begin{aligned}
& u=[u] \tilde{u} \\
& t=[t] \tilde{t^{2}} \\
& x=[x] \tilde{x}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial}{\partial t}=\frac{\partial \tilde{t}}{\partial t} \frac{\partial}{\partial \tilde{t}}=\frac{1}{[t]} \frac{\partial}{\partial \tilde{t}} \\
& \frac{\partial}{\partial x}=\frac{\partial \tilde{x}}{\partial x} \frac{\partial}{\partial \tilde{x}}=\frac{1}{[x]} \frac{\partial}{\partial \tilde{x}}
\end{aligned}
$$

$$
\frac{[u]}{[t]} \frac{\partial \tilde{u}}{\partial \tilde{t}}=\frac{D[\hat{u}]}{[x]^{2}} \frac{\partial^{2} \tilde{u}}{\partial \tilde{x}^{2}}+r[\hat{u}] \tilde{u}\left(1-\frac{[u] \hat{u}}{k}\right)
$$

$$
[t]=\frac{1}{r}
$$

$$
\frac{D}{r[x]^{2}}=1 \quad \Rightarrow \quad[x]=\sqrt{\frac{r}{D}}
$$

$$
\begin{array}{ll}
\frac{\partial \tilde{u}}{\partial \tilde{t}}=\frac{\partial^{2} \tilde{u}^{2}}{\partial \tilde{x}^{2}}+\tilde{u}(1-\tilde{u}) \quad & \tilde{x} \in(-\infty, \infty) \\
\tilde{t}>0 .
\end{array}
$$

1CS: $\hat{u}(\tilde{x}, 0)=\hat{u}_{0}(\hat{x}), \quad \tilde{u}(\tilde{x}, \tilde{t}) \rightarrow \tilde{u}_{ \pm \infty}$ as $\tilde{x} \rightarrow \pm \infty$.

Travelling waves
Solutions that propagate mithoutchange in shape at fixed speed C (unknown).
change reference frame: $z=x-c t$

$$
\begin{aligned}
\text { change of variables } \\
\left.\begin{array}{rl}
z & =x-c t \\
\tau & =t
\end{array}\right\} \\
\frac{\partial}{\partial t}=\frac{\partial \tau}{\partial t} \frac{\partial}{\partial \tau}+\frac{\partial z}{\partial t} \frac{\partial}{\partial z}=\frac{\partial}{\partial t}-c \frac{\partial}{\partial z} \\
\frac{\partial}{\partial x}=\frac{\partial \tau}{\partial x} \frac{\partial}{\partial \tau}+\frac{\partial z}{\partial x} \frac{\partial}{\partial z}=\frac{\partial}{\partial z}
\end{aligned}
$$

Let $u(x, t)=\hat{u}(z, \bar{\tau})$

$$
\begin{array}{r}
\frac{\partial \hat{u}}{\partial \tau}-c \frac{\partial \hat{u}}{\partial z}=\frac{\partial^{2} \hat{u}}{\partial t^{2}}+\hat{u}(1-\hat{u}) \quad z \in(-\infty, \infty) \\
\quad \tau>0
\end{array}
$$

seel solutions $\hat{u}(z, \tau)=U(z)$

$$
u^{\prime \prime}+c u^{\prime}+u(1-u)=0 \quad\left(1=\frac{d}{d z}\right)
$$

$$
B C s: U(z) \rightarrow u_{ \pm \infty} \text { as } z \rightarrow \pm \infty .
$$

What values can u_{t} os take?

$$
\begin{aligned}
& \int_{-\infty}^{\infty}\left[u^{\prime}+c u^{\prime}+u(1-u)\right] d z \\
& \quad=\left[u^{\prime}+c u\right]_{-\infty}^{\infty}+\int_{-\infty}^{\infty} u(1-u) d z=0
\end{aligned}
$$

For U constant as $z \rightarrow \pm \infty$, and U, U^{\prime} trite $\forall z$, then either $U \rightarrow 0 \mathrm{w} U \rightarrow 1$ as $z \rightarrow \pm \infty$.

NBI Solutions of the original fisher-kppequation are unique.

NB2 Solutions ct the TW equation are not.
If $u(z)$ is a $u(z+A)$ is a solution solution fer \Rightarrow fer me same C. fixed C

But, if C, A bor fixed, the ware is usually unique.

Phase plane analysis's

$$
u^{\prime \prime}+c u^{\prime}+u(1-u)=0 \quad z \in(-\infty, \infty)
$$

Boundary conditions: $u(-\infty)=1, u(+\infty)=0$
Let $u^{\prime}=v$

$$
v^{\prime}=u^{\prime \prime}=-c v-u(1-u)
$$

ie $\quad \frac{d}{d z}\binom{u}{v}=\binom{v}{-c v-u(1-u)}=\binom{f(u, v)}{g(u, v)}$
Steady states:

$$
\begin{aligned}
& f(u, v)=0 \Rightarrow v=0 \\
& g(u, v)=0 \Rightarrow u=0,1
\end{aligned}
$$

\therefore Steady states are $(0,0)$ and $(1,0)$.
unear stability:
\tilde{u}, \tilde{v} are
small
perturbations.

$$
\begin{aligned}
\frac{d}{d z}\binom{\tilde{u}}{\tilde{v}} & =J\binom{\tilde{u}}{\tilde{v}} \\
J & =\left.\left(\begin{array}{cc}
\partial f / \partial u & \partial f / \partial v \\
\partial g / \partial u & \partial g / \partial v
\end{array}\right)\right|_{\left(u_{s}, v_{s}\right)} \\
& =\left(\begin{array}{cc}
0 & 1 \\
-1+2 u_{s} & -c
\end{array}\right)
\end{aligned}
$$

Recall: seen solus $\binom{\tilde{v}}{\underset{v}{v}}=v e^{\lambda t}$
solutions $\Leftrightarrow \operatorname{det}(J-\lambda I)=0$.
$(0,0)$

$$
\begin{gathered}
\operatorname{det}(J-\lambda I)=\operatorname{det}\left(\begin{array}{cc}
-\lambda & 1 \\
-1 & -c-\lambda
\end{array}\right)=0 \\
\Rightarrow \quad \lambda(\lambda+c)+1=0 \\
\lambda^{2}+c \lambda+1=0 \\
\lambda=\frac{1}{2}\left[-c \pm \sqrt{c^{2}-4}\right]
\end{gathered}
$$

\Rightarrow stable no de if $c \geqslant 2$
stable spiral if $c<2$
$(1,0) \quad \operatorname{det}(J-\lambda \pm)=\operatorname{det}\left(\begin{array}{cc}-\lambda & 1 \\ 1 & -c-\lambda\end{array}\right)=0$

$$
\begin{aligned}
\lambda^{2}+c \lambda & -1=0 \\
\lambda & =\frac{1}{2}\left[-c \pm \sqrt{c^{2}+4}\right]
\end{aligned}
$$

\Rightarrow Saddle point.
 $u<0$ which is unfeasible so we require

$$
c \geqslant c_{\text {min }}=2
$$

Existence and unique ness consider $c \geqslant 2$.

Phase plane

$$
\begin{aligned}
& u^{\prime}=v \Rightarrow v=0 \\
& v^{\prime}=-c v-u(1-u)
\end{aligned}
$$

$$
\xrightarrow{v=u^{\prime} \uparrow}
$$

Let's check the direction of the trajectory leaning $(1,0)$
Recall: $\lambda \underline{v}=J_{t} \underline{v} \Rightarrow v=\binom{1}{q \pm}$

$$
\left(\begin{array}{cc}
0 & 1 \\
1 & -c
\end{array}\right)\binom{1}{q_{ \pm}}=\lambda_{ \pm}\binom{1}{q_{ \pm}}
$$

$$
\Rightarrow q_{ \pm}=\lambda_{I}
$$

u. $\quad \underline{v}_{ \pm}=\binom{1}{q_{ \pm}}=\binom{1}{\frac{1}{2}\left[-c \pm \sqrt{c^{2}+4}\right.}$

Gradient: $\frac{1}{2}\left[-c \pm \sqrt{c^{2}+4}\right]$
unstable manifold $\frac{1}{2}\left[-c+\sqrt{c^{2}+4}\right]<\frac{1}{c}$

close to the steady state,

$$
\begin{aligned}
& \binom{u}{v}-\binom{u_{s}}{v_{s}}=\binom{\tilde{u}}{\tilde{v}} \\
& =a_{-} e^{\lambda-z} \underline{v}_{-}+a_{+} e^{\lambda_{+} z} \underline{v}_{+}
\end{aligned}
$$

$$
\left.\begin{array}{c}
v=-\frac{1}{c} u(1-u) \\
\frac{d v}{d u}=-\frac{1}{c}(1-2 u) \\
\left.\frac{d v}{d u}\right|_{u=1}=\frac{1}{c}
\end{array}\right)
$$

$$
\mathcal{L}_{1}:=\{(u, v): v=0, u \in(0,1)\}
$$

$\left|\frac{d v}{d u}\right| \rightarrow \infty$ as we approach h_{1} and $c v^{\prime}=-u(1-u)<0$

$$
\begin{aligned}
& f_{2}:=\{(u, v): u=1, v \in(-1,0)\} \\
& \left.\frac{d v}{d u}\right|_{f_{2}}=-c-\frac{u(1-u)}{v}=-c<0 \\
& f_{3}:=\{(u, v): u \in[0,1], v=-u\} \\
& \left.\frac{d v}{d u}\right|_{f_{3}}=-c+(1-u)=(-c+2)-(1+u)<-1
\end{aligned}
$$

we have shown that with $u \geqslant 0$ there is a solution of me in equations fer every $c \geqslant 2$, and with $c \geqslant 2$ fixed the phase space trajectery is unique. moreover, the solution is monotonic because $v<0$ in iR. NB we have shown, fer C fixed, the phase space trajectory is unique. The non-unuqueness associated moth the fact that if $\mathrm{U}(z)$ solves the TW equs then so does $u(z+A)$ (A, constant) simply corresponds to a shift a long the phase space trajectory. This, in turn, corresponds to translation of me TW.

Relationship between TW speed and ICS

Unearise at tine wavefront

$$
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}+u
$$

Assume $u(x, 0) \sim B e^{-a x}$ as $x \rightarrow \infty$

$$
(a, B>0)
$$

seek travelling solutions of linearised equation of the form

$$
u(x, t) \sim B e^{-a(x-c t)}
$$

$$
a c=a^{2}+1 \quad \Rightarrow \quad c=a+\frac{1}{a} \geqslant 2
$$

$$
e^{-a x}>a^{-x}
$$

$a<1 \quad$ ids decay less rapidly man the TW moth $C_{\text {min }}=2$. So behaviour dommated by the IC, $C=a+\frac{1}{a}$.

$$
a>1 \quad e^{-a x}<e^{-x}
$$

ICS decay mare rapidly than the TW $\operatorname{mon} C_{\min }=2$. So the behaviour is dominated by the Th with $c=C_{\text {min }}=2$.
5.2 models of epidemics

SIR model
$S(t)$ - suscepribles
$I(t)$ - Infective
$R(t)$ - Removed

$$
\begin{aligned}
& \text { "Law of Mass Action" } S+I \xrightarrow[I]{\text { a }} 2 I \\
& \frac{d S}{d t}=-r S I \\
& S(0)=S_{0} \\
& \frac{d I}{d t}=r S I-a I \\
& I(0)=I_{0} \\
& \left.\frac{d R}{d t}=a I \quad\right\} \text { decouples } \\
& R(0)=0
\end{aligned}
$$

(1) will the disease spread?

$$
\begin{aligned}
\frac{d S}{d t} & =-r I S \quad \Rightarrow \text { decreasing, } S \leqslant S_{0} \\
\frac{d I}{d t} & =I(r s-a) \\
& \leq I\left(r S_{0}-a\right)
\end{aligned}
$$

if $S_{0}<\frac{a}{r}$ then $\frac{d I}{d t}<0$ milially and no outbreak.
le need $s_{0}>\frac{a}{r}$ mizially fer an outbreak.
(2) max number of infectives?

$$
\begin{aligned}
& \frac{d I}{d S}=\frac{-r(S-a) I}{r S I}=-1+\frac{\rho}{S} \quad \rho:=\frac{a}{r} \\
& \int_{I_{0}}^{I} d I=\int_{S_{0}}^{S}\left(-1+\frac{\rho}{\bar{S}}\right) d \bar{S} \\
& \Rightarrow I+S-\rho \ln S=I_{0}+S_{0}-\rho \ln S_{0} \\
& \rightarrow \frac{d I}{d S}=-1+\frac{\rho}{S}=0 \quad 17 \quad S=\rho \\
& I_{\max }= \begin{cases}I_{0} & S_{0} \leqslant \rho \\
I_{0}+S_{0}-\rho \ln S_{0}-\rho \ln \rho-\rho \quad S_{0}>\rho\end{cases}
\end{aligned}
$$

(3) How many catch the disease overall?

$$
I \rightarrow 0 \text { as } t \rightarrow \infty
$$

Then $R(\infty)=N_{0}-s(\infty)-I(\infty)$

$$
S_{0}+I_{0}
$$

$$
=N_{0}-S(\infty)
$$

$s(\infty)$ satisfies $\quad s(\infty)-\rho \ln s(\infty)=N_{0}-\rho \ln S_{0}$

$$
\begin{array}{ll}
\frac{d s}{d t}=-r s I \quad & \Rightarrow \delta \text { decreasing } \\
\frac{d I}{d t}=I(r s-a) \quad & \frac{d I}{d t}=0 \text { unen } \delta=\frac{a}{r}:=p
\end{array}
$$

Adding spatial heterogeneity
appucation to fox rabies.
healthy tokes territorial $1 e^{\prime}$ don't mare rapid foxes - undergo behancural changes and migrate randomly.

$$
\begin{aligned}
& \frac{\partial S}{\partial t}=-r I S \\
& \frac{\partial I}{\partial t}=D \nabla^{2} I+r I S-a I \\
& \left.\frac{\partial R}{\partial t}=a I \quad\right\} \text { decouples. }
\end{aligned}
$$

Non-amensionalise: (and assume 10)

$$
\begin{array}{ll}
S=s_{0} \tilde{S}, \quad I=s_{0} \tilde{I}, \quad x=\sqrt{\frac{D}{r s_{0}}} \tilde{x}, \quad t=\frac{1}{r s_{0}} \tilde{t} \\
\lambda=\frac{a}{r s_{0}} & \frac{\partial}{\partial x} \mapsto \sqrt{\frac{r s_{0}}{D}} \frac{\partial}{\partial \tilde{x}}
\end{array} \frac{\partial}{\partial t} \mapsto r s_{0} \frac{\partial}{\partial \tilde{t}} . l
$$

$$
\begin{aligned}
& \text { So. iSo } \frac{\partial \hat{S}}{\partial \tilde{t}}=-r s_{0}^{2} \tilde{I} \hat{S} \\
& \text { so. } r s \frac{\partial \tilde{I}}{\partial \tilde{t}}=\frac{\frac{a \cdot r s_{0}^{2}}{\frac{\partial}{2}} \frac{\partial^{2} \tilde{I}}{1}}{\partial \tilde{x}^{2}}+r s_{0}^{2} \tilde{I} \tilde{s}-\underbrace{a s_{0}}_{=\lambda} \frac{s_{0}}{r I}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial S}{\partial t}=-S I \\
& \frac{\partial I}{\partial t}=\frac{\partial^{2} I}{\partial x^{2}}+I(S-\lambda)
\end{aligned}
$$

Travelling wave analysis

$$
\begin{aligned}
& S(x, t)=S(z) \\
& I(x, t)=I(z) \quad z=x-c t
\end{aligned}
$$

$$
\left\{\begin{array}{l}
0=C S^{\prime}-I S \\
0=I^{\prime \prime}+C I^{\prime}+I(S-\lambda)
\end{array}\right.
$$

$B C S: \quad Z \rightarrow \infty \quad S \rightarrow 1$

$$
z \rightarrow-\infty \quad \pm \rightarrow 0
$$

mmimum wave speed

$$
\begin{aligned}
& 0=-C P^{\prime}-I \\
& 0=I^{\prime \prime}+C I^{\prime}+I(1-\lambda)
\end{aligned}
$$

write $S=1-P$ and linearise

Eigenvalues:

$$
\mu=\frac{1}{2}\left[-c \pm \sqrt{c^{2}-4(1-\lambda)}\right]
$$

To acid a spiral at $\left(I, I^{\prime}\right)=(0,0)$ then μ_{I} must be real

$$
\text { 6. } \quad c \geqslant C_{\text {min }}=2(1-\lambda)
$$

How severe is me epidemic?
Want an expression fer $S(-\infty)$

$$
\begin{aligned}
& \left(\begin{array}{rl}
z=x-c t \\
t & \rightarrow \infty \\
z \rightarrow-\infty
\end{array}\right) \\
& \frac{I=\frac{c s^{\prime}}{s}}{} \\
& \Rightarrow \frac{d}{d z}\left(I^{\prime}+c I\right)+c s^{\prime}\left(\frac{s-\lambda}{s}\right)=0 \\
& \int \frac{d}{d z}\left(I^{\prime}+C I\right) d z+c \int\left(\frac{S-\lambda}{S}\right) \frac{d S}{d z} d z=\text { constant } \\
& I^{\prime}+C I+C(s-\lambda \ln S)=\text { constant } \\
& \text { as } t \rightarrow \infty \quad \delta \rightarrow 1, \pm \rightarrow 0 \Rightarrow \text { Constant }=C \\
& I^{\prime}+C I+C(S-\lambda \ln s)=C
\end{aligned}
$$

The seventy is $S(-\infty)$ where

$$
S(-\infty)-\lambda \ln s(-\infty)=1
$$

