
C5.5: Perturbation Methods

Course synopsis

Recommended Prerequisites

Knowledge of core complex analysis and of core differential equations will be assumed, respectively at the
level of the complex analysis in the Part A (Second Year) course Metric Spaces and Complex Analysis and
the phase plane section in Part A Differential Equations I. The final section on approximation techniques
in Part A Differential Equations II is highly recommended reading if it has not already been covered.

Overview

Perturbation methods underlie numerous applications of physical applied mathematics: including boundary
layers in viscous flow, celestial mechanics, optics, shock waves, reaction-diffusion equations, and nonlinear
oscillations. The aims of the course are to give a clear and systematic account of modern perturbation
theory and to show how it can be applied to differential equations.

Synopsis (16 lectures)

Introduction to regular and singular perturbation theory: approximate roots of algebraic and transcen-
dental equations. Asymptotic expansions and their properties. Asymptotic approximation of integrals,
including Laplace’s method, the method of stationary phase and the method of steepest descent. Matched
asymptotic expansions and boundary layer theory. Multiple-scale perturbation theory. WKB theory and
semiclassics.

Reading list

[1] E.J. Hinch, Perturbation Methods (Cambridge University Press, 1991), Chs. 1–3, 5–7.

[2] C.M. Bender & S.A. Orszag, Advanced Mathematical Methods for Scientists and Engineers (Springer,
1999), Chs. 6, 7, 9–11.

[3] J. Kevorkian & J.D. Cole, Perturbation Methods in Applied Mathematics (Springer-Verlag, 1981), Chs.
1, 2.1–2.5, 3.1, 3.2, 3.6, 4.1, 5.2.

Authorship and acknowledgments

The author of these notes is Jon Chapman, with minor modifications by Mason Porter, Philip Maini
and Jim Oliver. Please email comments and corrections to the course lecturer. All material in these
notes may be freely used for the purpose of teaching and study by Oxford University faculty and students.
Other uses require the permission of the authors.

On the supplementary nature of these notes

These notes are supplementary to the lectures and should be viewed as being a part of the reading list.
These notes are not meant to replace the lectures. Some of the material in these notes will be covered in
a complementary way in lectures and in the model solutions to the problem sheet questions; some of the
material covered in lectures is not covered in these notes and vice versa.
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1 Introduction

Making precise approximations to solve equations is what distinguishes applied mathematicians from pure
mathematicians, physicists and engineers. There are two methods for obtaining precise approximations:
numerical methods and analytical (asymptotic) methods. These are not in competition but complement
each other. Perturbation methods work when some parameter is large or small. Numerical methods work
best when all parameters are order one. Agreement between the two methods is reassuring when doing
research. Perturbation methods often give more physical insight. Finding perturbation approximations
is more of an art than a science. It is difficult to give rules, only guidelines. Experience is valuable.
Numerous additional worked examples may be found in Perturbation Methods by E.J. Hinch (Cambridge
University Press, 1991, Chs. 1–3, 5–7) and Advanced Mathematical Methods for Scientists and Engineers
by C.M. Bender and S.A. Orszag (Springer, 1999, Chs. 6, 7, 9–11).

2 Algebraic equations

Suppose we want to solve

x2 + εx− 1 = 0

for x, where ε is a small parameter. The exact solutions are

x = − ε
2
±
√

1 +
ε2

4
,

which we can expand using the binomial theorem:

x =

{
+1− ε

2 + ε2

8 − ε4

128 + · · ·
−1− ε

2 − ε2

8 + ε4

128 + · · ·

These expansions converge if |ε| < 2. More important is that the truncated expansions give a good
approximation to the roots when ε is small. For example, when ε = 0.1:

x ∼ 1.0 1 term
0.95 2 terms
0.95125 3 terms
0.951249 4 terms

exact = 0.95124922...

Here, we first found the exact solution, then approximated. Usually we need to make the approximation
first, and then solve.

2.1 Iterative method

First, rearrange the equation so that it is in a form which can form the basis of an iterative process:

x = ±
√

1− εx.

Now, if we have an approximation to the positive root, xn, say, a better approximation is given by

xn+1 =
√

1− εxn.

We need a starting point for the iteration: the solution when ε = 0, x0 = 1. After one iteration (on the
positive root) we have

x1 =
√

1− ε.
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If we expand this as a binomial series we find

x1 = 1− ε

2
− ε2

8
− ε3

16
+ · · · .

We see that this is correct up to ε, but the ε2 terms and higher are wrong. Hence we only need keep the
first two terms

x1 = 1− ε

2
+ · · · .

Using this in the next iteration we have

x2 =

√
1− ε

(
1− ε

2

)
,

which can again be expanded to give

x2 = 1− ε

2

(
1− ε

2

)
− ε2

8

(
1− ε

2

)2
− ε3

16

(
1− ε

2

)3
+ · · ·

= 1− ε

2
+
ε2

8
+
ε3

16
+ · · · .

Now the ε2 term is right, but the ε3 term is still wrong. At each iteration more terms are correct, but
more and more work is required. We can only check that a term is correct (without the exact solution) by
proceeding to one more iteration and seeing if it changes.

The usual procedure is to place the dominant term of the equation on the xn+1 side (i.e., the side that
will give the new value), so that it can be calculated as a function of the terms on the xn side (i.e., the
previously-obtained value). As we will see later, the identity of the dominant term can be adjusted by
scaling.

2.2 Expansion method

First set ε = 0 and find the unperturbed roots x = ±1 as in the iterative method. Now pose an expansion
about one of these roots:

x = 1 + εx1 + ε2x2 + ε3x3 + · · · .
Substitute the expansion into the equation:

(1 + εx1 + ε2x2 + ε3x3 + · · · )2 + ε(1 + εx1 + ε2x2 + ε3x3 + · · · )− 1 = 0.

Expanding the first term

1 + 2x1ε+ (x2
1 + 2x2)ε2 + (2x1x2 + 2x3)ε3 + · · ·+ ε+ ε2x1 + ε3x2 + · · · − 1 = 0.

Now we equate coefficients of powers of ε.

At ε0: 1− 1 = 0.

This level is automatically satisfied because we started the expansion with the correct value x = 1 at ε = 0.

At ε1: 2x1 + 1 = 0, i.e. x1 = −1

2
.

At ε2: x2
1 + 2x2 + x1 = 0, i.e. x2 =

1

8
,

where the previously determined value of x1 is used.

At ε3: 2x1x2 + 2x3 + x2 = 0, i.e. x3 = 0.

The expansion method is much easier that the iterative method when working to higher orders. However,
it is necessary to assume the form of the expansion (in powers of ε).
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2.3 Singular perturbations

Consider the problem:
εx2 + x− 1 = 0.

When ε = 0 there is just one root x = 1, but when ε 6= 0 there are two roots. This is an example of a
singular perturbation problem, in which the limit problem ε = 0 differs in an important way from the
limit ε → 0. The most interesting problems are often singular. Problems which are not singular are said
to be regular.

To see what is happening let us look at the exact solutions

x =
−1±

√
1 + 4ε

2ε
,

and expand them for small ε (convergent if |ε| < 1/4). The expansions of the two roots are

x =

{
1− ε+ 2ε2 − 5ε4 + · · ·
−1
ε − 1 + ε− 2ε2 + 5ε4 + · · ·

Thus the second root disappears to x = −∞ as ε→ 0.
We see that to capture the second root we need to start the expansion not with ε0 but with ε−1:

x =
x−1

ε
+ x0 + εx1 + · · · .

Substituting into the equation gives

ε
(x−1

ε
+ x0 + εx1 + · · ·

)2
+
(x−1

ε
+ x0 + εx1 + · · ·

)
− 1 = 0.

Expanding the first term gives

1

ε
x2
−1 + 2x−1x0 + ε(2x−1x1 + x2

0) + · · ·+ 1

ε
x−1 + x0 + εx1 + · · · − 1 = 0.

Comparing coefficients of εn gives

At ε−1: x2
−1 + x−1 = 0, i.e. x−1 = −1 or 0.

The root x−1 = 0 leads to the regular root, so we consider the singular root x−1 = −1.

At ε0: 2x−1x0 + x0 − 1 = 0, i.e. x0 = −1.

At ε1: 2x−1x1 + x2
0 + x1 = 0, i.e. x1 = 1.

2.3.1 Rescaling the equation

Instead of starting the expansion with ε−1, a very useful idea for singular problems is to rescale the variables
before making the expansion. If we introduce the rescaling

x =
X

ε

into the originally singular equation we find that the equation for X,

X2 +X − ε = 0,

is regular. Thus the problem of finding the correct starting point for the expansion can be viewed as the
problem of finding a suitable rescaling to regularise the singular problem.
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2.4 Finding the right rescaling

Systematic approach: general rescaling

First pose a general rescaling with scaling factor δ(ε):

x = δX,

in which X is strictly of order one as ε→ 0. This gives

εδ2X2 + δX − 1 = 0.

Then consider the dominant balance in the equation as δ varies from very small to very large.

(i) δ � 1. Then
εδ2X2 + δX − 1 = small + small− 1,

which cannot possibly balance the zero on the right-hand side of the equation. As δ is gradually
increased the first term to break the domination of the −1 term is δX, which comes into play when
δ = 1.

(ii) δ = 1. Now the left-hand side is

εδ2X2 + δX − 1 = small +X − 1.

This can balance the zero on the right-hand side, and produces the regular root X = +1+ small.

(iii) 1� δ � ε−1. Now the term δX dominates the left-hand side, since upon dividing by δ,

εδ2X2 + δX − 1

δ
= small +X + small.

This can only balance the zero on the right-hand side if X = 0, but that violates the restriction that
X is strictly of order one. As δ is further increased the dominance of δX is broken when the first
term comes into play at δ = ε−1.

(iv) δ = ε−1. Now the left-hand side divided by εδ2 is

εδ2X2 + δX − 1

εδ2
= X2 +X + small.

This can balance the zero on the right-hand side and gives the singular root X = −1+ small. (Note
that the solution X = 0 is not permitted since X has to be strictly of order one).

(v) δ � ε−1. Finally, if δ is larger still then the left-hand side divided by εδ2 is dominated by the first
term

εδ2X2 + δX − 1

εδ2
= X2 + small + small,

which cannot balance the zero on the right-hand side with X strictly of order one.

Alternative approach: pairwise comparison

An alternative method is to compare terms pairwise, which is quicker when there are a small number of
terms. To get a sensible answer from equating the left-hand side to zero we need at least two terms to
be in balance (sometimes known as a distinguished limit). The possible combinations are the first and
second terms, the first and third terms, or the second and third terms.

(i) First and second terms in balance. To have εx2 and x in balance requires x to be of size ε−1. Then
these terms are both of size ε−1, and dominate the remaining term −1, which is of size one. This
leads to the singular root.
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(ii) First and third terms in balance. To have εx2 and −1 in balance requires x to be of size ε−1/2. Then
these terms are both of size one, but the remaining term x is of size ε−1/2, so that this single term
dominates and there is no sensible balance.

(iii) Second and third terms in balance. To have x and −1 in balance requires x to be of size one. Then
these terms are both of size one, and dominate the remaining term which is size ε. This leads to the
regular root.

2.5 Non-integral powers

Consider the quadratic equation
(1− ε)x2 − 2x+ 1 = 0.

Setting ε = 0 gives x = 1 as the double root (a sign of the danger to come). Proceeding as usual we pose
the expansion

x = 1 + εx1 + ε2x2 + · · · .
Substituting into the equation

(1− ε)
(
1 + εx1 + ε2x2 + · · ·

)2 − 2
(
1 + εx1 + ε2x2 + · · ·

)
+ 1 = 0.

Expanding gives

1 + 2x1ε+ (2x2 + x2
1)ε2 + · · · − ε− 2x1ε

2 + · · · − 2− 2x1ε− 2x2ε
2 + · · ·+ 1 = 0.

Comparing coefficients of ε gives

At ε0: 1− 2 + 1 = 0,

which is automatically satisfied because we started with the correct value x = 1 at ε = 0.

At ε1: 2x1 − 1− 2x1 = 0,

which cannot be satisfied by any value of x1 (except x1 =∞ in some sense).
The cause of the difficulty is illustrated by looking at the exact solution

x =
1

1± ε1/2 .

Expanding the largest root for small ε gives

x = 1 + ε1/2 + ε+ ε3/2 + · · · .

We should have expanded in powers of ε1/2 instead of ε. This is what x1 =∞ is hinting at: the scaling on
x1 is too small. (In retrospect we could have guessed that an order ε1/2 change in x would be required to
produce and order ε change in a function at its minimum.)

If we pose the expansion
x = 1 + ε1/2x1/2 + εx1 + · · · ,

and substitute into the equation

(1− ε)
(

1 + ε1/2x1/2 + εx1 + · · ·
)2
− 2

(
1 + ε1/2x1/2 + εx1 + · · ·

)
+ 1 = 0.

Expanding gives

1 + 2x1/2ε
1/2 + (2x1 + x2

1/2)ε+ (2x3/2 + 2x1/2x1)ε3/2 + · · · − ε− 2x1/2ε
3/2 + · · ·

−2− 2x1/2ε
1/2 − 2x1ε− 2x3/2ε

3/2 + · · ·+ 1 = 0.
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Comparing coefficients of ε we find that

At ε0: 1− 2 + 1 = 0,

is automatically satisfied as usual and

At ε1/2: 2x1/2 − 2x1/2 = 0,

is satisfied for all values of x1/2. Slightly disturbing that x1/2 is not determined but at least the expansion
is consistent so far.

At ε1: 2x1 + x2
1/2 − 1− 2x1 = 0,

so that x1/2 = ±1 and x1 is not determined at this level.

At ε3/2: 2x3/2 + 2x1/2x1 − 2x1/2 − 2x3/2 = 0,

so that x1 = 1 for both roots x1/2, while x3/2 is not determined.

2.6 Finding the right expansion sequence

How would we determine the expansion sequence if we did not have the exact solution to compare with?
First pose a general expansion

x = 1 + δ1x1, δ1(ε)� 1

and substitute this into the equation to get

(1− ε) (1 + δ1x1)2 − 2 (1 + δ1x1) + 1 = 0.

Expanding
1 + 2δ1x1 + δ2

1x
2
1 − ε+ 2εδ1x1 + δ2

1εx
2
1 − 2− 2δ1x1 + 1 = 0.

Simplifying leaves
δ2

1x
2
1 − ε+ 2εδ1x1 + δ2

1εx
2
1 = 0.

Now we play the dominant balance game again. Since εδ1 � ε the leading terms are δ2
1x

2
1 and ε. Thus to

get a sensible balance we need δ1 = ε1/2. With this value for δ1 we equate coefficients of ε to get

x2
1 − 1 = 0, i.e. x1 = ±1.

To proceed to higher order we play the game again. Choosing x1 = 1 for example, we now have

x = 1 + ε1/2 + δ2x2, δ2(ε)� ε1/2.

Substituting into the equation

(1− ε)
(

1 + ε1/2 + δ2x2

)2
− 2

(
1 + ε1/2 + δ2x2

)
+ 1 = 0.

Expanding

1 + 2ε1/2 + ε+ 2δ2x2 + 2ε1/2δ2x2 + δ2
2x

2
2

− ε− 2ε3/2 − ε2 − 2εδ2x2 − 2ε3/2δ2x2 − εδ2
2x

2
2 − 2− 2ε1/2 − 2δ2x2 + 1 = 0.

Simplifying leaves

2ε1/2δ2x2 + δ2
2x

2
2 − 2ε3/2 − ε2 − 2εδ2x2 − 2ε3/2δ2x2 − εδ2

2x
2
2 = 0.

Since δ2 � ε1/2 the dominant term involving δ2 is 2ε1/2δ2x2. This must balance with −2ε3/2, giving δ2 = ε
and x2 = 1.
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2.7 Iterative method

This is often very useful in cases where the expansion sequence is not known. Writing the original quadratic
as

(x− 1)2 = εx2,

we are led to the iterative process

xn+1 = 1± ε1/2xn.

Starting with x0 = 1 the positive root gives

x1 = 1 + ε1/2

and

x2 = 1 + ε1/2 + ε.

2.8 Logarithms

Consider the transcendental equation

xe−x = ε.

To proceed to higher order we play the game again. Choosing x1 = 1 for example, we now have

x = 1 + ε1/2 + δ2x2, δ2 ! ε1/2.

Substituting into the equation

(1 − ε)
(
1 + ε1/2 + δ2x2

)2

− 2
(
1 + ε1/2 + δ2x2

)
+ 1 = 0.

Expanding

1 + 2ε1/2 + ε+ 2δ2x2 + 2ε1/2δ2x2 + δ22x2
2

− ε− 2ε3/2 − ε2 − 2εδ2x2 − 2ε3/2δ2x2 − εδ22x
2
2 − 2 − 2ε1/2 − 2δ2x2 + 1 = 0.

Simplifying leaves
2ε1/2δ2x2 + δ22x2

2 − 2ε3/2 − ε2 − 2εδ2x2 − 2ε3/2δ2x2 − εδ22x
2
2 = 0.

Since δ2 ! ε1/2 the dominant term involving δ2 is 2ε1/2δ2x2. This must balance with −2ε3/2, giving δ2 = ε and x2 = 1.

2.7 Iterative method

This is often very useful in cases where the expansion sequence is not known. Writing the original quadratic as

(x − 1)2 = εx2

we are led to the iterative process
xn+1 = 1 ± ε1/2xn.

Starting with x0 = 1 the positive root gives
x1 = 1 + ε1/2

and
x2 = 1 + ε1/2 + ε.

2.8 Logarithms

Consider the transcendental equation
xe−x = ε.

1 2 3 4 5 6

0.05

0.1

0.15

0.2

0.25

0.3

0.35

One root is near x = 0 and is easy to approximate. The other gets large as ε → 0 and is more difficult to find. Since the
expansion sequence is not obvious we use the iterative procedure. Now, when x = log 1/ε, xe−x = ε log 1/ε $ ε. When
x = 2 log 1/ε, xe−x = 2ε2 log 1/ε ! ε. Over this range the term x is slowly varying while e−x is rapidly varying. This
suggests rewriting the equation as

e−x =
ε

x

giving the iterative scheme
xn+1 = log(1/ε) + log xn.

We have seen that the root lies roughly around x = log(1/ε), so we start the iteration from x0 = log(1/ε). Then

x1 = log(1/ε) + log log(1/ε).

6

One root is near x = 0 and is easy to approximate. The other gets large as ε→ 0 and is more difficult to
find. Since the expansion sequence is not obvious we use the iterative procedure. Now, when x = log 1/ε,
xe−x = ε log 1/ε � ε. When x = 2 log 1/ε, xe−x = 2ε2 log 1/ε � ε. Over this range the term x is slowly
varying while e−x is rapidly varying. This suggests rewriting the equation as

e−x =
ε

x

giving the iterative scheme

xn+1 = log(1/ε) + log xn.

We have seen that the root lies roughly around x = log(1/ε), so we start the iteration from x0 = log(1/ε).
Then

x1 = log(1/ε) + log log(1/ε).

Then

x2 = log(1/ε) + log(log(1/ε) + log log(1/ε))

= log(1/ε) + log log(1/ε) + log

(
1 +

log log(1/ε)

log(1/ε)

)

= log(1/ε) + log log(1/ε) +
log log(1/ε)

log(1/ε)
− 1

2

(
log log(1/ε)

log(1/ε)

)2

+ · · · .
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Iterating again

x3 = log(1/ε) + log

(
log(1/ε) + log log(1/ε) +

log log(1/ε)

log(1/ε)
− 1

2

(
log log(1/ε)

log(1/ε)

)2
)

= log(1/ε) + log log(1/ε) + log

(
1 +

log log(1/ε)

log(1/ε)
+

log log(1/ε)

(log(1/ε))2
− 1

2

(log log(1/ε))2

(log(1/ε))3

)

= log(1/ε) + log log(1/ε) +

(
log log(1/ε)

log(1/ε)
+

log log(1/ε)

(log(1/ε))2
− 1

2

(log log(1/ε))2

(log(1/ε))3

)

− 1

2

(
log log(1/ε)

log(1/ε)
+

log log(1/ε)

(log(1/ε))2
− · · ·

)2

+
1

3

(
log log(1/ε)

log(1/ε)
+ · · ·

)3

+ · · ·

= log(1/ε) + log log(1/ε) +
log log(1/ε)

log(1/ε)
+

−1
2(log log(1/ε))2 + log log(1/ε)

(log(1/ε))2
+

1
3(log log(1/ε))3 − 3

2(log log(1/ε))2 + · · ·
(log(1/ε))3

+ · · · .

Difficult sequence to guess. The appearance of log ε, and especially of log log(1/ε), means that very small
values of ε are needed for the asymptotic expansion to be a good approximation. Normally we hope to do
OK for ε = 0.5, or at worst ε = 0.1. However even when ε = 10−9, log log(1/ε) is only 3.

3 Asymptotic approximations

3.1 Definitions

Convergence A series
∑∞

n=0 fn(z) is said to converge at a fixed value of z if given an arbitrary ε > 0
it is possible to find a number N0(z, ε) such that

∣∣∣∣∣
N∑

n=M

fn(z)

∣∣∣∣∣ < ε for all M, N > N0.

A series
∑∞

n=0 fn(z) is said to converge to a function f(z) at a fixed value of z if given an arbitrary ε > 0
it is possible to find a number N0(z, ε) such that

∣∣∣∣∣
N∑

n=0

fn(z)− f(z)

∣∣∣∣∣ < ε for all N > N0.

Thus a series converges if its terms decay sufficiently rapidly as n→∞.
The property of convergence is less useful in practice that we are often led to believe. Consider

erf (z) =
2√
π

∫ z

0
e−t

2
dt.

Since e−t
2

is analytic in the entire complex plane it can be expanded in a Taylor series

∞∑

n=0

(−t2)n

n!

which converges with an infinite radius of convergence (i.e. it converges for all t). This allows us to integrate
term by term to get a series for erf(z) which also converges with an infinite radius of convergence:

erf (z) =
2√
π

∞∑

n=0

(−1)nz2n+1

(2n+ 1)n!

=
2√
π

(
z − z3

3
+
z5

10
− z7

42
+

z9

216
− z11

1320
+ · · ·

)
.
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Taking eight terms in the series gives an accuracy of 10−5 up to z = 1. As z increases progressively more
terms are needed to maintain this accuracy, e.g. 16 terms at z = 2, 31 terms at z = 3, 75 terms at z = 5.
As well as requiring lots of terms, the intermediate terms get very large when z is large (there is lots of
cancellation from positive and negative terms). Thus round-off errors come into play. A computer with a
round-off error of 10−7 can give an answer accurate to only about 10−4 at z = 3 because the largest term
is about 214. At z = 5 the largest term is 6.6 × 108, so that round-off error swamps the answer, and the
computer gets it completely wrong.

The problem is that the truncated sums are very different from the converged limit—the approximation
does not get better with each successive term (until we have a lot of terms).

An alternative approximation to erf (z) can be constructed by writing

erf (z) = 1− 2√
π

∫ ∞

z
e−t

2
dt

and integrating by parts to give

∫ ∞

z
e−t

2
dt =

∫ ∞

z

2te−t
2

2t
dt =

e−z
2

2z
−
∫ ∞

z

e−t
2

2t2
dt.

Continuing integrating by parts gives

erf (z) = 1− e−z
2

z
√
π

(
1− 1

2z2
+

1.3

(2z2)2
− 1.3.5

(2z2)3
+ · · ·

)
.

This series diverges for all z: it has radius of convergence zero. However, the truncated series is very useful.
At z = 2.5 three terms give an accuracy of 10−5. At z = 3 only two terms are necessary. The series has
the important property that the leading term is almost correct, and the addition of each successive term
gets us a bit closer to the answer, i.e. each of the corrections is of decreasing size (until they finally start
to diverge). The series is an asymptotic series.

Asymptoticness A sequence {fn(ε)}n∈N0 is said to be asymptotic if for all n ≥ 1

fn(ε)

fn−1(ε)
→ 0 as ε→ 0.

A series
∑∞

n=0 fn(ε) is said to be an asymptotic approximation to (or asymptotic expansion of) a
function f(ε) as ε→ 0 if for all N ≥ 0

f(ε)−∑N
n=0 fn(ε)

fN (ε)
→ 0 as ε→ 0,

i.e. the remainder is smaller than the last term included once ε is sufficiently small. We write

f ∼
∞∑

n=0

fn(ε) as ε→ 0.

Usually we don’t worry about getting the whole series, just the first few terms.
Often the fn(ε) are powers of ε multiplied by a coefficient, i.e.

f ∼
∞∑

n=0

anε
n

which is called an asymptotic power series. Sometimes though, as we have already seen, fractional
powers or logs may appear.
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Order notation We write f = O(g) as ε→ 0 to mean that there exist constants K > 0 and ε0 > 0 such
that

|f | < K|g| for all ε < ε0.

We write f = o(g) as ε→ 0 to mean
f

g
→ 0 as ε→ 0.

Then fn(ε) is an asymptotic sequence if fn = o(fn−1), and f ∼∑∞n=0 fn if

f −
N∑

n=0

fn = o(fN ) for all N ≥ 0.

Examples

• sinx = O(x) as x→ 0.

• sinx = O(1) as x→∞.

• sinx = O(1) as x → 0. Note that quite often when dealing with simple powers often take order to be
largest/smallest such power that works.

• log x = O(x) as x→∞.

• log x = o(x) as x→∞.

• log x = o(x−δ) as x→ 0, for any δ > 0.

3.2 Uniqueness and manipulation of asymptotic series

If a function posesses an asymptotic approximation in terms of an asymptotic sequence, then that approxi-
mation is unique for that particular sequence. Given the existence of an approximation f ∼∑∞n=0 anδn(ε)
in terms of a given sequence {δn(ε)}n∈N0 , the coefficients can be evaluated inductively from

ak = lim
ε→0

f(ε)−∑k−1
n=0 anδn(ε)

δk(ε)
.

Note that the uniqueness is for a given sequence. A single function may have many asypmtotic approxi-
mations, each in terms of a different sequence. For example

tan(ε) ∼ ε+
ε3

3
+

2ε5

15
+ · · ·

∼ sin ε+
1

2
(sin ε)3 +

3

8
(sin ε)5 + · · ·

∼ ε cosh

(√
2

3
ε

)
+

31

270

(
ε cosh

(√
2

3
ε

))2

+ · · · .

Note also that the uniqueness is for a given function: two functions may share the same asymptotic
approximation, because they differ by a quantity smaller than the last term included. For example

exp(ε) ∼
∞∑

n=0

εn

n!
as ε→ 0,

exp(ε) + exp(−1/ε) ∼
∞∑

n=0

εn

n!
as ε→ 0+

12



(ε → 0+ means as ε tends to zero through positive values). Two functions sharing the same asymptotic
power series, as above, can only differ by a quantity which is not analytic, because two analytic functions
with the same power series are identical.

Asymptotic approximations can be naively added, subtracted, multiplied or divided, resulting in the
correct asymptotic expression for the sum, difference, product or quotient, perhaps based on an enlarged
asymptotic sequence.

One asymptotic series can be substituted into another, although care is needed with exponentials. For
example, if

f(z) = ez
2
, z(ε) = ε−1 + ε,

then

f(z(ε)) = e(ε−1+ε)2 ∼ e−ε−2
e2

(
1 + ε2 +

ε4

2
+ · · ·

)
.

However, if only the leading term in z is used we get the wrong answer exp(−ε−2), in error by a factor of
e2. To avoid this error exponents need to be calculated to O(1), not just to leading order. Remember that
cos and sin are exponentials as far as this is concerned.

Asymptotic expansions can be integrated term by term with respect to ε resulting in the correct
asymptotic expansion of the integral. However, in general they may not be differentiated with safety. The
trouble comes with terms like ε cos(1/ε) which has a derivative O(1/ε) rather than the expected O(1).
Such terms move higher up the expansion when integrated (safe), but lower down it when differentiated
(unsafe). Thus when differentiating there is always the worry that neglected higher-order terms suddenly
become important.

3.3 Numerical use of divergent series

Usually the first few terms in a series are enough to get the desired accuracy. However, if a more accurate
representation is needed more terms can be taken. Clearly, if the series is divergent, as they often are, it
makes no sense to keep including extra terms when they stop decreasing in magnitude and start to diverge.
Truncating at the smallest term is known as optimal truncation.

3.4 Parametric expansions

So far we have been considering functions of a single variable as that variable tends to zero. Such problems
often occur in ordinary and especially partial differential equations when considering far field behaviour
for example, and there are known as coordinate expansions.

More common is for the solution of an equation to depend on more than one variable, f(x, ε) say. Often
we have a differential equation in the independent variable x which contains a small parameter ε, hence
the name parametric expansion. For functions of two variables the obvious generalisation is to allow the
coefficients of the asymptotic expansion to be functions of the second variable:

f(x, ε) ∼
∞∑

n=0

an(x)δn(ε) as ε→ 0.

4 Asymptotic approximation of integrals

4.1 Integration by parts

We have already seen the use of integration by parts to obtain an asymptotic approximation of the error
function. Here we show some more examples.
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Example 1. Derivation of an asymptotic power series If f(ε) is differentiable near ε = 0 then the
local behaviour of f(ε) near 0 may be studied using integration by parts. We write

f(ε) = f(0) +

∫ ε

0
f ′(x) dx.

Integrating by parts once gives

f(ε) = f(0) +
[
(x− ε)f ′(x)

]ε
0

+

∫ ε

0
(ε− x)f ′′(x) dx.

Repeating N − 1 times gives

f(ε) =

N∑

n=0

εnf (n)(0)

n!
+

1

N !

∫ ε

0
(ε− x)Nf (N+1)(x) dx.

If the remainder term exists for all N and sufficiently small ε > 0 then

f(ε) ∼
∞∑

n=0

εnf (n)(0)

n!
as ε→ 0.

If the series converges then it is just the Taylor expansion of f(ε) about ε = 0.

Example 2.

I(x) =

∫ ∞

x
e−t

4
dt.

As x→∞,

I(x) = −1

4

∫ ∞

x

1

t3
d

dt
(e−t

4
) dt

=

[
−e
−t4

4t3

]∞

x

− 3

4

∫ ∞

x

1

t4
e−t

4
dt

=
e−x

4

4x3
− 3

4

∫ ∞

x

1

t4
e−t

4
dt.

The first term is the leading-order asymptotic approximation because

∫ ∞

x

1

t4
e−t

4
dt <

1

x4

∫ ∞

x
e−t

4
dt =

1

x4
I(x)� I(x) as x→∞.

Further integration by parts gives more terms in the asymptotic series.

Example 3.

I(x) =

∫ x

0
t−1/2e−t dt.

Here we need to be more careful because the naive approach

I(x) =
[
−t−1/2e−t

]x
0
− 1

2

∫ x

0
t−3/2e−t dt

gives ∞−∞. Instead we express I(x) as the difference between two integrals

I(x) =

∫ ∞

0
t−1/2e−t dt−

∫ ∞

x
t−1/2e−t dt.
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The first integral is finite, independent of x; it has the value Γ(1/2) =
√
π. The second may be integrated

by parts successfully, because the contribution from the endpoint vanishes.

∫ x

0
t−1/2e−t dt =

√
π +

∫ ∞

x
t−1/2 d

dt
(e−t) dt

=
√
π − e−x√

x
+

1

2

∫ ∞

x
t−3/2e−t dt.

General rule: Integration by parts will not work if the contribution from one of the limits of integration is
much larger than the size of the integral. Here I(x) is finite for all x > 0, but at the endpoint t = 0 the
integrand has a singularity, which gets worse on differentiating.

4.2 Failure of integration by parts

I(x) =

∫ ∞

0
e−xt

2
dt.

If we try integration by parts we find

∫ ∞

0
e−xt

2
dt =

∫ ∞

0

(
− 1

2xt

)(
−2xte−xt

2
)
dt =

[
e−xt

2

−2xt

]∞

0

−
∫ ∞

0

1

2xt2
e−xt

2
dt.

The final integral does not exist, a sure sign that integration by parts has failed. In fact, I(x) has the
exact value

√
π/(2
√
x). Integration by parts could never pick up this fractional power, and is doomed to

failure. Integration by parts will also not work when the dominant contribution to the integral comes from
an interior point rather than an end point. While integration by parts is simple to use and gives an explicit
error term that can often be rigorously bounded, it is of limited applicability and inflexible.

4.3 Laplace’s method

Laplace’s method is a general technique for obtaining the behaviour as x→ +∞ of integrals of the form

I(x) =

∫ b

a
f(t)exφ(t) dt,

where f(t) and φ(t) are real continuous functions.

Example Find the asymptotic behaviour of

I(x) =

∫ 10

0

e−xt

(1 + t)
dt

as x→ +∞. The integrand is shown for x = 1, · · · , 10.

Example Find the asymptotic behaviour of

I(x) =

∫ 10

0

e−xt

(1 + t)
dt

as x → +∞. The integrand is shown for x = 1, · · · , 10.
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0.2

0.4

0.6

0.8

1

As x → ∞ the largest contribution to the integral comes from near t = 0 because this is where −t is biggest. For values of
t away from zero the integrand is exponentially small. So split the range of integration:

I(x) =

∫ ε

0

e−xt

(1 + t)
dt +

∫ 10

ε

e−xt

(1 + t)
dt

where x−1 $ ε $ 1. The second integral is O(e−εx) which is exponentially small by comparison to the first, so we can
neglect it. In the first integral t is small so we can Taylor expand 1/(1 + t). The best way to be systematic is to change
variable xt = s, giving

I(x) ∼ 1

x

∫ xε

0

e−s

(1 + s/x)
ds.

Since xε (the largest value of s) is $ x we Taylor expand 1/(1 + s/x) to give

I(x) ∼ 1

x

∫ xε

0

e−s
∞∑

n=0

(−s)n

xn
ds =

∞∑

n=0

1

xn+1

∫ xε

0

(−s)ne−s ds,

since the expansion is uniform on 0 < s < εx. Finally, we can now replace the upper limit xε by infinity in each sum,
introducing only exponentially small errors again, since

∫ ∞

xε

sne−s ds = O((xε)ne−εx).

Hence

I(x) ∼
∞∑

n=0

1

xn+1

∫ ∞

0

(−s)ne−s ds =

∞∑

n=0

(−1)nn!

xn+1
.

4.4 Watson’s lemma

The method of the example can be justified using Watson’s lemma, which applies to integrals of the form

I(x) =

∫ b

0

f(t)e−xt dt, b > 0.

Suppose f(t) is continuous on the interval 0 ≤ t ≤ b and has the asymptotic series expansion

f(t) ∼ tα
∞∑

n=0

antβn, as t → 0+,

where α > −1 and β > 0 so that the integral converges at t = 0. If b = ∞ it is also necessary that f(t) $ ect as t → +∞
for some positive constant c so that the integral converges at t = ∞. Then Watson’s lemma states that

I(x) ∼
∞∑

n=0

anΓ(α+ βn + 1)

xα+βn+1
as x → +∞.

The proof is basically by the same method as in the example.
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As x→∞ the largest contribution to the integral comes from near t = 0 because this is where −t is biggest.
For values of t away from zero the integrand is exponentially small. So split the range of integration:

I(x) =

∫ ε

0

e−xt

(1 + t)
dt+

∫ 10

ε

e−xt

(1 + t)
dt

where x−1 � ε � 1. The second integral is O(e−εx) which is exponentially small by comparison to the
first, so we can neglect it. In the first integral t is small so we can Taylor expand 1/(1 + t). The best way
to be systematic is to change variable xt = s, giving

I(x) ∼ 1

x

∫ xε

0

e−s

(1 + s/x)
ds.

Since xε (the largest value of s) is � x we Taylor expand 1/(1 + s/x) to give

I(x) ∼ 1

x

∫ xε

0
e−s

∞∑

n=0

(−s)n
xn

ds =
∞∑

n=0

1

xn+1

∫ xε

0
(−s)ne−s ds,

since the expansion is uniform on 0 < s < εx. Finally, we can now replace the upper limit xε by infinity
in each sum, introducing only exponentially small errors again because integration by parts shows that

∫ ∞

xε
sne−s ds = O((xε)ne−εx).

Hence

I(x) ∼
∞∑

n=0

1

xn+1

∫ ∞

0
(−s)ne−s ds =

∞∑

n=0

(−1)nn!

xn+1
as x→∞.

4.4 Watson’s lemma

The method of the example can be justified using Watson’s lemma, which applies to integrals of the form

I(x) =

∫ b

0
f(t)e−xt dt, b > 0.

Suppose f(t) is continuous on the interval 0 ≤ t ≤ b and has the asymptotic series expansion

f(t) ∼ tα
∞∑

n=0

ant
βn as t→ 0+,

where α > −1 and β > 0 so that the integral converges at t = 0. If b = ∞ it is also necessary that
f(t)� ect as t→ +∞ for some positive constant c so that the integral converges at t =∞. Then Watson’s
lemma states that

I(x) ∼
∞∑

n=0

anΓ(α+ βn+ 1)

xα+βn+1
as x→ +∞.

The derivation of Watson’s Lemma is basically by the same method as in the example if the asymptotic
series for f is uniformly convergent in a neighbourhood of the origin (as is often the case in practice). If this
is not the case (as it is in general), then it is no longer possible to interchange the order of integration and
summation: we work instead with a finite number of terms in the asymptotic expansion of f by writing,
for each positive integer N ,

f(t) = tα
N−1∑

n=0

ant
βn + O(tβN ) as t→ 0+;

the result is then readily derived by showing that, for each positive integer N ,

I(x) =
N−1∑

n=0

anΓ(α+ βn+ 1)

xα+βn+1
+ O

(
1

xα+βN+1

)
as x→ +∞.
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4.5 Asymptotic expansion of general Laplace integrals

Consider the integral

I(x) =

∫ b

a
f(t)exφ(t) dt.

We have seen that the dominant contribution to the integral will come from the place where φ(t) is largest.

4.5 Asymptotic expansion of general Laplace integrals

Consider the integral

I(x) =

∫ b

a

f(t)exφ(t) dt.

We have seen that the dominant contribution to the integral will come from the place where φ(t) is largest.
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There are three cases to consider

1. The maximum is at t = a.

2. The maximum is at t = b.

3. The maximum is at some t = c, with a < c < b.

In each case the argument is as follows:

1. The dominant contribution to the integral comes from the near the maximum of φ. We can reduce the range of
integration to this local contribution introducing only exponentially small errors.

2. Near this point we can expand φ and f in Taylor series.

3. After rescaling the integration variable, we can replace the integration limits by ∞ introducing only exponentially
small errors.

Case 1: The maximum is at t = a. First we can split the integral into a local and nonlocal part:

I(x) =

∫ a+ε

a

f(t)exφ(t) dt +

∫ b

a+ε

f(t)exφ(t) dt,

where 1/x " ε " 1/
√

x (we will see where these restrictions come from soon). The second integral is exponentially small
compared to the first, since it is O(exφ(a+ε)) and φ(a + ε) ∼ φ(a) + εφ′(a). Thus the second integral is O(exεφ′(a)) times the
first (which we will see is O(exφ(a))). This is why we need xε % 1 (remember that φ′(a) < 0 since φ is maximum at t = a).

In the first it is OK to expand φ(t) and f(t) as an asymptoptic series about t = a

φ(t) ∼ φ(a) + (t − a)φ′(a) + · · · , f(t) ∼ f(a) + (t − a)f ′(a) + · · · .

Then

I(x) ∼
∫ a+ε

a

(f(a) + (t − a)f ′(a) + · · · ) ex(φ(a)+(t−a)φ′(a)+
(t−a)2

2 φ′′(a)+··· ) dt

Now we rescale the integration variable to remove the x from the exponential, i.e. we set x(t − a) = s. Then

I(x) ∼ exφ(a)

x

∫ xε

0

(
f(a) +

s

x
f ′(a) + · · ·

)
esφ′(a)+ s2

2xφ
′′(a)+··· ds.

Note that φ′(a) < 0, since φ is maximum at a. Now we can expand e
s2

2xφ
′′(a)+··· as x → ∞ as

1 +
s2

2x
φ′′(a) + · · · .
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There are three cases to consider

1. The maximum is at t = a.

2. The maximum is at t = b.

3. The maximum is at some t = c, with a < c < b.

In each case the argument is as follows:

1. The dominant contribution to the integral comes from the near the maximum of φ. We can reduce
the range of integration to this local contribution introducing only exponentially small errors.

2. Near this point we can expand φ and f in Taylor series.

3. After rescaling the integration variable, we can replace the integration limits by ∞ introducing only
exponentially small errors.

Case 1: The maximum is at t = a. First we can split the integral into a local and nonlocal part:

I(x) =

∫ a+ε

a
f(t)exφ(t) dt+

∫ b

a+ε
f(t)exφ(t) dt,

where x−1 � ε � x−1/2 (we will see where these restrictions come from soon). The second integral is
exponentially small compared to the first, since it is O(exφ(a+ε)) and φ(a + ε) ∼ φ(a) + εφ′(a). Thus the
second integral is O(exεφ

′(a)) times the first (which we will see is O(exφ(a))). This is why we need xε � 1
(remember that φ′(a) < 0 since φ is maximum at t = a).

In the first it is OK to expand φ(t) and f(t) as an asymptoptic series about t = a:

φ(t) ∼ φ(a) + (t− a)φ′(a) + · · · , f(t) ∼ f(a) + (t− a)f ′(a) + · · · .

Then

I(x) ∼
∫ a+ε

a

(
f(a) + (t− a)f ′(a) + · · ·

)
ex(φ(a)+(t−a)φ′(a)+

(t−a)2
2

φ′′(a)+··· ) dt

Now we rescale the integration variable to remove the x from the exponential, i.e. we set x(t − a) = s.
Then

I(x) ∼ exφ(a)

x

∫ xε

0

(
f(a) +

s

x
f ′(a) + · · ·

)
esφ
′(a)+ s2

2x
φ′′(a)+··· ds.
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Note that φ′(a) < 0, since φ is maximum at a. Now we can expand e
s2

2x
φ′′(a)+··· as x→∞ as

1 +
s2

2x
φ′′(a) + · · · .

This is OK providing (xε)2/x � 1 i.e. ε � x−1/2. This is where the other restriction on ε comes from.
Keeping only the leading-order term we have

I(x) ∼ f(a)exφ(a)

x

∫ xε

0
esφ
′(a) ds.

Now we can replace the upper limit by infinity, introducing only exponentially small errors:

I(x) ∼ f(a)exφ(a)

x

∫ ∞

0
esφ
′(a) ds = −f(a)exφ(a)

xφ′(a)
.

Case 2: The maximum is at t = b. A similar argument shows that

I(x) ∼ f(b)exφ(b)

xφ′(b)
.

Case 3: The maximum is at t = c, a < c < b. First we can split the integral into a local and nonlocal
part:

I(x) =

∫ c−ε

a
f(t)exφ(t) dt+

∫ c+ε

c−ε
f(t)exφ(t) dt+

∫ b

c+ε
f(t)exφ(t) dt,

where in this case we will see that we need 1/x1/2 � ε� 1/x1/3 (we will see where these restrictions come
from shortly). The first and last integrals are exponentially small compared to the second, since they are

O(exφ(c+ε)). In this case φ(c+ ε) ∼ φ(c) + ε2

2 φ
′′(c) because φ has a maximum at the interior point t = c so

φ′(c) = 0. This is why we need xε2 � 1, i.e. x−1/2 � ε.
In the second integral it is OK to expand φ(t) and f(t) as an asymptoptic series about t = c:

φ(t) ∼ φ(c) +
(t− c)2

2
φ′′(c) +

(t− c)3

6
φ′′′(c) · · · , f(t) ∼ f(c) + (t− c)f ′(c) + · · · .

Then

I(x) ∼
∫ c+ε

c−ε

(
f(c) + (t− c)f ′(c) + · · ·

)
ex(φ(c)+

(t−c)2
2

φ′′(c)+ (t−c)3
6

φ′′′(c)+··· ) dt

Now we rescale the integration variable to remove the x from the exponential, i.e. we set
√
x (t − c) = s

(note the different scaling of the contributing region). Then

I(x) ∼ exφ(c)

√
x

∫ √x ε

−
√
x ε

(
f(c) +

s

x
f ′(c) + · · ·

)
e
s2

2
φ′′(c)+ s3

6
√
x
φ′′′(c)+···

ds.

Note that φ′′(c) < 0, since φ has a maximum at t = c. Now we can expand e
s3

6
√
x
φ′′′(c)+···

as x→∞ as

1 +
s3

6
√
x
φ′′′(c) + · · · .

This is OK providing (x1/2ε)3/x1/2 � 1, i.e. ε � x−1/3. This is where the other restriction on ε comes
from. Keeping only the leading-order term we have

I(x) ∼ f(c)exφ(c)

√
x

∫ √x ε

−
√
x ε
e
s2

2
φ′′(c) ds.

Now we can replace the upper and lower limits by ±∞, introducing only exponentially small errors:

I(x) ∼ f(c)exφ(c)

√
x

∫ ∞

−∞
e
s2

2
φ′′(c) ds =

√
2π f(c)exφ(c)

√
−xφ′′(c)

.
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4.6 Method of stationary phase

The method of stationary phase is used for problems in which the exponent φ is not real but purely
imaginary, say φ(t) = iψ(t), where ψ(t) is real.

I(x) =

∫ b

a
f(t)eixψ(t) dt.

Riemann-Lebesgue lemma If
∫ b
a |f(t)| dt < ∞ and ψ(t) is continuously differentiable for a ≤ t ≤ b

and not constant on any subinterval in a ≤ t ≤ b, then

∫ b

a
f(t)eixψ(t) dt→ 0 as x→∞.

Useful when using integration by parts.

Example

I(x) =

∫ 1

0

eixt

1 + t
dt.

Integrating by parts gives

I(x) = − ie
ix

2x
+
i

x
− i

x

∫ 1

0

eixt

(1 + t)2
dt.

The last integral is lower order by the Riemann-Lebesgue lemma.

Why is the Riemann-Lebesgue lemma true? Locally near any point t = t0, ψ(t) ∼ ψ(t0)+(t−t0)ψ′(t0)+
· · · and the period of oscillation is 2π

xψ′(t0) . As x → ∞ this is very small, f(t) is almost constant, and the

contribution from the “up” and “down” parts of the oscillation almost cancel out. (You can find a rigorous
proof of the Riemann-Lebesgue lemma in analysis books.) However, this is not true if ψ′(t0) = 0. In this
case the integrand oscillates much more slowly near t0, so that there is less cancellation. Here’s a plot of
Re(e100ix2).

Riemann-Lebesgue lemma If
∫ b

a |f(t)| dt < ∞ then

∫ b

a

f(t)eixt dt → 0 as x → ∞.

Useful when using integration by parts.

Example

I(x) =

∫ 1

0

eixt

1 + t
dt.

Integrating by parts gives

I(x) = − ieix

2x
+

i

x
− i

x

∫ 1

0

eixt

(1 + t)2
dt.

The last integral is lower order by the Riemann-Lebesgue lemma.
Why is the Riemann-Lebesgue lemma true? As x → ∞ the integrand oscillates more and more rapidly so that the

contribution over one period of oscillation f(t) is almost constant and the contribution from the “up” and “down” parts
of the oscillation almost cancel out. (You can find a rigorous proof of the Riemann-Lebesgue lemma in analysis books. I
might show you the basic steps in one of the final lectures.)

This is also true for general ψ(t) (rather than the specific case of the Riemann-Lebesgue lemma ψ(t) = t). Locally
near any point t = t0, ψ(t) ∼ ψ(t0) + (t − t0)ψ

′(t0) + · · · and the period of oscillation is 2π
xψ′(t0) . As x → ∞ this is very

small, f(t) is almost constant, and the contribution from the “up” and “down” parts of the oscillation almost cancel out.
However, this is not true if ψ′(t0) = 0. In this case the integrand oscillates much more slowly near t0, so that there is less

cancellation. Here’s a plot of Re(e100ix2

).
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As for Laplace’s method, we split the range of integration

I(x) =

∫ c−ε

a

f(t)eixψ(t) dt +

∫ c+ε

c−ε
f(t)eixψ(t) dt +

∫ b

c+ε

f(t)eixψ(t) dt.

The first and third integrals are lower order. To show this we use integration by parts

∫ c−ε

a

f(t)eixψ(t) dt =

∫ c−ε

a

f(t)

ixψ′(t)
d

dt

(
eixψ(t)

)
dt

=

[
f(t)

ixψ′(t)
eixψ(t)

]c−ε

a

− 1

x

∫ c−ε

a

eixψ(t) d

dt

(
f(t)

iψ′(t)

)
dt.

Providing the last integral exists it is lower order by the Riemann-Lebesgue lemma. The first integal is

O

(
1

xψ′(c − ε)

)
= O

(
1

xεψ′′(c)

)

providing ψ′′(c) %= 0. For the second integral we expand ψ and f as an asymptoptic series about t = c

f(t) ∼ f(c) + (t − c)f ′(c) + · · · , ψ(t) ∼ ψ(c) +
(t − c)2

2
ψ′′(c) +

(t − c)3

6
ψ′′′(c) + · · · .

15

Suppose ψ′(c) = 0 with a < c < b, with ψ′(t) being nonzero for a ≤ t < c and c < t ≤ b. As for Laplace’s
method, we split the range of integration

I(x) =

∫ c−ε

a
f(t)eixψ(t) dt+

∫ c+ε

c−ε
f(t)eixψ(t) dt+

∫ b

c+ε
f(t)eixψ(t) dt,

where ε� 1. The first and third integrals are lower order. To show this we use integration by parts

∫ c−ε

a
f(t)eixψ(t) dt =

∫ c−ε

a

f(t)

ixψ′(t)

d

dt

(
eixψ(t)

)
dt

=

[
f(t)

ixψ′(t)
eixψ(t)

]c−ε

a

− 1

x

∫ c−ε

a
eixψ(t) d

dt

(
f(t)

iψ′(t)

)
dt.
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Providing the last integral exists it is lower order by the Riemann-Lebesgue lemma. The first integal is

O

(
1

xψ′(c− ε)

)
= O

(
1

xεψ′′(c)

)

providing ψ′′(c) 6= 0. For the second integral we expand ψ and f as an asymptoptic series about t = c

f(t) ∼ f(c) + (t− c)f ′(c) + · · · , ψ(t) ∼ ψ(c) +
(t− c)2

2
ψ′′(c) +

(t− c)3

6
ψ′′′(c) + · · · .

Then

∫ c+ε

c−ε
f(t)eixψ(t) dt ∼

∫ c+ε

c−ε

(
f(c) + (t− c)f ′(c) + · · ·

)
e
ix

(
ψ(c)+

(t−c)2
2

ψ′′(c)+ (t−c)3
6

ψ′′′(c)+···
)
dt.

As for Laplace’s method, we change the integration variable so that the oscillation is on an order one scale
by setting x1/2(t− c) = s to give

∫ c+ε

c−ε
f(t)eixψ(t) dt ∼ eixψ(c)

x1/2

∫ x1/2ε

−x1/2ε

(
f(c) +

s

x1/2
f ′(c) + · · ·

)
e
i s

2

2
ψ′′(c)+i s3

6x1/2
ψ′′′(c)+···

ds.

Now we can expand e
i s3

6x1/2
ψ′′′(c)+···

as

1 + i
s3

6x1/2
ψ′′′(c) + · · ·

so long as ε� x−1/3. The leading order term is

∫ c+ε

c−ε
f(t)eixψ(t) dt ∼ f(c)eixψ(c)

x1/2

∫ x1/2ε

−x1/2ε
ei
s2

2
ψ′′(c) ds.

Now we replace the limits of integration by ±∞, which introduces error terms of order 1/(xε) (check by
integration by parts). Hence

∫ c+ε

c−ε
f(t)eixψ(t) dt ∼ f(c)eixψ(c)

x1/2

∫ ∞

−∞
ei
s2

2
ψ′′(c) ds+O

(
1

xε

)
=

√
2πf(c)eixψ(c)e±iπ/4

x1/2|ψ′′(c)|1/2 +O

(
1

xε

)

where (contour integration reveals that) the factor e+iπ/4 is used if ψ′′(c) > 0 and e−iπ/4 is used if ψ′′(c) < 0.
Thus we need x−1/2 � (εx)−1, i.e. ε� x−1/2, as in Laplace’s method. The error is the same order as the
neglected first and third integrals. So finally

I(x) =

√
2πf(c)eixψ(c)e±iπ/4

x1/2|ψ′′(c)|1/2 +O

(
1

xε

)

as x→∞ with x−1/2 � ε� x−1/3.

Important notes

• The error terms are only algebraically small, not exponentially small as in Laplace’s method.

• Higher-order corrections are very hard to get since they may come from the whole range of integration.
This is in contrast to Laplace’s method where the full asymptotic expansion depends only on the
local region because the errors are exponentially small.
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4.7 Method of steepest descents

Laplace’s method and the method of stationary phase are really just special cases of the general method
of steepest descents, which is for integrals

I(x) =

∫

C
f(t)exφ(t) dt,

where f(t) and φ(t) are complex, and C is some contour in the complex t-plane.
We might expect, based on Laplace’s method, that the important contribution to the integral as

x → +∞ comes from the place where Re(φ) is maximum, at t0 say, and that the integral is basically of
size

f(t0)exφ(t0)

√
2π

−λφ′′(t0)

(where ′ is the derivative along the path of integration). However, this estimate is way too big. The
reason is that it ignores the rapid oscillation due to the imaginary part of φ, which causes cancellation
exactly as in the method of stationary phase. We can see that the estimate above is wrong by deforming
the contour a bit, which does not change the value of the integral, but which can change the maximum
value of Re(φ).

Now, since φ(t) = u(ξ, η) + iv(ξ, η) is an analytic function of t = ξ + iη, we have the Cauchy-Riemann
equations

uξ = vη, uη = −vξ.
Hence ∇2u = uξξ + uηη = 0. This means that u cannot have any maxima or minima in the (ξ, η)-plane,
only saddle points (since a maximum or minimum would require uξξuηη > 0). Thus the landscape of u
has hills (u > 0) and valleys (u < 0) at infinity, with saddle points which are the passes from one valley
into another. By the Cauchy-Riemann equations the saddle points are where dφ/dt = 0. If our contour is
infinite it must tend to infinity in a valley (see e.g. surface plot of u(ξ, η) = η2 − ξ2 for φ(t) = −t2). By
deforming the contour we can keep reducing the maximum value of u, until the contour goes through the
saddle point which is the lowest that u gets (see e.g. contour plot of u in which solid lines are for positive
values of u, dotted lines are for negative values of u, and the dashed lines show C being deformed through
the saddle point).

where t = x+iy. Hence ∇2Re(φ) = Re(φ)xx+Re(φ)yy = 0. This means that Re(φ) cannot have any maxima (or minima) in
the complex plane, only saddle points (since a maximum would require Re(φ)xx < 0 and Re(φ)yy < 0). Thus the landscape
of Re(φ) has hills (Re(φ) > 0) and valleys (Re(φ) < 0) at infinity, with saddle points which are the passes from one valley
into another. By the Cauchy-Riemann equations the saddle points are where dφ/dt = 0.
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If our contour is infinite it must tend to infinity in a valley. By deforming the contour we can keep reducing the maximum
value of Re(φ), until the contour goes through the saddle point which is the lowest that Re(φ) gets.

Contours of Re(φ), continuous for positive values, dotted for negative values.

But why do we know that this is the right value. Suppose we can deform the contour C into one in which the imaginary
part of φ is constant. Then there is no oscillation in the integrand, and the Laplace-type argument will work. Now if
Im(φ) = constant on the path then dIm(φ)/dt = 0, so that ∇(Im(φ)) is perpendicular to the path. By the Cauchy-Riemann
equations this means that ∇(Re(φ)) is parallel to the path, so that the path follows the steepest directions on the surface
of Re(φ).
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If our contour is infinite it must tend to infinity in a valley. By deforming the contour we can keep reducing the maximum
value of Re(φ), until the contour goes through the saddle point which is the lowest that Re(φ) gets.

Contours of Re(φ), continuous for positive values, dotted for negative values.

But why do we know that this is the right value. Suppose we can deform the contour C into one in which the imaginary
part of φ is constant. Then there is no oscillation in the integrand, and the Laplace-type argument will work. Now if
Im(φ) = constant on the path then dIm(φ)/dt = 0, so that ∇(Im(φ)) is perpendicular to the path. By the Cauchy-Riemann
equations this means that ∇(Re(φ)) is parallel to the path, so that the path follows the steepest directions on the surface
of Re(φ).
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But why do we know that this is the right value. Suppose we can deform the contour C into one in
which v is constant. Then there is no oscillation in the integrand, and the Laplace-type argument will work.
Now if v is constant on the path, then ∇v = (vξ, vη) is perpendicular to the path. By the Cauchy-Riemann
equations this means that ∇u = (uξ, uη) is parallel to the path, so that the path follows the steepest
directions on the surface of u. There is only one path on which v is constant which goes to a valley at
±∞ and this is the path through the saddle. A little thought shows that this has to be the case. Since
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u is first increasing as we come up from one valley and then decreasing as we go off to another valley, we
must go through a point where du/ds = 0, where s is distance along the path. Since v is constant, so
that dv/ds = 0, everywhere on the path, we must go through a saddle point at which both du/ds = 0 and
dv/ds = 0.

So the method of steepest descents is as follows:

(i) Deform the contour to be the steepest descent contour through the relevant saddle point(s).

(ii) Evaluate the local contribution from the saddle exactly as in Laplace’s method.

(iii) Evaluate the local contribution from the end point(s) exactly as in Laplace’s method.

Remember that when deforming the contour we must include the contribution from any poles that we
cross.

Of course, we could have chosen a path on which u = Re(φ) was constant and applied the method of
stationary phase. However, we have seen that Laplace’s method is far superior in that it can generate all
the terms in the asymptotic series: the neglected “tails” of the integral are exponentially small. In fact,
the best way to generate higher order terms in a stationary phase integral is to deform to the steepest
descent contour.

Example: Steepest descents on the gamma function Consider as x → ∞ the gamma function
Γ(x), which may be defined by

1

Γ(x)
=

1

2πi

∫

C′
ett−xdt ,

where C ′ is a contour which starts at t = −∞ − ia (a > 0), encircles the branch cut that lies along the
negative real axis, and then ends up at t = −∞+ ib (b > 0).

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

There is only one path on which Im(φ) is constant which goes to a valley at ±∞ and this is the path through the saddle.
A little thought shows that this has to be the case. Since the Re(φ) is first increasing as we come up from one valley and
then decreasing as we go off to another valley, we must go through a point where dRe(φ)/dt = 0. Since dIm(φ)/dt = 0
everywhere on the path, we must go through a point dφ/dt = 0, which are the saddle points.

So the method of steepest descents is as follows:

(i) Deform the contour to be the steepest descent contour through the relevant saddle point(s).

(ii) Evaluate the local contribution from the saddle exactly as in Laplace’s method.

(iii) Evaluate the local contribution from the end point(s) exactly as in Laplace’s method.

Remember that when deforming the contour we must include the contribution from any poles that we cross.
Of course, we could have chosen a path on which Re(φ) was constant and applied the method of stationary phase.

However, we have seen that Laplace’s method is far superior in that it can generate all the terms in the asymptotic series:
the neglected “tails” of the integral are exponentially small. In fact, the best way to generate higher order terms in a
stationary phase integral is to deform to the steepest descent contour.

Example
1

Γ(x)
=

1

2πi

∫

C

ett−xdt ,

where C is a contour which starts at t = −∞ − ia (a > 0), encircles the branch cut that lies along the negative real axis,
and then ends up at t = −∞ + ib (b > 0).
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This is a moveable saddle problem. Writing ett−x = et−x ln t and differentiating the whole exponent
with respect to t shows that there is a saddle point at t = x. Thus we begin by changing the moveable
saddle to a fixed saddle by the change of variable t = xs to give

1

Γ(x)
=

1

2πixx−1

∫

C
ex(s−log s) ds =

1

2πixx−1

∫

C
exφ(s) ds

where φ = s − log s and C is the rescaled contour (which we could take to be the same as C ′ by the
deformation theorem). The saddle point(s) are now at φ′(s) = 0, i.e. s = 1.
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We begin by changing the moveable saddle to a fixed saddle by the change of variable t = xs to give

1

Γ(x)
=

1

2πixx−1

∫

C

ex(s−log s) ds.

We have φ = s − log s. The saddle point(s) are at φ′(s) = 0, i.e.

1 − 1

s
= 0, s = 1.
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We deform to the steepest descent contour through the saddle. We expand φ in a Taylor series about s = 1 giving

φ(s) ∼ 1 +
(s − 1)2

2
− (s − 1)3

3
+ · · · .

We then change rescale the integration variable so that the quadratic term in the exponent is O(1) by setting
√

x s− 1 = u,
giving

1

Γ(x)
∼ ex

2πixx−1
√

x

∫

C

e
u2

2 − u3

3
√

x
+···

du.

Expanding e
− u3

3
√

x
+···

keeping only the first term gives

1

Γ(x)
∼ ex

2πixx−1/2

∫

C

e
u2

2 du.

Now the steepest descent contour is locally parallel to the imaginary axis, so we set u = iv to give

1

Γ(x)
∼ ex

2πxx−1/2

∫ ∞

−∞
e

−v2

2 dv =
ex

√
2π xx−1/2

,

i.e.

Γ(x) ∼
√

2π xx−1/2e−x.

Example. Steepest descents on the Airy function

1. Positive argument Consider

Ai(x) =
1

2π

∫ ∞

−∞
ei(t3/3+xt) dt,
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We begin by changing the moveable saddle to a fixed saddle by the change of variable t = xs to give

1

Γ(x)
=

1

2πixx−1

∫

C

ex(s−log s) ds.

We have φ = s − log s. The saddle point(s) are at φ′(s) = 0, i.e.

1 − 1

s
= 0, s = 1.
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We deform to the steepest descent contour through the saddle. We expand φ in a Taylor series about s = 1 giving

φ(s) ∼ 1 +
(s − 1)2

2
− (s − 1)3

3
+ · · · .

We then change rescale the integration variable so that the quadratic term in the exponent is O(1) by setting
√

x s− 1 = u,
giving

1

Γ(x)
∼ ex

2πixx−1
√

x

∫

C

e
u2

2 − u3

3
√

x
+···

du.

Expanding e
− u3

3
√

x
+···

keeping only the first term gives

1
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∼ ex

2πixx−1/2

∫

C

e
u2

2 du.

Now the steepest descent contour is locally parallel to the imaginary axis, so we set u = iv to give

1

Γ(x)
∼ ex

2πxx−1/2

∫ ∞

−∞
e

−v2

2 dv =
ex

√
2π xx−1/2

,

i.e.

Γ(x) ∼
√

2π xx−1/2e−x.

Example. Steepest descents on the Airy function

1. Positive argument Consider

Ai(x) =
1

2π

∫ ∞

−∞
ei(t3/3+xt) dt,
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We deform to the steepest descent contour Im(s) = arg(s) (| arg(s)| < π) through the saddle as illustrated.
Having deformed to the steepest descent contour the procedure is exactly that for Laplace’s method. The
integral is split into a local contribution from near the saddle and the rest, which is exponentially smaller.
For the local contribution φ is expanded in a Taylor series about the saddle point s = 1 giving

φ(s) ∼ 1 +
(s− 1)2

2
− (s− 1)3

3
+ · · ·

so that
1

Γ(x)
∼ ex

2πixx−1

∫
e
x(s−1)2

2
−x(s−1)3

3
+··· ds.

At this stage the integral is from −ε to ε along the steepest descent contour from the saddle s = 1. We then
rescale the integration variable so that the quadratic term in the exponent is O(1) by setting

√
x (s−1) = u,

giving
1

Γ(x)
∼ ex

2πixx−1
√
x

∫
e
u2

2
− u3

3
√
x

+···
du,

where the integral is from −x1/2ε to x1/2ε along the steepest descent contour. We now expand e
− u3

3
√
x

+···

keeping only the first term and replace the integration limits by ±∞ along the steepest descent contour
(introducing only exponentially small errors), giving

1

Γ(x)
∼ ex

2πixx−1/2

∫
e
u2

2 du.

Now the steepest descent contour is locally parallel to the imaginary axis near to the saddle point s = 1,
so we set u = iv. A comparison with the figure above tells us which way to integrate – in this case from
v = −∞ to v =∞. Thus,

1

Γ(x)
∼ ex

2πxx−1/2

∫ ∞

−∞
e
−v2
2 dv =

ex√
2π xx−1/2

,

i.e.

Γ(x) ∼
√

2π xx−1/2e−x as x→∞.

Example: Steepest descents on the Airy function

1. Positive argument Consider as x→∞ the Airy function

Ai(x) =
1

2π

∫

C′
ei(t

3/3+xt) dt,
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where C ′ is a contour that starts at infinity with 2π/3 < arg(t) < π and ends at infinity with 0 <
arg(t) < π/3. Note that the integrand decays at infinity where Re(it3) < 0, i.e. in the sectors defined by
0 < arg(t) < π/3, 2π/3 < arg(t) < π and 4π/3 < arg(t) < 5π/3.

This is a moveable saddle problem. Differentiating the whole exponent shows that the saddle points
are at t = ±ix1/2. Thus we rescale t = x1/2z to give

Ai(x) =
x1/2

2π

∫

C
eix

3/2(z3/3+z) dz =
x1/2

2π

∫

C
ex

3/2φ(z) dz,

where φ(z) = i(z3/3 + z) and C is the rescaled contour, which we could take to be the same as C ′ by the
deformation theorem and must start in the sector V1 and end in the sector V2 shown in figure 1(a).
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Figure 1: Steepest descent curves for positive argument. Note that the shading shows the sectors which are valleys at
infinity and is not supposed to be a contour plot of the magntitude of the integrand, but just an aid to determine the
steepest descent (rather than ascent) contour.
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Figure 2: Steepest descent curves for negative argument. Note that the shading shows the sectors which are valleys at
infinity and is not supposed to be a contour plot of the magntitude of the integrand, but just an aid to determine the
steepest descent (rather than ascent) contour.
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(a) (b)

Figure 1: Steepest descent curves for (a) x → ∞ and (b) x → −∞. Note that the shading shows the
sectors which are valleys at infinity and is not supposed to be a contour plot of the magntitude of the
integrand, but just an aid to determine the steepest descent (rather than ascent) contour.

The saddle points are the points where φ′(z) = 0, i.e. z = ±i. We deform the contour C to the steepest
descent contour from V2 to V1, which goes through the saddle point z = i but not the saddle point z = −i.

Having deformed to the steepest descent contour the procedure is exactly that for Laplace’s method.
The integral is split into a local contribution from near the saddle and the rest, which is exponentially
smaller. For the local contribution φ is expanded in a Taylor series about the saddle point z = i as

φ(z) ∼ −2

3
− (z − i)2 + · · · ,

so that

Ai(x) ∼ x1/2e−2x3/2/3

2π

∫
e−x

3/2(z−i)2+··· dz.
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At this stage the integral is from −ε to ε along the steepest descent contour from the saddle z = i. Now
we change variable by setting x3/4(z − i) = u to give

Ai(x) ∼ e−2x3/2/3

2πx1/4

∫
e−u

2+··· du,

where the integral is from −x3/4ε to x3/4ε along the steepest descent contour. We now replace these limits
by ±∞ along the steepest descent contour (introducing only exponentially small errors). Keeping only the
leading order term we therefore have

Ai(x) ∼ e−2x3/2/3

2πx1/4

∫
e−u

2
du,

where the integral goes to infinity along the steepest descent contour. The steepest descent contour is
given by −u2 real and negative, i.e. u real. A comparison with figure 1(a) tells us which way to integrate
– in this case from −∞ to ∞. Thus

Ai(x) ∼ e−2x3/2/3

2πx1/4

∫ ∞

−∞
e−u

2
du =

e−2x3/2/3

2
√
π x1/4

.

2. Negative argument Consider as x→∞ the Airy function

Ai(−x) =
1

2π

∫

C′
ei(t

3/3−xt) dt,

with C ′ as before. As before, we rescale t = x1/2z to give

Ai(−x) =
x1/2

2π

∫

C
eix

3/2(z3/3−z) dz =
x1/2

2π

∫

C
ex

3/2φ(z) dz,

where C is as before, but now φ(z) = i(z3/3 − z). The saddle points are the points where φ′(z) = 0,
i.e. z = ±1. The steepest descent contour through z = 1 goes from V3 to V1. The steepest descent contour
through z = −1 goes from V3 to V2 (see figure 1(b)). Thus we must deform the contour C to go from V2 to
V3 through the saddle at z = −1, and then from V3 to V1 through the saddle at z = 1. Thus in this case
both saddles will contribute to the integral.

Near z = 1 we expand φ as a Taylor series

φ(z) ∼ −2i

3
+ i(z − 1)2 + · · ·

to give

x1/2e−2ix3/2/3

2π

∫
eix

3/2(z−1)2+··· dz.

We change variable by setting x3/4(z − 1) = u to give

e−i2x
3/2/3

2πx1/4

∫
eiu

2
du.

As usual we now replace the integration limits by ±∞ along the steepest descent contour. The steepest
descent contour is given by iu2 real and negative, i.e. u = eiπ/4s with s real. A comparison with figure
1(b) tells us which way to integrate – in this case from s = −∞ to s = +∞. Thus the contribution from
z = 1 is

eiπ/4e−2ix3/2/3

2πx1/4

∫ ∞

−∞
e−s

2
ds =

eiπ/4e−2ix3/2/3

2
√
π x1/4

.
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Near z = −1 we expand φ as a Taylor series

φ(z) ∼ 2i

3
− i(z + 1)2 + · · ·

to give

x1/2e2ix3/2/3

2π

∫
e−ix

3/2(z+1)2+··· dz.

We change variable by setting x3/4(z + 1) = u to give

e2ix3/2/3

2πx1/4

∫
e−iu

2
du.

As usual we now replace the integration limits by ±∞ along the steepest descent contour. The steepest
descent contour is given by −iu2 real and negative, i.e. u = e3iπ/4s with s real. A comparison with figure
1(b) tells us which way to integrate – in this case from s = ∞ to s = −∞. Thus the contribution from
z = −1 is

e3iπ/4e2ix3/2/3

2πx1/4

∫ −∞

∞
e−s

2
ds =

e−iπ/4e2ix3/2/3

2
√
π x1/4

.

Adding together the two contributions we find

Ai(−x) ∼ eiπ/4e−2ix3/2/3

2
√
π x1/4

+
e−iπ/4e2ix3/2/3

2
√
π x1/4

=
1√
π x1/4

cos

(
π

4
− 2x3/2

3

)
.

4.8 Splitting the range of integration

We have seen in the previous examples how to split the range of integration into a local part, in which some
functions may be approximated by Taylor series, and a global part, which in the previous cases was lower
order. In general we may follow such a procedure, splitting the range of integration and using different
approximations in each range.

Example 1 ∫ 1

0

dx

(x+ ε)1/2
.

On the one hand we would like to expand the integrand for small ε:

1

(x+ ε)1/2
∼ 1

x1/2
− ε

2x3/2
+ · · · .

However, such an expansion is only OK if ε � x. Thus there are two regions to consider, x = O(1) and
x = O(ε).

• If x = O(ε) the integrand is O(ε−1/2) and contribution to the integral is therefore O(ε1/2).

• If x = O(1) the integrand is O(1) and contribution to the integral is therefore O(1).

Thus we expect the global contribution to dominate.
We split the range of integration from 0 to δ and from δ to x, where ε� δ � 1. We write

∫ 1

0

dx

(x+ ε)1/2
=

∫ δ

0

dx

(x+ ε)1/2
+

∫ 1

δ

dx

(x+ ε)1/2
.

In the first integral we rescale x = εu to give

∫ 1

0

dx

(x+ ε)1/2
=

∫ δ/ε

0

ε1/2du

(u+ 1)1/2
+

∫ 1

δ

dx

(x+ ε)1/2
.
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Now we are safe to Taylor series the second integrand. The first integral is

∫ δ/ε

0

ε1/2du

(u+ 1)1/2
= −2ε1/2 + 2(ε+ δ)1/2.

The second is
∫ 1

δ

dx

(x+ ε)1/2
∼

∫ 1

δ

(
1

x1/2
− ε

2x3/2
+ · · ·

)
dx

∼ 2− 2δ1/2 + ε− ε

δ1/2
+ · · · .

Hence
∫ 1

0

dx

(x+ ε)1/2
∼ −2ε1/2 + 2(ε+ δ)1/2 + 2− 2δ1/2 + ε− ε

δ1/2
+ · · ·

∼ −2ε1/2 + 2δ1/2 +
ε

δ1/2
+ · · · 2− 2δ1/2 + ε− ε

δ1/2
+ · · ·

∼ 2− 2ε1/2 + ε+ · · · ,

remembering that ε � δ. Notice that the final answer is independent of δ as it should be. We can check
that our answer is right by comparing with the exact solution

2
(

(1 + ε)1/2 − ε1/2
)
∼ 2− 2ε1/2 + ε+ · · · .

Example 2

I =

∫ π/4

0

dθ

ε2 + sin2 θ
.

As before there are two regions, θ = O(1) and θ = O(ε).

• If θ = O(ε) the integrand is O(ε−2) and contribution to the integral is therefore O(ε−1).

• If θ = O(1) the integrand is O(1) and contribution to the integral is therefore O(1).

Thus we expect the local contribution to dominate.
As before we split the range of integration at δ, with ε� δ � 1.

I =

∫ δ

0

dθ

ε2 + sin2 θ
+

∫ π/4

δ

dθ

ε2 + sin2 θ
.

In the first integral we rescale θ = εu to give

I =

∫ δ/ε

0

εdu

ε2 + sin2(εu)
+

∫ π/4

δ

dθ

ε2 + sin2 θ
.

Now in the first integral εu ≤ δ � 1 so we are safe to Taylor expand sin2(εu), giving

∫ δ/ε

0

εdu

ε2 + sin2(εu)
∼

∫ δ/ε

0

εdu

ε2 + ε2u2 − ε4u4/3 + · · ·

∼
∫ δ/ε

0

(
1

ε(1 + u2)
+

εu4

3(1 + u2)2
+ · · ·

)
du

=
1

ε
tan−1 δ

ε
+O(ε)

=
π

2ε
− 1

δ
+ · · ·+O(ε).
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In the second integral we can expand the integrand in powers of ε to give

∫ π/4

δ

dθ

ε2 + sin2 θ
∼
∫ π/4

δ

(
1

sin2 θ
− ε2

sin4 θ
+ · · ·

)
dθ = −1 + cot(δ) +O(ε2) ∼ −1 +

1

δ
+ · · · .

Hence

I ∼ π

2ε
− 1 + · · · .

5 Matched Asymptotic expansions

5.1 Singular Perturbations

If a differential equation Dεy = 0 has a small parameter ε in it (Dε is the differential operator associated
with this differential equation), it is natural to aim to use the solution of the limiting case D0y = 0
(corresponding to ε = 0) as an approximaton for the solution of Dεy = 0. However, if ε multiplies the
highest derivative of y, say dky/dxk, a difficulty arises. The original Dεy = 0 is a k-th order equation with
k boundary conditions. However, D0y = 0 only has order ≤ k− 1, so it cannot satisfy all of the boundary
conditions (in general). This is called a singular perturbation problem: the operator Dε is a singular
perturbation of D0.

Linear example Consider

εy′′ + y′ + y = 0,

y(0) = a, y(1) = b,

where a and b are prescribed real constants. When ε = 0, we have

y′ + y = 0,

y(0) = a, y(1) = b.

The solution is y = Ae−x which cannot satisfy both boundary conditions in general.

If y is the solution to Dεy = 0 then one possible behaviour in such cases is that

• over most of the range εdky/dxk is small, and y approximately obeys D0y = 0.

• in certain regions, often near the ends of the range, εdky/dxk is not small, and y adjusts itself to the
boundary conditions (i.e. dky/dxk is large in some places).

In fluid dynamics these regions are known as boundary layers, in solid mechanics they are known as edge
layers, in electrodymanics they are known as skin layers, etc.

A procedure for determining the solution of a singular perturbation problem with boundary layers is

(1) Determine the scaling of the boundary layers (e.g. x ∝ ε or ε1/2 or . . . .)

(2) Rescale the independent variable in the boundary layer (e.g. x = x̂ε or x̂ε1/2 or . . . .)

(3) Find the asymptotic expansions of the solutions in the boundary layers and outside the boundary
layers (the “inner” and “outer” solutions).

(4) Fix the arbitrary constants in these solutions by

(a) inner solutions obey the boundary conditions.

(b) “matching”—making the inner and outer solutions join up properly in the transition region
between them.
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This is the method of matched asymptotic expansions. (You will do something similar later when you
examine turning points that arise in the WKB method.)

We will illustrate the procedure with our linear example. Note that this problem can be solved exactly.
We will work as if we don’t have any a priori knowledge about the solution - i.e. as though there may be
boundary layers at either end, even though the boundary layer is actually only at x = 0.

Scaling Near x = 0 we let xL = x/εα (L = left-hand end; xL = local variable for inspecting the boundary
layer on the left.) Then we write y(x) = yL(xL). Then

dy

dx
=

dyL
dxL

dxL
dx

= ε−α
dyL
dxL

,

d2y

dx2
= ε−2αd

2yL
dx2

L

,

so that

ε1−2αd
2yL
dx2

L

+ ε−α
dyL
dxL

+ yL = 0.

Now in the boundary layer d2yL/dx
2 is significant. We must increase α until this term balances the largest

of the others in the equation. Hence we want

1− 2α = min(−α, 0), i.e. α = 1.

So the boundary layer is of width ε. Note that if we choose 1 − 2α = 0, i.e. α = 1/2, to balance the first
and third terms, then the second term is O(ε−1/2) which is bigger than the other two. The boundary layer
at the right is also of width ε.

So now we develop our asymptotic expansion as follows:

(1) Away from the ends of the interval (“the middle”) we expand y as

y(x) = yM (x) ∼ yM0(x) + εyM1(x) + · · · ,

(2) near the left-hand end we rescale x by a factor of ε so we have xL = x/ε and we expand

y(x) = yL(xL) ∼ yL0(xL) + εyL1(xL) + · · · ,

(3) near the right-hand end we rescale x−1 by a factor of ε so we have xR = (x−1)/ε ≤ 0 and we expand

y(x) = yR(xR) ∼ yR0(xR) + εyR1(xR) + · · · .

Solution on left The equation in the inner variable reads

d2yL
dx2

L

+
dyL
dxL

+ εyL = 0.

Inserting the expansion and equating coefficients of powers of ε gives

O(1) :
d2yL0

dx2
L

+
dyL0

dxL
= 0,

O(ε) :
d2yL1

dx2
L

+
dyL1

dxL
+ yL0 = 0,

etc. Hence
yL0 = AL0 +BL0e

−xL .

To satisfy y(0) = a we have AL0 +BL0 = a.
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Solution in middle The equation in the outer variable reads

ε
d2yM
dx2

+
dyM
dx

+ yM = 0.

Inserting the expansion and equating coefficients of powers of ε gives

O(1) :
dyM0

dx
+ yM0 = 0,

O(ε) :
d2yM0

dx2
+
dyM1

dx
+ yM1 = 0,

etc. Hence
yM0 = AM0e

−x.

Solution on right The equation in the inner variable reads

d2yR
dx2

R

+
dyR
dxR

+ εyR = 0.

Inserting the expansion and equating coefficients of powers of ε gives

O(1) :
d2yR0

dx2
R

+
dyR0

dxR
= 0,

O(ε) :
d2yR1

dx2
R

+
dyR1

dxR
+ yR0 = 0,

etc. Hence
yR0 = AR0 +BR0e

−xR .

To satisfy y(1) = b we have AR0 +BR0 = b.

So far we have 5 arbitrary constants and 2 equations. The other 3 equations will come by matching.

Matching Idea is that there is an “overlap” region where both expansions should hold and therefore be
equal.

yL(xL) ∼ yM (x) as x→ 0 and xL = x/ε→∞.
One way is to introduce an “intermediate” scaling x̂ = x/εα, 0 < α < 1. Then with ε→ 0 with x̂ fixed we
have x = εαx̂ → 0 and xL = εα−1x̂ → ∞. Often it is easiest to choose some fixed α, say α = 1/2. In this
case, matching at the left-hand end we have

yL = AL0 +BL0e
−εα−1x̂ +O(ε),

= AL0 +O(ε),

while

yM = AM0e
−εαx̂ +O(ε)

= AM0 − εαx̂AM0 + · · ·+O(ε).

For these to be the same as ε→ 0 we need

AL0 = AM0.

Thus the y values have to match: the outer limit of the inner problem needs to match with the inner limit
of the outer problem.
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Matching at the right-hand end we use the intermediate variable x̃ = (x− 1)/εα ≤ 0 giving

yR = AR0 +BR0e
−εα−1x̃ +O(ε), (1)

while

yM = AM0e
−1−εαx̃ +O(ε)

= AM0e
−1 − εαx̃AM0e

−1 + · · ·+O(ε).

Clearly to match we cannot have exponential growth in (1), so that

BR0 = 0, AR0 = AM0e
−1.

Again the y values must match. Hence our 5 equations are

AL0 +BL0 = a,

AR0 +BR0 = b,

AL0 = AM0,

BR0 = 0,

AR0 = AM0e
−1.

Hence
AL0 = eb, BL0 = a− eb, AM0 = eb, AR0 = b, BR0 = 0,

and the solution in the three regions is given by

yL0 = eb+ (a− eb)e−xL ,
yM0 = ebe−x,

yR0 = b.

There is no rapid variation in y in the right-hand boundary layer - we do not really need this boundary
layer.

Composite Expansion To plot the solution for example we want a uniformly valid expansion. One
way to construct a uniformly valid approximation is to add together the solution in the inner and outer
regions, and then subtract the solution in the “overlap” region which has been counted twice. Write the
inner solution in terms of outer variables and the outer in terms of inner variables and expand

yL0 = eb+ (a− eb)e−x/ε = eb+O(ε),

yM0 = ebe−εxL = eb+O(ε).

The common term which has been counted twice is eb. Hence the composite expansion is

y ∼ eb+ (a− eb)e−xL + ebe−x − eb = (a− eb)e−x/ε + ebe−x.

The error is O(ε) over the whole range of x.

Higher-order terms At order ε in each region

yL1 = −ebxL + (a− eb)xLe−xL +AL1 +BL1e
−xL ,

yM1 = −ebxe−x +AM1e
−x,

yR1 = −bxR +AR1 +BR1e
−xR .

Boundary conditions:
AL1 +BL1 = 0, AR1 +BR1 = 0.
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Matching Follow same procedure. At left-hand end write inner and outer expansions in terms of x̂:

yL = eb+ (a− eb)e−εα−1x̂ + ε
(
−ebεα−1x̂+ (a− eb)εα−1x̂e−ε

α−1x̂ +AL1 +BL1e
−εα−1x̂

)
ε+O(ε2),

= eb− ebεαx̂+AL1ε+O(ε2)

while

yM = ebe−ε
αx̂ + ε

(
−ebεαx̂e−εαx̂ +AM1e

−εαx̂
)

+O(ε2)

= eb− εαx̂eb+
ε2αx̂2

2
eb+ · · ·

− ebεα+1x̂+ ebε2α+1x̂2 +AM1ε−AM1ε
1+αx̂+ · · ·

+O(ε2).

Matching we find that

AL1 = AM1.

Note some terms jump order: −εαx̂eb comes from the inner expansion of the first-outer term, but from
the outer expansion of the second-inner term. Note that in order for the neglected terms ε2α to be smaller
than the last retained term ε we need α > 1/2.

At the right-hand end using the intermediate variable x̃ we find

yR = b+ ε
(
−bεα−1x̃+AR1 +BR1e

−εα−1x̃
)

+O(ε2),

= b− bεαx̃+ εAR1 + εBR1e
−εα−1x̃ +O(ε2),

while

yM = ebe−1−εαx̃ + ε
(
−eb(1 + εαx̃)e−1−εαx̃ +AM1e

−1−εαx̃)+O(ε2)

= b− εαx̃b+
ε2αx̃2

2
b+ · · ·

− b(ε+ εα+1x̃) (1− εαx̃+ · · · ) + εAM1e
−1 (1− εαx̃+ · · · )

+O(ε2).

Matching gives

BR1 = 0, AM1e
−1 − b = AR1.

Hence we now have the 5 equations for 5 unknowns:

AL1 +BL1 = 0,

AR1 +BR1 = 0,

AL1 = AM1,

BR1 = 0,

AM1e
−1 − b = AR1,

with solution

AR1 = 0, BR1 = 0, AM1 = be, AL1 = be, BL1 = −be.
This gives

yL1 = −ebxL + (a− eb)xLe−xL + eb− ebe−xL ,
yM1 = −ebxe−x + ebe−x,

yR1 = −bxR.
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Composite expansion Composite is yL + yM− overlap. Write yL in terms of the outer variable:

yL = eb+ (a− eb)e−x/ε + ε
(
−ebx

ε
+ (a− eb)x

ε
e−x/ε + eb− ebe−x/ε

)
+ · · ·

= eb− ebx+ εeb+O(ε2);

and yM in terms of the inner variables:

yM = ebe−εxL + ε
(
−ebεxLe−εxL + ebe−εxL

)
+ · · ·

= eb− ebεxL + εeb+O(ε2).

The common value in the overlap region is

eb− ebεxL + εeb = eb− ebx+ εeb.

Hence the composite expansion is

y = eb+ (a− eb)e−x/ε + ε
(
−ebx

ε
+ (a− eb)x

ε
e−x/ε + eb− ebe−x/ε

)

+ebe−x + ε
(
−ebxe−x + ebe−x

)
− (eb− ebx+ εeb) +O(ε2)

= (a− eb)e−x/ε + (a− eb)xe−x/ε − εebe−x/ε
+ebe−x − εebxe−x + εebe−x +O(ε2).

Van Dyke’s matching rule Using the intermediate variable x̂ is tiresome. Van Dyke’s matching ‘rule’
usually works and is much more convenient. (However, at the end of the day it’s a matter of keeping track
of the size of each term, as you’ll see in this discussion.) Van Dyke’s rule is

(m term inner)(n term outer) = (n term outer)(m term inner).

I.e. in the outer variables expand to n terms; then switch to inner variables and reexpand to m terms.
The result is the same as first expanding in the inner to m terms, then switching to outer variables and
reexpanding to n terms.

Example revisited
(1to) = AM0e

−x.

In inner variables this is
AM0e

−εxL .

Expanded this is

AM0 −AM0εxL +AM0
ε2x2

L

2
+ · · · .

Hence

(1ti)(1to) = AM0,

(2ti)(1to) = AM0 −AM0εxL,

etc. Similarly
(1ti) = AL0 +BL0e

−xL .

In outer variables this is
AL0 +BL0e

−x/ε.

Expanded this is
AL0 + E.S.T.,
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where E.S.T. means “exponentially small term”. Hence

(1to)(1ti) = AL0,

(2to)(1ti) = AL0,

etc. So

(1to)(1ti) = (1ti)(1to)⇒ AM0 = AL0.

Warning: When using this matching rule you must treat log as O(1) because of the size of logarithmic
terms.

Choice of scaling revisited Near x = 0 we let xL = x/εα, and y(x) = yL(xL) so that

ε1−2αd
2yL
dx2

L

+ ε−α
dyL
dxL

+ yL = 0.

Now as we gradually increase α we find

ε1−2α d2yL
dx2L

+ ε−α dyLdxL
+ yL = 0

α = 0 ......... balance ......... the outer
0 < α < 1 dominant the overlap

α = 1 ......... balance ......... the inner
1 < α dominant the sub-inner

The inner and outer regions can be matched because they share a common term, which is dominant in the
overlap region.

The potentially interesting scalings in an equation are those which balance two or more terms. Such
scalings are sometimes called distinguished limits.

5.2 Where is the boundary layer?

To have the possibility of a non-trivial boundary layer we need some solution in the inner region which
decays as we move towards the outer. In the problem we considered, the non-constant solution in the right-
hand “boundary layer” grew exponentially as we moved to the outer, so there could never be a boundary
layer at x = 1.

Boundary layers do not have to be at boundaries! There can be thin regions of high gradients in the
interior of the domain (they are then sometimes called interior layers)

Example

εy′′ + p(x)y′ + q(x)y = 0 for 0 < x < 1, with y(0) = A , y(1) = B,

where A, B are prescribed constants. If p(x) > 0 for all x ∈ [0, 1], then we expect to find a boundary layer
at x = 0. If p(x) < 0 for all x ∈ [0, 1], then we expect to find a boundary layer at x = 1. If p(x) = 0 for
some x = x0, then there may be an interior layer at x = x0.

Example

ε2f ′′ + 2f(1− f2) = 0 for − 1 < x < 1, with f(−1) = −1 and f(1) = 1.

The outer solution f = 1 is OK near x = 1, while the outer solution f = −1 is OK near x = −1. Somewhere
there must be a transition between these two states. Rescale near x = x0 by setting x = x0 + εX to give

d2f

dX2
+ 2f(1− f2) = 0 in −∞ < X <∞
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with f → −1 as X → −∞ and f → 1 as X → +∞,
This transition layer has solution

f = tanh(X)

for any x0. In this case the exact solution is

f ∼ tanh(x/ε)

and the transition layer is near x = 0. This could be argued by symmetry. However, the position of the
transition layer is exponentially sensitive to the boundary data. Finding it for other data is nontrivial.
Not all transition layer problems are so hard.

5.3 Boundary layers in PDEs.

Example Consider the heat transfer from a cylinder in potential flow with small diffusion (high Peclet
number). Thus we have to solve

u · ∇T = ε∇2T in r ≥ 1

where

u = ∇φ, φ =

(
r +

1

r

)
cos θ,

with boundary conditions
T = 1 on r = 1, T → 0 as r →∞.

Outer solution
Expand

T ∼ T0 + εT1 + · · · as ε→ 0,

Substitute in giving

At ε0: u · ∇T0 = 0.

Hence T0 is constant on streamlines. Since all (almost all: not the cylinder itself or the wake) streamlines
start at x = −∞, where T0 = 0, this means that T0 = 0. Proceeding with the expansion gives Tn = 0 for
all n.

There is a thermal boundary layer near the cylinder.
Inner solution
In cylindrical coordinates the equation is

(
1− 1

r2

)
cos θ

∂T

∂r
−
(

1 +
1

r2

)
sin θ

r

∂T

∂θ
= ε

(
∂2T

∂r2
+

1

r

∂T

∂r
+

1

r2

∂2T

∂θ2

)
.

Need to scale r close to one so that diffusion becomes important. Set r = 1 + δρ:
(

1− 1

(1 + δρ)2

)
cos θ

δ

∂T

∂ρ
−
(

1 +
1

(1 + δρ)2

)
sin θ

(1 + δρ)

∂T

∂θ
=

ε

(
1

δ2

∂2T

∂ρ2
+

1

δ(1 + δρ)

∂T

∂ρ
+

1

(1 + δρ)2

∂2T

∂θ2

)
.

i.e.

(2δρ+ · · · ) cos θ

δ

∂T

∂ρ
− (2 + · · · ) sin θ

∂T

∂θ
= ε

(
1

δ2

∂2T

∂ρ2
+

1

δ
(1 + · · · ) ∂T

∂ρ
+ (1 + · · · ) ∂

2T

∂θ2

)
.

Hence δ = ε1/2 and expanding T ∼ T̂0(ρ, θ)+ε1/2T̂1(ρ, θ)+ · · · as ε→ 0 gives at leading order the boundary
layer equation

2ρ cos θ
∂T̂0

∂ρ
− 2 sin θ

∂T̂0

∂θ
=
∂2T̂0

∂ρ2
,
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with T̂0 = 1 on ρ = 0 and T̂0 → 0 as ρ → ∞. Lie group analysis shows that the solution is of similarity
form:

T̂0 = f(η), η =
ρ sin θ

(1 + cos θ)1/2
.

This gives

2ρ cos θ sin θ

(1 + cos θ)1/2
f ′ − 2 sin θ

(
ρ cos θ

(1 + cos θ)1/2
+

ρ sin2 θ

2(1 + cos θ)3/2

)
f ′ =

sin2 θ

(1 + cos θ)
f ′′,

which is

f ′′ + ηf ′ = 0.

Hence

f = A

∫ ∞

η
e−u

2/2 du+B.

f → 0 as η →∞ gives B = 0. f = 1 on η = 0 gives A =
√

2/π. Hence the boundary layer solution is

T̂0 =

√
2

π

∫ ∞

η
e−u

2/2 du.

As ρ→∞ this decays exponentially; the solution in the outer region is exponentially small.

Note that the boundary layer solution works providing θ is not close to 0 or π. There is another inner
region near each stagnation point. There is also a boundary layer in the wake, where θ = 0 and r > 1.
The streamline from here comes from the cylinder, not from infinity. Note that the heat loss ∂T/∂r is
O(1/ε1/2). This is the reason for the wind chill factor.

As ρ → ∞ this decays exponentially; the solution in the outer region is exponentially small.

Note that the boundary layer solution works providing θ is not close to 0 or π. There is another inner region near each
stagnation point, and in fact it is through matching with this inner region that we know the similarity variable should
involve (1 + cos θ)1/2 (any constant would work as a similarity variable). There is also a boundary layer in the wake, where
θ = 0 and r > 1. The streamline from here comes from the cylinder, not from infinity.

Note that the heat loss ∂T/∂r is O(1/ε1/2). This is the reason for the wind chill factor.
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5.4 Nonlinear oscillators

Example: Van del Pol oscillator Consider

ẍ + µ(x2 − 1)ẋ + x = 0, µ $ 1.

We shall show that the oscillation looks like
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As ρ → ∞ this decays exponentially; the solution in the outer region is exponentially small.
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Figure 2: (a) Streamlines. (b) Isotherms.

5.4 Nonlinear oscillators

Example: Van del Pol oscillator Consider

ẍ+ µ(x2 − 1)ẋ+ x = 0, µ� 1.

We shall show that the oscillation looks like
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-1

-2

1

2

µ
(

3
2

− log 2
)

with long slow regions separated by rapid transitions. Such a solution is known as a “relaxation oscillation”. We could
proceed directly with m.a.e.s on the second order equation, as in Hinch 5.6, but to get a better understanding of what is
going on we write the equation as a system of two first order equations

ẋ = z − µ

(
x3

3
− x

)
= z − µF (x),

ż = −x.

(An equation written in this way is said to be in Liénard form.)

x

z
z = µF (x)

Arrows indicate the general form of the motion for all µ. However, if µ " 1 then |ẋ| " |ż| except near the curve z = µF (x).
This indicates that z will be of size µ, so that it is sensible to rescale z with µ by setting z = µy, giving

ẋ = µ

(
y − x3

3
+ x

)
= µ(y − F (x)),

µẏ = −x.

We see now that there are two timescales: x evolves on the fast timescale t = O(µ−1) (unless y ≈ F (x)), while y evolves
on the slow timscale t = O(µ).

Let us first consider the fast timescale by setting t = τ/µ. The equations become

xτ = y − x3

3
+ x = y − F (x),

yτ = − x

µ2
.
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z = µy, giving

ẋ = µ
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3
+ x

)
= µ(y − F (x)),

µẏ = −x.
We see now that there are two timescales: x evolves on the fast timescale t = O(µ−1) (unless y ≈ F (x)),
while y evolves on the slow timscale t = O(µ).

Let us first consider the fast timescale by setting t = τ/µ. The equations become

xτ = y − x3

3
+ x = y − F (x),

yτ = − x

µ2
.
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Expand x and y in inverse powers of µ as x ∼ x0 +µ−2x1 + · · · , y ∼ y0 +µ−2y1 + · · · as µ→∞. Inserting
these expansions into the equations and equating coefficients of powers of µ we find at leading order

x0τ = y0 −
x3

0

3
+ x0 = y0 − F (x0),

y0τ = 0.

Hence y0 is constant on the fast timescale. Now, for a given initial y0, x0 tends to a root of y0 = F (x0):

• if y0 >
2

3
, the unique root between A and +∞.

• if y0 < −
2

3
, the unique root between C and −∞.

• if −2

3
< y0 <

2

3
, x0 → point on AB if it starts to the right of BD.

• if −2

3
< y0 <

2

3
, x0 → point on CD if it starts to the left of BD.

Expand x and y in inverse powers of µ as x = x0 + µ−2x1 + · · · , y = y0 + µ−2y1 + · · · . Inserting these expansions into the
equations and equating coefficients of powers of µ we find at leading order

x0τ = y0 − x3
0

3
+ x0 = y0 − F (x0),

y0τ = 0.

Hence y0 is constant on the fast timescale. Now, for a given initial y0, x0 tends to a root of y0 = F (x0):

• if y0 >
2

3
, the unique root between A and +∞.

• if y0 < −2

3
, the unique root between C and −∞.

• if −2

3
< y0 <

2

3
, x0 → point on AD if it starts to the right of BD.

• if −2

3
< y0 <

2

3
, x0 → point on BC if it starts to the left of BD.

−1
−2 1

2 x

y

y = F (x)

A

B

D

C
−2/3

2/3

Having reached the curve y0 = F (x0) the solution comes to rest on the fast timescale, and thus begins to evolve on the
slow timescale instead.

Let us scale onto the slow timescale by setting t = µT , giving

xT = µ2

(
y − x3

3
+ x

)
= µ2(y − F (x)),

yT = −x.

Again we expand x and y in inverse powers of µ as x = x0 + µ−2x1 + · · · , y = y0 + µ−2y1 + · · · . Inserting these expansions
into the equations and equating coefficients of powers of µ we find at leading order

0 = y0 − x3
0

3
+ x0 = y0 − F (x0),

y0T = −x0.

Hence the solution in the slow timescale stays on the curve y0 = F (x0) but moves along it according to y0T = −x0.
Thus we have the following picture. A trajectory starting say from (0, 1) quickly moves across to the branch A∞. Then

it remains close to the curve y = F and since ẏ = −x < 0 it moves slowly down the curve. When it reaches B, if cannot
keep going down and stay on the curve y = F (x), so on the fast timescale (x, y) flies across horizontally to near C. Then
ẏ = −x > 0 so (x, y) climbs slowly up on the curve y = F (x) to D. Then (x, y) flies across horizontally to near A again
and the motion becomes periodic. During this oscillation, the main time is spent on AB and CD. The time taken to go
from A to B is

TAB =

∫ B

A

dy

yT
= −

∫ B

A

dy

x
=

∫ 2

1

dy

dx

dx

x
=

∫ 2

1

(x2 − 1)dx

x
=

[
x2

2
− log x

]2

1

=

(
3

2
− log 2

)
.

Therefore period of oscillation ≈ µ(3 − 2 log 2).
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0 = y0 −
x3

0

3
+ x0 = y0 − F (x0),

y0T = −x0.

Hence the solution in the slow timescale stays on the curve y0 = F (x0) but moves along it according to
y0T = −x0.

Thus we have the following picture. A trajectory starting say from (0, 1) quickly moves across to the
branch A∞. Then it remains close to the curve y = F and since ẏ = −x < 0 it moves slowly down
the curve. When it reaches B, if cannot keep going down and stay on the curve y = F (x), so on the fast
timescale (x, y) flies across horizontally to near C. Then ẏ = −x > 0 so (x, y) climbs slowly up on the curve
y = F (x) to D. Then (x, y) flies across horizontally to near A again and the motion becomes periodic.
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x

y

y = F (x)

A

B

D

C

6 Multiple Scales

Of all asymptotic techniques, this is the one which is the most like a “black art”. Problems characterised by having two
processes, each with their own scales, acting simultaneously. Rapidly varying phase, slowly varying amplitude; modulated
waves. Contrast with matched asymptotic expansions, where the two processes with different scales are acting in different
regions.

Example: back to van der Pol oscillator

ẍ + εẋ(x2 − 1) + x = 0.

Last time we looked at relaxation oscillations for large ε (called µ then). Here will will study the initial value problem

x = 1, ẋ = 0 at t = 0,

for small ε. Treating the problem as a regular perturbation expansion in ε gives

x(t, ε) ∼ cos t + ε

[
3

8
(t cos t − sin t) − 1

32
(sin 3t − 3 sin t)

]
+ · · · .

This expansion is valid for fixed t as ε → 0, but breaks down when t ≥ O(ε−1), because of the resonant terms. When the
second term in an expansion becoms as big as the first it is an indication that the expansion is breaking down.

The problem is that the damping term only changes the amplitude by an order one amount over a timescale of order
ε−1, by a slow accumulation of small effects. Thus the two processes on the two time scales are fast oscillation and slow
damping.

We try to capture the behaviour on both these timescales by introducing two time variables:

τ = t — the fast time of the oscillation,

T = εt — the slow time of the amplitude drift.

We look for a solution of the form x(t; ε) = x(τ, T ; ε) treating the variables τ and T as independent. We have

d

dt
=

∂

∂τ
+ ε

∂

∂T
,

so that
ẍ = xττ + 2εxτT + ε2xTT .

Then we expand
x(τ, T ; ε) = x0(τ, T ) + εx1(τ, T ) + · · · .

At ε0 we find
x0ττ + x0 = 0 in t ≥ 0,
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During this oscillation, the main time is spent on AB and CD. The time taken to go from A to B is

TAB =

∫ B

A

dy

yT
= −

∫ B

A

dy

x
=

∫ 2

1

dy

dx

dx

x
=

∫ 2

1

(x2 − 1)dx

x
=

[
x2

2
− log x

]2

1

=

(
3

2
− log 2

)
.

Therefore period of oscillation ≈ µ(3− 2 log 2).

Solution by matched asymptotics

We start from x = 2 at t = 0.

Slow phase The slow time scale is t = µT giving

1

µ2

d2x

dT 2
+
dx

dT
(x2 − 1) + x = 0.

This suggests an expansion

x ∼ X0 + µ−2X1 + · · · .

Substituting the expansion into the equation and equating coefficients of powers of µ:

At µ0:
dX0

dT
(X2

0 − 1) +X0 = 0 with X0 = 2 at T = 0,

with implicit solution

T = logX0 −
X2

0

2
− log 2 + 2.

This solution breaks down when X0 → 1 because dX0/dT = −X0/(X
2
0 − 1)→∞. The nature of the blow

up is

T ∼ − log 2 +
3

2
− (X0 − 1)2 as X0 → 1,

i.e.

X0 ∼ 1 +

(
3

2
− log 2− T

)1/2

as T → 3

2
− log 2.

Proceeding to determine the next term in the expansion we find

At µ−2:
dX1

dT
(X2

0 − 1) + 2
dX0

dT
X0X1 +X1 = −d

2X0

dT 2
with X1 = 0 at T = 0.
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We could solve this for X1, but the important thing is to determine the behaviour of X1 as T → 3
2 − log 2,

X0 → 1, which illustrates the breakdown of the asympototic series and indicate show to rescale in the

transition region. With X0 ∼ 1 +
(

3
2 − log 2− T

)1/2
we find

dX1

dT
2

(
3

2
− log 2− T

)1/2

−
(

3

2
− log 2− T

)−1/2

X1 +X1 ∼
1

4

(
3

2
− log 2− T

)−3/2

,

giving

X1 ∼
1

4

(
3

2
− log 2− T

)−1

as T → 3

2
− log 2.

We see that X1 blows up as T → 3
2 − log 2, so that µ−2X1 ceases to be smaller than X0 and the expansion

ceases to be asymptotic. If we set T = 3
2 − log 2 + δs then X0 ∼ 1 + δ1/2(−s)1/2, µ−2X1 ∼ 1

4µ2
δ−1(−s)−1

as δ → 0. This means that X1 becomes as large as X0 − 1 when δ = µ−4/3.

Transition phase We rescale T = 3
2− log 2+µ−4/3s, x = 1+µ−2/3z (corresponding to t = µ(3

2− log 2)+

µ−1/3s), giving
d2z

ds2
+ 2z

dz

ds
+ 1 +

1

µ2/3

(
z2dz

ds
+ z

)
= 0.

Notice that each of the three terms in the original equation contributes to the leading order balance; this
is characteristic of transition regions. The rescaled equation suggests the asymptotic expansion

z ∼ z0 + µ−2/3z1 + · · · .

Matching back to the slow phase we need z ∼ (−s)1/2 + 1
4(−s)−1 as s→ −∞.

At µ0:
d2z0

ds2
+ 2z0

dz0

ds
+ 1 = 0.

We can integrate once immediately to give

dz0

ds
+ z2

0 + s = a.

As s→ −∞, z0 ∼ (−s)1/2 + a
2 (−s)−1/2 + 1

4(−s)−1 + · · · . Hence matching gives a = 0. The Ricatti equation
for z0 can be linearised by setting z0 = ζ ′/ζ, giving the Airy equation

ζ ′′ + sζ = 0.

So
ζ = αAi(−s) + βBi(−s).

As s→ −∞,

Ai(−s) ∼ 1

2
√
π(−s)1/4

exp

(
−2

3
(−s)3/2

)
, Bi(−s) ∼ 1√

π(−s)1/4
exp

(
2

3
(−s)3/2

)
.

d

ds
Ai(−s) ∼ (−s)1/2Ai(−s), d

ds
Bi(−s) ∼ −(−s)1/2Bi(−s).

Hence β = 0 and

z0 =
d
dsAi(−s)
Ai(−s) = −Ai′(−s)

Ai(−s) .

But Ai(−s) → 0, z0 → −∞, as s → s0 ≈ 2.33811. From the equation for z0, if |z0| → ∞ at a finite value
of s then

dz0

ds
+ z2

0 ∼ 0,
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so that

z0 ∼ −
1

s0 − s
.

Including the correction term s gives

z0 ∼ −
1

s0 − s
+
s0(s0 − s)

3
+ · · · .

Hence, rewritinh this in terms of x and t, as the breakdown is approached we have

x ∼ 1 + µ−2/3

[
− 1

s0 − µ1/3t
+
s0(s0 − µ1/3t)

3

]
.

The expansion ceases to be asymptotic when µ2/3(s0 − µ1/3t) is order one, i.e. t = µ−1/3s0 +O(µ−1).

Fast phase The transition region suggests the scalings t = µ−1/3s0 + µ−1τ for the fast phase. The
governing equation becomes

d2x

dτ2
+ (x2 − 1)

dx

dτ
+ µ−2x = 0.

Matching backwards into the transition region gives

x ∼ 1 +
1

τ
− τs0

3µ4/3
as τ → −∞.

This matching condition suggests an expansion of the form

x ∼ x0 + µ−4/3x1 + · · · .

At µ0:
d2x0

dτ2
+ (x2

0 − 1)
dx0

dτ
= 0.

integrating once and choosing the constant of integration by matching gives

dx0

dτ
+
x3

0

3
− x0 = −2

3
.

Integrating again and matching backwards gives

1

3
log

(
2 + x0

1− x0

)
+

1

1− x0
= −τ.

The fast phase ends when τ →∞ and x0 ∼ −2+3e−3τ−1. This is minus where we started, and the process
repeats.

6 Multiple Scales

Of all asymptotic techniques, this is the one which is the most like a “black art”. Problems characterised
by having two processes, each with their own scales, acting simultaneously. Rapidly varying phase, slowly
varying amplitude; modulated waves. Contrast with matched asymptotic expansions, where the two pro-
cesses with different scales are acting in different regions.
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Example: back to van der Pol oscillator

ẍ+ εẋ(x2 − 1) + x = 0.

Last time we looked at relaxation oscillations for large ε (called µ then). Here will will study with small
ε > 0 the initial value problem with initial conditions

x = 1, ẋ = 0 at t = 0.

Treating the problem as a regular perturbation expansion in ε gives

x(t, ε) ∼ cos t+ ε

[
3

8
(t cos t− sin t)− 1

32
(sin 3t− 3 sin t)

]
+ · · · .

This expansion is valid for fixed t as ε → 0, but breaks down when t ≥ O(ε−1), because of the resonant
terms. When the second term in an expansion becoms as big as the first it is an indication that the
expansion is breaking down.

The problem is that the damping term only changes the amplitude by an order one amount over a
timescale of order ε−1, by a slow accumulation of small effects. Thus the two processes on the two time
scales are fast oscillation and slow damping.

We try to capture the behaviour on both these timescales by introducing two time variables:

τ = t — the fast time of the oscillation,

T = εt — the slow time of the amplitude drift.

We look for a solution of the form x(t; ε) = x(τ, T ; ε) treating the variables τ and T as independent. We
have

d

dt
=
dτ

dt

∂

∂τ
+
dT

dt

∂

∂T
=

∂

∂τ
+ ε

∂

∂T
,

so that
ẍ = xττ + 2εxτT + ε2xTT .

Then we expand
x(τ, T ; ε) ∼ x0(τ, T ) + εx1(τ, T ) + · · · as ε→ 0.

At ε0 we find
x0ττ + x0 = 0 in t ≥ 0,

with
x0 = 1, x0τ = 0 at t = 0.

Hence
x0 = R(T ) cos(τ + θ(T )).

Thus the amplitude and phase are constant as far as the fast timescale τ is concerned, but vary over the
slow timescale T . Applying the initial conditions we require

R(0) = 1, θ(0) = 0.

Apart from these conditions R and θ are arbitrary at present. Proceeding to order ε1:

x1ττ + x1 = −x0τ (x2
0 − 1)− 2x0τT in t ≥ 0

= 2RθT cos(τ + θ) +

(
2RT +

R3

4
−R

)
sin(τ + θ) +

R3

4
sin 3(τ + θ).

The initial conditions are
x1 = 0, x1τ = −xoT = −RT at t = 0.
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Now, the sin 3(τ + θ) term is OK, but the sin(τ + θ) and cos(τ + θ) terms are resonant, and will give a
response of the form t sin(τ + θ) and t cos(τ + θ). Thus the expansion will cease to be asymptotic again
when t = O(ε−1). To keep the expansion asymptotic, we use the freedom we have in R and θ to eliminate
these resonant terms (the so-called secularity or integrability or solvability condition of Poincaré), giving

θT = 0, RT =
R(4−R2)

8
.

Using the initial conditions we therefore have

θ = 0, R =
2

(1 + 3e−T )1/2
.

Thus the amplitude of the oscillator drifts towards the value 2, which we found was a limit cycle. Thus,
in particular, we have shown that the limit cycle is stable.

If we are interested in the correction x1 we can now calculate it as

x1 = − 1

32
R3 sin 3τ + S(T ) sin(τ + φ(T )),

with new amplitude and phase functions S and φ. These will be determined by a secularity condition on
x2, etc.

At higher orders we would find that a resonant forcing is impossible to avoid. In fact this is the case
here in solving for x1: we cannot avoid resonance in x2. This can be avoided by introducing an additional
slow timescale T2 = ε2t.

A simple example which illustrates the need for such a super slow time scale is the damped linear
oscillator

ẍ+ 2εẋ+ x = 0

with solution

x = e−εt cos
(√

1− ε2 t
)
.

The amplitude drifts on the timescale ε−1, while the phase drifts on the timescale ε−2. In general, if we
want the solution correct to O(εk) for times of O(εk−n) then we need a hierarchy of n slow timescales.

Example: the van der Pol oscillator again

ẍ+ εẋ(x2 − 1) + x = 0.

In practice we often work directly with the variable t to save introducing the variable τ and make use of
the complex representation of trigonometric functions to simplify the algebra. Thus, in seeking a multiple
scales solution we begin by substituting

d

dt
=

∂

∂t
+ ε

∂

∂T

to obtain

xtt + 2εxtT + ε2xTT + εẋ(x2 − 1) + x = 0.

Expanding

x ∼ x0(t, T ) + εx1(t, T ) + · · · as ε→ 0,

we obtain at leading order

x0tt + x0 = 0.

The general solution of this PDE has the complex representation

x0 =
1

2

(
A(T )eit +A(T )e−it

)
,
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where A is an arbitrary complex function of T , A is the complex conjugate of A and the pre-factor of 1/2
has been introduced so that |A(T )| is the slowly-varying amplitude and arg(A(T )) is the slowly-varying
phase, e.g. if A(T ) = R(T )eiΘ(T ), where R(T ) ≥ 0, then x0 ≡ R(t) cos(it+ Θ(T )).

At O(ε1), we obtain

x1tt + x1 = −x0t(x
2
0 − 1)− 2x0tT

= −1

2

(
iAeit − iAe−it

)(1

4
(Aeit +Ae−it)2 − 1

)
−
(
iAT e

it − iAT e−it
)
,

= −i
(
dA

dT
− A(4− |A|2)

8

)
eit + complex conjugate term + non-secular terms.

Secular terms proportional to e±it are suppressed only if A(T ) satisfies the ODE

AT =
A(4− |A|2)

8
.

Substituting A(T ) = R(T )eiΘ(T ), where R(T ) ≥ 0, we recover the ODEs

ΘT = 0, RT =
R(4−R2)

8
.

7 The WKB method

(Liouville 1837, Green 1837, Horn 1899, Rayleigh 1912, Gans 1915, Jeffrey 1923, Wentzel 1926, Kramers
1926, Brillouin 1926, Langer 1931, Olver 1961, Meyer 1973. Notice how it’s not named after the scientists
who discovered it. The WKB method achieved prominence in the 20th century in its use in semiclassical
analysis of quantum problems, among other areas.)

One example of a singular perturbation problem that does not have boundary layers is

ε2y′′ + y = 0.

It has oscillatory solutions and is typical of many problems arising from wave propagation, with ε =
wavelength/size of region. So, for high-frequency propagation, ε is small and we need a way to deal
asymptotically with such problems. The WKB method is such a method for linear wave propagation
problems, and is illustrated by the equation

ε2y′′ + q(x)y = 0, (2)

with q(x) 6= 0 in the region of interest.
Let us first see what happens if we try to solve the problem by multiple scales. Let εX = x to give

d2y

dX2
+ q(εX)y = 0.

Thus we have an oscillator with a slowly varying frequency. We might be tempted to write y = y(x,X),
giving

∂2y

∂X2
+ 2ε

d2y

∂x∂X
+ ε2

∂2y

∂x2
+ q(x)y = 0. (3)

Expanding y ∼ y0 + εy1 + · · · gives at leading order

∂2y0

∂X2
+ q(x)y = 0.

Hence
y0 = A(x) cos(q(x)1/2X + θ(x)),
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where A(x) and θ(x) are arbitrary functions of x, to be determined by secularity conditions at next order.
Equating coefficients of ε1 in (3) gives

∂2y1

∂X2
+ 2

d2y0

∂x∂X
+ q(x)y1 = 0,

i.e.

∂2y1

∂X2
+ q(x)y1 = 2

∂

∂x

(
A(x)q(x)1/2 sin(q(x)1/2X + θ(x))

)

= 2
d

dx

(
Aq1/2

)
sin(q1/2X + θ)− 2Aq1/2

(
X
dq1/2

dx
+
dθ

dx

)
cos(q1/2X + θ).

The secularity condition says that there can be no multiple of cos(q1/2X + θ) or sin(q1/2X + θ) on the
right-hand side. Hence

d

dx

(
Aq1/2

)
= 0, X

dq1/2

dx
+
dθ

dx
= 0.

Here we see a problem though. The second secularity condition contains the fast scale X, and so cannot
be satisfied since θ is a function of the slow scale x only. This will happen whenever the frequency of the
fast oscillation depends on the slow scale.

Let us now return to (2). Instead of using multiple scales, we assume a WKB asymptotic expansion
for y of the form

y = eiφ(x)/εA(x, ε),

with

A(x, ε) ∼
∞∑

n=0

An(x)εn.

This gives

y′′ ∼ eiφ/ε
(
−(φ′)2A

ε2
+

2iφ′A′

ε
+
iφ′′A

ε
+A′′

)
,

so that substituting the expansions into the equation gives at leading order (O(ε0)):

φ′(x)2 = q0(x).

Hence

φ = ±
√
q0(x).

At order ε1 we find

2φ′A′0 + φ′′A0 = 0,

while at order εn+1 for n ≥ 1 we find

A′′n−1 + 2iφ′A′n + iφ′′An = 0.

These are successive first-order linear equations for Ai. The first is

2A′0
A0

+
φ′′

φ′
= 0,

which we can integrate to

2 logA0 + log φ′ = const.,

i.e.

A0 =
α0

q0(x)1/4
,
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for some constant α0. In a wave propagation problem this A0(x) gives the amplitude, and this equation
corresponds to energy conservation.

The equation for An can be solved using an integrating factor giving

2i(φ′)1/2
(

(φ′)1/2An

)′
= −A′′n−1,

i.e.

An =
i

2(φ′)1/2

∫
A′′n−1

(φ′)1/2
dx;

the right-hand side is known.

Example The Legendre polynomial Pn(x). If we let y(θ) =
√

sin θPn(cos θ) for 0 < θ < π then the
equation satisfied by y is

y′′ +

(
n2 + n+

1

4
+

1

4 sin2 θ

)
y = 0.

Let ε = 1/(n+ 1/2). Then

ε2y′′ +

(
1 +

ε2

4 sin2 θ

)
y = 0.

With the WKB ansatz y = Aeiφ/ε at leading order (ε0)

(φ′)2 = 1, φ′ = ±1, φ = ±θ.

At order ε1 we have
2φ′A′0 + φ′′A0 = 0,

i.e.
A′0 = 0, A0 = α0.

At order ε2 we have

A′′0 + 2iφ′A′1 + iφ′′A1 +
1

4 sin2 θ
A0 = 0,

i.e.
2iA′1 = ∓ α0

4 sin2 θ

so that

A1 = ∓ iα0 cot θ

8
.

Thus

√
sin θPn(cos θ) ∼ α̂0

(
1− i cot θ

8(n+ 1/2)
· · ·
)
ei(n+1/2)θ + β̂0

(
1 +

cot θ

8(n+ 1/2)
· · ·
)
e−i(n+1/2)θ

as n→∞.

Example. An eigenvalue problem Find the large eigenvalues λ� 1 of the Sturm-Liouville problem

y′′ + λp(x)y = 0 for 0 < x < 1, with y(0) = 0, y(1) = 0,

where p(x) > 0 for 0 ≤ x ≤ 1. Put λ = ε−2, where for λ� 1 we require 0 < ε� 1, so that

ε2y′′ + p(x)y = 0 for 0 < x < 1, with y(0) = 0, y(1) = 0.

Then with the WKB approximation y ∼ Aeiφ/ε as ε→ 0+, we have

φ′ = ±p1/2, A0 ∝
1

(φ′)1/2
.
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If we fix φ(x) = +
∫ x

0 p(s)
1/2 ds and A0(x) = p(x)−1/4, then the two independent solutions are given by

y+ ∼ A0e
iφ/ε, y− ∼ A0e

−iφ/ε.

Hence, at leading order the general solution may be written in the form

y(x) ∼ αA0(x) cos

(
φ(x)

ε

)
+ βA0(x) sin

(
φ(x)

ε

)

as ε→ 0+, where α and β are arbitrary real constants. The boundary condition y(0) = 0 requires α = 0,
so that the boundary condition y(1) = 0 is satisfied at leading order only if

βA0(1) sin

(
φ(1)

ε

)
= o(1) as ε→ 0+.

Since A0(1) > 0 and β 6= 0 for a nontrivial solution, we require

sin

(
φ(1)

ε

)
= o(1) as ε→ 0+,

i.e.
φ(1)

ε
∼ nπ as ε→ 0+, n→∞ with n ∈ N.

The eigenvalues are therefore given approximately by

εn ∼
φ(1)

nπ
=

∫ 1
0

√
p(x) dx

nπ

or

λn ∼
(

nπ∫ 1
0

√
p(x) dx

)2

as n→∞ with n ∈ N.

Example. Turning points Find the large eigenvalues λ� 1 of the harmonic oscillator

−y′′ + x2y = λy for −∞ < x <∞, with y → 0 as |x| → ∞.

For λ� 1 again let ε = 1/λ and rescale x = ε−1/2x̄ to give (dropping the bars)

ε2y′′ + (1− x2)y = 0 for −∞ < x <∞, with y → 0 as |x| → ∞.

Using the WKB ansatz we find

φ′ = ±
√

1− x2, A0 ∝
1

(1− x2)1/4
.

Hence, the general solution has the expansion

y ∼ α0

(1− x2)1/4
e
iφ(x)
ε +

β0

(1− x2)1/4
e−

iφ(x)
ε as ε→ 0+, (4)

where α0 and β0 are arbitrary complex constants and we have fixed φ(x) =
∫ x

0 (1 − s2)1/2 ds, but this
approximation is only good for |x| < 1. When x is close to±1, (1−x2) is small, and the WKB approximation
breaks down. At these places φ′ = 0 (so they are known as turning points), and hence A0 = ∞ (which
indicates the breakdown). We must use a different expansion in the vicinity of each turning point (an
“inner expansion”) and match it with this “outer expansion”.
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Before we do the inner expansion, let us continue with the outer expansion for |x| > 1. Then we can
still use WKB, and we find that, in x > 1 say

y ∼ α1

(x2 − 1)1/4
e−

1
ε

∫ x
1 (s2−1)1/2 ds +

β1

(s2 − 1)1/4
e

1
ε

∫ x
1 (x2−1)1/2 ds, (5)

where α1 and β1 are arbitrary real constants. Now we can apply the boundary condition at x = +∞ to
give β1 = 0. The inner region near x = 1 will allow us to connect the coefficients α0 and β0 to α1 and β1.
This will give us one condition on α0 and β0. The inner region near x = −1 will give us another.

Locally near x = 1 we rescale x = 1 + ε2/3x̂, y = ε−1/6ŷ(x̂) to give at leading order

d2ŷ

dx̂2
− 2x̂ŷ = 0.

This is just the Airy equation. We want a solution which matches with (5) as x̂→∞. This solution is

ŷ = CAi
(

21/3x̂
)
,

where Ai is the Airy function. It can be shown that as x̂→∞

ε−1/6ŷ(x̂) = ε−1/6CAi
(

21/3x̂
)
∼ C

213/12
√
π(ε2/3x̂)1/4

e−2
√

2x̂3/2/3,

while the inner limit of (5) is
α1

(2ε2/3x̂)1/4
e−2
√

2x̂3/2/3.

Hence, matching the two expansions gives

C =
213/12√πα1

21/4
.

Now as x̂→ −∞, it can be shown that

ε−1/6ŷ(x̂) = ε−1/6CAi
(
−21/3x̂

)
∼ − Ce−iπ/4

213/12
√
π

(
1

(ε2/3x̂)1/4
e−2
√

2ix̂3/2/3 − i

(ε2/3x̂)1/4
e2
√

2ix̂3/2/3

)
,

while the inner limit of (4) is

α0

(2ε2/3x̂)1/4
e−

i
ε
φ(1)e−2

√
2ix̂3/2/3 +

β0

(2ε2/3x̂)1/4
e
i
ε
φ(1)e2

√
2ix̂3/2/3.

Matching the two expansions requires

α0e
− i
ε
φ(1) ∼ −C21/4e−iπ/4

213/12
√
π

, β0e
i
ε
φ(1) ∼ Ci21/4e−iπ/4

213/12
√
π

as ε→ 0+. For nontrivial solution (i.e. C 6= 0), we therefore require

α0e
− i
ε
φ(1) ∼ iβ0e

i
ε
φ(1)

as ε→ 0+. Similarly, through a local analysis at x = −1 we find

α0e
− i
ε
φ(−1) ∼ −iβ0e

i
ε
φ(−1)

as ε→ 0+. Hence, for a nonzero solution α0, β0 to exist we need

e−
i
ε
φ(1)

e−
i
ε
φ(−1)

∼ ie
i
ε
φ(1)

−ie iεφ(−1)
,
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giving

e−
2i
ε

(φ(1)−φ(−1))+iπ ∼ 1,

so that
2(φ(1)− φ(−1))

ε
∼ (2n+ 1)π as ε→ 0+, n→∞ with n ∈ N.

Hence, the eigenvalues are given approximately by

εn ∼
φ(1)− φ(−1)

(n+ 1/2)π
=

∫ 1
−1

√
1− x2 dx

(n+ 1/2)π
=

1

2n+ 1

or

λn =
1

εn
∼ 2n+ 1

as n→∞ with n ∈ N. In fact these are exact in this case. The exact solutions are

yn = e−x
2/2Hn(x), λn = 2n+ 1.
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