
Topics in fluid mechanics

A. C. Fowler
Mathematical Institute, Oxford University

October 4, 2021



Contents

1 Thin film flows 2
1.1 Lubrication theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Droplet dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Gravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.2 Surface tension . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.3 The capillary droplet . . . . . . . . . . . . . . . . . . . . . . . 10
1.2.4 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2.5 Advance and retreat . . . . . . . . . . . . . . . . . . . . . . . 14

1.3 Elongational flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.3.1 Steady flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.3.2 Capillary effects . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2 Porous media 26
2.1 Darcy’s law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.1.1 Homogenisation . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.1.2 Empirical measures . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2 Basic groundwater flow . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.2.1 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . 33
2.2.2 Dupuit approximation . . . . . . . . . . . . . . . . . . . . . . 33

2.3 Unsaturated soils . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.3.1 The Richards equation . . . . . . . . . . . . . . . . . . . . . . 38
2.3.2 Non-dimensionalisation . . . . . . . . . . . . . . . . . . . . . . 39
2.3.3 Snow melting . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.3.4 Similarity solutions . . . . . . . . . . . . . . . . . . . . . . . . 44

2.4 Immiscible two-phase flows: the Buckley-Leverett equation . . . . . . 46
2.5 Consolidation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3 Convection 60
3.1 Mantle convection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.2 The Earth’s core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.3 Magma chambers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.4 Rayleigh–Bénard convection . . . . . . . . . . . . . . . . . . . . . . . 65

i



3.4.1 Linear stability . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.5 High Rayleigh number convection . . . . . . . . . . . . . . . . . . . . 70

3.5.1 Boundary layer theory . . . . . . . . . . . . . . . . . . . . . . 71
3.6 Double-diffusive convection . . . . . . . . . . . . . . . . . . . . . . . . 77

3.6.1 Linear stability . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.6.2 Layered convection . . . . . . . . . . . . . . . . . . . . . . . . 81

3.7 Parameterised convection . . . . . . . . . . . . . . . . . . . . . . . . . 84
3.7.1 Plumes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.8 Turbulent convection . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
3.9 Notes and references . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4 Rotating fluid flows 104
4.1 Basic equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.1.1 Spin-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
4.2 Stratified flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.2.1 Earth’s atmosphere . . . . . . . . . . . . . . . . . . . . . . . . 110
4.2.2 Governing equations . . . . . . . . . . . . . . . . . . . . . . . 111
4.2.3 Eddy viscosity . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
4.2.4 Potential temperature . . . . . . . . . . . . . . . . . . . . . . 112
4.2.5 Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.3 Gravity waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
4.3.1 Kelvin waves . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.4 Non-dimensionalisation . . . . . . . . . . . . . . . . . . . . . . . . . . 119
4.4.1 Parameter estimates . . . . . . . . . . . . . . . . . . . . . . . 121
4.4.2 A reduced model . . . . . . . . . . . . . . . . . . . . . . . . . 123
4.4.3 Geostrophic flow . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.5 The quasi-geostrophic potential vorticity equation . . . . . . . . . . 125
4.6 Rossby waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
4.7 Baroclinic instability . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

4.7.1 The Eady model . . . . . . . . . . . . . . . . . . . . . . . . . 130
4.7.2 The Charney model . . . . . . . . . . . . . . . . . . . . . . . . 133

4.8 Frontogenesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
4.9 Depressions and hurricanes . . . . . . . . . . . . . . . . . . . . . . . . 135
4.10 Notes and references . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5 Two-phase flows 143
5.1 Flow régimes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
5.2 A simple two-phase flow model . . . . . . . . . . . . . . . . . . . . . 145

5.2.1 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . 147
5.2.2 Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 147
5.2.3 Modifications . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
5.2.4 Constitution of the pressures . . . . . . . . . . . . . . . . . . . 151

ii



5.2.5 Phase change and the energy equation . . . . . . . . . . . . . 153
5.3 Averaging: two-fluid models . . . . . . . . . . . . . . . . . . . . . . . 154

5.3.1 Jump conditions . . . . . . . . . . . . . . . . . . . . . . . . . 158
5.3.2 Constitutive laws . . . . . . . . . . . . . . . . . . . . . . . . . 158
5.3.3 One-dimensional flows: cross-sectional averaging . . . . . . . . 159
5.3.4 Scaling the model . . . . . . . . . . . . . . . . . . . . . . . . . 161
5.3.5 Homogeneous and drift-flux models . . . . . . . . . . . . . . . 163
5.3.6 A simple model for annular flow . . . . . . . . . . . . . . . . . 164
5.3.7 Disturbance waves . . . . . . . . . . . . . . . . . . . . . . . . 168

5.4 Density wave oscillations . . . . . . . . . . . . . . . . . . . . . . . . . 168
5.4.1 Sub-cooled region . . . . . . . . . . . . . . . . . . . . . . . . . 170
5.4.2 Two-phase region . . . . . . . . . . . . . . . . . . . . . . . . . 170
5.4.3 Non-dimensionalisation . . . . . . . . . . . . . . . . . . . . . . 171
5.4.4 A reduced model . . . . . . . . . . . . . . . . . . . . . . . . . 172
5.4.5 Steady states . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
5.4.6 Instability and ill-posedness . . . . . . . . . . . . . . . . . . . 174
5.4.7 Stability analysis . . . . . . . . . . . . . . . . . . . . . . . . . 178
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

References 186

1



Chapter 1

Thin film flows

1.1 Lubrication theory

Lubrication theory refers to a class of approximations of the Navier–Stokes equations
which are based on a large aspect ratio of the flow. The aspect ratio is the ratio of two
different directional length scales of the flow, as for example the depth and the width.
Typical examples of flows where the aspect ratio is large (or small, depending on which
length is in the numerator) are lakes, rivers, atmospheric winds, waterfalls, lava flows,
and in an industrial setting, oil flows in bearings (whence the term lubrication theory).
Lubrication theory forms a basic constituent of a viscous flow course and will not be
dwelt on here.

In brief the Navier–Stokes equations for an incompressible take the form

∇.u = 0,

ρ[ut + (u.∇)u] = −∇p+ µ∇2u, (1.1)

at least in Cartesian coordinates. It should be recalled that the actual definition of
∇2 ≡∇∇. −∇×∇×, and the components of ∇2u = ∇2uiei (we use the summation
convention) is only applicable in Cartesian coordinates. For other systems, one can
for example consult the appendix in Batchelor (1967).

We begin by non-dimensionalising the equations by choosing scales

x ∼ l, t ∼ l

U
, u ∼ U, p− pa ∼

µU

l
; (1.2)

this is the usual way to scale the equations, except that we have chosen to balance the
pressure with the viscous terms. The pressure pa is an ambient pressure, commonly
atmospheric pressure. The resulting dimensionless equations are

∇.u = 0,

Re u̇ ≡ Re [ut + (u.∇)u] = −∇p+∇2u, (1.3)

where

Re =
ρUl

µ
(1.4)
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U

Figure 1.1: A slider bearing.

is the Reynolds number; the overdot denotes the material derivative. For Re � 1
we have Stokes flow, where the inertial terms can be neglected, and for Re � 1,
boundary layers generally occur (and the pressure would be rescaled to balance the
inertia terms, thus p ∼ Re).

Lubrication theory describes a situation where the geometry of the flow allows
the neglect of the inertial terms, even if the Reynolds number is not small. Suppose
for example that l measures the extent of the flow in the x direction, but the fluid
thickness in the (say) z direction is small. A simple example is the slider bearing,
shown in figure 1.1, in which the fluid is confined between two surfaces, which we
might take to be z = 0 and z = h(x), and one of the surfaces moves at speed U
relative to the other. To be specific, we assume a two-dimensional flow in which the
coordinates are (x, z), the velocity components are (u,w), the bearing (z = h) is of
finite length l and lies above a flat surface z = 0 which moves at speed U ; the bearing
is open to the atmosphere at each end, and the gap width h ∼ d� l. We define the
small parameter

ε =
d

l
, (1.5)

so that in non-dimensional terms, the bearing is at z = εh(x) (where we scaled the
dimensional h with d, so that the dimensionless h is O(1)). It is then appropriate to
rescale the variables as follows:

z ∼ ε, w ∼ ε, p ∼ 1

ε2
, (1.6)

and the equations then take the form

ux + wz = 0,

ε2Re u̇ = −px + uzz + ε2uxx,

ε4Re ẇ = −pz + ε2(wzz + ε2wxx), (1.7)

3



with boundary conditions

u = 1, w = 0 at z = 0,

u = w = 0 at z = h,

p = 0 at x = 0, 1. (1.8)

At leading order we then have p = p(x, t), and thus, integrating, we obtain

u =
z

h
− 1

2
px(hz − z2). (1.9)

The final part of the solution comes from integrating the mass conservation equa-
tion from z = 0 to z = h. This gives

0 = −[w]h0 = −
∫ h

0

wz dz =

∫ h

0

ux dz =
∂

∂x

∫ h

0

u dz, (1.10)

where we can take the differentiation outside the integral because u is zero at z = h.
In fact we can write down (1.10) directly since it is an expression of conservation of
mass across the layer; and this applies more generally, even if the base is not flat, and
indeed even if both surfaces depend on time, and the result can be extended to three
dimensions; see question 1.2. Calculating the flux from (1.9), we obtain∫ s

b

u dz = 1
2
h− 1

12
h3px = K (1.11)

is constant. Given h, the solution for p can be found as a quadrature, and is

p = 6

[
f2(x)− f2(1)f3(x)

f3(1)

]
, fn(x) =

∫ x

0

dx

hn
. (1.12)

In three dimensions, exactly the same procedure leads to the equation

1
12
∇H .(h

3∇Hp) = 1
2
hx, (1.13)

where the plate flow direction is taken along the x axis; derivation of this is left as
an exercise.

1.2 Droplet dynamics

When one of the surfaces is a free surface (meaning it is free to deform), such as a
droplet of liquid resting on a surface, or a rivulet flowing down a window pane, there
are two differences which must be accounted for in formulating the problem. One is
that the free surface is usually a material surface, so that a kinematic condition is
appropriate. In three dimensions, this takes the form

w = st + usx + vsy − a. (1.14)
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Here, z = s is the free surface, and (u, v, w) is the velocity; the term a is normally
absent, but a non-zero value describes surface accumulation (which might for example
be due to condensation); if a < 0 it describes ablation due for example to evaporation.

The other difference is that the boundary conditions at the free surface are gen-
erally not ones of prescribed velocity but of prescribed stress. In the common case of
a droplet of liquid with air above, these conditions take the form

σnn = −pa, σnt = 0, (1.15)

representing the fact that the atmosphere exerts a constant pressure on the surface,
and no shear stress. Commonly the pressure is taken as gauge pressure, i. e., measured
relative to atmospheric pressure, which is equivalent to taking pa = 0 in (1.15). To
unravel these conditions, we will consider the case of a two-dimensional incompressible
flow. In this case, the components of the stress tensor are

σ11 = −p+ τ1, σ13 = σ31 = τ3, σ33 = −p− τ1, (1.16)

where
τ1 = 2µux, τ3 = µ(uz + wx), (1.17)

and then with

n =
(−sx, 1)

(1 + s2
x)

1/2
, t =

(1, sx)

(1 + s2
x)

1/2
, (1.18)

we have

σnn = σijninj = −p− [τ1(1− s2
x) + 2τ3sx]

1 + s2
x

,

σnt = σijnitj =
[τ3(1− s2

x)− 2τ1sx]

1 + s2
x

. (1.19)

The dimensionless equations are virtually the same, as we initially scale p−pa, τ1 and
τ3 with µU/l, and then when the rescaling in (1.6) is done (note that consequently
we rescale τ3 ∼ 1/ε), the surface boundary conditions become

p+
ε2[τ1(1− ε2s2

x) + 2τ3sx]

1 + ε2s2
x

= 0,

τ3(1− ε2s2
x)− 2ε2τ1sx = 0, (1.20)

where
τ1 = 2ux, τ3 = uz + ε2wx. (1.21)

Putting ε = 0, we thus obtain the leading order conditions

p = τ3 = 0 on z = s. (1.22)

We can then integrate uzz = px, assuming also a no slip base at z = b, to obtain an
expression for the flux ∫ s

b

u dz = −1
3
h3px, (1.23)
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and the conservation of mass equation then integrates (see question 1.2) to give the
evolution equation for h = s− b in the form

ht = 1
3

∂

∂x
[h3px]. (1.24)

1.2.1 Gravity

The astute reader will notice that something is missing. Unlike the slider bearing,
nothing is driving the flow! Indeed, since p = p(x, t) and p = 0 at z = s, p = 0
everywhere. Related to this is the fact that there is nothing to determine the velocity
scale U . Commonly such droplet flows are driven by gravity. If we include gravity
in the z momentum equation, then it takes the dimensional form . . . = −pz − ρg . . .,
and since in the rescaled model all the other terms are negligible, the pressure will be
hydrostatic, p ≈ pa + ρg(s− z), and this gives a natural scale for p− pa ∼ ρgd, and
equating this with the eventual pressure scale µUl/d2 determines the velocity scale
as

U =
ρgd3

µl
. (1.25)

The dimensionless pressure then becomes p = s− z, so that px = sx, and (1.24) now
takes the form of a nonlinear diffusion equation,

ht = 1
3

∂

∂x
[h3sx]. (1.26)

One might wonder how the length scales l and d should be chosen; the answer to
this, at least if the base is flat, is that it can be taken from the initial condition for s.
The reason for this is that, since (1.26) is a diffusion equation, the drop will simply
continue to spread out: there is no natural length scale in the model. Associated with
this is the consequent fact that for an initial concentration of liquid at the origin (again
on a flat base), the solution takes the form of a similarity solution (see question 1.6).
On the other hand, if b is variable, then it provides a natural length scale. Indeed,
for a basin shaped b (for example x2, dimensionlessly), the initial volume (or cross-
sectional area) determines the eventual steady state as a lake with s constant, and
both d and l prescribed.

1.2.2 Surface tension

Another way in which a natural length scale can occur in the model is through the
introduction of surface tension at the interface. Let us digress for a moment to con-
sider how surface tension arises. Surface tension is a property of interfaces, whereby
they have an apparent strength. This is most simply manifested by the ability of
small objects which are themselves heavier than water to float on the interface. The
experiment is relatively easily done using a paper clip, and certain insects (water
striders) have the ability to stay on the surface of a pond.
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Figure 1.2: The simple mechanical interpretation of surface tension.

The simplest way to think about surface tension is mechanically. The interface
between two fluids has an associated tension, such that if one draws a line in the
interface of length l, then there is a force of magnitude γl which acts along this line:
γ is the surface tension, and is a force per unit length. The presence of a surface
tension causes an imbalance in the normal stress across the interface, as is indicated
in figure 1.2, which also provides a means of calculating it. Taking ds as a short
line segment in an interface subtending an angle dθ at its centre of curvature, a force
balance normal to the interface leads to the condition

p+ − p− =
γ

R
, (1.27)

where

R =
ds

dθ
(1.28)

is the radius of curvature, and its inverse 1/R is the curvature.
For a two-dimensional surface, the curvature is described by two principal radii of

curvature R1 and R2, the mean curvature is defined by

κ = 1
2

(
1

R1

+
1

R2

)
, (1.29)

and the pressure jump condition is

p+ − p− = 2γκ = γ

(
1

R1

+
1

R2

)
, (1.30)

although this is not much use to us unless we have a way of calculating the curvature
of a surface. This leads us off into the subject of differential geometry, and we do not
want to go there. A better way lies along the following path.
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Figure 1.3: The energetic basis of surface tension.

The sceptical reader will in any case wonder what this surface tension actually
is. It manifests itself as a force, but along a line? And what is its physical origin?
The answer to this question veers towards the philosophical. We think we understand
force, after all it pops up in Newton’s second law, but how do we measure it? Pressure,
for example, we conceive of as being due to the collision of molecules with a surface,
and the measure of the force they exert is due to the momentum exchange at the
surface. We pull on a rope, exerting a force, but the measure of the force is in the
extension of the rope via Hooke’s law. Force is apparently something we measure via
its effect on momentum exchange, or on mechanical displacement; we can actually
define force through these laws.

The more basic quantity is energy, which has a direct interpretation, whether as
kinetic energy or internal energy (the vibration of molecules). And in fact Newton’s
second law for a particle is equivalent to the statement that the rate of change of
energy is equal to the rate of doing work, and this might be taken as the fundamental
law.

The meaning of surface tension actually arises through the property of an interface,
which has a surface energy γ with units of energy per unit area. The interfacial
condition then arises through the (thermodynamic) statement that in equilibrium
the energy of the system is minimised.

To be specific, consider the situation in figure 1.3, where two fluids at pressures
p− and p+ are separated by an interface with area A. Consider a displacement of
the interface causing a change of volume dV as shown. Evidently the work done on
the upper fluid is p+ dV , which is thus its change of energy, and correspondingly the
change for the lower fluid is −p− dV . If the change of interfacial surface area is dA,
then the total change of energy1 is

dF = (p+ − p−) dV + γ dA, (1.31)

1This energy is the Helmholtz free energy.
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n
^

A + dA

dV
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Figure 1.4: Calculation of
∂A

∂V
.

and at equilibrium this must be zero (since F is minimised). The equilibrium inter-
facial boundary condition is therefore

p+ − p− = −γ ∂A
∂V

, (1.32)

which, it turns out, is equivalent to (1.30).

Computation of
∂A

∂V
can be done as follows. We consider a displacement of the

interface as shown in figure 1.4. An element of surface A is displaced to A + dA,
and we can form a connecting volume dV such that the normal n to the interface is
always parallel to the connecting surface between the end faces A and A + dA. We
need to distinguish between the normal n̂ to the surface of the connecting volume
and the normal to the interfacial surface. Evidently we have n = n̂ at the end faces,
but n.n̂ = 0 on the connecting cylindrical surface.

Applying the divergence theorem, we see that the change in area is

dA =

∫
∂(dV )

n.n̂ dS =

∫
dV

∇.n dV, (1.33)

and thus
∂A

∂V
= ∇.n. (1.34)

For example, if the interface is represented as z = s(x, y, t), then

∇.n = −∇.

[
∇s

(1 + |∇s|2)1/2

]
, (1.35)

where on the right hand side ∇ = ∇H =

(
∂

∂x
,
∂

∂y

)
, and for small interfacial dis-

placement, this may be linearised to obtain

2κ = −∂A
∂V

= −∇.n = ∇.

[
∇s

(1 + |∇s|2)1/2

]
≈ ∇2s. (1.36)
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1.2.3 The capillary droplet

Now we use this in the droplet equation. Again we restrict attention to two-dimensional
droplets. For three-dimensional droplets, see question 1.7. The surface boundary con-
dition is now approximately p− pa = −γsxx, and non-dimensionally

p = − 1

B
sxx on z = s, (1.37)

where B (commonly also written Bo) is the Bond number, given by

B =
ρgl2

γ
. (1.38)

This gives a natural length scale for the droplet, by choosing B = 1, thus

l =

(
γ

ρg

)1/2

; (1.39)

in this case the dimensionless pressure is p = s− z− sxx, and thus mass conservation
leads to

ht = 1
3

∂

∂x

[
h3(sx − sxxx)

]
, (1.40)

and the surface tension term acts as a further stabilising term.2

Surface tension acts to limit the spread of a droplet. Indeed there is a steady state
of (1.40) which is easily found. Suppose the base is flat, so s = h. We prescribe the
cross-sectional area of the drop, A. In dimensionless terms, we thus require∫

h dx = 2α =

(
ρg

γ

)1/2
A

d
. (1.41)

Let us choose d so that the maximum depth is one (note that the value of d remains
to be determined). We can suppose that the drop is symmetric about the origin, and
that its dimensionless half-width is λ, also to be determined. Thus

h(±λ) = 0, h(0) = 1, (1.42)

as well as (1.41), and both α and λ are to be determined.
A further condition is necessary at the margins. This is the prescription of a

contact angle, which can be construed as arising through a balance of the surface
tension forces at the three interfaces at the contact line: gas/liquid, liquid/solid, and
solid/gas. All three interfaces have a surface energy, and minimisation of this corre-
sponds to prescription of a contact angle. Specifically, if θ is the angle between the

2This can be seen by considering small perturbations about a uniform solution h = s = 1 (with
a flat base), for which the linearised equation has normal mode solutions ∝ exp(σt + ikx), with
σ = − 1

3 (k2 + k4).
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gas/liquid and liquid/solid interfaces, then resolution of the surface tension tangential
to the wall leads to

γSL + γ cos θ = γSG, (1.43)

where γSL is the solid/liquid surface energy, and γSG is the solid/gas surface energy.
Defining S = l tan θ/d, this implies that

hx = ∓S at x = ±λ. (1.44)

The steady state of (1.40) is easily found. The flux is zero, so hx − hxxx is zero,
and integration of this leads to

h = 1−
(

coshx− 1

coshλ− 1

)
, (1.45)

and then (1.41) and (1.44) yield

α =
λ coshλ− sinhλ

coshλ− 1
,

sinhλ

coshλ− 1
= S. (1.46)

S(λ) is a monotonically decreasing function of λ (why?), and tends to one as λ→∞,
and therefore the second relation determines λ providing S > 1. It seems there is a
problem if S < 1, but this is illusory since both α and S depend on the unknown d,
so it is best to solve

α

S
=

A

2l2 tan θ
=
λ coshλ− sinhλ

sinhλ
; (1.47)

the right hand side increases monotonically from 0 to∞ as λ increases, and therefore
provides a unique solution for λ for any values of A and θ; d is then determined by
either expression in (1.46).

It is of interest to see when the assumption d� l is then valid. From (1.46),

ε = tan θ

(
coshλ− 1

sinhλ

)
. (1.48)

The expression in λ increases monotonically from 0 to 1 as λ increases. Thus ε� 1
if either θ � 1, or (if tan θ ∼ O(1)) λ � 1. From (1.47), this is the case provided

A� l2, i. e.,
ρgA

γ
� 1. For air and water, this implies A� 7 mm2.

1.2.4 Stability

We now consider the stability of steady solutions of (1.40), which we take in the form

ht =
[

1
3
h3(hx − hxxx)

]
x
. (1.49)

Before doing so, we comment on the meaning of the fourth derivative term, which is
present due to surface tension. The gravity term is clearly diffusive (with a nonlinear
diffusion coefficient 1

3
h3), but what does the surface tension term represent? In other

11



contexts it is referred to as a long-range or non-local diffusion (or dispersion) term.
To understand such a reference, suppose that the flux of a quantity having density ρ
is given not by Fick’s law J = −D∇ρ, but by

J = −D∇W, W =

∫
R3

ρ(x + ξ, t)K(ξ) dξ, (1.50)

where the kernel function K = K(ξ) (here ξ = |ξ|) is spherically symmetric in an
isotropic medium, and can be taken (by choice of D) to have integral over all space
equal to one. If K is a delta function, K = δ(x − ξ), then we regain Fick’s law,
but more generally we might suppose it is a Gaussian, for example. (1.50) allows
a diffusive motion due to non-local concentrations. An example of such dependence
might be in traffic flow, where the motion of individual ‘molecules’ (cars) is affected
by the observation of conditions further ahead. Another example might be in herd
migration.

If we suppose that K is delta function-like, in the sense that it varies rapidly with
ξ, then it is appropriate to approximate (1.50) by Taylor expansion of ρ, and this
leads to

J = −D∇ρ−D2∇∇2ρ+ . . . , (1.51)

where

D2 = 1
6
D

∫
R3

ξ2K(ξ) dξ = 2
3
πD

∫ ∞
0

ξ4K(ξ) dξ. (1.52)

Solutions of the conservation law ρt = −∇.J, using the truncated expression in
(1.51), have the normal mode form

ρ = eik.x+σt, σ = −Dk2 +D2k
4, (1.53)

and we see that the well-posedness (σ < 0 as k →∞) in this truncated form requires
D2 < 0, which seems unlikely, unless K becomes negative at large ξ.

If we use the full expression in (1.50), then we find that (1.53) is replaced by

σ = −4πkDI(k), I(k) =

∫ ∞
0

rK(r) sin kr dr (1.54)

(use spherical polar coordinates and take the z axis in the direction of k). For example,
the (normalised) Gaussian

K(ξ) =
1

(πν)3/2
e−ξ

2/ν (1.55)

leads to
σ = −k2De−

1
4
νk2 , (1.56)

and expansion of this for small ν (or k) leads to the truncated version above. Note
that for the full expression, the limits ν → 0 and k →∞ do not commute.

Returning to the matter at hand (equation (1.49)), we first consider the case of
an infinite uniform layer of fluid, with constant solution h = 1. In this case we write
h = 1 + h1 and linearise on the basis that h1 � 1. This simply gives

h1t = 1
3
(h1xx − h1xxxx), (1.57)

12



which has the normal mode solutions h1 = eikx+σt, and

σ = −1
3
(k2 + k4), (1.58)

and the steady solution is stable.
For the case of a finite droplet with solution h0(x) given by (1.45), we write

h = h0 + h1, and again supposing h1 � h0, we linearise as before, which leads (since
h′′′0 = h′0) to

h1t =
[

1
3
h3

0(h1x − h1xxx)
]
x
, (1.59)

and normal mode solutions are of the form h1 = H(x)eσt, and then

σH =
[

1
3
h3

0(Hx −Hxxx)
]
x
. (1.60)

This equation requires boundary conditions, but there are issues. If the margins
move, then the linearisation must become invalid, since it requires the assumption
that h1 � h0, which cannot in general be true if the margins move. Consideration
of this case requires a more subtle approach, which uses the method of strained
coordinates, but will be foregone here.

Let us suppose, then, that the margins do not move. In this case we should
prescribe

H = H ′ = 0 at x = ±λ. (1.61)

This provides four conditions, the gradient condition occurring because of the pre-
scribed contact angle. However, we note that the equation is degenerate since h0(±λ) =
0, so that the full complement of boundary conditions may not be able to be satis-
fied. Often in such singular problems (think of Bessel’s equation), one only needs to
suppress singular solutions. If (1.61) can be satisfied, then automatically H � h0 as
x→ ±λ, which is required for the validity of the analysis.

Perhaps an ingenious exact solution of (1.60) can be found, but failing that, we
resort to an energy-type argument. If we multiply both sides of the equation by
H −Hxx and integrate, then we find

σ =

−
∫ λ

−λ

1
3
h3

0(Hx −Hxxx)
2 dx∫ λ

−λ
(H2 +H2

x) dx

, (1.62)

and thus σ < 0: the droplet is stable. (1.62) actually provides a variational principle
for σ: see question 1.3.

Coming back to the issue of the behaviour of H at the end points, we put, for
example, X = x+ λ, so that

−αH ≈ [X3(HX −HXXX)]X , α =
3|σ|
S3

, (1.63)

13



and we find possible solution behaviours as X → 0 of the form

H ∼ X2 + cX3 + . . . ,

H ∼ 1− bX lnX, (1.64)

where b and c are specific constants (see exercise 1.3). Therefore it seems in fact that
only one condition can be applied at each end, in keeping with the degenerate nature
of the equation, but that in fact the extra gradient condition in (1.61) is satisfied
automatically.

It should be mentioned that when droplets move, there are issues both with the
viability of prescribing a constant contact angle, because of experimentally observed
contact angle hysteresis, and also with the application of the no-slip condition, which
causes a contact line singularity. So the above discussion of stability is slightly inac-
curate.

1.2.5 Advance and retreat

When a droplet is of finite extent, it is possible to describe the behaviour near the
margins by a local expansion. Typically the surface approaches the base with local
power law behaviour, and this depends on whether the droplet is advancing or re-
treating. Consider, for example, the gravity-driven droplet with an accumulation or
ablation term:

ht = 1
3

(
h3hx

)
x

+ a, (1.65)

where a > 0 for accumulation, and a < 0 for ablation. (1.65) represents a simple
model for the motion of an ice sheet such as Antarctica, where a > 0 represents
accumulation due to snowfall. If we suppose that near the margin x = xs in a two-
dimensional motion, h ∼ C(xs−x)ν , then a local expansion shows that if the front is
advancing, ẋs > 0, then ν = 1

3
and ẋs ∼ 1

9
C3; in advance the front is therefore steep.

On the other hand, if the front is retreating, then this can only occur if a < 0 (as is in
fact obvious), and in that case ν = 1 and ẋs ∼ −|a|/C. The fact that the front slope
is infinite in advance and finite in retreat is associated with ‘waiting time’ behaviour,
which occurs when the front has to ‘fatten up’ before it can advance.

We can try and carry out the same analysis for the droplet with gravity and
surface tension. If the left hand margin is x = xs(t), we put x = xs + X, so that in
the (X, t) coordinates,

ht − ẋshX =
[

1
3
h3(hX − hXXX)

]
X

; (1.66)

however, finding a local expansion is not so easy. Trying various choices, it seems
that retreat (ẋs > 0) can be described by

h ∼ aX(− lnX)1/3, ẋs ∼ 1
9
a3, (1.67)

but no such simple (!) behaviour describes advance. However, a balance is possible
when there is a non-zero flux at the front qs, and then

h ∼ aX3/4, qs = 5
64
a4. (1.68)
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Figure 1.5: An elongational film flow.

But both these behaviours provide an infinite gradient at the margin, which is in-
consistent with the prescription of a finite slope contact angle, and also with the
lubrication theory linearisation of the curvature term, and for both these reasons, the
model becomes suspect if the margins are allowed to move.

1.3 Elongational flows

A different application of lubrication theory occurs in a falling sheet of fluid, such
as occurs when a tap is switched on. At low velocities, the flow is continuous and
laminar (though at very low flow rates it breaks up into droplets), and is also thin, but
is distinguished from surface droplets or bearing flows by the fact that both surfaces
of the fluid have zero stress acting on them.

To be specific, we consider the situation shown in figure 1.5. We consider flow
from an orifice, and we take the flow to be two-dimensional, with the x direction in
the direction of flow and z transverse to it. To begin with we ignore gravity and
suppose that the flow is driven by an applied tension T (force per unit width in the y
direction out of the page) at ∞; this is like drawing honey out of a jar with a spoon.

The basic equations are those as scaled in (1.3), and can be written in the form

ux + wz = 0,

Re u̇ = −px + τ1x + τ3z,

Re ẇ = −pz + τ3x − τ1z, (1.69)

where
τ1 = 2ux, τ3 = uz + wx. (1.70)
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If the two free surfaces are z = s and z = b, then the boundary conditions on both
surfaces are σnn = σnt = 0 (we subtract off the ambient pressure), or in other words
σni = σijnj = 0, and for z = s, this gives

(p− τ1)sx + τ3 = 0,

−τ3sx − p− τ1 = 0. (1.71)

(These are actually equivalent to (1.19).)
Now we rescale the variables to account for the large aspect ratio. The difference

with the earlier approach is that shear stresses are uniformly small, and so we also
rescale τ3 to be small. Thus we rescale the variables as

z ∼ ε, w ∼ ε, τ3 ∼ ε, (1.72)

and this leads to the rescaled equations

ux + wz = 0,

Re u̇ = −px + τ1x + τ3z,

ε2Re ẇ = −pz + ε2τ3x − τ1z, (1.73)

where
τ1 = 2ux, ε2τ3 = uz + ε2wx, (1.74)

and on the free surfaces (e. g., z = s)

(p− τ1)sx + τ3 = 0,

−ε2τ3sx − p− τ1 = 0. (1.75)

At leading order, we have u = u(x, t), p+ τ1 = 0, p = −2ux, whence we find

τ3z = Re u̇− 4uxx, (1.76)

with
τ3 = 4uxsx on z = s, τ3 = 4uxbx on z = b,

and from these we deduce

Reh(ut + uux) = 4(hux)x,

ht + (hu)x = 0, (1.77)

where the second equation is derived as usual to represent conservation of mass. Note
in this derivation that the inertial terms are not necessarily small; nevertheless the
asymptotic procedure works in the usual way.
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Figure 1.6: Characteristics for (1.77). The dividing characteristic from the origin is
shown in red.

1.3.1 Steady flow

For a long filament such as that shown in figure 1.5, it is appropriate to prescribe
inlet conditions, and these can be taken to be

h = u = 1 at x = 0, (1.78)

by appropriate choice of U and d. In addition, we prescribe the force (per unit width
in the third dimension) to be T , and this leads to

hux → 1 as x→∞, (1.79)

where the constant is set to one by choice of the length scale as

l =
2µdU

T
; (1.80)

thus the aspect ratio is small (d� l) if T � µU .
If we consider a slow, steady flow in which the inertial terms can be ignored

(Re→ 0), it is easy to solve the equations. We have hu = 1 and hux = 1, and thus

u = ex, h = e−x. (1.81)

As a matter of curiosity, one can actually solve the time-dependent problem (1.77),
at least when Re = 0. We write the equations in the form

ht + uhx = −1,

hux = 1, (1.82)
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with the boundary and initial conditions as shown in figure 1.6. The characteristic
form of the first equation is

xt = u[x(ξ, t), t], ht = −1, (1.83)

where the partial derivatives are holding ξ fixed, i. e., we consider x = x(ξ, t), h =
h(ξ, t). The dividing characteristic from the origin (which we define to be t = td(x))
divides the quadrant into two regions, in which the initial data is parameterised
differently. For the lower region t < td(x), we have

h = h0(ξ)− t. (1.84)

We take the first equation in (1.83), and differentiate with respect to ξ. Using the
definition of ux from (1.82), we find

xξt =
xξ

h0(ξ)− t
. (1.85)

We can integrate this with respect to t, holding ξ constant, that is, the integral with
respect to t is along a characteristic. It follows that

xξ =
h0(ξ)

h0(ξ)− t
, (1.86)

in which we have applied the initial condition xξ = 1 at t = 0.
Next we integrate with respect to ξ holding t constant; since (1.86) only holds for

t < td(x), we integrate back to this, but note that this corresponds to the value ξ = 0;
we then have

x = xd(t) +

∫ ξ

0

h0(s) ds

h0(s)− t
, (1.87)

where xd is the inverse of td(x): to calculate this we need to solve for the upper region
t > td.

To do this, we can proceed as above, but it is quicker to note that since the
boundary conditions on x = 0 are constant, the solution is just the steady state
solution (1.81). In particular, the characteristics are e−x = 1 − (t − τ), and the
dividing characteristic is that with τ = 0, thus

td = 1− e−x, xd = − ln(1− t). (1.88)

The solution in t < td is thus

x = − ln(1− t) +

∫ ξ

0

h0(s) ds

h0(s)− t
, (1.89)

but the transient is of little interest since it disappears after finite time, t = 1. As a
check, notice that if h0 = e−ξ, the steady state solution is regained everywhere.

The steady solution can be extended to positive Reynolds number. In steady flow
we then find

ux = Ku+ 1
4
Reu2 (1.90)

for some constant K, and we see that there is no solution in which the filament can
be drawn to ∞, as pinch-off always occurs. This is in keeping with experience.
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1.3.2 Capillary effects

As for the shear-driven droplet flows, one can add gravity to the model, and this is
done in question 1.4. In this section we consider the modification to the equations
which occurs when capillary effects are included. The normal stress conditions are
modified to

−σnn = − γsxx
(1 + s2

x)
3/2

on z = s,

σnn = − γbxx
(1 + b2

x)
3/2

on z = b. (1.91)

The definition of σnn is in (1.19), and with the basic scaling (all lengths scaled with
l, etc.) this leads to

−p− 2τ3sx
1 + s2

x

− τ1(1− s2
x)

1 + s2
x

=
1

Ca

γsxx
(1 + s2

x)
3/2

on z = s, (1.92)

where

Ca =
µU

γ
(1.93)

is the capillary number; a similar expression applies on z = b, with the opposite sign
on the right hand side. When the equations are re-scaled (z ∼ ε, etc.), then these
take the approximate form

p+ τ1 ≈ − 1

C
sxx on z = s,

p+ τ1 ≈
1

C
bxx on z = b, (1.94)

where we write
Ca = εC. (1.95)

Now the normal stress is constant across the filament, thus

p+ τ1 ≈ −
1

C
sxx (1.96)

everywhere, and this forces symmetry of the filament, sxx = −bxx. The rest of the
derivation proceeds as before, except that (1.76) gains an extra term −sxxx/C on the
right hand side; integrating this and applying the boundary conditions leads to the
modification of (1.77) as (bearing in mind that h = s− b and thus hxx = 2sxx)

ht + (hu)x = 0,

Re h(ut + uux) =
1

2C
hhxxx + 4(hux)x. (1.97)
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Steady flow

The extra derivatives for h require, apparently, two extra boundary conditions. If we
suppose the pressure becomes atmospheric at ∞, then we might apply

hxx → 0 as x→∞. (1.98)

Since this also implies hx → 0, it may be sufficient. On the other hand, if h → 0 at
∞, the multiplication of the third derivative term by h may render an extra boundary
condition unnecessary.

Again we can consider the steady state. Then hu = 1, and (1.97) has a first
integral

K +
Re

h
=

1

2C

[
hhxx − 1

2
h2
x

]
− 4hx

h
, (1.99)

where K is constant. Evidently there is no solution if Re > 0, as pinch-off must again
occur. For the case of slow flow, taking Re = 0, we have K = 4 due to the far field
stress condition, and

h2hxx − 1
2
hh2

x − 8C(hx + h) = 0. (1.100)

We seek a solution of this with h(0) = 1 and h(∞) = 0. Phase plane analysis shows
that there is a unique such solution: see question 1.8.

Gravity

While we chose to model a thin filament pulled downwards by a tension, equally we
might consider a filament descending under its own weight. In this case, the model
can be derived much as before, but now the tension at infinity can be taken to be
zero, and the length scale is then chosen to normalise the gravity term to equal one.
The modification of (1.77) is then

ht + (hu)x = 0,

h[Re (ut + uux)− 1] = 4(hux)x. (1.101)

In this case, steady solutions extending to infinity exist, even if Re > 0, but if any
non-zero tension is applied at infinity, the solution breaks down as before and pinch-
out occurs. See also question 1.4.

Exercises

1.1 A thin incompressible liquid film flows in two dimensions (x, z) between a solid
base z = 0 where the horizontal (x) component of the velocity is U(t), and may
depend on time, and a stationary upper solid surface z = h(x), where a no slip
condition applies. The upper surface is of horizontal length l, and is open to the
atmosphere at the ends. Write down the equations and boundary conditions
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describing the flow, and non-dimensionalise them assuming that U(t) ∼ U0.
(You may neglect gravity.)

Assuming ε = d/l is sufficiently small, where d is a measure of the gap width,
rescale the variables suitably, and derive an approximate equation for the pres-
sure p. Hence derive a formal solution if the block is of finite length l, and
the pressure is atmospheric at each end, and obtain an expression involving
integrals of powers of h for the horizontal fluid flux, q(t) =

∫ h
0
u dz.

1.2 A two-dimensional incompressible fluid flow is contained between two surfaces
z = b(x, t) and z = s(x, t), on which kinematic conditions hold:

w = st + usx at z = s,

w = bt + ubx at z = b.

By integrating the equation of conservation of mass, show that the fluid thick-
ness h = s− b satisfies the conservation law

∂h

∂t
+

∂

∂x

∫ s

b

u dx = 0.

Extend the result to three dimensions to show that

ht + ∇H .

[∫ s

b

uH dz

]
= 0,

where uH = (u, v) is the horizontal velocity, and ∇H =

(
∂

∂x
,
∂

∂y

)
is the hori-

zontal gradient operator.

1.3 A two-dimensional droplet has thickness h(x, t) and satisfies the dimensionless
equation

ht =
[

1
3
h3(hx − hxxx)

]
x
,

with conditions that |hx| = S when h = 0. Show that for a steady solution
h0(x),

h0 =
S(coshλ− coshx)

sinhλ
,

where λ is an arbitrary (positive) parameter. If the (dimensionless) ‘volume’
of the drop V is prescribed, show that λ is uniquely determined, and that it
increases monotonically with V . Find approximate expressions for λ as V → 0
and V →∞.

By writing h = h0 + h1, linearising, and then putting h1 = H(x)eσt, derive a
linear equation for H, and give the boundary conditions for H, assuming the
margins of the drop do not move. By writing σ as a functional [H] in terms of
integrals of H and its derivatives, show that σ < 0 for any solution of this, and
thus that the drop is stable.

21



Suppose that H is a solution of its governing differential equation with cor-
responding eigenvalue σ[H]. By considering variations δH to H such that∫ λ

−λ
(H2 +H2

x) dx remains constant, show that the first variation σ[H + δH] −

σ[H] is zero.

Now let X = x + λ so that h0 ≈ SX. By considering limiting forms of the
resulting approximate equation for H, show that either H ∝ X2 + cX3 + . . . or
H ∝ 1 + bX lnX + . . ., and find the values of b and c.

1.4 An incompressible two-dimensional flow from a slit of width d falls vertically
under gravity. Define vertical and horizontal coordinates x and z, with cor-
responding velocity components u and w. The stream is symmetric with free
interfaces at z = ±s, on which no stress conditions apply. Write down the
equations and boundary conditions in terms of the deviatoric stress compo-
nents τ1 = τ11 = −τ33 and τ3 = τ13 = τ31, and by scaling lengths with l,
velocities with the inlet velocity U , and choosing suitable scales for time t and
the pressure and stresses, show that the equations take the form

ux + wz = 0,

Re u̇ = −px + τ1x + τ3z + 1,

Re ẇ = −pz + τ3x − τ1z,

where you should define u̇, the Reynolds number Re, and write down expressions
for τ1 and τ3.

Now define ε =
d

l
, and assume it is small. Find a suitable rescaling of the equa-

tions, and show that the vertical momentum equation takes the approximate
form

h[Re u̇− 1] = 4(hux)x,

where u = u(x, t) and h is the stream width.

Show also that
ht + (hu)x = 0.

Explain why suitable boundary conditions are

h = u = 1 at x = 0, hux → 0 as x→∞.

Write down a single second order equation for u in steady flow. If Re = 0, find
the solution.

If Re > 0, find a pair of first order equations for v = lnu and w = vx. (Note:
w here is no longer the horizontal velocity.) Show that (∞, 0) is a saddle point,
and that a unique solution satisfying the boundary conditions exists. If Re� 1
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(but still ε2Re � 1), show (by rescaling w = W/Re and x = ReX) that the
required trajectory hugs the W–nullcline, and thus show that in this case

u ≈
(

1 +
2x

Re

)1/2

.

1.5 A (two-dimensional) droplet rests on a rough surface z = b and is subject
to gravity g and surface tension γ. Write down the equations and boundary
conditions which govern its motion, non-dimensionalise them, and assuming the
depth at the summit d is much less than the half-width l, derive an approximate
equation for the evolution in time of the depth h. Show that the horizontal
velocity scale is

U =
ρgd3

µl
,

and derive an approximate set of equations assuming

ε =
d

l
� 1, F =

U√
gd
� 1.

Hence show that

ht =
∂

∂x

[
1
3
h3

(
sx −

1

B
sxxx

)]
,

where you should define the Bond number B.

Find a steady state solution of this equation for the case of a flat base, assum-
ing that the droplet area A and a contact angle θ = εφ are prescribed, with
φ ∼ O(1), and show that it is unique. Explain how the solution chooses the
unknowns d and l.

1.6 A droplet of thickness h satisfies the equation

ht =
∂

∂x

[
1
3
h3hx

]
.

Find a similarity solution of this equation which describes the spread of a drop
of area one which is initially concentrated at the origin (i. e., h(x, 0) = δ(x)).

1.7 A three-dimensional droplet , subject to gravity and resting on a flat horizontal
surface z = 0, has surface z = h(x, y, t), on which the pressure is given by
p = γ∇.n, where n is the unit upward normal to the surface. Show that this
condition can be written in the form

p = −γ∇.

[
∇h

{1 + |∇h|2}1/2

]
,

where now (and below) ∇ is the horizontal gradient

(
∂

∂x
,
∂

∂y

)
.

23



Use the assumptions of lubrication theory to derive the dimensionless droplet
equation

ht = 1
3
∇.

[
h3∇

{
h− 1

Bo
∇2h

}]
,

and define the Bond number Bo.

Suppose that Bo =∞ (what does this mean in terms of the surface tension?),
and that a concentrated dollop of fluid of dimensionless volume 2π is released
at r = 0 at t = 0. By seeking a similarity solution of the form

h =
1

tα
f(η), η =

r

tβ
,

derive and solve an equation for f , and hence show that the droplet is bounded
by a moving front at

r ≈ 1.55 t1/8.

[Hint:

(
8192

343

)1/8

≈ 1.55.]

Now suppose that Bo <∞. Explain why we may take Bo = 1. Assuming this,
and a boundary condition that hr = −S where h = 0, show that the steady
solution satisfies

hrr +
1

r
hr − h = −K,

where K is constant, and deduce that

h =
S[I0(λ)− I0(r)]

I ′0(λ)
,

where I0(r) is the modified Bessel function of the first kind, and r = λ is the
drop margin.

Suppose that the dimensionless volume V of the drop is prescribed, so that∫ λ

0

rh(r) dr =
V

2π
.

We want to show that this determines λ uniquely. By consideration of the
equation for h, show that

L(λ) ≡ λ

[
λI0(λ)

2I ′0(λ)
− 1

]
=

V

2πS
;

λ will thus be unique if L(λ) is monotonically increasing.

Define

η(λ) =
I ′0(λ)

I0(λ)
,
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and show that
η′ = 1− η

λ
− η2.

Assuming that I0(λ) ∼ 1+ 1
4
λ2 + 1

64
λ4 + . . . as λ→ 0, find the limiting behaviour

of η as λ → 0, and by consideration of trajectory directions in the semi-phase
plane (λ, η), show that η(λ) is a monotonically increasing function of λ, with
η(∞) = 1. Derive a differential equation for g(λ) = 2η/λ, and by the same
device (but now using the (λ, g) semi-phase plane), show that g is a monoton-
ically decreasing function of λ. Hence show that L(λ) is a strictly increasing
function, as required.

Denoting this steady state as h0(r), perturb h as h = h0 + h1, and linearise
the equation. Now put h1 = H(x, y)eσt (do not assume that H is cylindrically
symmetric) and write down the resulting eigenvalue problem for σ. Assuming
that the drop margin is not perturbed, show that σ is real and negative for any
solution of this eigenvalue problem, and hence that the drop is stable.

1.8 A film of fluid is drawn downwards under the action of a tensile force. A model
for the dimensionless thickness h and dimensionless downwards velocity u of
the film is

ht + (hu)x = 0,

Re h(ut + uux) =
1

2C
hhxxx + 4(hux)x,

with
h = u = 1 on x = 0, hux → 1 as x→∞.

Show that a steady state solution in which h → 0 as x → ∞ can only occur if
Re = 0. In that case, determine a second order differential equation satisfied
by h, and by writing h = 1

2
U2 and V = U ′ = Ux, write the equation as a pair

of first order equations for U and V . Show that the origin is a (degenerate)
saddle, and therefore show that a solution exists which satisfies the boundary
conditions.
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Chapter 2

Porous media

Groundwater is water which is stored in the soil and rock beneath the surface of
the Earth. It forms a fundamental constituent reservoir of the hydrological system,
and it is important because of its massive and long lived storage capacity. It is the
resource which provides drinking and irrigation water for crops, and increasingly in
recent decades it has become an unwilling recipient of toxic industrial and agricultural
waste. For all these reasons, the movement of groundwater is an important subject
of study.

Soil consists of very small grains of organic and inorganic matter, ranging in
size from millimetres to microns. Differently sized (inorganic) particles have different
names. Particularly, we distinguish clay particles (size < 2 microns) from silt particles
(2–60 microns) and sand (60 microns to 1 mm). Coarser particles still are termed
gravel.

Viewed at the large scale, soil thus forms a continuum which is granular at the
small scale, and which contains a certain fraction of pore space, as shown in figure
2.1. The volume fraction of the soil (or sediment, or rock) which is occupied by the
pore space (or void space, or voidage) is called the porosity, and is commonly denoted
by the symbol φ; sometimes other symbols are used, for example n.

Soils are formed by the weathering of rocks, and are specifically referred to as
soils when they contain organic matter formed by the rotting of plants and animals.
There are two main types of rock: igneous, formed by the crystallisation of molten
lava, and sedimentary, formed by the cementation of sediments under conditions of
great temperature and pressure as they are buried at depth.1 Sedimentary rocks,
such as sandstone, chalk, shale, thus have their porosity built in, because of the pre-
existing granular structure. With increasing pressure, the grains are compacted, thus
reducing their porosity, and eventually intergranular cements bond the grains into a
rock.

Igneous rock tends to be porous also, for a different reason. It is typically the
case for any rock that it is fractured. Most simply, rock at the surface of the Earth

1There are also metamorphic rocks, which form from pre-existing rocks through chemical changes
induced by burial at high temperatures and pressures; for example, marble is a metamorphic form
of limestone.
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Figure 2.1: A granular porous medium.

is subjected to enormous tectonic stresses, which cause it to fold and fracture. Thus,
even if the rock matrix itself is not porous, there are commonly faults and fractures
within the rock which act as channels through which fluids may flow, and which act
on the large scale as an effective porosity. If the matrix is porous at the grain scale
also, then one refers to the rock as having a dual porosity, and the corresponding flow
models are called double porosity models.

In the subsurface, whether it be soil, underlying regolith, a sedimentary basin,
or oceanic lithosphere, the pore space contains liquid. At sufficient depth, the pore
space will be saturated with fluid, normally water. At greater depths, other fluids
may be present. For example, oil may be found in the pore space of the rocks of
sedimentary basins. In the near surface, both air and water will be present in the
pore space, and this (unsaturated) region is called the unsaturated zone, or the vadose
zone. The surface separating the two is called the piezometric surface, the phreatic
surface, or more simply the water table. Commonly it lies several metres below the
ground surface, and more in arid regions.

2.1 Darcy’s law

Groundwater is fed by surface rainfall, and as with surface water it moves under a
pressure gradient driven by the slope of the piezometric surface. In order to char-
acterise the flow of a liquid in a porous medium, we must therefore relate the flow
rate to the pressure gradient. An idealised case is to consider that the pores consist
of uniform cylindrical tubes of radius a; initially we will suppose that these are all
aligned in one direction. If a is small enough that the flow in the tubes is laminar
(this will be the case if the associated Reynolds number is <∼ 1000), then Poiseuille
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flow in each tube leads to a volume flux in each tube of q =
πa4

8µ
|∇p|, where µ is

the liquid viscosity, and ∇p is the pressure gradient along the tube. A more realistic
porous medium is isotropic, which is to say that if the pores have this tubular shape,
the tubules will be arranged randomly, and form an interconnected network. How-
ever, between nodes of this network, Poiseuille flow will still be appropriate, and an
appropriate generalisation is to suppose that the volume flux vector is given by

q ≈ − a4

µX
∇p, (2.1)

where the approximation takes account of small interactions at the nodes; the numer-
ical tortuosity factor X >∼ 1 takes some account of the arrangement of the pipes.

To relate this to macroscopic variables, and in particular the porosity φ, we observe
that φ ∼ a2/d2

p, where dp is a representative particle or grain size so that q/d2
p ∼

−
(
φ2d2

p

µX

)
∇p. We define the volume flux per unit area (having units of velocity) as

the discharge u. Darcy’s law then relates this to an applied pressure gradient by the
relation

u = −k
µ

[∇p+ ρgk̂], (2.2)

where ρ is fluid density, g is the acceleration due to gravity, k̂ is a unit vector in the
vertical (upwards) direction, and k is an empirically determined parameter called the
permeability, having units of length squared. The discussion above suggests that we
can write

k =
d2
pφ

2

X
; (2.3)

the numerical factor X may typically be of the order of 103, but other assumptions
can be made instead.

To check whether the pore flow is indeed laminar, we calculate the (particle)
Reynolds number for the porous flow. If v is the (average) fluid velocity in the pore
space (what we will call the phase-averaged velocity), then

v =
u

φ
; (2.4)

If a is the pore radius, then we define a particle Reynolds number based on grain size
as

Rep =
2ρva

µ
∼ ρ|u|dp

µ
√
φ
, (2.5)

since φ ∼ a/dp. Suppose (2.3) gives the permeability, and we use the gravitational
pressure gradient ρg to define (via Darcy’s law) a velocity scale2; then

Rep ∼
φ3/2

X

(
ρ
√
gdp dp

µ

)2

∼ 10[dp]
3, (2.6)

2This scale is thus the hydraulic conductivity, defined below in (2.9).
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where dp = [dp] mm, and we have used φ3/2/X = 10−3, g = 10 m s−2, µ/ρ = 10−6

m2 s−2. Thus the flow is laminar for d < 5 mm, corresponding to a gravel. Only for
free flow through very coarse gravel could the flow become turbulent, but for water
percolation in rocks and soils, we invariably have slow, laminar flow.

In other situations, and notably for forced gas stream flow in fluidised beds or in
packed catalyst reactor beds, the flow can be rapid and turbulent. In this case, the
Poiseuille flow balance −∇p = µu/k can be replaced by the Ergun equation

−∇p =
ρ|u|u
k′

; (2.7)

more generally, the right hand side will a sum of the two (laminar and turbulent)
interfacial resistances. The Ergun equation reflects the fact that turbulent flow in a
pipe is resisted by Reynolds stresses, which are generated by the fluctuation of the
inertial terms in the momentum equation. Just as for the laminar case, the parameter
k′, having units of length, depends both on the grain size dp and on φ. Evidently, we
will have

k′ = dpE(φ), (2.8)

with the numerical factor E → 0 as φ→ 0.

Hydraulic conductivity

Another measure of flow rate in porous soil or rock relates specifically to the passage
of water through a porous medium under gravity. For free flow, the pressure gradient
downwards due to gravity is just ρg, where ρ is the density of water and g is the
gravitational acceleration; thus the water flux per unit area in this case is just

K =
kρg

µ
, (2.9)

and this quantity is called the hydraulic conductivity. It has units of velocity. A
hydraulic conductivity of K = 10−5 m s−1 (about 300 m y−1) corresponds to a
permeability of k = 10−12 m2, this latter unit also being called the darcy.

2.1.1 Homogenisation

The ‘derivation’ of Darcy’s law can be carried out in a more formal way using the
method of homogenisation. This is essentially an application of the method of multiple
(space) scales to problems with microstructure. Usually (for analytic reasons) one
assumes that the microstructure is periodic, although this is probably not strictly
necessary (so long as local averages can be defined).

Consider the Stokes flow equations for a viscous fluid in a medium of macroscopic
length l, subject to a pressure gradient of order ∆p/l. For simplicity we will ignore
gravity. If the microscopic (e. g., grain size) length scale is dp, and ε = dp/l, then
if we scale velocity with d2

p∆p/lµ (appropriate for local Poiseuille-type flow), length
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with l, and pressure with ∆p, the Navier-Stokes equations can be written in the
dimensionless form

∇.u = 0,

0 = −∇p+ ε2∇2u, (2.10)

together with the no-slip boundary condition,

u = 0 on S : f(x/ε) = 0, (2.11)

where S is the interfacial surface. We put x = εξ and seek solutions in the form

u = u(0)(x, ξ) + εu(1)(x, ξ) . . .

p = p(0)(x, ξ) + εp(1)(x, ξ) . . . . (2.12)

Expanding the equations in powers of ε and equating terms leads to p(0) = p(0)(x),
and u(0) satisfies

∇ξ.u
(0) = 0,

0 = −∇ξp
(1) +∇2

ξu
(0) −∇xp

(0), (2.13)

equivalent to Stokes’ equations for u(0) with a forcing term −∇xp
(0). If wj is the

velocity field which (uniquely) solves

∇ξ.w
j = 0,

0 = −∇ξP +∇2
ξw

j + ej, (2.14)

with periodic (in ξ) boundary conditions and u = 0 on f(ξ) = 0, where ej is the
unit-vector in the ξj direction, then (since the equation is linear) we have (summing
over j)3

u(0) = −∂p
(0)

∂xj
wj. (2.15)

We define the average flux

〈u〉 =
1

V

∫
V

u(0)dV, (2.16)

where V is the volume over which S is periodic.4 Averaging (2.15) then gives

〈u〉 = −k∗.∇p, (2.17)

3In other words, we employ the summation convention which states that summation is implied
over repeated suffixes, see for example Jeffreys and Jeffreys (1953).

4Specifically, we take V to be the soil volume, but the integral is only over the pore space volume,
where u is defined. In that case, the average 〈u〉 is in fact the Darcy flux (i. e., volume fluid flux per
unit area).

30



where the (dimensionless) permeability tensor is defined by

k∗ij = 〈wji 〉. (2.18)

Recollecting the scales for velocity, length and pressure, we find that the dimensional
version of (2.17) is

〈u〉 = −k

µ
.∇p, (2.19)

where
k = k∗d2

p, (2.20)

so that k∗ is the equivalent in homogenisation theory of the quantity φ2/X in (2.3).

2.1.2 Empirical measures

While the validity of Darcy’s law can be motivated theoretically, it ultimately relies
on experimental measurements for its accuracy. The permeability k has dimensions
of (length)2, which as we have seen is related to the mean ‘grain size’. If we write
k = d2

pC, then the number C depends on the pore configuration. For a tubular
network (in three dimensions), one finds C ≈ φ2/72π (as long as φ is relatively
small). A different and often used relation is that of Carman and Kozeny, which
applies to pseudo-spherical grains (for example sand grains); this is

C ≈ φ3

180(1− φ)2
. (2.21)

The factor (1−φ)2 takes some account of the fact that as φ increases towards one, the
resistance to motion becomes negligible. In fact, for media consisting of uncemented
(i. e., separate) grains, there is a critical value of φ beyond which the medium as a
whole will deform like a fluid. Depending on the grain size distribution, this value
is about 0.5 to 0.6. When the medium deforms in this way, the description of the
intergranular fluid flow can still be taken to be given by Darcy’s law, but this now
constitutes a particular choice of the interactive drag term in a two-phase flow model.
At lower porosities, deformation can still occur, but it is elastic not viscous (on short
time scales), and given by the theory of consolidation or compaction, which we discuss
later.

In the case of soils or sediments, empirical power laws of the form

C ∼ φm (2.22)

are often used, with much higher values of the exponent (e.g. m = 8). Such behaviour
reflects the (chemically-derived) ability of clay-rich soils to retain a high fraction of
water, thus making flow difficult. Table 2.1 gives typical values of the permeability
of several common rock and soil types, ranging from coarse gravel and sand to finer
silt and clay.
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k (m2) material
10−8 gravel
10−10 sand
10−12 fractured igneous rock
10−13 sandstone
10−14 silt
10−18 clay
10−20 granite

Table 2.1: Different grain size materials and their typical permeabilities.

An explicit formula of Carman-Kozeny type for the turbulent Ergun equation
expresses the ‘turbulent’ permeability k′, defined in (2.7), as

k′ =
φ3dp

175(1− φ)
. (2.23)

2.2 Basic groundwater flow

Darcy’s equation is supplemented by an equation for the conservation of the fluid
phase (or phases, for example in oil recovery, where these may be oil and water). For
a single phase, this equation is of the simple conservation form

∂

∂t
(ρφ) + ∇.(ρu) = 0, (2.24)

supposing there are no sources or sinks within the medium. In this equation, ρ is the
material density, that is, mass per unit volume of the fluid. A term φ is not present
in the divergence term, since u has already been written as a volume flux (i.e., the φ
has already been included in it: cf. (2.4)).

Eliminating u, we have the parabolic equation

∂

∂t
(ρφ) = ∇.

[
k

µ
ρ{∇p+ ρgk̂}

]
, (2.25)

and we need a further equation of state (or two) to complete the model. The simplest
assumption corresponds to incompressible groundwater flowing through a rigid porous
medium. In this case, ρ and φ are constant, and the governing equation reduces (if
also k is constant) to Laplace’s equation

∇2p = 0. (2.26)

This simple equation forms the basis for the following development. Before pur-
suing this, we briefly mention one variant, and that is when there is a compressible
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pore fluid (e. g., a gas) in a non-deformable medium. Then φ is constant (so k is con-
stant), but ρ is determined by pressure and temperature. If we can ignore the effects
of temperature, then we can assume p = p(ρ) with p′(ρ) > 0, and (also neglecting
gravity whose effect for gases is commonly small)

ρt =
k

µφ
∇.[ρp′(ρ)∇ρ], (2.27)

which is a nonlinear diffusion equation for ρ, sometimes called the porous medium
equation. If p ∝ ργ, γ > 0, this is degenerate when ρ = 0, and the solutions display
the typical feature of finite spreading rate of compactly supported initial data.

2.2.1 Boundary conditions

The Laplace equation (2.26) in a domain D requires boundary data to be prescribed
on the boundary ∂D of the spatial domain. Typical conditions which apply are a no
flow through condition at an impermeable boundary, u.n = 0, whence

∂p

∂n
+ ρgn.k̂ = 0 on ∂D, (2.28)

or a permeable surface condition

p = pa on ∂D, (2.29)

where for example pa would be atmospheric pressure at the ground surface. Another
example of such a condition would be the prescription of oceanic pressure at the
interface with the oceanic crust.

A more common application of the condition (2.29) is in the consideration of flow
in the saturated zone below the water table (which demarcates the upper limit of
the saturated zone). At the water table, the pressure is in equilibrium with the air
in the unsaturated zone, and (2.29) applies. The water table is a free surface, and
an extra kinematic condition is prescribed to locate it. This condition says that the
phreatic surface is also a material surface for the underlying groundwater flow, so
that its velocity is equal to the average fluid velocity (not the flux): bearing in mind
(2.4), we have

∂F

∂t
+

u

φ
.∇F = 0 on ∂D, (2.30)

if the free surface ∂D is defined by F (x, t) = 0.

2.2.2 Dupuit approximation

One of the principally obvious features of mature topography is that it is relatively
flat. A slope of 0.1 is very steep, for example. As a consequence of this, it is typically
also the case that gradients of the free groundwater (phreatic) surface are also small,
and a consequence of this is that we can make an approximation to the equations of
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groundwater flow which is analogous to that used in shallow water theory or the lubri-
cation approximation, i. e., we can take advantage of the large aspect ratio of the flow.
This approximation is called the Dupuit, or Dupuit–Forchheimer, approximation.

To be specific, suppose that we have to solve

∇2p = 0 in 0 < z < h(x, y, t), (2.31)

where z is the vertical coordinate, z = h is the phreatic surface, and z = 0 is an im-
permeable basement. We let u denote the horizontal (vector) component of the Darcy

flux, and w the vertical component. In addition, we now denote by ∇ =

(
∂

∂x
,
∂

∂y

)
the horizontal component of the gradient vector. The boundary conditions are then

p = 0, φht + u .∇h = w on z = h,

∂p

∂z
+ ρg = 0 on z = 0; (2.32)

here we take (gauge) pressure measured relative to atmospheric pressure. The condi-
tion at z = 0 is that of no normal flux, allowing for gravity.

Let us suppose that a horizontal length scale of relevance is l, and that the corre-
sponding variation in h is of order d, thus

ε =
d

l
(2.33)

is the size of the phreatic gradient, and is small. We non-dimensionalise the variables
by scaling as follows:

x, y ∼ l, z ∼ d, p ∼ ρgd,

u ∼ kρgd

µl
, w ∼ kρgd2

µl2
, t ∼ φµl2

kρgd
. (2.34)

The choice of scales is motivated by the same ideas as lubrication theory. The pressure
is nearly hydrostatic, and the flow is nearly horizontal.

The dimensionless equations are

u = −∇p, ε2w = −(pz + 1),

∇.u + wz = 0, (2.35)

with
pz = −1 on z = 0,

p = 0, ht = w + ∇p.∇h on z = h. (2.36)

At leading order as ε→ 0, the pressure is hydrostatic:

p = h− z +O(ε2). (2.37)
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More precisely, if we put
p = h− z + ε2p1 + . . . , (2.38)

then (2.35) implies
p1zz = −∇2h, (2.39)

with boundary conditions, from (2.36),

p1z = 0 on z = 0,

p1z = −ht + |∇h|2 on z = h. (2.40)

Integrating (2.39) from z = 0 to z = h thus yields the evolution equation for h in the
form

ht = ∇. [h∇h], (2.41)

which is a nonlinear diffusion equation of degenerate type when h = 0.
This is easily solved numerically, and there are various exact solutions which

are indicated in the exercises. In particular, steady solutions are found by solving
Laplace’s equation for 1

2
h2, and there are various kinds of similarity solution. (2.41)

is a second order equation requiring two boundary conditions. A typical situation in
a river catchment is where there is drainage from a watershed to a river. A suitable
problem in two dimensions is

ht = (hhx)x + r, (2.42)

where the source term r represents recharge due to rainfall. It is given by

r =
rD
ε2K

, (2.43)

where rD is the rainfall rate and K = kρg/µ is the hydraulic conductivity. At the
divide (say, x = 0), we have hx = 0, whereas at the river (say, x = 1), the elevation
is prescribed, h = 1 for example. The steady solution is

h =
[
1 + r − rx2

]1/2
, (2.44)

and perturbations to this decay exponentially. If this value of the elevation of the
water table exceeds that of the land surface, then a seepage face occurs, where water
seeps from below and flows over the surface. This can sometimes be seen in steep
mountainous terrain, or on beaches, when the tide is going out.

The Dupuit approximation is not uniformly valid at x = 1, where conditions of
symmetry at the base of a valley would imply that u = 0 (below the river), and thus
px = 0. There is therefore a boundary layer near x = 1, where we rescale the variables
by writing

x = 1− εX, w =
W

ε
, h = 1 + εH, p = 1− z + εP. (2.45)

Substituting these into the two-dimensional version of (2.35) and (2.36), we find

u = PX , W = −Pz, ∇2P = 0 in 0 < z < 1 + εH, 0 < X <∞, (2.46)
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with boundary conditions

P = H, εHt + PXHX =
W

ε
+ r on z = 1 + εH,

PX = 0 on X = 0,

Pz = 0 on z = 0,

P ∼ H ∼ rX as X →∞. (2.47)

At leading order in ε, this is simply

∇2P = 0 in 0 < z < 1, 0 < X <∞,
Pz = 0 on z = 0, 1,

PX = 0 on X = 0,

P ∼ rX as X →∞. (2.48)

Evidently, this has no solution unless we allow the incoming groundwater flux r
from infinity to drain to the river at X = 0, z = 1. We do this by having a singularity
in the form of a sink at the river,

P ∼ r

π
ln
{
X2 + (1− z)2

}
near X = 0, z = 1. (2.49)

The solution to (2.48) can be obtained by using complex variables and the method
of images, by placing sinks at z = ±(2n+ 1), for integral values of n. Making use of
the infinite product formula (Jeffrey 2004, p. 72)

∞∏
1

(
1 +

ζ2

(2n+ 1)2

)
= cosh

πζ

2
, (2.50)

where ζ = X + iz, we find the solution to be

P =
r

π
ln

[
cosh2 πX

2
cos2 πz

2
+ sinh2 πX

2
sin2 πz

2

]
. (2.51)

The complex variable form of the solution is

φ = P + iψ =
2r

π
ln cosh

πζ

2
, (2.52)

which is convenient for plotting. The streamlines of the flow are the lines ψ =
constant, and these are shown in figure 2.2.

This figure illustrates an important point, which is that although the flow towards
a drainage point may be more or less horizontal, near the river the groundwater seeps
upwards from depth. Drainage is not simply a matter of near surface recharge and
drainage. This means that contaminants which enter the deep groundwater may
reside there for a very long time.
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Figure 2.2: Groundwater flow lines towards a river at X = 0, z = 1.

A related point concerns the recharge parameter r defined in (2.43). According
to table 2.1, a typical permeability for sand is 10−10 m2, corresponding to a hydraulic
conductivity of K = 10−3 m s−1, or 3× 104 m y−1. Even for phreatic slopes as low as
ε = 10−2, the recharge parameter r <∼ O(1), and shallow aquifer drainage is feasible.

However, finer-grained sediments are less permeable, and the calculation of r for
a silt with permeability of 10−14 m2 (K = 10−7 m s−1 = 3 m y−1 suggests that
r ∼ 1/ε2 � 1, so that if the Dupuit approximation applied, the groundwater surface
would lie above the Earth’s surface everywhere. This simply points out the obvious
fact that if the groundmass is insufficiently permeable, drainage cannot occur through
it but water will accumulate at the surface and drain by overland flow. The fact that
usually the water table is below but quite near the surface suggests that the long term
response of landscape to recharge is to form topographic gradients and sufficiently
deep sedimentary basins so that this status quo can be maintained.

2.3 Unsaturated soils

Let us now consider flow in the unsaturated zone. Above the water table, water and
air occupy the pore space. If the porosity is φ and the water volume fraction per
unit volume of soil is W , then the ratio S = W/φ is called the relative saturation.
If S = 1, the soil is saturated, and if S < 1 it is unsaturated. The pore space of
an unsaturated soil is configured as shown in figure 2.3. In particular, the air/water
interface is curved, and in an equilibrium configuration the curvature of this interface
will be constant throughout the pore space. The value of the curvature depends on
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Figure 2.3: Configuration of air and water in pore space. The contact angle θ mea-
sured through the water is acute, so that water is the wetting phase. γws, γas and γaw
are the surface energies of the three interfaces.

the amount of liquid present. The less liquid there is (i. e., the smaller the value of
S), then the smaller the pores where the liquid is found, and thus the higher the
curvature. Associated with the curvature is a suction effect due to surface tension
across the air/water interface. The upshot of all this is that the air and water pres-
sures are related by a capillary suction characteristic function which expresses the
difference between the pressures as a function of mean curvature, and hence, directly,
S. Elementary geometry in a cylindrical pore of diameter dp implies

pa − p =
2γ cos θ

dp
, (2.53)

where θ is the contact angle. More generally, we can take

pa − p = f(S). (2.54)

The suction characteristic f(S) is equal to 2γκ, where κ is the mean interfacial
curvature: γ is the surface tension. For air and water in soil, f is positive as water is
the wetting phase, that is, the contact angle at the contact line between air, water and
soil grain is acute, measured through the water (see figure 2.3). The resulting form
of f(S) displays hysteresis as indicated in figure 2.4, with different curves depending
on whether drying or wetting is taking place.

2.3.1 The Richards equation

To model the flow, we have the conservation of mass equation in the form

∂(φS)

∂t
+ ∇.u = 0, (2.55)

where we take φ as constant. Darcy’s law for an unsaturated flow has the form

u = −k(S)

µ
[∇p+ ρgk̂], (2.56)
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Figure 2.4: Capillary suction characteristic. It displays hysteresis in wetting and
drying.

where the permeability k depends on S. If k(1) = k0 (the saturated permeability),
then one commonly writes k = k0kr(S), where kr is the relative permeability. The
most obvious assumption would be kr = S, but this is rarely appropriate, and a better
representation is a convex function, such as kr = S3. An even better representation

is a function such as kr =

(
S − S0

1− S0

)3

+

, where S0 is known as the residual saturation.

It represents the fact that in fine-grained soils, there is usually some minimal water
fraction which cannot be removed. It is naturally associated with a capillary suction
characteristic function pa − p = f(S) which tends to infinity as S → S0+, also
appropriate for fine-grained soils.

In one dimension, and if we take the vertical coordinate (upwards) to be z, we
obtain the Richards equation

φ
∂S

∂t
− ∂V (S)

∂z
=

∂

∂z

[
D(S)

∂S

∂z

]
, (2.57)

where

V (S) = K0kr(S), D(S) = −K0

ρg
kr(S)f ′(S), K0 =

k0ρg

µ
; (2.58)

K0 is the saturated hydraulic conductivity. We are assuming pa = constant (and also
that the soil matrix is incompressible).

2.3.2 Non-dimensionalisation

We choose scales for the variables as follows:

f = Πψ, z ∼ l, t ∼ φl

K0

, (2.59)
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where we have defined the suction pressure scale to be

Π =
γ

dp
; (2.60)

here dp is the (mean) pore diameter and γ is the surface tension, assumed constant.
The Richards equation then becomes, in dimensionless variables,

St − k′r(S)Sz = ε [D∗(S)Sz]z , (2.61)

where
D∗(S) = −kr(S)ψ′(S). (2.62)

Note that ψ is a decreasing function, so that the diffusion coefficient D∗ > 0, as is
indeed necessary. The single dimensionless parameter is

ε =
Π

ρgl
, (2.63)

and is small for coarse soils, and O(1) for fine-grained soils. As a specific example,
we take l = 1 m, so that ρgl ∼ 104 Pa. If we take γ = 70 mN m−1 fpr water/air,
and dp ∼ 0.1 mm, then Π ∼ 700 Pa, and ε ∼ 0.07; this may be appropriate for sandy
soils. For silty soils, we might have dp ∼ 10 µm, and then ε ∼ 0.7.

As a specific example, we consider the case of soil wetting due to surface infiltra-
tion: of rainfall, for example. Suppose that there is a constant downwards flux of
(dimensional) rainfall q at the surface. It is convenient to define the depth ζ = −z,
and take the vadose zone to be in 0 < ζ < 1. The Richards equation is then

St + k′r(S)Sζ = ε [D∗(S)Sζ ]ζ , (2.64)

and suitable boundary conditions for the saturation are

kr(S)− εD∗(S)Sζ = q∗ at ζ = 0, q∗ =
q

K0

,

S = 1 at ζ = 1. (2.65)

In the steady state, the first condition in (2.65) applies everywhere, and the solu-
tion is a quadrature, ∫ 1

S

εD∗(S) dS

kr(S)− q∗
= 1− ζ. (2.66)

Obviously S must be an increasing function of ζ, and this requires q∗ < kr(1) = 1, in
other words q < K0: the supplied rainfall must be less than the saturated hydraulic
conductivity.

What if it is not? It is easy to see from the solution (2.66) that as q∗ → 1−, the
saturation approaches one. If q > K0, the supplied flux at the surface is greater than
the soil’s maximum drainage capacity (which is the saturated hydraulic conductivity).
So in this case, water must pond at the surface, and the boundary condition is replaced
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by S = 1 at ζ = 0; clearly in this case, the soil is waterlogged and the water table
is pushed up to the soil surface. Such ponding is commonly observed during periods
of heavy rainfall. For silt with k0 = 10−14 m2, the hydraulic conductivity K0 ∼ 10−7

m s−1 or 3 m y−1, while average rainfall in England, for example, is ≤ 1 m y−1.
Thus on average q∗ ≤ 1 for such soils, but during storms we can expect q∗ � 1.
When ponding does occur, the pond depth is determined by the balance between
precipitation, infiltration, and surface run-off.

2.3.3 Snow melting

An application of the unsaturated flow model occurs in the study of melting snow.
In particular, it is found that pollutants which may be uniformly distributed in snow
(e. g. sulphate SO2−

4 from sulphur emissions via acid rain) can be concentrated in melt
water run-off, with a consequent enhanced detrimental effect on stream pollution.
The question then arises, why this should be so? We shall find that uniform surface
melting of a dry snowpack can lead to a meltwater spike at depth.

Suppose we have a snow pack of depth l. Snow is a porous aggregate of ice
crystals, and meltwater formed at the surface can percolate through the snow pack to
the base, where run-off occurs. (We ignore effects of re-freezing of meltwater.) The
model (2.64) is appropriate, and to be specific, we will also take

kr = S3, ψ(S) =
1

S
− S, (2.67)

based on typical experimental results.
Suitable boundary conditions in a melting event might be to prescribe the melt

flux q0 at the surface, thus

kr

(
ε
∂ψ

∂ζ
+ 1

)
= q∗ =

q0

K 0
at ζ = 0. (2.68)

If the base is impermeable, then

kr

(
ε
∂ψ

∂ζ
+ 1

)
= 0 at ζ = 1. (2.69)

This is certainly not realistic if S reaches 1 at the base, since then ponding must
occur and presumably melt drainage will occur via a sub-horizontal flow under the
snowpack, but we will examine the initial stages of the flow using (2.69) before that
happens. Finally, we suppose S = 0 at t = 0. Again, this is not realistic in the model
(it implies infinite capillary suction) but it is a feasible approximation to make.

Simplification of this model now leads to the dimensionless Richards equation in
the form

∂S

∂t
+ 3S2∂S

∂ζ
= ε

∂

∂ζ

[
S(1 + S2)

∂S

∂ζ

]
. (2.70)

If we choose γ = 70 mN m−1, dp = 0.1 mm, ρ = 103 kg m−3, g = 10 m s−2, l = 1 m
as before, then again ε = 0.07. It follows that (2.70) has a propensity to form shocks,
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these being diffused by the term in ε over a distance O(ε) (by analogy with the shock
structure for the Burgers equation).

We want to solve (2.70) with the initial condition

S = 0 at t = 0, (2.71)

and the boundary conditions

S3 − εS(1 + S2)
∂S

∂ζ
= q∗ on ζ = 0, (2.72)

and

S3 − εS(1 + S2)
∂S

∂ζ
= 0 at ζ = 1. (2.73)

Roughly, for ε� 1, these are

S = S0 at ζ = 0,

S = 0 at ζ = 1, (2.74)

where S0 = q∗1/3, which we initially take to be O(1) (and < 1, so that surface ponding
does not occur).

Neglecting ε, the solution is the step function

S = S0, ζ < ζf ,

S = 0, ζ > ζf , (2.75)

and the shock front at ζf advances at a rate ζ̇f given by the jump condition

ζ̇f =
[S3]+−
[S]+−

= S2
0 . (2.76)

In dimensional terms, the shock front moves at speed q0/φS0, which is in fact obvious
(given that it has constant S behind it).

The shock structure is similar to that of Burgers’ equation. We put

ζ = ζf + εZ, (2.77)

and S rapidly approaches the quasi-steady solution S(Z) of

−cS ′ + 3S2S ′ = [S(1 + S2)S ′]′, (2.78)

where c = ζ̇f ; hence
S(1 + S2)S ′ = −S(S2

0 − S2), (2.79)

in order that S → S0 as Z → −∞, and where we have chosen

c = S2
0 , (2.80)
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Figure 2.5: S(Z) given by (2.82); the shock front terminates at the origin.

(as S+ = 0), thus reproducing (2.76). The solution is a quadrature,∫ S (1 + S2) dS

(S2
0 − S2)

= −Z, (2.81)

with an arbitrary added constant (amounting to an origin shift for Z). Hence

S − (1 + S2
0)

2S0

ln

[
S0 + S

S0 − S

]
= Z. (2.82)

The shock structure is shown in figure 2.5; the profile terminates where S = 0
at Z = 0. In fact, (2.79) implies that S = 0 or (2.82) applies. Thus when S given
by (2.82) reaches zero, the solution switches to S = 0. The fact that ∂S/∂Z is
discontinuous is not a problem because the diffusivity S(1 + S2) goes to zero when
S = 0. This degeneracy of the equation is a signpost for fronts with discontinuous
derivatives: essentially, the profile can maintain discontinuous gradients at S = 0
because the diffusivity is zero there, and there is no mechanism to smooth the jump
away.

Suppose now that k0 = 10−10 m2 and µ/ρ = 10−6 m2 s−1; then the saturated
hydraulic conductivity K0 = k0ρg/µ = 10−3 m s−1. On the other hand, if a metre
thick snow pack melts in ten days, this implies q0 ∼ 10−6 m s−1. Thus S3

0 = q0/K0 ∼
10−3, and the approximation S ≈ S0 looks less realistic. With

S3 − εS(1 + S2)
∂S

∂ζ
= S3

0 , (2.83)

and S0 ∼ 10−1 and ε ∼ 10−1, it seems that one should assume S � 1. We define

S =

(
S3

0

ε

)1/2

s; (2.84)
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(2.83) becomes

βs3 − s
[
1 +

S3
0

ε
s2

]
∂s

∂ζ
= 1 on ζ = 0, (2.85)

and we have S3
0/ε ∼ 10−2, β = (S0/ε)

3/2 ∼ 1.
We neglect the term in S3

0/ε, so that

βs3 − s∂s
∂ζ
≈ 1 on ζ = 0, (2.86)

and substituting (2.84) into (2.70) leads to

∂s

∂τ
+ 3βs2 ∂s

∂ζ
≈ ∂

∂ζ

[
s
∂s

∂ζ

]
, (2.87)

if we define t = τ/ (εS3
0)

1/2
. A simple analytic solution is no longer possible, but the

development of the solution will be similar. The flux condition (2.86) at ζ = 0 allows
the surface saturation to build up gradually, and a shock will only form if β � 1
(when the preceding solution becomes valid).

2.3.4 Similarity solutions

If, on the other hand, β � 1, then the saturation profile approximately satisfies

∂s

∂τ
=

∂

∂ζ

[
s
∂s

∂ζ

]
,

−s∂s
∂ζ

=

{
1 on ζ = 0,
0 on ζ = 1.

(2.88)

At least for small times, the model admits a similarity solution of the form

s = ταf(η), η = ζ/τβ, (2.89)

where satisfaction of the equations and boundary conditions requires 2α = β and
2β = 1 = α, whence α = 1

3
, β = 2

3
, and f satisfies

(ff ′)′ − 1
3
(f − 2ηf ′) = 0, (2.90)

with the condition at ζ = 0 becoming

−ff ′ = 1 at η = 0. (2.91)

The condition at ζ = 1 can be satisfied for small enough τ , as we shall see, because
the equation (2.90) is degenerate, and f reaches zero in a finite distance, η0, say, and
f = 0 for η > η0. As η = 1/τ 2/3 at ζ = 1, then this solution will satisfy the no flux

condition at ζ = 1 as long as τ < η
−3/2
0 , when the advancing front will reach ζ = 1.
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Figure 2.6: Schematic representation of the evolution of s in (2.87) for both large and
small β.

To see why f behaves in this way, integrate once to find

f(f ′ + 2
3
η) = −1 +

∫ η

0

f dη. (2.92)

For small η, the right hand side is negative, and f is positive (to make physical sense),
so f decreases (and in fact f ′ < −2

3
η). For sufficiently small f(0) = f0, f will reach

zero at a finite distance η = η0, and the solution must terminate. On the other hand,

for sufficiently large f0,

∫ η

0

f dη reaches 1 at η = η1 while f is still positive (and

f ′ = −2
3
η1 there). For η > η1, then f remains positive and f ′ > −2

3
η (f cannot reach

zero for η > η1 since

∫ η

0

f dη > 1 for η > η1). Eventually f must have a minimum

and thereafter increase with η. This is also unphysical, so we require f to reach zero
at η = η0. This will occur for a range of f0, and we have to select f0 in order that∫ η0

0

f dη = 1, (2.93)

which in fact represents global conservation of mass. Figure 2.6 shows the schematic
form of solution both for β � 1 and β � 1. Evidently the solution for β ∼ 1 will
have a profile with a travelling front between these two end cases.
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2.4 Immiscible two-phase flows: the Buckley-Leverett

equation

In some circumstances, the flow of more than one phase in a porous medium is
important. The type example is the flow of oil and gas, or oil and water (or all
three!) in a sedimentary basin, such as that beneath the North Sea. Suppose there
are two phases; denote the phases by subscripts 1 and 2, with fluid 2 being the wetting
fluid, and S is its saturation. Then the capillary suction characteristic is

p1 − p2 = pc(S), (2.94)

with the capillary suction pc being a positive, monotonically decreasing function of
saturation S; mass conservation takes the form

−φ∂S
∂t

+ ∇.u1 = 0,

φ
∂S

∂t
+ ∇.u2 = 0, (2.95)

where φ is (constant) porosity, and Darcy’s law for each phase is

u1 = −k0

µ1

kr1

[
∇p1 + ρ1gk̂

]
,

u2 = −k0

µ2

kr2

[
∇p2 + ρ2gk̂

]
, (2.96)

with kri being the relative permeability of fluid i.
For example, if we consider a one-dimensional flow, with z pointing upwards, then

we can integrate (2.95) to yield the total flux

u1 + u2 = q(t). (2.97)

If we define the mobilities of each fluid as

Mi =
k0

µi
kri, (2.98)

then it is straightforward to derive the equation for S,

φ
∂S

∂t
= − ∂

∂z

[
Meff

{
q

M1

+
∂pc
∂z

+ (ρ1 − ρ2)g

}]
, (2.99)

where the effective mobility is given by

Meff =

(
1

M1

+
1

M2

)−1

. (2.100)
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This is a convective-diffusion equation for S. If suction is very small, we obtain
the Buckley-Leverett equation

φ
∂S

∂t
+

∂

∂z

[
Meff

{
q

M1

+ (ρ1 − ρ2)g

}]
= 0, (2.101)

which is a nonlinear hyperbolic wave equation. As a typical situation, suppose q = 0,
and kr2 = S3, kr1 = (1− S)3. Then

Meff =
k0S

3(1− S)3

µ1S3 + µ2(1− S)3
, (2.102)

and the wave speed v(S) is given by

v = −(ρ2 − ρ1)gM ′
eff(S) = v0V (S), (2.103)

where

v0 =
(ρ2 − ρ1)gk0

µ2

, V (S) =
χ′(S)

χ(S)2
,

χ(S) =
µr

(1− S)3
+

1

S3
, µr =

µ1

µ2

. (2.104)

The variation of V with S is shown in figure 2.7. For ρ2 > ρ1 (as for oil and water,
where water is the wetting phase), waves move upwards at low water saturation and
downwards at high saturation.

Shocks will form, but these are smoothed by the diffusion term − ∂

∂z

[
Meffp

′
c

∂S

∂z

]
,

in which the diffusion coefficient is

D = −Meff p
′
c. (2.105)

As a typical example, take

pc =
p0(1− S)λ1

Sλ2
(2.106)

with λi > 0. Then we find

D = k0p0S
2−λ2(1− S)2+λ1

[
λ1S + λ2(1− S)

µ1S3 + µ2(1− S)3

]
, (2.107)

and we see that D is typically degenerate at S = 0. In particular, if λ2 < 2, then
infiltration of the wetting phase into the non-wetting phase proceeds at a finite rate,
and this always occurs for infiltration of the non-wetting phase into the wetting phase.

A particular limiting case is when one phase is much less dense than the other,
the usual situation being that of gas and liquid. This is exemplified by the problem
of snow-melt run-off considered earlier. In that case, water is the wetting phase, thus
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Figure 2.7: Graph of dimensionless wave speed V (S) as a function of wetting fluid
saturation, indicating the speed and direction of wave motion (V > 0 means waves
move upwards) if the wetting fluid is more dense. The viscosity ratio µr (see (2.104))
is taken to be 30.

ρ2 − ρ1 = ρw − ρa is positive, and also µw ≈ 10−3 Pa s, µa ≈ 10−5 Pa s, whence
µa � µw (µr � 1), so that, from (2.102),

Meff ≈
k0S

3

µw
, (2.108)

at least for saturations not close to unity. Shocks form and propagate downwards
(since ρ2 > ρ1). The presence of non-zero flux q < 0 does not affect this statement.
Interestingly, the approximation (2.108) will always break down at sufficiently high
saturation. Inspection of V (S) for µr = 0.01 (as for air and water) indicates that
(2.108) is an excellent approximation for S <∼ 0.5, but not for S >∼ 0.6; for S >∼ 0.76,
V is positive and waves move upwards. As µr → 0, the right hand hump in figure
2.7 moves towards S = 1, but does not disappear; indeed the value of the maximum
increases, and is V ∼ µ

−1/3
r . Thus the single phase approximation for unsaturated

flow is a singular approximation when µr � 1 and 1− S � 1.

2.5 Consolidation

Consolidation refers to the ability of a granular porous medium such as a soil to
compact under its own weight, or by the imposition of an overburden pressure. The
grains of the medium rearrange themselves under the pressure, thus reducing the
porosity and in the process pore fluid is expelled. Since the porosity is no longer
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constant, we have to postulate a relation between the porosity φ and the pore pressure
p. In practice, it is found that soils, when compressed, obey a (non-reversible) relation
between φ and the effective pressure

pe = P − p, (2.109)

where P is the overburden pressure.
The concept of effective pressure, or more generally effective stress, is an extremely

important one. The idea is that the total imposed pressure (e. g., the overburden
pressure due to the weight of the rock or soil) is borne by both the pore fluid and the
porous medium. The pore fluid is typically at a lower pressure than the overburden,
and the extra stress (the effective stress) is that which is applied through grain to
grain contacts. Thus the effective pressure is that which is transmitted through the
porous medium, and it is in consequence of this that the medium responds to the
effective stress; in particular, the characteristic relation between φ and pe represents
the nonlinear pseudo-elastic effect of compression.

The dependence of the effective pressure on porosity is non-trivial and involves
hysteresis, as indicated in figure 2.8. Specifically, a soil follows the normal consolida-
tion line providing consolidation is occurring, i.e ṗe > 0. However, if at some point
the effective pressure is reduced, only a partial recovery of φ takes place. When pe
is increased again, φ more or less retraces its (overconsolidated) path to the normal
consolidation line, and then resumes its normal consolidation path. Here we will
ignore effects of hysteresis, as in (3.105).

When modelling groundwater flow in a consolidating medium, we must take ac-
count also of deformation of the medium itself. In turn, this requires prescription of

φ

1 − φ

   consolidation

      line

normal

e
 p

10
log

Figure 2.8: Form of the relationship between porosity and effective pressure. A
hysteretic decompression-reconsolidation loop is indicated. In soil mechanics this
relationship is often written in terms of the void ratio e = φ/(1− φ), and specifically
e = e0 − Cc log10 pe, where Cc is the compression index.
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a constitutive rheology for the deformable matrix. This is often a complex matter,
but luckily in one dimension, the issue does not arise, and a one-dimensional model
is often what is of practical interest. We take z to point vertically upwards, and let
v and w be the linear (or phase-averaged) velocities of liquid and solid, respectively.
Then φv and (1 − φ)w are the respective fluxes, and conservation of mass of each
phase requires

∂φ

∂t
+
∂(φv)

∂z
= 0,

−∂φ
∂t

+
∂

∂z
{(1− φ)w} = 0; (2.110)

Darcy’s law is then

φ(v − w) = −k
µ

[
∂p

∂z
+ ρlg

]
, (2.111)

while the overburden pressure satisfies

∂P

∂z
= −[ρs(1− φ) + ρlφ]g, P = P0 on z = h; (2.112)

here z = h represents the ground surface and P0 is the applied load. The effective
pressure is just pe = P − p.

Note that by adding the two mass conservation equations and integrating, we have

φv + (1− φ)w = q(t), (2.113)

which can be determined from the boundary conditions. In particular, if we assume
an impermeable basement where v = w = 0, then q = 0 and

w = − φv

1− φ
, φ(v − w) = −w. (2.114)

We use the definition of the effective pressure in (2.109), together with (2.112)
and (2.113), to derive the equation

∂φ

∂t
= − ∂

∂z

[
k

µ
(1− φ)

{
∂pe
∂z

+ ∆ρ(1− φ)g

}]
, (2.115)

where ∆ρ = ρs − ρl, and since pe(φ) is a monotonically decreasing function, this
brings us back to the Richards equation (2.57). Specifically, we can write (2.115) in
the form

φt + Vz = [Dφz]z , (2.116)

where

V (φ) =
k(φ)∆ρg

µ
(1− φ)2, D = −k(φ)

µ
(1− φ)p′e(φ), (2.117)

and this can be compared to (2.57).
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A commonly used expression in soil mechanics for the relationship between effec-
tive pressure and porosity is a logarithmic dependence of the void ratio φ/(1− φ) on
pe, as mentioned in figure 2.8. The normal consolidation line for a soil is that part of
the yield surface on which the shear stress vanishes, and we may take

φ

1− φ
= e0 − Cc log10

(
pe
p0
e

)
; (2.118)

the quantity Cc is called the compression index. Note that this prescription will not
be valid at small effective pressure, since as pe → 0, the porosity will tend to its value
at loose packing, which we denote as φ0. This gives pe as a monotonically decreasing
function of φ for 0 < φ < 1, and in particular,

p′e(φ) = − 0.43 pe
Cc(1− φ)2

, (2.119)

where 0.43 ≈ ln 10. In this case,

D =
0.43 k(φ)pe
µCc(1− φ)

. (2.120)

The diffusion coefficient D is sometimes written as cv, and is known as the coefficient
of consolidation. If we use values µ = 10−3 Pa s, pe = 104 Pa, k = 10−14 m2 (for silt),
Cc = 0.1 and φ = 0.4, then D ∼ 10−6 m2 s−1. Of course this value depends strongly

on the permeability, or equivalently the hydraulic conductivity K =
kρg

µ
. For the silt

permeability, K ∼ 3 m y−1, whereas actual soils (with organic matter, worm burrows,
etc.), typically have hydraulic conductivities ∼ 1 m d−1, which is about a hundred
times larger, and would give a corresponding diffusion coefficient of D ∼ 10−4 m2 s−1.

We suppose these equations apply in a vertical column 0 < z < h, for which
suitable boundary conditions are (with an impermeable basement and no surface
load)

v = w = 0 at z = 0,

φ = φ0, ḣ = w at z = h, (2.121)

and with an initial condition for φ. Note that by comparing (2.110)1 and (2.116), and
using (2.114),

w = −(V −Dφz)
1− φ

. (2.122)

Therefore the boundary conditions in (2.121) collapse to

V −Dφz = 0 at z = 0,

φ = φ0, ḣ = −(V −Dφz)
1− φ

at z = h. (2.123)
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In the steady state, it follows that V −Dφz = 0, and thus∫ φ0

φ

D(φ) dφ

V (φ)
= h− z. (2.124)

If Cc is small (and typical values are in the range Cc ≤ 0.1) then φ varies little, and
we can suppose V and D are approximately constant. In this case, the consolidation
equation takes the simpler form

φt = Dφzz, (2.125)

together with (2.123), and the steady solution (2.124) is just

φ = φ0 −
V

D
(h0 − z). (2.126)

We now consider settlement of the ground after imposition of a surface load pres-
sure ∆P . We suppose the final steady state has depth h∞, so that the final steady
solution (with D and V being constant) is

φ∗ = φ∞ −
V

D
(h∞ − z), (2.127)

and φ∞ = φ(p∞e ), where p∞e is the applied surface effective pressure. With no initial
surface load, p∞e = ∆P , the prescribed surface load, and so (for small changes in φ)

φ∞ ≈ φ0 − |φ′(0)|∆P. (2.128)

We perturb the system by writing

φ = φ∗(z) + Φ, h = h∞ + η, (2.129)

and then linearising the equation and boundary conditions. This leads to

Φt = DΦzz,

Φz = 0 on z = 0,

V

D
η + Φ = 0, ηt =

DΦz

1− φ∞
on z = h∞. (2.130)

Eliminating η from the surface boundary condition gives

Φt +
V Φz

1− φ∞
= 0 on z = h∞. (2.131)

Subtracting the initial condition from the final condition, we find

Φ = φ0 − φ∞ −
V

D
(h0 − h∞), η = h0 − h∞ at t = 0. (2.132)
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At this point we realise that the initial depth h is unconstrained. It is in fact
determined by the volume of solids in the domain (which, unlike the volume of water
which is squeezed out the top, is conserved). Thus we require∫ h∞+η

0

[1− (φ∗ + Φ)] dz =

∫ h∞

0

(1− φ∗) dz, (2.133)

and linearising this leads to the normalising condition∫ h∞

0

Φ dz = (1− φ∞)η. (2.134)

This is consistent with (2.130) (as it must be), and it provides the necessary relation
between h0 and h∞, which is, using (2.128),

h0 − h∞
h∞

=
|φ′(0)|∆P

1− φ∞ +
V h∞
D

, (2.135)

and this is the (relative) settlement due to a given load.
The other quantity of interest is the settlement time. The normal mode solutions

of (2.130) are

Φ = e−Ds
2t cos sz, (2.136)

where

tanκ = − κ

Pe
, κ = sh∞, P e =

h∞V

D(1− φ∞)
; (2.137)

here Pe is a suitable Péclet number for the flow, and s is the wavenumber (normally
one uses k, but that is already taken for the permeability). It is graphically straight-
forward to see that there is an infinite number of values of κ1, κ2, . . . (positive, without
loss of generality) satisfying (2.137), with (n − 1

2
)π < κn < nπ. The settlement or

consolidation time scale tc is essentially determined by κ1, and is thus

tc ∼
h2
∞

Dκ2
1

, (2.138)

where κ1 lies between 1
2
π and π. It depends primarily on the permeability k. If we

use (2.120), and take k ∼ 10−14 m2 (silt), Cc = 0.1, φ = 0.3, µ = 10−3 Pa s, P0 = 105

Pa (a small house), then D ∼ 0.6 × 10−5 m2 s−1. Similarly, with ∆ρ = 2 × 103 kg
m−3, we find V ∼ 10−7 m s−1, and so, if we take h∞ = 10 m, the Péclet number is
Pe ∼ 0.23; not extremely small, but small enough to use the approximation of small
Pe in (2.137). When Pe is small, κ ≈ 1

2
π, and so 14.82

tc ∼
4h2
∞

π2D
, (2.139)

which gives tc ∼ 3 months.
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Exercises

2.1 Show that for a porous medium idealised as a cubical network of tubes, the
permeability is given (approximately) by k = d2

pφ
2/72π, where dp is the grain

size. How is the result modified if the pore space is taken to consist of pla-
nar sheets between identical cubical blocks? (The volume flux per unit width
between two parallel plates a distance h apart is −h3p′/12µ, where p′ is the
pressure gradient.)

2.2 A sedimentary rock sequence consists of two type of rock with permeabilities
k1 and k2. Show that in a unit with two horizontal layers of thickness d1 and
d2, the effective horizontal permeability (parallel to the bedding plane) is

k‖ = k1f1 + k2f2,

where fi = di/(d1 + d2), whereas the effective vertical permeability is given by

k−1
⊥ = f1k

−1
1 + f2k

−1
2 .

Show how to generalise this result to a sequence of n layers of thickness d1, . . . , dn.

Hence show that the effective permeabilities of a thick stratigraphic sequence
containing a distribution of (thin) layers, with the proportion of layers having
permeabilities in (k, k + dk) being f(k)dk, are given by

k‖ =

∫ ∞
0

kf(k) dk, k−1
⊥ =

∫ ∞
0

f(k) dk

k
.

2.3 Groundwater flows between an impermeable basement at z = hb(x, y, t) and
a phreatic surface at z = zp(x, y, t). Write down the equations governing the
flow, and by using the Dupuit approximation, show that the saturated depth h
satisfies

φht =
kρg

µ
∇.[h∇zp],

where ∇ = (∂/∂x, ∂/∂y). Deduce that a suitable time scale for flows in an
aquifer of typical depth h0 and extent l is tgw = φµl2/kρgh0.

I live a kilometer from the river, on top of a layer of sediments 100 m thick
(below which is impermeable basement). What sort of sediments would those
need to be if the river responds to rainfall at my house within a day; within a
year?

2.4 A two-dimensional earth dam with vertical sides at x = 0 and x = l has a
reservoir on one side (x < 0) where the water depth is h0, and horizontal dry
land on the other side, in x > l. The dam is underlain by an impermeable
basement at z = 0.
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Write down the equations describing the saturated groundwater flow, and show
that they can be written in the dimensionless form

u = −px, ε2w = −(pz + 1),

pzz + ε2pxx = 0,

and define the parameter ε. Write down suitable boundary conditions on the
impermeable basement, and on the phreatic surface z = h(x, t).

Assuming ε� 1, derive the Dupuit-Forchheimer approximation for h,

ht = (hhx)x in 0 < x < 1.

Show that a suitable boundary condition for h at x = 0 (the dam end) is

h = 1 at x = 0.

Now define the quantity

U =

∫ h

0

p dz,

and show that the horizontal flux

q =

∫ h

0

u dz = −∂U
∂x

.

Hence show that the conditions of hydrostatic pressure at x = 0 and constant
(atmospheric) pressure at x = 1 (the seepage face) imply that∫ 1

0

q dx = 1
2
.

Deduce that, if the Dupuit approximation for the flux is valid all the way to
the toe of the dam at x = 1, then h = 0 at x = 1, and show that in the steady
state, the (dimensional) discharge at the seepage face is

qD =
kρgh2

0

2µl
.

Supposing the above description of the solution away from the toe to be valid,
show that a possible boundary layer structure near x = 1 can be described by
writing

x = 1− ε2X, h = εH, z = εZ, p = εP,

and write down the resulting leading order boundary value problem for P .
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2.5 I get my water supply from a well in my garden. The well is of depth h0 (relative
to the height of the water table a large distance away) and radius r0. Show that
the Dupuit approximation for the water table height h is

φ
∂h

∂t
=
kρg

µ

1

r

∂

∂r

(
rh
∂h

∂r

)
.

If my well is supplied from a reservoir at r = l, where h = h0, and I withdraw
a constant water flux q0, find a steady solution for h, and deduce that my well
will run dry if

q0 >
πkρgh2

0

µ ln[l/r0]
.

Use plausible values to estimate the maximum yield (gallons per day) I can use
if my well is drilled through sand, silt or clay, respectively.

2.6 A volume V of effluent is released into the ground at a point (r = 0) at time t.
Use the Dupuit approximation to motivate the model

φ
∂h

∂t
=
kρg

µ

1

r

∂

∂r

(
rh
∂h

∂r

)
,

h = h0 at t = 0, r > 0,∫ ∞
0

r(h− h0)dr = V/2π, t > 0,

where h0 is the initial height of the water table above an impermeable basement.
Find suitable similarity solutions in the two cases (i) h0 = 0 (ii) h0 > 0, h−h0 �
h0, and comment on the differences you find.

2.7 Rain falls steadily at a rate q (volume per unit area per unit time) on a soil of
saturated hydraulic conductivity K0 (= k0ρwg/µ, where k0 is the saturated per-
meability). By plotting the relative permeability kr and suction characteristic
σψ/d as functions of S (assuming a residual liquid saturation S0), show that a
reasonable form to choose for kr(ψ) is kr = e−cψ. If the water table is at depth
h, show that, in a steady state, ψ is given as a function of the dimensionless
depth z∗ = z/zc, where zc = σ/ρwgd (σ is the surface tension, d the grain size)
by

h∗ − z∗ = 1
2
ψ − 1

c
ln

[
sinh{1

2
(ln 1

q∗
− cψ)}

sinh{1
2

ln 1
q∗
}

]
,

where h∗ = h/zc, providing q∗ = q/K0 < 1. Deduce that if h � zc, then
ψ ≈ 1

c
ln 1

q∗
near the surface. What happens if q > K0?

2.8 Derive the Richards equation

φ
∂S

∂t
= − ∂

∂z

[
k0

µ
kr(S)

{
∂pc
∂z

+ ρwg

}]
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for one-dimensional infiltration of water into a dry soil, explaining the meaning
of the terms, and giving suitable boundary conditions when the surface flux q
is prescribed. Show that if the surface flux is large compared with k0ρwg/µ,
where k0 is the saturated permeability, then the Richards equation can be ap-
proximated, in suitable non-dimensional form, by a nonlinear diffusion equation
of the form

∂S

∂t
=

∂

∂z

[
D
∂S

∂z

]
.

Show that, if D = Sm, a similarity solution exists in the form

S = tαF (η), η = z/tβ,

where α =
1

m+ 2
, β =

m+ 1

m+ 2
, and F satisfies

(FmF ′)′ = αF − βηF ′, FmF ′ = −1 at η = 0, F → 0 as η →∞.

Deduce that

FmF ′ = −(α + β)

∫ η0

η

Fdη − βηF,

where η0 (which may be ∞) is where F first reaches zero. Deduce that F ′ < 0,
and hence that η0 must be finite, and is determined by∫ η0

0

F dη =
1

α + β
.

What happens for t > F (0)−1/α?

2.9 Write down the equations describing one-dimensional consolidation of wet sed-
iments in terms of the variables φ, v, w, p, pe, these being the porosity, solid and
liquid (linear) velocities, and the pore and effective pressures. Neglect the effect
of gravity.

Saturated sediments of depth h lie on a rigid but permeable (to water) basement,
through which a water flux W is removed. Show that

w =
k

µ

∂p

∂z
−W,

and deduce that φ satisfies the equation

∂φ

∂t
=

∂

∂z

[
(1− φ)

{
k

µ

∂p

∂z
−W

}]
.

If the sediments are overlain by water, so that p = constant (take p = 0) at
z = h, and if φ = φ0 + p/K, where the compressibility K is large (so φ ≈ φ0),
show that a suitable reduction of the model is

∂p

∂t
−W ∂p

∂z
= c

∂2p

∂z2
,
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where c = K(1− φ0)k/µ, and p = 0 on z = h, pz = µW/k. Non-dimensionalise
the model using the length scale h, time scale h2/c, and pressure scale µWh/k.
Hence describe the solution if the parameter ε = µWh/k is small, and find the
rate of surface subsidence. What has this to do with Venice?

2.10 Write down a model for vertical flow of two immiscible fluids in a porous
medium. Deduce that the saturation S of the wetting phase satisfies the equa-
tion

φ
∂S

∂t
+

∂

∂z

[
Meff

{
q

Mnw

+ g∆ρ

}]
= − ∂

∂z

[
Meff

∂pc
∂z

]
,

where z is a coordinate pointing downwards,

pc = pnw − pw, ∆ρ = ρw − ρnw, M−1
eff = (M−1

w +M−1
nw),

q is the total downward flux, and the suffixes w and nw refer to the wetting and
non-wetting fluid respectively. Define the phase mobilities Mi. Give a criterion
on the capillary suction pc which allows the Buckley-Leverett approximation to
be made, and show that for q = 0 and µw � µnw, waves typically propagate
downwards and form shocks. What happens if q 6= 0? Is the Buckley-Leverett
approximation realistic — e.g. for air and water in soil? (Assume pc ∼ 2γ/rp,
where γ = 70 mN m−1, and rp is the pore radius: for clay, silt and sand, take
rp = 1 µ, 10 µ, 100 µ, respectively.)

2.11 A model for snow melt run-off is given by the following equations:

u =
k

µ

[
∂pc
∂z

+ ρlg

]
,

k = k0S
3,

φ
∂S

∂t
+
∂u

∂z
= 0,

pc = p0

(
1

S
− S

)
.

Explain the meaning of the terms in these equations, and describe the assump-
tions of the model.

The intrinsic permeability k0 is given by

k0 = 0.077 d2 exp[−7.8 ρs/ρl],

where ρs and ρl are snow and water densities, and d is grain size. Take d = 1
mm, ρs = 300 kg m−3, ρl = 103 kg m−3, p0 = 1 kPa, φ = 0.4, µ = 1.8 × 10−3

Pa s, g = 10 m s−2, and derive a non-dimensional model for melting of a one
metre thick snow pack at a rate (i.e. u at the top surface z = 0) of 10−6 m s−1.
Determine whether capillary effects are small; describe the nature of the model
equation, and find an approximate solution for the melting of an initially dry
snowpack. What is the (meltwater flux) run-off curve?
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2.12 Consider the following model, which represents the release of a unit quantity of
groundwater at t = 0 in an aquifer −∞ < x < ∞, when the Dupuit approxi-
mation is used:

ht = (hhx)x,

h = 0 at t = 0, x 6= 0,∫ ∞
−∞

h dx = 1

(i. e., h = δ(x) at t = 0). Show that a similarity solution to this problem exists
in the form

h = t−1/3g(ξ), ξ = x/t1/3,

and find the equation and boundary conditions satisfied by g. Show that the
water body spreads at a finite rate, and calculate what this is.

Formulate the equivalent problem in three dimensions, and write down the
equation satisfied by the similarity form of the solution, assuming cylindrical
symmetry. Does this solution have the same properties as the one-dimensional
solution?
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Chapter 3

Convection

Convection is the fluid motion induced by buoyancy; buoyancy is the property of a
fluid whereby its density depends on external properties. The most common form of
convection is thermal convection, which occurs due to the dependence of density on
temperature: warm fluid is light, and therefore rises. Everyday examples of this are
the circulation induced by a convector heater, or the motion which can be seen in a
saucepan of oil when it is heated. (In the latter case, one can see convection rolls in
the fluid, regular but time-dependent.) Another common form of convection is com-
positional convection, which is induced by density changes dependent on composition.
An example of this occurs during the formation of sea ice in the polar regions. As
salty sea water freezes, it rejects the salt (the ice is almost pure water substance),
and the resulting salty water is denser than the sea water from which it forms, and
thus induces a convective motion below the ice. Below, we discuss three geophysical
examples from convection, but convection is everywhere: it drives the oceanic circula-
tion, it drives the atmospheric circulation, it causes thunderstorms, it occurs in glass
manufacture, in a settling pint of Guinness, in back boilers, in solar panels. And, it
has formed the thematic core of the subject of geophysical fluid dynamics for almost
a century.

3.1 Mantle convection

Most people have heard of continental drift, the process whereby the Earth’s conti-
nents drift apart relative to each other. The Atlantic Ocean is widening at the rate of
several centimetres a year, the crashing of India into Asia over the last 50 My (fifty
million years) has caused the continuing uplift of the Himalayas, Scotland used to
be joined to Newfoundland. The continents ride, like rafts of debris, on the tectonic
plates of the Earth, which separate at mid-ocean ridges and converge at subduction
zones. The theory of plate tectonics, which originated with the work of Wegener and
Holmes in the early part of the twentieth century, and which was finally accepted by
geophysicists in the ‘plate tectonics revolution’ of the 1960’s, describes the surface
of the Earth as being split up into some thirteen major tectonic plates: see figure
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Figure 3.1: The tectonic plates of the Earth.

3.1. These plates move relative to each other across the surface, and this motion
is the surface manifestation of a convective motion in the Earth’s mantle, which is
the part of the Earth from the surface to a depth of about 3,000 kilometres, and
which consists of an assemblage of polycrystalline silicate rocks. Upwelling occurs at
mid-ocean ridges, for example the mid-Atlantic ridge which passes through Iceland,
and the East Pacific Rise off the coast of South America, which passes through the
Galapagos Islands. The plates sink into the mantle at subduction zones, which ad-
join continental boundaries, and which are associated with the presence of oceanic
trenches.

The plates are so called because they are conceived of as moving quasi-rigidly.
They are in fact the cold upper thermal boundary layers of the convective motion, in-

Figure 3.2: A cartoon of mantle convection. We see plumes, mid-ocean ridges, sub-
ducting slabs.
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dicated schematically in figure 3.2, and are plate-like because the strong temperature
dependence of mantle viscosity renders these relatively cold rocks extremely viscous.
One may wonder how the mantle moves at all, consisting as it does of mostly solid
polycrystalline rocks. In fact, solids will deform just as fluids do when subjected to
stress. The deformation is enabled by the migration of dislocations within the crys-
talline lattice of the solid grains of the rock. The effective viscosity of the Earth’s
mantle is a whopping 1021 Pa s; this is about eight orders of magnituse greater than
the viscosity of ice, and twenty-four orders greater than the viscosity of water.

The reason that the mantle convects is that the Earth is cooling. The primordial
heat of formation has gradually been lost over the Earth’s history, but the central
core of the planet is still very hot; some six thousand degrees Celsius at the centre of
the Earth. This heat from the core is instrumental in heating the mantle from below,
and driving the convective flow. Radioactive heating also contributes to an extent
which is not certain, but which is thought to be significant.

3.2 The Earth’s core

Part of the heat which drives mantle convection is derived from cooling the Earth’s
core. The core is the part of the Earth which lies between its centre and the mantle.
Like the mantle, it is also some three thousand kilometres deep, and consists of a
molten outer core of iron, alloyed with some lighter element, usually thought to be
sulphur or oxygen, in a concentration of some 10%. The inner core is solid (pure)
iron, of radius 1,000 km. It is generally thought that the core was initially molten
throughout, and that the inner core has gradually solidified from the outer core over
the course of geological time. It is the consequent release of latent heat which, at
least partly, powers mantle convection.

One may wonder how the outer core can be liquid, and the inner core solid, if the
inner core is hotter (as it must be). The reason for this is that the solidification tem-
perature (actually the liquidus temperature, see below) depends on pressure, through
the Clapeyron effect. This is the effect whereby a pressure cooker works: the boiling
temperature increases with pressure, and similarly, the solidification temperature of
the outer core iron alloy increases with pressure, and thus also depth. Thus, the inner
core can be below the solidification temperature because of the greater pressure there.

The convection in the outer core is partly due to the dependence of density on tem-
perature, but the primary dependence is, as often the case when composition varies,
due to the dependence of density on the concentration of sulphur (or oxygen). In order
to understand how the solidification of the inner core leads to convection, we need to
understand the general thermodynamic way in which melting and solidification occur
in multi-component materials. This is illustrated in figure 3.3, which indicates how
the solidification temperatures vary with composition in a two-component melt. At a
given temperature, there are two curves which describe the concentrations of the solid
and liquid, when these are in thermodynamic equilibrium with each other. These two
curves are called the solidus and liquidus, respectively. Often there are two sets of
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Figure 3.3: Typical phase diagram for a two-component alloy with a eutectic point.
When the liquid reaches the liquidus (L), the resulting solid has the concentration of
the solidus (S). When the liquid reaches the eutectic point, two solids, iron-rich and
sulphur-rich respectively, will be formed.

solidus and liquidus curves, and they meet at a point called the eutectic point. The
way in which a liquid alloy solidifies is then indicated by the red line in figure 3.3. In
the outer core, the composition is relatively constant, but the temperature decreases
(relative to the liquidus) from the core-mantle boundary (CMB) to the inner core
boundary (ICB), where solidification occurs. (The phase diagram is indicated as if
at constant pressure; in reality, the curves will also vary with pressure.)

At this temperature, the solid which crystallises has the solidus concentration,
which is richer in iron than the liquid, and so as the temperature cools during freezing,
the liquid concentration of sulphur or oxygen increases because of its rejection at the
freezing interface. It is this source of buoyancy which provides the driving force for
compositional convection.

Actually, it is typically the case that when alloys solidify, they do not form a solid
with a clear interface. Rather, such a situation is typically morphologically unstable,
and a dendritic mush consisting of a solid–liquid mixture is formed, as shown in figure
3.4. The convection caused by the release of light fluid now occurs throughout the
mush, and leads to the formation of narrow ‘chimneys’, from which plumes emerge.

In the Earth’s core, it is this convection which forms the magnetic field. Convec-
tion in an electrically conducting fluid causes a magnetic field to grow, providing the
magnetic diffusivity is sufficiently small, through the action of the Lorentz force. The
study of such instabilities is a central part of the subject of magnetohydrodynamics.
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Figure 3.4: A dendritic mush in the solidification of ammonium chloride in the lab-
oratory. Convection occurs within the mush, leading to the formation of ‘chimneys’
which act as sources of plumes in the residual melt. Photo courtesy of Grae Worster.

3.3 Magma chambers

Our final example of convection arises in the formation and cooling of magma cham-
bers. When mantle rock upwells, either at mid-ocean ridges, or in isolated thermal
plumes such as that below Hawaii, the slight excess temperature causes the rock to
partially melt. It is thought that the melt fraction can then ascend through the
residual porous matrix, forming rivulets and channels which allow the escape of the
magma through the lithosphere to the crust.1 As the magma ascends into the crust,
it can typically encounter unconformities, where the rock types alter, and where the
density may be less than that of the magma. In that case, the magma will stop rising,
but will spread laterally, simultaneously uplifting the overlying strata. Thus forms
the laccolith, a magmatic intrusion, and over the course of time such intrusions, or
magma chambers, will solidify, forming huge cauldrons of rock which may later be
exposed at the Earth’s surface.

Convection undoubtedly occurs in such chambers, which may be tens of kilome-
tres in extent. The hot magma is continuously chilled at the roof and sides of the
chamber, and this leads to convective currents continually draining towards the floor
of the chamber. There they will accumulate, leading to a cold, crystal-rich layer ly-

1The lithosphere is the cold surface boundary layer of the convecting mantle, of depth some 100
km in the oceanic mantle, somewhat greater beneath continents; the crust is a relatively thin layer
of rocks near the surface, formed through partial melting of the mantle and the resulting volcanism.
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Figure 3.5: Graded layering in the Skaergaard intrusion. Photograph courtesy of
Kurt Hollocher.

ing stagnant below the convecting upper portion. This is essentially the filling box
mechanism which is discussed further below.

Magmas are multi-component alloys, and their convective solidification can lead to
various exotic phenomena. The phase diagram of the type in figure 3.3 causes chemical
differentiation on the large scale (in metal alloy castings this is called macrosegrega-
tion). For example, in an olivine–plagioclase magma, the heavy olivine will crystallise
out first, and the crystals may settle to the base of the chamber. The residual liquid
is then plagioclase-rich and lighter. So the end result would be a chamber having two
distinct layers. Successive injections of magma may then lead to a sequence of such
layers, as is seen in the Scottish island of Rum, and this has been suggested as an
explanation for these particular layers.

Other magma chambers show layering at a much finer scale, and the origin of these
layers is a mystery. An example is shown in figure 3.5. The layers are reminiscent
of double-diffusive layering, which we discuss in section 3.6.2, but efforts to build a
theory round this idea, or indeed any other, have so far not met with success.

3.4 Rayleigh–Bénard convection

The simplest model of convection is the classical Rayleigh-Bénard model in which
a layer of fluid is heated from below, by application of a prescribed temperature
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Figure 3.6: Geometry of a convection cell.

difference across the layer. Depending on the nature of the boundaries, one may have
a no slip condition or a no shear stress condition applied at the bounding surfaces.
For the case of mantle convection, one conceives of both the oceans (or atmosphere)
and the underlying fluid outer core as exerting no stress on the extremely viscous
mantle, so that no stress conditions are appropriate, and in fact it turns out that this
is the simplest case to consider. The geometry of the flow we consider is shown in
figure 3.6. It is convenient to assume lateral boundaries, although in a wide layer,
these simply represent the convection cell walls, and can be an arbitrary distance
apart.

The equations describing the flow are the Navier-Stokes equations, allied with the
energy equation and an equation of state, and can be written in the form

ρt + ∇. (ρu) = 0,

ρ[ut + (u .∇)u] = −∇p− ρgk + µ∇2u,

ρcp[Tt + u .∇T ] = k∇2T,

ρ = ρ0[1− α(T − T0)]; (3.1)

in these equations, ρ is the density, u is the velocity, p is the pressure, g is the acceler-
ation due to gravity, k is the unit upwards vector, µ is viscosity, cp is the specific heat,
T is temperature, k is thermal conductivity, ρ0 is the density at the reference temper-
ature T0 at the surface of the fluid layer, and α is the thermal expansion coefficient.
The boundary conditions for the flow are indicated in figure 3.6, and correspond to
prescribed temperature at top and bottom, no flow through the boundaries, and no
shear stress at the boundaries. The lateral boundaries represent stress free ‘walls’,
but as mentioned above, these simply indicate the boundaries of the convection cells
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(across which there is no heat transport, hence the no flux condition for temperature).
To proceed, we non-dimensionalise the variables as follows. We use the convective

time scale, and a thermally related velocity scale, and use the depth of the box d as
the length scale:

u ∼ κ

d
, κ =

k

ρ0cp
, t ∼ d2

κ
, x ∼ d,

p− [p0 + ρ0g(d− z)] ∼ µκ

d2
, T − T0 ∼ ∆T. (3.2)

Here p0 is the (prescribed) pressure at the surface, which we take as constant. We
would also scale ρ ∼ ρ0, but in the scaled equations below, the density has been
algebraically eliminated. The scaled equations take the form

−BTt + ∇. [(1−BT )u] = 0,

1

Pr
[1−BT ][ut + (u .∇)u] = −∇p+RaTk +∇2u,

(1−BT )(Tt + u .∇T ) = ∇2T, (3.3)

and the dimensionless parameters are defined as

B = α∆T, Pr =
µ

ρ0κ
, Ra =

αρ0∆Tgd3

µκ
; (3.4)

the parameters Ra and Pr are known as the Rayleigh and Prandtl numbers, respec-
tively. The Prandtl number is a property of the fluid; for air it is 0.7, and for water
it is 7. The Rayleigh number is a measure of the strength of the heating. As we
shall see, convective motion occurs if the Rayleigh number is large enough, and it
becomes vigorous if the Rayleigh number is large. The parameter B might be termed
a Boussinesq number, although this is not common usage.

Suppose we think of values typical for a layer of water in a saucepan. We take
d = 0.1 m, µ = 2 × 10−3 Pa s, ∆T = 100 K, α = 3 × 10−5 K−1, ρ0 = 103 kg m−3,
κ = 0.3 × 10−6 m2 s−1, g = 9.8 m s−2. Then we have Pr ≈ 7, B ≈ 3 × 10−3, and
Ra ≈ 5×107. In this case, we have that B � 1 and Ra� 1. This is typically the case.
We now make the Boussinesq approximation, which says that B � 1, and we ignore
the terms in B in (3.3). In words, we assume that the density is constant, except
in the buoyancy term. The mathematical reason for this exception is that, although
Ra ∝ B (and so Ra→ 0 as B → 0), the actual numerical sizes of the two parameters
are typically very different. The adoption of the Boussinesq approximation leads to
what are called the Boussinesq equations of thermal convection:

∇.u = 0,
1

Pr
[ut + (u .∇)u] = −∇p+∇2u +RaT k̂,

Tt + u.∇T = ∇2T, (3.5)
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with associated boundary conditions for free slip:

T = 1, u.n = τnt = 0 on z = 0,

T = 0, u.n = τnt = 0 on z = 1, (3.6)

where τnt represents the shear stress.

3.4.1 Linear stability

It is convenient to study the problem of the onset of convection in two dimensions
(x, z). In this case we can define a stream function ψ which satisfies

u = −ψz, w = ψx. (3.7)

(The sign is opposite to the usual convention; for ψ > 0 this describes a clockwise
circulation.) We eliminate the pressure by taking the curl of the momentum equation
(3.5)2, which leads, after some algebra (see also question 3.2), to the pair of equations
for ψ and T :

1

Pr

[
∇2ψt + ψx∇2ψz − ψz∇2ψx

]
= RaTx +∇4ψ,

Tt + ψxTz − ψzTx = ∇2T, (3.8)

with the associated boundary conditions

ψ = ∇2ψ = 0 at z = 0, 1,

T = 0 at z = 1,

T = 1 at z = 0. (3.9)

In the absence of motion, u = 0, the steady state temperature profile is linear,

T = 1− z, (3.10)

and the lithostatic pressure is modified by the addition of

p = −Ra
2

(1− z)2. (3.11)

(Even if Ra is large, this represents a small correction to the lithostatic pressure, of
relative size O(B).) The stream function is just

ψ = 0. (3.12)

We define the temperature perturbation θ by

T = 1− z + θ. (3.13)
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This yields

1

Pr

[
∇2ψt + ψx∇2ψz − ψz∇2ψx

]
= ∇4ψ +Ra θx,

θt − ψx + ψxθz − ψzθx = ∇2θ, (3.14)

and the boundary conditions are

ψzz = ψ = θ = 0 on z = 0, 1. (3.15)

In the Earth’s mantle, the Prandtl number is large, and we will now simplify the
algebra by putting Pr =∞. This assumption does not in fact affect the result which
is obtained for the critical Rayleigh number at the onset of convection. The linear
stability of the basic state is determined by neglecting the nonlinear advective terms
in the heat equation. We then seek normal modes of wave number k in the form

ψ = f(z)eσt+ikx,

θ = g(z)eσt+ikx, (3.16)

whence f and g satisfy (putting Pr =∞)

(D2 − k2)2f + ikRa g = 0,

σg − ikf = (D2 − k2)g, (3.17)

where D = d/dz, and
f = f ′′ = g = 0 on z = 0, 1. (3.18)

By inspection, solutions are

f = sinmπz, g = b sinmπz, (3.19)

(n = 1, 2, ...) providing

σ =
k2Ra

(m2π2 + k2)2
− (m2π2 + k2), (3.20)

which determines the growth rate for the m-th mode of wave number k.
Since σ is real, instability is characterised by a positive value of σ. We can see

that σ decreases as m increases; therefore the value m = 1 gives the most unstable
value of σ. Also, σ is negative for k → 0 or k →∞, and has a single maximum. Since
σ increases with Ra, we see that σ > 0 (for m = 1) if Ra > Rack, where

Rack =
(π2 + k2)3

k2
. (3.21)

In turn, this value of the Rayleigh number depends on the selected wave number
k. Since an arbitrary disturbance will excite all wave numbers, it is the minimum
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value of Rack which determines the absolute threshold for stability. The minimum is
obtained when

k =
π√
2
, (3.22)

and the resulting critical value of the Rayleigh number is

Rac =
27π4

4
≈ 657.5; (3.23)

That is, the steady state is linearly unstable if Ra > Rac.
For other boundary conditions, the solutions are still exponentials, but the coef-

ficients, and hence also the growth rate, must be found numerically. The resultant
critical value of the Rayleigh number is higher for no slip boundary conditions, for
example, (it is about 1707), and in general, thermal convection is initiated at values
of Ra >∼ O(103).

3.5 High Rayleigh number convection

We have seen that convection occurs if the Rayleigh number is larger than O(103) in
general, depending on the precise boundary conditions which apply. In the Earth’s
mantle, suitable values of the constituent parameters are α = 3 × 10−5 K−1, ∆T =
3000 K, ρ0 = 3× 103 kg m−3, g = 10 m s−2, d = 3000 km, η0 = 1021 Pa s, κ0 = 10−6

m2 s−1, and for these values, the Rayleigh number is slightly less than 108. Thus the
Rayleigh number is much larger than the critical value, and as a consequence we can
expect the convection to be vigorous (if velocities of centimetres per year can be said
to be vigorous).

There are various intuitive ways in which we can get a sense of the likely behaviour
of the convective solutions of the Boussinesq equations when Ra� 1. Since Ra mul-
tiplies the buoyancy term, any O(1) lateral temperature gradient will cause enormous
velocities. One might thus expect the flow to organise itself so that either horizontal
temperature gradients are small, or they are confined to thin regions, or both. Since
O(1) temperature variations are enforced by the boundary conditions, the latter is
more plausible, and thus we have the idea of the thermal plume, a localised upwelling
of hot fluid which will be instantly familiar to glider pilots and seabirds.

A mathematically intuitive way of inferring the same behaviour follows from the
expectation that increasing Ra drives increasing velocities; then large Ra should
imply large velocity, and the conduction term in the heat equation u.∇T = ∇2T is
correspondingly small. Since the conduction term represents the highest derivative
in the equation, its neglect would imply a reduction of order, and correspondingly we
would expect thermal boundary layers to exist at the boundaries of the convecting
cell. This is in fact what we will find: a hot thermal boundary layer adjoins the lower
boundary, and a cold one adjoins the upper boundary, and a rapid circulation in the
interior of the cell detaches these as upwelling and downwelling plumes. The general
structure of the resulting flow is shown in figure 3.7. We analyse this structure in the
following sections.
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Figure 3.7: Schematic representation of boundary layer convection

3.5.1 Boundary layer theory

We now consider a convecton cell in a finite box, as shown in figure 3.7, with (di-
mensionless) top and bottom boundaries at z = 0, 1, and side walls at x = 0, a.
The Boussinesq equations describing thermal convection are written in the following
dimensionless form:

∇.u = 0,

1

Pr

du

dt
= −∇p+∇2u +RaTk,

dT

dt
= ∇2T, (3.24)

where u is velocity, p is pressure, T is temperature, and the Rayleigh and Prandtl
numbers are defined in (3.4).

By considering only two-dimensional motion in the (x, z) plane, we define the
stream function ψ by

u = −ψz, w = ψx; (3.25)

the vorticity is then (0, ω, 0), where ω = −∇2ψ. Taking the curl of the momentum
equation, we derive the set

ω = −∇2ψ,

dT

dt
= Tt + ψxTz − ψzTx = ∇2T,

1

Pr

dω

dt
= −RaTx +∇2ω, (3.26)
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which are supplemented by the boundary conditions

ψ, ω = 0 on x = 0, a, z = 0, 1,

T = 1
2

on z = 0,

T = −1
2

on z = 1,

Tx = 0 on x = 0, a; (3.27)

here a is the aspect ratio, and we have chosen free slip (no stress) conditions at
the cell boundaries. Note that we have chosen that we have changed the reference
temperature for the scaled temperature from T0 to T0− 1

2
∆T ; this is purely a matter

of convenience, as the resultant symmetry of the thermal boundary conditions is more
natural.

Rescaling

The idea is that when Ra� 1, thermal boundary layers of thickness δ � 1 will form
at the edges of the flow, and both ψ and ω will be � 1 in the flow. To scale the
equations properly, we rescale the variables as

ψ, ω ∼ 1

δ2
, (3.28)

and define
δ = Ra−1/3. (3.29)

Rescaled, the equations are thus, in the steady state,

ω = −∇2ψ,

ψxTz − ψzTx = δ2∇2T,

∇2ω =
1

δ
Tx +

1

Pr δ2

dω

dt
. (3.30)

In order that the inertia terms be unimportant, we require Pr δ2 � 1, i. e., Pr �
Ra2/3. This assumption is easily satisfied in the Earth’s mantle, but is difficult to
achieve in the laboratory. Nevertheless, we assume this henceforth.

As in any singular perturbation procedure, we now examine the flow region by
region, introducing special rescalings in regions where boundary conditions cannot be
satisfied. Before doing so, note that the statement of the flow problem is symmetric,
and we will therefore take the solution to be symmetric also.

Core flow

The temperature equation is linear in T , and implies T = T0(ψ) + O(δ2). For a flow
with closed streamlines, the Prandtl-Batchelor theorem then implies T0 = constant
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(this follows from the exact integral

∮
C

∂T

∂n
ds = 0, where the integral is around a

streamline, whence T ′0(ψ)

∮
C

∂ψ

∂n
ds = 0); it then follows that T is constant to all

(algebraic) orders of δ, and is in fact zero by the symmetry of the flow. Thus

T = 0,

∇4ψ = 0, (3.31)

and clearly the core flow cannot have ψ = ω = 0 at the boundaries, for non-zero ψ.
In fact, ω jumps at the side-walls where the plume buoyancy generates a non-zero
vorticity. We examine the plumes next.

Plumes

Near x = 0, for example, we rescale the variables as

x = δX, ψ = δΨ, (3.32)

so that to leading order, we have

ΨXX ≈ 0, (3.33)

whence Ψ ≈ wp(z)X, and to match to the core flow, we define wp = ψx |x=0 as the
core velocity at x = 0. Also

ΨXTz −ΨzTX ≈ TXX ,

ωXX ≈ TX , (3.34)

the latter of which integrates to give

ω =

∫ X

0

T dX, ωp =

∫ ∞
0

T dX, (3.35)

where matching requires ωp to be the core vorticity at x = 0. Integration of (3.34)1

gives ∫ ∞
0

T dΨ = C, (3.36)

where C is constant, and it follows that the core flow must satisfy the boundary
condition ωψx = C on x = 0 (and therefore, by symmetry, −C at x = a). In
summary, the effective boundary conditions for the core flow are

ψ = 0 on x = 0, a, z = 0, 1,

ψzz = 0 on z = 0, 1,

ψxψxx = −C on x = 0, ψxψxx = C on x = a, (3.37)

73



and the solution can be found as the canonical solution

ψ = C1/2ψ̂(x, z), (3.38)

where ψ̂ must be determined numerically. It thus remains to determine C. This
requires consideration of the thermal boundary layers. Thermal boundary layers are
necessary at the top and bottom because the core temperature (T = 0) does not
satisfy the boundary conditions there.

Thermal boundary layers

Near the top surface, for example, we rescale the variables by writing

z = 1− δZ, ψ = δΨ, ω = δΩ, (3.39)

to find the leading order rescaled equation for Ψ to be simply

ΨZZ ≈ 0, (3.40)

whence Ψ ∼ us(x)Z, and us is the core value of the surface velocity − ψz|z=1. Then
ΩZZ ≈ Tx determines Ω (with Ω = 0 on Z = 0, and Ω ∼ ωs(x)Z as Z → ∞, where
ωs is the core value of the surface vorticity), and T satisfies

ΨZTx −ΨxTZ ≈ TZZ . (3.41)

In Von Mises coordinates x,Ψ, the equation is

Tx ∼
∂

∂Ψ

[
ΨZ

∂T

∂Ψ

]
, (3.42)

and putting ξ =

∫ x

0

us(x) dx, this is just the diffusion equation

Tξ = TΨΨ, (3.43)

with
T = −1

2
on Ψ = 0, T → 0 as Ψ→∞. (3.44)

Note that the same Von Mises transformation (but from (z,X) to (z,Ψ)) can be used
in the plume equation (3.34)1, which can thus also be written in the diffusion equation

form (3.43), where ξ is extended as

∫ z

wp(z) dz.

A quantity of interest is the Nusselt number, defined as

Nu = −
∫ 1

0

∂T

∂z
(x, 1) dx, (3.45)

and from the above, this can be written as

Nu ≈
[∫ ∞

0

−T dΨ

]x=a

x=0

Ra1/3. (3.46)
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Figure 3.8: Boundary conditions for the thermal boundary layer solution of (3.49).

Corner flow

The core flow has a singularity in each corner, where (if r is distance from the corner),
then ψ ∼ r3/2, ω ∼ r−1/2, and (for the corner at x = 0, z = 0, for example) x, z ∼ r.
There must be a region where this singularity is alleviated by the incorporation of the
buoyancy term. This requires ω/r2 ∼ 1/δr, whence r ∼ δ2/3. Rescaling the variables
as indicated (x, z ∼ δ2/3, ψ ∼ δ, ω ∼ δ−1/3) then gives the temperature equation as

ΨXTZ −ΨZTX ∼ δ∇2T, (3.47)

which shows that (since the ψ scale, δ, is the same as that of the boundary layers
adjoining the corner) the boundary layer temperature field is carried through the
corner region without change (to leading order). The corner flow thus has T ≈ T (Ψ),
so that

∇4Ψ + T ′(Ψ)ΨX = 0, (3.48)

with appropriate matching conditions. The main point of this is to show that in
solving the thermal boundary layer equations round the perimeter of the box, the
transverse profile (in Ψ) can be taken to be continuous when the boundary conditions
change at the corners.

Solution strategy

The Von Mises transformation shows that the temperature in the thermal boundary
layers and the thermal plumes satisfies the diffusion equation

Tξ = TΨΨ, (3.49)

where we define

ξ =

∫ s

0

U(s) ds, (3.50)

and we define s to be arc length around the perimeter of the box (starting for example
at the point A in figure 3.7, and U(s) is the (core-determined) tangential velocity
on the perimeter. The temperature equation must be solved in the four regions
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corresponding to the boundary layer at z = 1, plume at x = a, boundary layer at
z = 0, and plume at x = 0, representing the four edges AB, BC, CD, DA indicated
in figure 3.7, with T being continuous at each junction point (corner), and

T → 0 as Ψ→∞,

T = −1
2

on Ψ = 0 [z = 1, top AB],

TΨ = 0 on Ψ = 0 [x = a, right BC],

T = 1
2

on Ψ = 0 [z = 0, bottom CD],

TΨ = 0 on Ψ = 0 [x = 0, left DA], (3.51)

as indicated in figure 3.8.
What of the initial condition? The novelty here is that prescription of an initial

condition is supplanted by the necessary requirement that the solution be periodic in
ξ. Beginning from x = 0, z = 1, we may denote the values of ξ at the corners as ξA
(x = 0, z = 1), ξB (x = a, z = 1), ξC (x = a, z = 0), ξD (x = 0, z = 0). Now from
the definition of ξ, we have ξk = C1/2ξ̂k, where the values of ξ̂k are independent of C
(because they are determined by the canonical solution in (3.38)). Putting

ξ = C1/2ξ̂, Ψ = C1/4Ψ̂, T (ξ,Ψ) = T̂ (ξ̂, Ψ̂), (3.52)

we see that the problem for T̂ (ξ̂, Ψ̂) is independent of C.
Just as for the flow in the core, this problem must be solved numerically for

T̂ (ξ̂, Ψ̂). Assuming this is done, then∫ ∞
0

T (ξ,Ψ) dΨ = C1/4

∫ ∞
0

T̂ (ξ̂, Ψ̂) dΨ̂. (3.53)

If, for example, we evaluate both quantities at ξ = 0 (i. e., the point A), then it follows
from (3.36) that

C =

∫ ∞
0

T (0,Ψ) dΨ = C1/4

∫ ∞
0

T̂ (0, Ψ̂) dΨ̂, (3.54)

and this determines C as

C =

[∫ ∞
0

T̂ (0, Ψ̂) dΨ̂

]4/3

. (3.55)

Given this, the Nusselt number is then given from (3.46) as

Nu ≈ C1/4

[
−
∫ ∞

0

T̂ dΨ̂

]ξ̂A
0

Ra1/3. (3.56)
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No-slip boundary conditions

For no slip boundary conditions, the necessary preliminary rescaling is ψ ∼ 1/δ3,
ω ∼ 1/δ3, where δ = Ra−1/5. Thus the Nusselt number Nu ∼ Ra1/5. There is no
longer parity between the thermal boundary layers and plumes, as the former are
slowed down by the no slip conditions. The rescaled equations are

ω = −∇2ψ,

ψxTz − ψzTx = δ3∇2T,

∇2ω =
1

δ2
Tx. (3.57)

The core flow is as before; the thermal boundary layers have ψ ∼ δ2, ω ∼ 1, z ∼ δ,
so that vorticity balances buoyancy), and all three equations are necessary to solve
for T ; it is still the case that

∫
T dψ is conserved at corners, but now in the plume,

x ∼ δ3/2, ψ ∼ δ3/2, and T ∼ δ1/2. The initial plume profile is effectively a delta
function, and the plume temperature is just the resultant similarity solution. The
remainder of the structure must be computed numerically.

3.6 Double-diffusive convection

Double-diffusive convection refers to the motion which is generated by buoyancy, when
the density depends on two diffusible substances or quantities. The simplest examples
occur when salt solutions are heated; then the two diffusing quantities are heat and
salt. Double-diffusive processes occur in sea water and in lakes, for example. Other
simple examples occur in multi-component fluids containing more than one dissolved
species; convection in magma chambers is one such.

The guiding principle behind double-diffusive convection is still that light fluid
rises, and convection occurs in the normal way (the direct mode) when the steady state
is statically unstable (i. e., when the density increases with height), but confounding
factors arise when, as normally the case, the two substances diffuse at different rates.
Particularly when we are concerned with temperature and salt, the ratio of thermal
to solutal diffusivity is large, and in this case different modes of convection occur
near the statically neutral buoyancy state: the cells can take the form of long thin
‘fingers’, or the onset of convection can be oscillatory. In practice, fingers are seen,
but oscillations are not.

A further variant on Rayleigh-Bénard convection arises in the form of convec-
tive layering. This is a long-lived transient form of convection, in which separately
convecting layers form, and is associated partly with the high diffusivity ratio, and
partly with the usual occurrence of no flux boundary conditions for diffusing chemical
species.

We pose a model for double-diffusive convection based on a density which is related
linearly to temperature T and salt composition c in the form

ρ = ρ0[1− α(T − T0) + β(c− c0)], (3.58)
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where we take α and β to be positive constants; thus the presence of salt makes the
fluid heavier. The equation that then needs to be added to (3.1) is that for convective
diffusion of salt:

ct + u .∇c = D∇2c, (3.59)

where D is the solutal diffusion coefficient, assuming a dilute solution. We adopt the
same scaling of the variables as before, with the extra choice

c− c0 ∼ ∆c, (3.60)

where ∆c is a relevant salinity scale (in our stability analysis, it will be the prescribed
salinity difference between the lower and upper surfaces of the fluid layer). The
Boussinesq form of the scaled equations, based on the assumptions that α∆T � 1
and β∆c� 1, are then

∇.u = 0,
1

Pr
[ut + (u .∇)u] = −∇p+∇2u +RaT k̂−Rs ck̂,

Tt + u.∇T = ∇2T,

ct + u .∇c =
1

Le
∇2c. (3.61)

The Rayleigh number Ra and the Prandtl number Pr are defined as before, and the
solutal Rayleigh number Rs and the Lewis number Le are defined by

Rs =
βρ0∆cgd3

µκ
, Le =

κ

D
. (3.62)

Note that in the absence of temperature gradients, the quantity −RsLe would be
the effective Rayleigh number determining convection.

3.6.1 Linear stability

Now we study the linear stability of a steady state maintained by prescribed temper-
ature and salinity differences ∆T and ∆c across a stress-free fluid layer. In dimen-
sionless terms, we pose the boundary conditions

ψ = ∇2ψ = 0 at z = 0, 1,

T = c = 0 at z = 1,

T = c = 1 at z = 0, (3.63)

where as before, we restrict attention to two dimensions, and adopt a stream function
ψ. The steady state is

c = 1− z, T = 1− z, ψ = 0, (3.64)
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and we perturb it by writing

c = 1− z + C, T = 1− z + θ, (3.65)

and then linearising the equations on the basis that C, θ, ψ � 1. This leads to

1

Pr
∇2ψt ≈ Ra θx −RsCx +∇4ψ,

θt − ψx ≈ ∇2θ,

Ct − ψx ≈
1

Le
∇2C, (3.66)

with
C = ψ = ψzz = θ = 0 on z = 0, 1. (3.67)

By inspection, solutions satisfying the temperature and salinity equations are

ψ = exp(ikx+ σt) sinmπz,

θ =
ik

σ +K2
exp(ikx+ σt) sinmπz,

C =
ik

σ +
K2

Le

exp(ikx+ σt) sinmπz, (3.68)

where we have written
K2 = k2 +m2π2. (3.69)

Substituting these into the momentum equation leads to the dispersion relation de-
termining σ in terms of k:

(σ +K2Pr)(σ +K2)

(
σ +

K2

Le

)
+ k2Pr

[
(Rs−Ra)σ

K2
+Rs− Ra

Le

]
= 0. (3.70)

This is a cubic in σ, which can be written in the form

σ3 + aσ2 + bσ + c = 0, (3.71)

where

a = K2

(
Pr + 1 +

1

Le

)
,

b = K4

(
Pr +

1

Le
+
Pr

Le

)
+
k2

K2
Pr(Rs−Ra),

c =
K6

Le
Pr + k2Pr

(
Rs− Ra

Le

)
. (3.72)

Instability occurs if any one of the three roots of (3.71) has positive real part.
Since Le and Pr are properties of the fluid, we take them as fixed, and study the
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effect of varying Ra and Rs on the stability boundaries where Reσ = 0. Firstly, if
Ra < 0 and Rs > 0, then a, b and c are all positive. We can then show (see question
3.3) that Reσ < 0 for all three roots providing ab > c, and this is certainly the case if
Le > 1, which is always true for heat and salt diffusion. Thus when both temperature
and salinity fields are stabilising, the state of no motion is linearly stable.

To find regions of instability in the (Rs,Ra) plane, it thus suffices to locate the
curves where Reσ = 0. There are two possibilities. The first is referred to as exchange
of stability, or the direct mode, and occurs when σ = 0. From (3.71), this is when

c = 0, or Rs =
Ra

Le
− K6

k2Le
. This is a single curve (for each k), and since we know that

Reσ < 0 in Ra < 0 and Rs > 0, this immediately tells us that a direct instability
occurs if

Ra− LeRs > Rc = min
k

K6

k2
=

27π4

4
. (3.73)

This direct transition is the counterpart of the onset of Rayleigh-Bénard convection,
and shows that Ra− LeRs is the effective Rayleigh number. This is consistent with
the remark just after (3.62).

The other possibility is that there is a Hopf bifurcation, i. e., a pair of complex
conjugate values of σ cross the imaginary axis at ±iΩ, say. The condition for this
is ab = c, which is again a single curve, and one can show (see question 3.4) that
oscillatory instability occurs for

Ra >

(
Pr +

1

Le

)
Rs

1 + Pr
+

(
1 +

1

Le

)(
Pr +

1

Le

)
Pr

Rc. (3.74)

Direct instability occurs along the line XZ in figure 3.9, while oscillatory insta-
bility occurs at the line XW . Between XW and the continuation XU of XZ, there
are two roots with positive real part and one with negative real part. As Ra increases
above XW , it is possible that the two complex roots coalesce on the real axis, so that
the oscillatory instability is converted to a direct mode. One can show (see question
3.5) that the criterion for this is that b < 0 and

c = 1
9

[
ab+

(a2 − 6b)

3

{
−a+ (a2 − 3b)1/2

}]
. (3.75)

For large Rs, this becomes (for k2 =
π2

2
)

Ra ≈ Rs+
3R

1/3
c Rs2/3

22/3Pr1/3
, (3.76)

and is shown as the line XW in figure 3.9. Thus the onset of convection is oscillatory
only between the lines XW and XV , and beyond (above) XV it is direct. In practice,
oscillations are rarely seen.
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Figure 3.9: Stability diagram for double-diffusive convection.

Fingers

If we return to the cubic in the form (3.70), and consider the behaviour of the roots
in the third quadrant as Ra,Rs→ −∞, it is easy to see that one root is

σ ≈
K2

[
Ra

Le
−Rs

]
Rs−Ra

, (3.77)

while the other two are oscillatorily stable (see question 3.6). Thus this growth
rate is positive when LeRs < Ra < Rs and grows unboundedly with the wave
number k (since K2 = k2 + π2 when m = 1). This is an indication of ill-posedness,
and in fact we anticipate that σ will become negative at large k. To see when this
occurs, inspection of (3.70) shows that the neglected terms in the approximation
(3.77) become important when k ∼ |Ra|1/4, where σ is maximum (of O|Ra|1/4), and
then σ ∼ −k2 for larger k. Thus in the ‘finger’ régime sector indicated in figure 3.9,
the most rapidly growing wavelengths are short, and the resulting waveforms are tall
and thin. This is what is seen in practice, and the narrow cells are known as fingers.
An example is shown in figure 3.10.

3.6.2 Layered convection

The linear stability analysis we have given above is only partially relevant to dou-
ble diffusive convection. It is helpful in the understanding of the finger régime, but
the oscillatory mode of convection is not particularly relevant. The other principal
phenomenon which double diffusive systems exhibit is that of layering. This is a
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Figure 3.10: Finger convection (Turner 1974).

transient, but long-term, phenomenon associated often with the heating of a sta-
ble salinity gradient, and arises because in normal circumstances, more appropriate
boundary conditions for salt concentration are to suppose that there is no flux at the
bounding surfaces.

In pure thermal convection, the heating of an initially stably thermally stratified
fluid will lead to the formation of a layer of convecting fluid below the stable region.
This (single) convecting layer will grow in thickness until it fills the entire layer. This
is essentially the ‘filling box’. Suppose now we have a stable salinity gradient which
is heated from below. Again a convecting layer forms, which mixes the temperature
and concentration fields so that they are uniform within the layer. At the top of the
convecting layer, there will be a step down ∆T in temperature, and a step down ∆c
in salinity. It is found experimentally that α∆T = β∆c, that is, the boundary layer2

is neutrally stable. However, the disparity in diffusivities (typically Le � 1) means
that there is a thicker thermal conductive layer ahead of the interface. In effect, the
stable salinity gradient above the convecting layer is heated by the layer itself, and a
second, and then a third, layer forms. In this way, the entire fluid depth can fill up
with a sequence of long-lived, separately convecting layers. The layers will eventually
merge and form a single convecting layer over a time scale controlled by the very slow
transport of salinity between the convecting layers. Such layers are very suggestive
of some of the fossilised layering seen in magma chambers, as for example in figure
3.5, but the association may be a dangerous one. An experimental realisation of this

2For discussion of boundary layers, see section 3.5.1.
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Figure 3.11: Layered convection (Turner 1974). A stable salt solution has been heated
from below.

form of layered convection is shown in figure 3.11.
A further example of some of the exotic behaviour which double diffusion can lead

to is shown in figure 3.12, again taken from the review article by Turner (1974). In
this experiment, the two diffusing substances were sugar and salt, and the fluid was
initially set up with a top-heavy gradient of salt (which plays the rôle of temperature
here as its diffusivity is larger) and a bottom-heavy gradient of sugar, such that the
overall density gradient was statically stable. This is the analogue of cold/fresh above
hot/salty, so in the ‘diffusive’ régime of the first quadrant in figure 3.9. The rôle of
the Prandtl number is taken by the Schmidt number defined by

Sc =
ν

Dl

, (3.78)

where Dl is the diffusivity of salt and ν is the kinematic viscosity. (The ‘Lewis’
number is the ratio Dl/Dg, where Dg is the diffusivity of sugar. For salt and sugar,
Le ≈ 3.3) Now the Schmidt number for salt is around 106, so the ‘Prandtl’ number is
large, and the static stability limit in the diffusive régime is essentially the same as the
dynamic stability limit: so nothing should happen. However, if a sloping boundary

3Specifically, Dl ≈ 1.5× 10−9 m2 s−1 (Vitagliano and Lyons 1956) and Dg ≈ 0.5× 10−9 m2 s−1

(Ziegler et al. 1987).
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Figure 3.12: Sloping layered convection (Turner 1974).

exists as shown, convection is initiated, and takes the layered form shown. We leave
it as an exercise to explain why.

3.7 Parameterised convection

The boundary layer theory described in section 3.5 applies to steady state solutions
at high Rayleigh number, but in fact real convection becomes time-varying at such
parameter values. The behaviour becomes first oscillatory, and then becomes in-
creasingly irregular, so that at very high Rayleigh numbers, the cellular structure of
convection in a fluid layer breaks down. The upwelling and downwelling plumes of
the boundary layer theory still exist, but their detachment is sporadic and irregu-
lar. In these circumstances, the theoretical description of convection may become,
paradoxically, easier. Just as for turbulent shear flows at high Reynolds numbers,
one uses empirically-based measures of the fluxes at boundaries to describe the flow.
Turbulence mixes the fluid, so that, as in the boundary layer theory, the interior of a
convecting cell is taken to be isothermal. In this section, we describe one particular
example of turbulent convection to illustrate these ideas. The example is that of the
turbulent convective plume.

3.7.1 Plumes

A plume is an isolated convective upwelling. Examples are the rise of smoke from an
industrial chimney, the formation of cumulus clouds over oceans, ‘black smokers’ at
mid-ocean rise vents, and explosive volcanic eruptions. In these examples, a source
of buoyancy at (essentially) a point drives a convective flow in the fluid above. As
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Figure 3.13: On the left, a sub-oceanic black smoker issuing from a vent at the ocean
floor; image from http://oceanexplorer.noaa.gov. On the right, a laboratory
plume; image courtesy of Andy Woods.

suggested in figure 3.13, the plume forms a turbulent, approximately conical region,
with a fairly sharp (but time-varying) boundary. The turbulence causes rapid con-
vective mixing, and allows us to conceptualise the plume as a relatively homogeneous
cloud of density ρ = ρ0 −∆ρ rising through an ambient medium of density ρ0. If ρ0

depends on height z, then the medium is called a stratified medium, and it is stably
stratified if ρ′0(z) < 0.

Mathematical model

The simplest mathematical model is of a steady4 cylindrically symmetric plume of
radius r = b(z), in which we use cylindrical coordinates (r, z), with corresponding
velocity components (u,w) (thus the upwards fluid velocity is w). The plume rises
through a medium of density ρ0(z). We will make the Boussinesq approximation,
which is that variations in density are neglected, except in the buoyancy term of the
momentum equation, and in the ‘buoyancy’ equation itself. This requires variations
of the density from that of the ambient density to be small, and also that the variation

4The turbulent time variation is averaged out.
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of ρ0 with height (if any) is small. The basic model is then given by

1

r
(ru)r + wz = 0,

uur + wuz = − 1

ρ0

pr +
1

r

∂

∂r

[
νT r

∂u

∂r

]
,

uwr + wwz = − 1

ρ0

pz −
ρ

ρ0

g +
1

r

∂

∂r

[
νT r

∂w

∂r

]
,

uρr + wρz = +
1

r

∂

∂r

[
νT r

∂ρ

∂r

]
. (3.79)

These equations represent respectively conservation of mass, momentum (horizontal
and vertical), and buoyancy; p is the pressure, ρ the density, ρ0 the reference density,
and g is the acceleration due to gravity. We have included radial diffusion terms
which represent the effects of turbulent mixing: νT is a turbulent eddy diffusivity.
We define the density deficit ∆ρ in the plume to be

∆ρ = ρ0 − ρ. (3.80)

The Boussinesq approximation is based on the assumption that ∆ρ is small, ∆ρ� ρ0.
The laminar viscous terms are neglected on the basis that the flow is turbulent (so
the Reynolds number is large). In fact, turbulent flows are better modelled (by
Reynolds averaging) through the use of Reynolds stresses, which arise through the
time-averaged effect of interacting velocity fluctuations,5 but in fact such Reynolds
stresses are themselves relatively small (a fact that is not commonly noted); however
in the present case we include them, at least temporarily, to allow for radial mixing
(longitudinal mixing can be neglected on the basis of our imminent assumption that
the plume is thin).

The rather odd-looking final equation requires some comment. It caters for the
fact that the density deficit in plumes may arise because of temperature, dissolved
concentrations or particulate load, or a combination. But in all such cases, the tur-
bulent conservation field for the relevant variable is simply that advection is zero; for
example we would have Tt + u .∇T = ∇. [νT∇T ] for temperature, and similarly for
particulate or solute concentrations. Thus the buoyancy conservation equation sim-
ply represents this fact, together with the assumption that the density is an algebraic
function of the conserved quantities. In certain circumstance, the veracity of this
assumption may need to be examined further. For example, in a volcanic ash-laden
plume, the eruption column has a density which is dependent on both temperature
and ash concentration, and it rises through a surrounding stratified atmosphere whose

5In more detail, if we write the (three-dimensional) velocity components as ui = ūi + u′i, where
the overbar denotes a suitable average (for example a local time average), then the (deviatoric)
Reynolds stress tensor which appears in the Navier-Stokes equation for the averaged velocity is
given by τReij = −ρu′iu′j . Commonly the Reynolds stress tensor is prescribed by use of an eddy
viscosity in terms of the strain rate of the averaged velocity field, which then allows the prescription
of a turbulent Reynolds number, commonly of O(102).
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stratification is itself determined by the relation of density to temperature and pres-
sure. In such circumstance, (3.79)4 may warrant further consideration, but such issues
will be ignored here.

The principal approximation that we make is that the plume is thin, and this
allows the well-worn use of the lubrication approximation (and also explains why we
omitted the vertical diffusion terms), which implies that the radial pressure variation
is small, and thus the pressure is that of the surrounding ambient fluid,

pz ≈ −ρ0g. (3.81)

This allows us to write the remaining three equations in terms of the reduced gravity,
which is defined to be

g′ =
g∆ρ

ρ0

. (3.82)

The equations (3.79) then take the simple form

(ru)r + rwz = 0,

uwr + wwz = g′ +
1

r

∂

∂r

[
νT r

∂w

∂r

]
,

N2w + ug′r + wg′z =
1

r

∂

∂r

[
νT r

∂g′

∂r

]
, (3.83)

where N is the Brunt-Väisälä frequency, defined as

N =

(
−gρ

′
0

ρ0

)1/2

, (3.84)

and we have put a pre-factor of 1− ∆ρ

ρ0

equal to one in the N2 term.

It is fairly evident in figure 3.13 that the plume has a fairly well-defined edge,
and we will assume this. The boundary of the plume is taken to be at r = b(z).
The question then arises as to what, if any, boundary conditions should be applied
there. Since the ambient fluid outside the plume has w = g′ = 0, these are natural
conditions to apply, at least when the diffusion terms are included. We therefore pose
the conditions

w = g′ = 0 at r = b(z). (3.85)

One might suppose that also u = 0 would be appropriate, but in fact this is
found not to be the case. The turbulent eddies of the plume incorporate the ambient
fluid, and dramatically increase the plume volume flux. If the entrainment velocity
(inwards) at the edge of the plume is ue, then we have that

u = −ue at r = b. (3.86)

The entrainment velocity needs to be constituted, and a common assumption is to
suppose that

ue = αw̄, (3.87)
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where w̄ is the cross-sectionally averaged vertical velocity, and the value of α is found
experimentally to be approximately 0.1. We note that the plume boundary r = b(z)
is indeterminate, so that an extra condition to determine it is apparently necessary.
If b =∞, this issue does not arise.

The case νT = 0

We now ignore the radial diffusion terms in (3.83) by putting νT = 0. The resulting
equations are given by

(ru)r + rwz = 0,

uwr + wwz = g′,

ug′r + wg′z = −N2w, (3.88)

and are hyperbolic, and suitable boundary conditions to consider are (3.85) and (3.86)
at the plume boundary; in addition, for a plume emanating from a vent of radius a
at z = 0, we might pose

w = w0, u = 0, g′ = g′0 at z = 0, 0 < r < a. (3.89)

Whether all these conditions can be applied depends on the characteristic directions
of the hyperbolic set (3.88). This is examined in question 3.8. If we define the
Stokes stream function by ru = ψz, rw = −ψr, then the characteristics are just
the streamlines, and follow the direction of flow. Therefore the characteristics point
inwards from all parts of the boundary, and all the boundary conditions can be
applied.

Without writing an analytical solution for the flow, what happens is fairly clear
(we assume positive vent buoyancy, g′0 > 0). On the streamlines from the vent which
form the central part of the plume, g′ ≡ g′0, and w increases upwards, thus the vent
streamlines shrink radially. Equally, the prescription of g′ = 0 on the plume boundary
r = b ensures that g′ = w = 0 on all characteristics that begin there, so that g′ = 0
everywhere outside the vent characteristics; the characteristics are horizontal. In
fact, there is no reason to define the plume outside the central core, since there is no
buoyancy there.

It is fairly clear what the matter is: the diffusion terms in (3.83) can not be
ignored. Their effect is precisely to broaden the spike of buoyancy which emerges
from the vent. We can go further. A typical prescription for the eddy diffusivity is
to take (in the present situation)

νT = εT bw, (3.90)

where εT is relatively small, perhaps ∼ 10−2. The point is that with this assumption,
the diffusivity tends to zero at the plume edge, which suggests as with other examples
of such degenerate diffusion that no extra condition is necessary to determine it (and
that its location is at a finite distance).
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Moment equations

In order to progress with the solution of the equations (3.83), we integrate them from
the centre to the edge of the plume, the second and third after multiplying by r. With
our assumption that νT = 0 when w = 0, the two diffusion integrals vanish, and we
are left with three evolution equations for the three quantities

Q = 2π

∫ b

0

rw dr,

M = 2π

∫ b

0

rw2 dr,

B = 2π

∫ b

0

rwg′ dr, (3.91)

which are the volume flux, the momentum flux and the buoyancy flux, respectively.
Bearing in mind that w = g′ = 0 at r = b, we find, noting also (3.86) and (3.87),

dQ

dz
= 2παbw̄,

dM

dz
= 2π

∫ b

0

rg′ dr,

dB

dz
= −N2Q. (3.92)

We note also that
Q = πb2w̄, (3.93)

so that these are almost self-contained. In order to proceed, some further simplifica-
tions must be made. We consider first the case of an unstratified environment.

Unstratified environment

In the case that the ambient fluid is unstratified, the Brunt-Väisälä frequency N is
zero, and the buoyancy flux B is constant. In practice it is sufficient to consider the
release of buoyant material from a point source, as this effectively is the common
situation of interest. If in addition we suppose that the volume flux (and hence also
the momentum flux) is zero at the source, then there is no intrinsic length scale in
the problem, and a similarity solution is suggested. Indeed, the only dimensional
quantities in the problem are the buoyancy flux B with units of m4 s−3 and the
lengths r and z. So the similarity variable must be

η =
r

z
, (3.94)

and the solution must have the form, by dimensional reasoning,

b = βz, w = B1/3z−1/3W (η), g′ = B2/3z−5/3G(η), (3.95)
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with u being determined by quadrature. It seems that these expressions fit well to
experiments, with the functions W and G being approximately Gaussians.

The question then arises, can we actually find the functions W and G by solving
the model (3.83)? As we might expect, the equations without the diffusion terms
admit a similarity form of solution, although as discussed above this is of little use.
What is (perhaps) surprising is that the equations (3.83) including the diffusion terms,
have a similarity solution of the form

w = zνW (η), u = zνU(η), g′ = z2ν−1G(η), η =
r

z
, b = βz, ν = −1

3
, (3.96)

providing we choose the eddy diffusivity to be given by (3.90), and then U , W and
G satisfy the equations

(ηU)′ + η(νW − ηW ′) = 0,

UW ′ +W (νW − ηW ′) = G+
εTβ

η
(ηWW ′)′,

UG′ +W{(2ν − 1)G− ηG′} =
εTβ

η
(ηWG′)′, (3.97)

with such boundary conditions as we can muster:

W = G = 0, U = −2α

β2

∫ β

0

ηW dη at η = β. (3.98)

There will be symmetry conditions at η = 0, but since the equations in (3.97) are
degenerate at both end points (and β is not known), it is unclear just how many
conditions are necessary. In addition we have the prescribed buoyancy flux B, which
gives another condition via the presumed first integral

B = 2π

∫ β

0

ηWGdη. (3.99)

It remains to be seen whether the numerical solution of (3.97) gives solutions similar
to observations.

Plumes in a stratified environment

If, as for example in the atmosphere, the ambient density decreases with height, then a
similarity solution is no longer feasible because the stratification introduces a natural
scale height. To derive a model for such a plume, we must assume some form for
the cross-section profiles, which will allow closure expressions for the average fluxes
B, Q and M in terms of the plume (average) velocity w and radius b. The simplest
assumption to make is that the profiles of buoyancy and vertical velocity have ‘top
hat’ profiles, that is to say they are uniform and then drop rapidly at the plume
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Figure 3.14: An umbrella cloud resulting from the eruption of Mount Redoubt,
Alaska, in 1991. Image from Huppert (2000).

edges. Such profiles might be motivated by a particular choice of expression for the
eddy diffusivity in (3.83), for example. With this assumption, we find

B = πb2wg′, Q = πb2w, M = πb2w2; (3.100)

in addition we have

2π

∫ b

0

rg′ dr = πb2g′. (3.101)

Eliminating w and b finally yields the equations

dB

dz
= −N2Q,

dM

dz
=

BQ

M
,

dQ

dz
= 2π1/2αM1/2. (3.102)

We can see from this that the buoyancy flux continually decreases with height,
while the volume flux increases. When B = 0, the plume reaches its level of neutral
buoyancy, but continues to rise because of its momentum. With B < 0, M decreases,
and will not rise any further when M reaches 0. According to the equations, the
volume flux is still positive, but in fact the plume spreads out laterally, forming an
umbrella cloud as shown in figure 3.14, and the one-dimensional description becomes
irrelevant. Thus a plume in a stratified medium will level out at a height zs which
can be determined from (3.102) in the form (see question 3.11)

zs = cB
1/4
0 N−3/4, (3.103)

where B0 is the buoyancy flux at z = 0, and N is assumed constant.
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3.8 Turbulent convection

As the Rayleigh number increases in Rayleigh–Bénard convection, the convective
rolls which can be seen at the onset of convection bifurcate to three-dimensional
planforms, typically either square cells or hexagons. In a layer of large horizontal
extent, convective rolls tend to be weakly chaotic, because the alignment in different
parts of the layer is different, and thus defects or dislocations are formed in the cellular
structure, and these migrate slowly, sometimes permanently. Three-dimensional cells
tend to be more stable, because they are essentially confined, but at higher Rayleigh
number, an oscillatory instability sets in. The thermal boundary layers which migrate
across the base of the cells and detach at the cell boundaries start to prematurely
thicken and then thin again before detachment, causing an oscillation which is a
manifestation of budding plume development. Eventually, these budding plumes do
begin to detach before reaching the cell walls, and at this point the convection becomes
temporally and spatially disordered. Thermal boundary layers thicken and plumes
detach irregularly, and a defined cellular structure disappears, being replaced by a
host of upwelling and downwelling thermal plumes. In fact, a large scale circulation
does come into existence, but this is on a much larger scale than the typical plume
spacing.

A very famous but simple model of turbulent thermal convection was put forward
by Lou Howard in 1964, at the International Congress of Mechanics in Munich. In
his model, a quiescent thermal boundary layer grows into an isothermal core until it
reaches a critical thickness, when it suddenly forms a plume and detaches, mixing the
fluid and returning to isothermal conditions. The average heat flux is then determined
by that during the quiescent, conductive phase. The conductive temperature in the
growing boundary layer is given by the solution of

Tt = κTzz, (3.104)

with

T = 1
2
∆T on z = 0,

T → 0 as z →∞; (3.105)

here we imagine a convecting fluid layer of depth d, across which the prescribed tem-
perature difference is ∆T (and thus half across the boundary layers on each surface).
Starting from an isothermal state T = 0 (boundary layer of thickness zero), the
solution is

T = 1
2
∆T erfc

(
z

2
√
κt

)
, (3.106)

and thus the average heat flux from the surface z = 0 is

F =
1

tc

∫ tc

0

(
−k∂T

∂z

)∣∣∣∣
z=0

dt, (3.107)
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where tc is the time of detachment of the boundary layer. Using (3.106), we then find

F =
k∆T

2
√
κtc

=
k∆T

2dc
, (3.108)

where dc =
√
κtc is the thickness of the thermal boundary layer at detachment.

Howard hypothesised that detachment would occur when a locally defined Rayleigh
number, using the boundary layer thickness as the depth scale, became critical, of
order

Rac ∼ 103; (3.109)

thus we define the critical thickness dc via the effective critical Rayleigh number
condition

αρ0gd
3
c∆T

2µκ
= Rac, (3.110)

where the factor 2 allows for the temperature drop of 1
2
∆T across the boundary layer.

In terms of the Rayleigh number of the fluid layer

Ra =
αρ0gd

3∆T

µκ
, (3.111)

we thus have the dimensionless heat flux, called the Nusselt number Nu, given by

Nu =
F

(k∆T/d)
=

d

dc
= cRa1/3, (3.112)

where
c = (2Rac)

−1/3 ≈ 0.08. (3.113)

Thus the heat flux can be parameterised as

F = c

(
αgcp
µ

)1/3

(ρ0k)2/3 ∆T 4/3, (3.114)

which is the famous four-thirds law for turbulent convection. It is reasonably consis-
tent with experimental results.

3.9 Notes and references

The theory of continental drift was famously published by Alfred Wegener, a German
meteorologist, in 1915. An English translation of his book was published later, see
Wegener (1924). His ideas were scorned by the geophysical establishment, and in
particular, in Britain, by the colossal figure of Harold Jeffreys. The blind ignorance
with which he and other fellow geologists refuted Wegener’s ideas should serve (but
have not) as a lesson for scientists against the perils of treating science as religion,
and hypothesis as dogma. A notable supporter of the thesis of continental drift was
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Holmes (1978), who understood that mantle convection was the driving mechanism. A
more modern treatment of geodynamics is the classic book by Turcotte and Schubert
(1982), while Davies (1999) gives a readable but technically undemanding account.

The layered magma chamber known as the Skaergaard intrusion was the subject of
a massive memoir by Wager and Brown (1968), who gave painstaking descriptions of
the series of layered rocks. They made some attempts at a theoretical description, as
did McBirney and Noyes (1979), based on analogous processes in chemical reaction-
diffusion theory. Neither of these, nor any subsequent attempts at a theoretical model,
have been altogether successful.

Baines and Gill (1969), Turner (1979)
Balmforth et al. (2001)
The basic description of boundary layer theory at high Rayleigh number and

infinite Prandtl number was first done successfully by Turcotte and Oxburgh (1967).
A more complete theory is due to Roberts (1979), although even this is not quite
watertight.. The necessary numerical results to compute C in (3.37) are given by
Roberts (1979) and Jimenez and Zufiria (1987). The results are slightly different, with
the latter paper considering Roberts’ numerical results to be wrong. For a = O(1),
then 2C ≈ 0.1.

Jimenez and Zufiria (1987) claim that the equivalent problem to (3.48) for the
case of no-slip boundary conditions has no solution, but do not adduce details. Their
inference is that the boundary layer approximation fails: this seems a hazardous
conclusion.

Linden (2000), Morton et al. (1956).
The model of turbulent thermal convection described in section 3.8 is due to

Howard (1966). Baines and Turner (1969).

Exercises

3.1 The Boussinesq equations of two-dimensional thermal convection can be written
in the dimensionless form

∇.u = 0,
1

Pr
[ut + (u .∇)u] = −∇p+∇2u +RaT k̂,

Tt + u.∇T = ∇2T.

Explain the meaning of these equations, and write down appropriate boundary
conditions assuming stress-free boundaries.

By introducing a suitably defined stream function, show that these equations
can be written in the form

1

Pr

[
∇2ψt + ψx∇2ψz − ψz∇2ψx

]
= RaTx +∇4ψ,

Tt + ψxTz − ψzTx = ∇2T,
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with the associated boundary conditions

ψ = ∇2ψ = 0 at z = 0, 1,

T = 0 at z = 1,

T = 1 at z = 0,

and write down the conductive steady state solution.

By linearising about this steady state, show that

1

Pr

(
∂

∂t
−∇2

)
∇2ψt =

(
∂

∂t
−∇2

)
∇4ψ +Raψxx,

and deduce that solutions are ψ = eσt sin kx sinmπz, and thus that

(σ +K2)
( σ

K2Pr
+ 1
)
− Rak2

K4
= 0, K2 = k2 +m2π2.

By considering the graph of this expression as a function of σ, show that oscil-
latory instabilities can not occur, and hence derive the critical Rayleigh number
for the onset of convection.

3.2 A two-dimensional, incompressible fluid flow has velocity u = (u, 0, w), and
depends only on the coordinates x and z. Show that there is a stream function
ψ satisfying u = −ψz, w = ψx, and that the vorticity

ω = ∇× u = −∇2ψj,

and thus that
u× ω = (ψx∇2ψ, 0, ψz∇2ψ),

and hence
∇× (u× ω) = (ψx∇2ψz − ψz∇2ψx)j.

Use the vector identity (u .∇)u = ∇(1
2
u2)− u× ω to show that

∇× du

dt
=
[
−∇2ψt − ψx∇2ψz + ψz∇2ψx

]
j.

Show also that
∇× θk = −θxj,

and use the Cartesian identity

∇2 ≡ grad div − curl curl

to show that
∇×∇2u = −∇4ψ j,

and hence deduce that the momentum equation for Rayleigh–Bénard convection
can be written in the form

1

Pr

[
∇2ψt + ψx∇2ψz − ψz∇2ψx

]
= Ra θx +∇4ψ.
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3.3 Suppose that σ satisfies

p(σ) ≡ σ3 + aσ2 + bσ + c = 0,

and that a, b and c are positive. Suppose, firstly, that the roots are all real.
Show in this case that they are all negative.

Now suppose that one root (α) is real and the other two are complex conjugates
β ± iγ. Show that α < 0. Show also that β < 0 if a > α. Show that a > α if
p(−a) < 0, and hence show that β < 0 if c < ab.

If

a = K2

(
Pr + 1 +

1

Le

)
,

b = K4

(
Pr +

1

Le
+
Pr

Le

)
+
k2

K2
Pr(Rs−Ra),

c =
K6

Le
Pr + k2Pr

(
Rs− Ra

Le

)
,

show that a, b, c > 0 if Ra < 0, Rs > 0, and show that if Le > 1, then c < ab.

What does this tell you about the stability of a layer of fluid which is both
thermally and salinely stably stratified?

3.4 Suppose that σ satisfies

p(σ) ≡ σ3 + aσ2 + bσ + c = 0,

and that all the roots have negative real part if c < ab. Show that the condition
that there be two purely imaginary roots ±iΩ is that c = ab, and deduce that
there are two (complex) roots with positive real part if c > ab. With

a = K2

(
Pr + 1 +

1

Le

)
,

b = K4

(
Pr +

1

Le
+
Pr

Le

)
+
k2

K2
Pr(Rs−Ra),

c =
K6

Le
Pr + k2Pr

(
Rs− Ra

Le

)
,

show that this condition reduces to

Ra >

(
Pr +

1

Le

)
Rs

1 + Pr
+

(
1 +

1

Le

)(
Pr +

1

Le

)
Pr

K6

k2
.

Assuming K2 = k2+m2π2, where m is an integer, show that the minimum value
of Ra where this condition is satisfied is when m = 1, and give the corresponding
critical value Raosc.
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3.5 On the line XV in figure 3.9, the cubic

p(σ) = σ3 + aσ2 + bσ + c

has two positive real roots β and one negative real root α. Show that the
condition for this to be the case is that

a = α− 2β, b = β2 − 2αβ, c = αβ2,

and deduce that
aβ2 + 2bβ + 3c = 0. (1)

Show also that at the double root β,

3β2 + 2aβ + b = 0. (2)

Deduce from (1) and (2) that

β =
9c− ab
a2 − 6b

,

and hence, using (2), that

β = 1
3

[
−a+ {a2 − 3b}1/2

]
. (3)

Explain why the positive root is taken in (3), and why we can assume b < 0.

Use the definitions

a = K2

(
Pr + 1 +

1

Le

)
,

b = K4

(
Pr +

1

Le
+
Pr

Le

)
+
k2

K2
Pr(Rs−Ra),

c =
K6

Le
Pr + k2Pr

(
Rs− Ra

Le

)
,

to show that if Ra ∼ Rs � 1, Ra − Rs � 1 and Le � 1, then XV is
approximately given by

Ra ≈ Rs+
3K2Rs2/3

(4k2Pr)2/3
.

3.6 The growth rate σ for finger instabilities is given by

(σ +K2Pr)(σ +K2)

(
σ +

K2

Le

)
+ k2Pr

[
(Rs−Ra)σ

K2
+Rs− Ra

Le

]
= 0,

and Ra,Rs < 0 with −Ra,−Rs� 1; K is defined by K2 = k2 + π2.
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Define Rs = Ra r, and consider the behaviour of the roots when Ra → −∞
with r fixed. Show that when k is O(1), one root is given by

σ =

(
r − 1

Le

)
K2

1− r
+O

(
1

|Ra|

)
, (∗)

and that this is positive if
1

Le
< r < 1.

Show that the other two roots are of O
(
|Ra|1/2

)
, and by putting

σ = |Ra|1/2Σ0 + Σ1 + . . . ,

show that they are given by

σ = ±i k
K
{Pr(Ra−Rs)}1/2 − 1

2
K2

Pr +
1− 1

Le
1− r

+O

(
1

|Ra|1/2

)
,

and thus represent stable modes.

Show further that when k is large, an appropriate scaling when (∗) breaks down
is given by

k = |Ra|1/4α, σ = |Ra|1/4Σ,

and write down the equation satisfied by Σ in this case. Show also that when
α is large, the three roots are all negative, with Σ ∼ −α2S, and S = Pr, 1, or
1

Le
.

Deduce that the maximal growth rate for finger instability occurs when k ∼
|Ra|1/4.

3.7 The scaled Boussinesq equations for two-dimensional thermal convection at in-
finite Prandtl number and large Rayleigh number R in 0 < x < a, 0 < z < 1,
can be written in the form

ω = −∇2ψ,

∇2ω =
1

δ
Tx,

ψxTz − ψzTx = δ2∇2T,

where δ = R−1/3. Explain what is meant by the Boussinesq approximation, and
explain what the equations represent. Explain why suitable boundary condi-
tions for these equations which represent convection in a box with stress free
boundaries, as appropriate to convection in the Earth’s mantle, are given by

ψ = 0, ω = 0, on x = 0, a, z = 0, 1,
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T = 1
2

on z = 0, T = −1
2

on z = 1, Tx = 0 on x = 0, a.

Show that, if δ � 1, there is an interior ‘core’ in which T ≈ 0, ∇4ψ = 0.

By writing 1−z = δZ, ψ = δΨ and ω = δΩ, show that Ψ ≈ us(x)Z, and deduce
that the temperature in the thermal boundary layer at the surface is described
by the approximate equation

usTx − Zu′sTZ ≈ TZZ ,

with
T = −1

2
on Z = 0, T → 0 as Z →∞.

If us is constant, find a similarity solution, and show that the scaled surface
heat flux q = ∂T/∂Z|Z=0 is given by

q =
1

2

√
us
πx
.

3.8 The Boussinesq equations describing the rise of a cylindrical plume are, ignoring
turbulent diffusivity,

(ru)r + rwz = 0,

uwr + wwz = g′,

ug′r + wg′z = 0,

in which r and z are cylindrical coordinates, u and w are radial and vertical
velocities, and g′ is the reduced gravity. Explain the basis for the derivation of
these equations, including a definition of what is meant by the ‘reduced gravity’.

Write the equations in the form

Aφr +Bφz = c,

and hence show that the characteristics
dr

dz
= λ satisfying det (A−λB) = 0 are

λ =
u

w
,
u

w
, ∞.

What is meant by saying that the third characteristic is ∞? What might make
it finite?

Define a suitable stream function ψ for the flow, and show that the character-
istics are the streamlines.

Assuming the plume emerges from a chimney of finite radius a with uniform
upwards speed w0 and uniform buoyancy (reduced gravity) g0 > 0, and that
entrainment occurs at the plume edge, write down suitable boundary conditions
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for the flow, and draw a sketch of the resulting characteristic diagram. (Assume
that the plume boundary b(z) > a.)

By explicitly solving the characteristic equations, show that the edge of the
central part of the plume is given by

r =
a(

1 +
2g0z

w2
0

)1/4
.

What happens if g0 < 0? Explain this physically.

3.9 The equations describing the steady motion of a turbulent plume in z > 0 and
0 < r < b(z) (using cylindrical polar coordinates) are

(ru)r + rwz = 0,

uwr + wwz = g′ +
1

r

∂

∂r

[
νT r

∂w

∂r

]
,

N2w + ug′r + wg′z =
1

r

∂

∂r

[
νT r

∂g′

∂r

]
,

where u and w are radial and vertical velocities, g′ is the reduced gravity, N is
the Brunt–Väisälä frequency, and the eddy diffusivity is assumed to be

νT = εT bw,

where εT � 1. Boundary conditions for the flow are

w = g′ = 0, u = −αw̄ at r = b,

where w̄ is the cross-sectional average of w and α (≈ 0.1) is a positive constant,
and

w = w0, g′ = g0 ≡
g∆ρ

ρ0

at z = 0, 0 < r < a,

where also b(0) = a.

Assuming a stratified atmosphere in which − 1

ρ0

∂ρ0

∂z
∼ 1

H
(H is the scale height)

and that w0 <∼
√
g0l, show how to non-dimensionalise the equations so that all

the terms in each equation balance. Hence show that the plume aspect ratio is

εT , and that the natural length scale is l ∼ H∆ρ

ρ0

.

By defining a stream function ψ with ψ = 0 on r = 0 and ψ > 0 for r > 0,
make a Von Mises transformation from variables z, r to z, ψ, and hence show
that w and g′ satisfy nonlinear diffusion-type equations.
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3.10 An isolated turbulent cylindrical plume in a stratified medium of density ρ0(z)
is described by the inviscid Boussinesq equations

uur + wuz = − 1

ρ0

pr,

uwr + wwz = − 1

ρ0

pz −
ρ

ρ0

g,

uρr + wρz = 0,

1

r
(ru)r + wz = 0,

where (r, z) are cylindrical coordinates, (u,w) the corresponding velocity com-
ponents, p the pressure, ρ the density, ρ0 the reference density, and g is the
acceleration due to gravity. If ρ = ρ0 − ∆ρ, explain what is meant by the
Boussinesq approximation.

Suppose the edge of the plume is at radius r = b, such that w = 0 there.
Suppose also that the plume entrains ambient fluid, such that

(ru)|b = −bαw̄,

where w̄ denotes the cross-sectional average value of w. Deduce that the plume
volume flux

Q = 2π

∫ b

0

rw dr

satisfies
dQ

dz
= 2παbw̄.

The momentum flux is defined by

M = 2π

∫ b

0

rw2 dr.

Show that, assuming that
∂p

∂z
= −ρ0g

throughout the plume, that

dM

dz
= 2π

∫ b

0

rg′ dr,

where

g′ =
g∆ρ

ρ0

.

Why would the hydrostatic approximation be appropriate?
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The buoyancy flux is defined by

B = 2π

∫ b

0

rwg′ dr;

assuming g′ = 0 at r = b, show that

dB

dz
= −N2Q,

where the Brunt–Väisälä frequency N is defined by

N =

(
−gρ

′
0(z)

ρ0

)1/2

.

3.11 The buoyancy flux B, momentum flux M , and mass flux Q of a turbulent plume
in a stratified atmosphere satisfy the equations

dB

dz
= −N2Q,

dM

dz
= 2π

∫ b

0

rg′ dr,

dQ

dz
= 2παbw,

where w is the plume velocity, b is its radius, g′ is the reduced gravity, N is the
Brunt–Väisälä frequency, α ≈ 0.1 is an entrainment coefficient, and r and z are
radial and axial coordinates. Assuming that

2π

∫ b

0

rA dr = πb2A

for any plume quantity, assumed to be approximated by a top hat profile, show
that

dB

dz
= −N2Q,

dM

dz
=
BQ

M
,

dQ

dz
= 2π1/2αM1/2.

Now suppose that B = B0, M = Q = 0 at z = 0. By non-dimensionalising the
equations appropriately, show that the level of neutral buoyancy where B = 0
is given by

zs =
ζs

(2απ1/2)1/2

B
1/4
0

N3/4
,
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where ζs is a numerical constant (it is approximately measured to be 1.5). Write
down the equations and boundary conditions necessary to determine ζs, and by
integrating them, show that

ζs =

∫ 1

0

db[
2

∫ 1

b

(1− β2)1/4 dβ

]1/2
.

If, instead, w = w0 and b = b0 at z = 0, show that the same model to determine
zs is valid provided w0 and b0 are small enough, and specifically if

w0 �
g′

N
, b2

0w0 �
g′3

N5
.

Show that if the first inequality is satisfied, then the second is as well, provided

b0 <∼
g′

N2
.

If the scale height of the medium is h (i. e., ρ′0/ρ ∼ 1/h), show that these two
inequalities take the form

w0 �
∆ρ

ρ0

√
gh, b0 <∼

∆ρ

ρ0

h.
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Chapter 4

Rotating fluid flows

Fluid mechanics in a rotating environment is primarily of interest in the context of at-
mospheric and oceanic fluid flows, occurring as they do on the rotating Earth, and this
will provide the main focus of this chapter. Oceanography and atmospheric science,
together tagged with the epithet of geophysical fluid dynamics (GFD), are huge and
related subjects which each can and do have whole books devoted to them. We will
describe briefly some of the principal phenomena of GFD with a view to making sense
of how the Earth’s oceans and atmosphere behave. In his classic book on rotating
fluids, Greenspan (1968) begins by recounting three examples of surprising behaviour
of relatively commonplace observation (indeed he suggests setting up kitchen scale
experiments to observe these), and we can do no better than repeat these here.

Three experiments

In a rotating closed cylinder full of water with a flat bottom, secure a protuberance
to the bottom (for example, half a wine bottle cork with some blutack) and add some
fine particles to the liquid to visualise the flow. In equilibrium the motion will be
a solid body rotation. If the rotation rate is then altered slightly, a column above
the protuberance will become visible. Greenspan’s illustration of this is shown in
figure 4.1. The phenomenon is referred to as a Taylor column, or Taylor-Proudman
column, and is due to the fact that the fluid flow above the protuberance is essentially
two-dimensional, i. e., it does not vary with height.

A second experiment (less easy to do) generalises the first by placing an oscillating
disc in the interior of the fluid. Strange oblique rays can be seen, if ω < 2Ω, where
ω is the oscillation frequency of the disc, and Ω is the rotation rate of the apparatus.
They are shown in figure 4.2. These are characteristics of an internal wave motion
(despite the incompressibility of the flow). When ω = 0, the characteristics are
vertical and delineate the Taylor column; when ω = 2Ω they become horizontal and
then disappear.

The third experiment is the easiest: when a cup of tea is stirred, the motion ceases
after a minute or so, whereas the viscous diffusive time scale is much longer than this.
The reason for this is that the rotation induces a secondary flow (manifested by the
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Figure 4.1: A Taylor column. Image from Greenspan (1968, figure 1.2a).

accumulation of tea leaves in the centre of the cup) caused by Ekman suction at the

Figure 4.2: Internal waves: the strange oblique rays are (sub-)characteristics of the
describing equations. Image from Greenspan (1968, figure 1.3a).
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Figure 4.3: Spin-up. The rotating cylinder has been impulsively started from rest.
The central white core is still stagnant (in the laboratory frame of reference) while the
outer grey fluid is rotating as ma solid body with the cylinder. Image from Greenspan
(1968, figure 1.4).

walls. The opposing experiment, where a cylinder of stationary fluid is impulsively
started to rotate, is shown in figure 4.3. The process whereby the interior fluid
approaches solid body rotation is called spin-up. If the diameter of the cylinder is d
and the kinematic viscosity of the liquid is ν, then the viscous diffusive time scale is
d2

ν
, while the rotation-induced spin-up time is

d

(Ων)1/2
, and typically much less.

4.1 Basic equations

We begin by describing the equations of motion for an incompressible fluid. Later we
shall extend the discussion to compressible fluids, as is appropriate in the atmosphere.
The effect of the rotating coordinate system is that time derivatives of vectors a are
transformed as

da

dt

∣∣∣∣
fix

=
da

dt

∣∣∣∣
rot

+ Ω× a, (4.1)

because in differentiating a = aiei, both the components ai and the unit vectors ei
change with time, and ėi = Ω× ei in a rigid rotating frame. It then follows that

u|fix = u|rot + Ω× r, (4.2)

and thus
du

dt

∣∣∣∣
fix

=
du

dt

∣∣∣∣
rot

+ 2Ω× u|rot + Ω× (Ω× r). (4.3)
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One can (and should) show that

Ω× (Ω× r) = −1
2
∇|Ω× r|2, (4.4)

and this last term (the centrifugal acceleration) is commonly absorbed into the pres-
sure gradient. At least for atmosphere scale flows, where Ω ∼ 0.7 × 10−4 s−1 (check
this!), it is much smaller than the gravitational acceleration, and this is also true
at laboratory scale, except in such items as centrifuges or washing machines (when
spinning).

It then follows that the Navier-Stokes equations in a rotating frame take the form

∇.u = 0,

ρ

{
du

dt
+ 2Ω× u

}
= −∇p− ρgk + µ∇2u, (4.5)

where k points upwards. The rotational term on the left hand side of the momentum
equation is called the Coriolis term.

In a laboratory frame, we will take Ω = Ωk. It is then convenient to non-
dimensionalise the equations by scaling the variables as

r ∼ l, u ∼ U, p+ ρgz ∼ 2ρUΩl, t ∼ l

U
, (4.6)

so that

∇.u = 0,

ε
du

dt
+ k× u = −∇p+ E∇2u, (4.7)

and the two dimensionless parameters are the Rossby number ε and the Ekman
number E:

ε =
U

2Ωl
, E =

ν

2Ωl2
, (4.8)

where the kinematic viscosity is ν =
µ

ρ
. The Reynolds number appears to have

vanished, but is in fact just
ε

E
.

It is useful to get some idea of the size of these numbers. In a laboratory scale,
we might take Ω ∼ 0.5 s−1 (a long-playing record), U ∼ 0.01 m s−1 (note this is the
velocity in the rotating frame, i. e., relative to the rigid body motion of rotation),
l ∼ 0.1 m, ν = 10−6 m2 s−1, and then ε ∼ 0.1, E ∼ 10−4. For slow (or rapidly
rotating) flows such that ε � 1, (4.7)2 becomes simply the approximate geostrophic
balance

k× u = −∇p, (4.9)

from which it follows (take the curl) that

(k.∇)u = 0, (4.10)
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and this explains the existence of Taylor columns. (4.10) is sometimes known as the
Taylor-Proudman theorem.

Another consequence of (4.9) is that u.∇p = 0, and thus the streamlines of the
motion are also the isobars. This is more familiar in the atmospheric context, where
weather forecasts commonly plot isobars. Thus in a strongly rotational flow (small
Rossby number), the fluid velocity is orthogonal to the pressure gradient.

The second of Greenspan’s observations, on internal wave propagation, follows
by consideration of the time-dependent version of (4.7) when ε and E are neglected

(after first rescaling t ∼ ε, thus the dimensional time scale is
1

2Ω
):

∇.u = 0,

∂u

∂t
+ k× u = −∇p. (4.11)

Manipulation of this (see question 4.2) shows that p satisfies the rather odd-looking
equation

∇2ptt + pzz = 0, (4.12)

with an associated homogeneous boundary condition representing no normal velocity.
(4.12) possesses time-periodic solutions which represent internal waves with frequency
less than twice the rotation rate.

4.1.1 Spin-up

The third observation (stirring a cup of tea) can be studied by the opposing problem
of suddenly starting to rotate a cylinder which is initially at rest, together with its
contained liquid. The resulting relaxation to a rigid body rotation is called spin-up.
A suitable model to study this is that of (4.7), where again we neglect the Rossby
number, but will retain the Ekman number, as it provides the basis for analysing the
viscous boundary layers. We write (in Cartesian coordinates) u = (u, v, w), so that

ux + vy + wz = 0,

−v = −px + E∇2u,

u = −py + E∇2v,

0 = −pz + E∇2w. (4.13)

Now (in carefully controlled conditions), what happens is that the initially stagnant
core remains stagnant, and the eventual rigid body rotation creeps inwards from the
outer walls. In a non-rotating fluid, this would be a purely viscous process, but
the rotation makes it faster because of a process called Ekman suction. The time
evolution of the flow is so slow that time derivatives can be omitted. In the core of
the fluid, we neglect the viscous terms. In the rotating frame, the original stagnant
flow is u = −k× r, thus

u = y, v = −x; (4.14)
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note that any constant value of w is allowed in this flow. The outer value of the
pressure is just p = p0− 1

2
(x2 + y2) (it should be recalled that the scaled pressure has

not only removed gravity, but also the centrifugal pressure).
In order to satisfy the no-slip boundary conditions

u = v = 0 at z = 0, (4.15)

we introduce a boundary layer scaling

z =
√

2EZ, w =
√

2EW, (4.16)

so that p ≈ p(x, y) = p0 − 1
2
(x2 + y2) , and thus

−v = x+ 1
2
uZZ ,

u = y + 1
2
vZZ ; (4.17)

it is easy to solve this (define φ = u+ iv) and the solution is

u = y
[
1− e−Z cosZ

]
+ xe−Z sinZ,

v = −x
[
1− e−Z cosZ

]
+ ye−Z sinZ, (4.18)

and from these we compute the vertical velocity

W = e−Z(cosZ + sinZ)− 1, (4.19)

and thus there is an Ekman suction velocity w ≈ −
√

2E at the base of the core flow.
It is this suction into the boundary layer which speeds up the spin-up time. The
flux into the boundary promotes an outflow to the walls of the cylinder and (by mass
conservation) a consequent shrinking of the core.

Given a core flow of dimensionless area A and a dimensionless cylinder height h,
we will have

−2A
√

2E = hȦ (4.20)

(the factor of two because of Ekman layers at top and bottom), and thus the spin-up

dimensionless time scale is ∼ h

2
√

2E
, and dimensionally

tspin−up ∼
H

2
√

Ων
, (4.21)

where H is the cylinder height. Try it and see!

4.2 Stratified flow

Doing laboratory experiments and watching your tea slow down may be diverting,
but they do not explain why rotating fluid flows are of interest. For this we turn
to the Earth (or indeed other planets), where two of the most interesting fluid flows
are of primary concern, and being on the rotating Earth, they are of course rotating
fluids. These two fluids are the atmosphere and the oceans.
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4.2.1 Earth’s atmosphere

The atmosphere is a layer of thin fluid draped around the Earth. The Earth has a
radius of some 6,370 kilometres, but the bulk of the atmosphere lies in a (relatively)
thin layer only ten kilometres deep. This layer is called the troposphere. The atmo-
sphere extends above this, into the stratosphere and then the mesosphere, but the
fluid density is very small in these upper layers (though not inconsequential), and
we will simplify the discussion by conceiving of atmospheric fluid motion as being
(largely) confined to the troposphere.

Atmospheric motion is described by the model described earlier. The main (and
important) complication is that the atmosphere, being a gas, is compressible. It
turns out this is enormously important. The oceans, being water, are more nearly
incompressible, but the variation of density with temperature and salinity leads to
a model of convection, as described in chapter 3, except that it is a rotating fluid.
Oceanic circulation is complicated by a number of factors: there is convective motion
(double-diffusive, in fact), there is wind-driven stress at the surface, and there are
continents which get in the way. Particularly, the wave motion of the tides is strongly
constrained by the continental margins. In the following, we will focus on the Earth’s
atmosphere as a specific example.

In considering the motion of the atmosphere, we need a comment on radiation
balance. Atmospheric motion is driven by heating from the sun. This heating is
effected by solar radiation. Radiation consists of electromagnetic waves of varying
wavelengths. Matter is heated by radiation by absorbing it and then re-emitting it,
and the way this works is due to the fact that the amount of energy emitted by
matter depends on its absolute temperature T . The Stefan-Boltzmann law says that
for a black body (a perfect emitter) the emitted energy from a surface is σT 4 per
unit area (σ is a constant). The average surface temperature of the Earth is 288 K
(degrees Kelvin), for example, because this is the surface temperature necessary for
the emitted radiation from the top of the atmosphere to space to exactly balance the
incoming solar radiation.

Now, it is more complicated than this. Firstly, the wavelength of the emitted
radiation from a body depends on its temperature. The wavelength is longer at
lower temperatures. Thus the Earth emits longwave radiation at 288 K, whereas
the sun emits shortwave radiation at its surface temperature of 5,800 K. Secondly,
not all radiation is absorbed on striking a body. Some of it may be reflected, or
scattered. And, the degree of absorption or reflection depends on the wavelength.
This is, for example, why we can see the sun, because the Earth’s atmosphere is
largely transparent to optical wavelengths.

So the sun heats the Earth by warming its surface, but it does so non-uniformly,
because of the curvature of the Earth’s surface: much more shortwave radiation is
received at the equator. However the outgoing long wave radiation is much more
uniform, although of course it is greater at the equator. Consequently, there is an
energy imbalance between the equator and the poles. The equator is differentially
heated, and the poles are differentially cooled. The Earth’s atmospheric circulation
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is a consequence of this equator-to-pole differential heating, which drives a poleward
convective circulation. The effect of rapid rotation is to whip this slow poleward
circulation into a rapid azimuthal circulation. At mid-latitudes this circulation is
westerly, i. e., from the west; at the equator and poles, it is in the opposite direction.

This eastwards wind is called the zonal wind. And it is unstable: a phenomenon
called baroclinic instability causes the uniform zonal wind to form north to south
waves, and these meandering waves form the weather systems which can be seen on
television weather forecast charts. At a smaller scale, such instabilities lead to weather
fronts, essentially like shocks, and in the tropics these lead to cyclones and hurricanes.
In order to begin to understand how this all works, we need a mathematical model,
and this is essentially a model of shallow water theory (or shallow air theory) on a
rapidly rotating sphere.

4.2.2 Governing equations

The basic equations describing atmospheric motion are those of mass, momentum
and energy in a rotating frame, and can be written in the form

dρ

dt
+ ρ∇.u = 0,

ρ

{
du

dt
+ 2Ω× u

}
= −∇p− ρ∇Φ + F,

ρcp
dT

dt
− dp

dt
= Q. (4.22)

In these equations, p is the pressure, T is the absolute temperature, Ω is the angular
velocity of the Earth, and the equations have been written with respect to a set of
coordinates fixed in the (rotating) Earth. The quantity F represents frictional terms,
and is discussed further below. Φ is called the geopotential; it is the gravitational
potential corrected for the effect of centrifugal force, and is defined by

Φ = Φg − 1
2
|Ω× r|2 , (4.23)

where Φg is the gravitational potential. The surface Φ = 0 is called sea level; the
surface of the oceans would be this geopotential surface in the absence of motion. We
take z to be the coordinate normal to Φ = 0; essentially it is in the radial direction,
and to a good approximation we can take Φ = gz, where g is called the gravitational
acceleration (although in fact it includes a small component due to centrifugal force).

The last equation in (4.22) is the energy equation: cp is the specific heat. The
second term on the left hand side is the adiabatic term, and specifically assumes a
thermal expansion coefficient equal to 1/T , which is a consequence of assuming, as
we do, the perfect gas law as a constitutive equation for the compressible air:

p =
ρRT

Ma

, (4.24)
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where R is the gas constant and Ma is the molecular weight of dry air. The term
Q on the right represents a combination of effects: turbulent transport of heat, both
sensible (as manifested by temperature) and latent (as manifested by moisture), ra-
diative transport of heat, and absorption of radiation. Most of these terms are rel-
atively small, and the dominant terms are those on the left, which means that the
atmospheric is approximately adiabatic. Actually, the transport of moisture has a sig-
nificant quantitative effect on this (the ‘wet’ adiabatic vertical temperature gradient
is around −6 K km−1, whereas the ‘dry’ adiabat is about 10 K km−1, but we want to
avoid getting bogged down in the detail of this.

4.2.3 Eddy viscosity

The force F represents the effects of friction. Molecular viscosity is insignificant in
the atmosphere and oceans, but the flows are turbulent, and the result of this is that
momentum transport by small scale eddying motion is often modelled by a a diffusive
frictional term of the form ρεT∇2u, where εT is an ‘eddy’ (kinematic) viscosity. More
generally, it varies with distance from rough boundaries.1 A complication in the
atmosphere and ocean is that the vertical motion is much smaller than the horizontal,
and this leads to the idea that different eddy viscosities are appropriate for horizontal
and vertical momentum transport. We denote these coefficients as εH and εV , and
take them as constants. To be precise, we then represent the frictional terms in the
form

F = ρεH∇2
Hu + ρεV

∂2u

∂z2
, (4.25)

where ∇2
H =

∂2

∂x2
+

∂2

∂y2
, and x, y are ‘horizontal’ coordinates, z is the vertical co-

ordinate. The choice of suitable coordinates is discussed below. Since the friction
terms will only be important in boundary layers where the sphericity is unimportant,
we need not concern ourselves with such niceties in defining F. Frictional effects are
generally relatively small. In the atmosphere, they are confined to a ‘boundary layer’
adjoining the surface, having a typical depth of 1000 metres, and bulk motion above
this layer is effectively inviscid, and so we will largely ignore the effects of friction.

4.2.4 Potential temperature

The energy equation is commonly written in terms of the potential temperature, de-
fined as

θ = T

(
p0

p

)R/Macp

, (4.26)

where p0 is a reference value, which we take to be the (constant) surface pressure.
The use of this variable is that

ρcpT
dθ

θ
= ρcp dT − dp, (4.27)

1And then, we write F = ∇. τT , τT = 1
2εT (∇u + ∇uT ).
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Figure 4.4: A local quasi-Cartesian coordinate system in the mid-latitudes.

so that θ is constant for the dry adiabatic basic state of question 4,3.2 in which we
neglect Q The energy equation then takes the form

p

θ

dθ

dt
=

RQ

Macp
. (4.28)

4.2.5 Coordinates

A real complication on the Earth is the spherical geometry. On the other hand the
atmosphere is shallow, so that it is quasi-Cartesian. The effect will be that most of
the curvilinear terms disappear, but the cost of this is that it is necessary to place the
origin somewhere specific: the problem with spherical coordinates is that they have
poles.

It is common in presenting the equations of motion to use a coordinate system
which is based in mid-latitudes, and we will follow that here also, for the most part.
But to begin with, we write the equations in terms of spherical polar coordinates.
We take r to be the radius measured from the Earth’s centre, λ to be the angle of
latitude, and φ to be the angle of longitude. In terms of the more usual definition of

spherical polar coordinates (r, θ, φ), r and φ are the same, and λ =
π

2
−θ. We denote

velocity components in φ, λ, r directions as u, v, w (because we are setting up φ, λ, r,
i. e., east, north, upwards, as future x, y, z cartesian variables, see figure 4.4), and we

2Thus s = cp ln θ, where s is entropy.
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denote the vector velocity u = (u, v, w).3 The definitions of the vector derivatives are

∇.u =
1

r cosλ

∂u

∂φ
+

1

r cosλ

∂(v cosλ)

∂λ
+

1

r2

∂

∂r

(
r2w

)
,

∇ =

(
1

r cosλ

∂

∂φ
,

1

r

∂

∂λ
,
∂

∂r

)
, (4.29)

and the momentum equations have the form (omitting the friction terms)

du

dt
+
uw

r
− uv

r
tanλ− 2Ωv sinλ+ 2Ωw cosλ = − 1

ρr cosλ

∂p

∂φ
,

dv

dt
+
vw

r
+
u2

r
tanλ+ 2Ωu sinλ = − 1

ρr

∂p

∂λ
,

dw

dt
− (u2 + v2)

r
− 2Ωu cosλ = −1

ρ

∂p

∂r
− g. (4.30)

These are awkward equations, but they can be simplified by scaling and approxi-
mation. We can immediately see that there is an issue at the poles, where cosλ = 0,
and we will simply ignore the polar regions. The way to deal with them would be to

use the polar angle θ =
π

2
− λ (at the north pole), and then (θ, φ, r) would be a local

set of cylindrical polar coordinates. One of the features of the Earth’s weather sys-
tems is that they have a horizontal length scale which, though large, is not global in
extent. The description of such systems is facilitated by using a local, near cartesian
coordinate system. To do this, we choose a particular latitude on which to put the
cartesian origin, and this then limits the applicability of the resulting approximate
model to phenomena appropriate to this latitude. Luckily, as we have seen, there is a
natural division of the global circulation into three bands (one in each hemisphere):
tropical, mid-latitude and polar. We associate these three latitudes with values of λ

near zero, of O(1), and near ±π
2

. We take λ = λ0 to define the x-z plane.

Specifically, we define east, north and vertical coordinates x, y and z by the
relations

x = φr cosλ0, y = (λ− λ0)r, z = r − r0, (4.31)

where r0 is the radius at sea level. We then have

1

r cosλ

∂

∂φ
= µ

∂

∂x
,

1

r

∂

∂λ
=

∂

∂y
,

∂

∂r
=

∂

∂z
+

1

r

(
x
∂

∂x
+ y

∂

∂y

)
, (4.32)

3It should be pointed out that the Earth deviates noticeably from being a sphere; it is more
nearly an oblate spheroid, whose radius varies by some 20 km between pole and equator. This is
of some conceptual importance, since gravity is the most important force, and the use of a purely
spherical coordinate system would yield large ‘horizontal’ forces in the momentum equations. The
correct procedure is to define the level ‘horizontal’ surfaces to be geopotential surfaces, so that there
are no horizontal gravitational forces. But the geometric deviation from sphericity is so small that
in effect we regain the form of the equations in spherical polars, as presented here.
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where

µ =
cosλ0

cosλ
, (4.33)

so that

∇ =

(
µ
∂

∂x
,
∂

∂y
,
∂

∂z

)
+

k

r

(
x
∂

∂x
+ y

∂

∂y

)
,

∇.u = µ
∂u

∂x
+ µ

∂(v/µ)

∂y
+
∂w

∂z
+

1

r

{
x
∂w

∂x
+ y

∂w

∂y
+ 2w

}
. (4.34)

The momentum equations are then

du

dt
− 2Ωv sinλ+ 2Ωw cosλ+

1

r
[uw − uv tanλ] = −µ

ρ

∂p

∂x
,

dv

dt
+ 2Ωu sinλ+

1

r

[
vw + u2 tanλ

]
= −1

ρ

∂p

∂y
,

dw

dt
− 2Ωu cosλ− (u2 + v2)

r
= −1

ρ

[
∂p

∂z
+

1

r

(
x
∂p

∂x
+ y

∂p

∂y

)]
− g. (4.35)

These still look horrendous, but a major simplification results from the fact that
the Earth’s radius is much larger than atmospheric depth. If the horizontal length
scale (more specifically the poleward range) is much less than Earth’s radius, it is

possible to ignore the small terms in
1

r
, and take λ = λ0 except in the Coriolis term

(this is a Boussinesq-like approximation; we might call it the Coriolis approximation).
The result of all this is that (4.34) can be simplified to

∇ =

(
∂

∂x
,
∂

∂y
,
∂

∂z

)
, ∇.u =

∂u

∂x
+
∂v

∂y
+
∂w

∂z
, (4.36)

and the equations of motion take the simpler form

dρ

dt
+ ρ∇.u = 0,

du

dt
− 2Ωv sinλ+ 2Ωw cosλ = −1

ρ

∂p

∂x
,

dv

dt
+ 2Ωu sinλ = −1

ρ

∂p

∂y
,

dw

dt
− 2Ωu cosλ = −1

ρ

∂p

∂z
− g,

p

θ

dθ

dt
=

RQ

Macp
, ρ =

Map

Rθ

(
p0

p

)α
, α =

R

Macp
. (4.37)

The removal of all these extra terms can be justified by non-dimensionalisation of the
model, but is omitted for clarity. See, for example, Pedlosky (1987) or Fowler (2011).
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Figure 4.5: Periodic gravity waves in Lapland, Northern Finland, October 2004.

4.3 Gravity waves

Atmospheric motions are dominated by various kinds of waves. Large scale waves
are associated with weather systems and can be seen on the charts used in weather
forecasts. but much smaller scale waves occur, and are made visible by the periodic
formation of clouds. An example is shown in figure 4.5. In this section we study these
small scale waves.

The basic state of the atmosphere is that of a stable stratified fluid in which

ρ = ρ̄(z), p = p̄(z). (4.38)

The heating term is small so that to a good approximation, the potential temperature
is constant, and ρ is a function of pressure only, in which, from (4.37).

1

ρ

∂ρ

∂p
=

1− α
p

. (4.39)

Two particular sorts of waves which are familiar in fluid mechanics are sound waves
and gravity waves. Sound waves are associated with compressibility; they travel at
a speed (the speed of sound) which depends on density but is independent of wave
number: they are monochromatic. At sea level this speed is about 330 m s−1: much
faster than typical wind speeds; as a consequence, we might expect sound waves to be
high frequency phenomena which are not relevant to common atmospheric motions. If
we denote the sound wave speed as cs, then the dispersion relation relating frequency
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ω to wave speed and wave number k is just

ω = kcs, cs =

(
dp̄

dρ̄

)1/2

=

{
p̄

(1− α)ρ̄

}1/2

; (4.40)

cs is the adiabatic sound speed.
Gravity waves are familiar as the waves which propagate on the surface of the sea.

The ingredients of the theory which describes them are mass conservation (where
horizontal divergence is accommodated by vertical contraction and expansion), accel-
eration, gravity, pressure gradient, and a vertical stratification which, in the simplest
form of the theory, is manifested by the interface between dense underlying fluid (e. g.,
water) and a lighter overlying fluid (e. g., air). Gravity waves can be seen propagat-
ing at the interface between two incompressible liquids such as oil and water, and
gravity waves will similarly propagate in a continuously stratified fluid contained in a
vertically confined channel; in this case the waves are less easily visualised, and they
are often called internal waves, or internal gravity waves.

In the sense that the atmosphere consists of a dense troposphere beneath a
light stratosphere, we can expect gravity waves to propagate as undulations in the
tropopause altitude. More generally, gravity waves will propagate as internal waves
in the stratified atmosphere. Gravity waves can be seen commonly in the atmosphere,
because the vertical undulations of the air causes periodic cloud formation as air rises
(and thus cools). Figure 4.5 shows a particular striking example from Lapland of low
lying periodic gravity waves.

For the simple case of an incompressible fluid of depth h, the dispersion relation
between frequency and wavenumber is ω2 = gk tanh kh. In the case of a shallow fluid
(such as the atmosphere), the long wave limit kh� 1 may be appropriate, and then
the wave speed is constant, and

ω ≈ k
√
gh. (4.41)

This applies to waves of wavelength larger than 10 km (the waves in figure 4.5 are of
smaller wavelength). Comparing (4.41) with (4.40), we see that long gravity waves
in the atmosphere are essentially the same as sound waves, since in an approximately
hydrostatic atmosphere, p̄ ∼ ρ̄gh. In an incompressible fluid, density is manifested as
fluid column depth, and the pressure is proportional to this, so that the dimensionless
‘sound’ speed is equal to one. For internal waves, the height of the column need not
change, but the common factor is that the height of geopotential surfaces propagates
in both types of wave.

We can recover gravity waves from the atmospheric model of (4.37) by assuming
a reference state of a stratified hydrostatic, adiabatic atmosphere in which there is
no motion. In addition, the shallowness of the atmosphere implies w � u, v and we
will ignore it. For small disturbances in which u and v are small as is P = p− p̄, we
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can write, using (4.40),

1

c2
s

Pt + ρ̄(ux + vy) = 0,

ut − 2Ωv sinλ = −1

ρ̄
Px,

vt + 2Ωu sinλ = −1

ρ̄
Py. (4.42)

Because we focus on short wavelengths, we take λ to be constant. These are linear
equations, and the fact that ρ̄ and cs depend on z is immaterial. We can write these
equations in terms of the horizontal divergence ∆ = ux+vy, the vorticity ζ = vx−uy,
and a dimensionless pressure perturbation given by P = ρ̄c2

sΠ. We obtain

Πt + ∆ = 0,

∆t − fζ + c2
s∇2Π = 0,

ζt + f∆ = 0, (4.43)

where the Coriolis parameter is

f = 2Ω sinλ. (4.44)

The solutions are of the form Π
∆
ζ

 = w exp{i(kx+ ly + ωt}, (4.45)

provided  iω 1 0
−c2

sK
2 iω −f

0 f iω

w = 0, K2 = k2 + l2; (4.46)

K is the (two-dimensional) wavenumber. Solutions to this exist provided either ω = 0,
or

ω2 = f 2 +K2c2
s, (4.47)

and this latter equation is the dispersion relation for gravity waves in a stratified
atmosphere. These waves are called Poincaré waves.

4.3.1 Kelvin waves

Another kind of wave can be found by seeking solutions in which v = 0. Such waves
are particularly relevant to propagation in a confined zonal channel (for example in
the ocean), where the condition v = 0 at the north and south boundaries allows v = 0
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everywhere. This requires ∂∆/∂y = −∂ζ/∂x, and substitution into (4.46) then shows

that we must have l = −if
cs

, and thus solutions are exponential in y, and

ω = kcs; (4.48)

these waves are called Kelvin waves. They are edge waves, because they decay ex-
ponentially away from one or other boundary. Together with the geostrophic mode
ω = 0, Poincaré and Kelvin waves form the complete spectrum of waves for the flow.
The mode ω = 0 is associated with low frequency waves which emerge in the higher
order quasi-geostrophic approximation (which is derived in section 4.5); these slow
waves are called Rossby waves, or planetary waves, and will be discussed in section
4.6.

The constant term in (4.47) arises from rotation and the Coriolis force. In the high
frequency limit, we see that ω ≈ Kcs, and this is consistent with the long wave limit
of gravity wave theory, and the acoustic wave speed given in (4.40). Gravity waves are
essentially long wavelength sound waves, and Poincaré waves are their modification

by the effects of rotation. The critical length scale
cs
f

above which rotation becomes

important is known as the Rossby radius of deformation. Because p̄ ∼ ρ̄gh, it can

equivalently be defined as

√
gh

f
. For atmospheric motion, it is of order 3000 km, so

that rotation is unimportant for smaller scale gravity waves.

4.4 Non-dimensionalisation

There are three obvious length scales of immediate relevance. These are the depth
h of the troposphere, the radius r0 of the Earth, and the length scale l of horizontal
atmospheric motions. We have h = 10 km, r0 = 6370 km, and the largest (synoptic)
scales of mid-latitude weather systems are observed to be l = 1000 km. These lengths
combine to form two dimensionless parameters,

δ =
h

l
, Σ =

l

r0

. (4.49)

both of which are small: δ ≈ 0.01, Σ ≈ 0.16. The ideas of lubrication theory, using

the fact that δ � 1, suggest that in the vertical momentum equation,
∂p

∂z
≈ −ρg, i. e.,

the pressure is approximately hydrostatic, as in our basic state. Lubrication theory
also suggests that if U is a suitable horizontal velocity scale, then the appropriate
vertical velocity scale is hU/l, in order that the material derivative retains vertical
acceleration.

Sphericity in the equations is manifested by the trigonometric terms in λ. We
scale the variables as follows:

x, y ∼ l, z ∼ h, u, v ∼ U, w ∼ δU,

t ∼ l

U
, ρ ∼ ρ0, p ∼ p0, θ, T ∼ T0, (4.50)
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where we choose

p0 =
ρ0RT0

Ma

= ρ0gh (4.51)

(which actually defines h as the (dry) atmospheric scale height, cf. question 4.3). The
length scales l and r0 are those we have described, the horizontal wind speed U is
typically about 20 m s−1, and the density and temperature scales ρ0 and T0 are their
values at sea level. (These are determined by the mass of the atmosphere and the
effective radiative temperature.) For the moment we assume they are constant. This
is a reasonable approximation for ρ0 but less so for temperature.

The scaled mass conservation equation is just

dρ

dt
+ ρ∇.u = 0. (4.52)

The momentum equations take the dimensionless form

Ro
du

dt
− v sinλ+ δw cosλ = −Ro

F 2

1

ρ

∂p

∂x
,

Ro
dv

dt
+ u sinλ = −Ro

F 2

1

ρ

∂p

∂y

δ

[
δRo

dw

dt
− u cosλ

]
= −Ro

F 2

(
1

ρ

∂p

∂z
+ 1

)
, (4.53)

in which
λ = λ0 + Σy, (4.54)

and the extra parameters are the Rossby number and the Froude number,

Ro =
U

2Ωl
, F =

U√
gh
. (4.55)

For U = 20 m s−1, Ω = 0.7×10−4 s−1, l = 103 km, g = 10 m s−2, h = 10 km, we have
Ro ≈ 0.14, F ≈ 0.06, and thus F 2/Ro ≈ 0.03. Evidently the pressure is essentially
hydrostatic, as we expect for a shallow flow.

If we scale θ as well as T with T0, then the dimensionless definition of θ is

θ =
T

pα
, (4.56)

in which

α =
R

Macp
. (4.57)

The equation of state is simply

ρ =
p

T
=
p1−α

θ
, (4.58)

and the dimensionless energy equation takes the form

p

θ

dθ

dt
= Q∗, Q∗ =

Ql

ρ0cpT0U
. (4.59)
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Figure 4.6: Solution of (4.61). The pressure is excellently approximated by p ≈ e−1.08z,
and the potential temperature is excellently approximated by θ ≈ 1 + 0.15z− 0.05z2.

4.4.1 Parameter estimates

We have already estimated typical values δ ≈ 0.01, Ro ≈ 0.14, F ≈ 0.06, Σ ≈ 0.16;
also α ≈ 0.29. We need further to estimate a value of Q∗. This is quite complicated,
and we will avoid details (for which, see Fowler (2011)). It is possible to estimate Q∗

by consideration of the terms which contribute to it, of which the most significant
is the latent heat transport due to atmospheric moisture content, and after that the
radiative transport of heat. We consider these two terms in turn.

First, if we ignore both terms, then Q∗ = 0, and θ = 1: this is the dry adiabat of
question 4.3. If instead we assume a wet, saturated atmosphere (but ignore radiative
heat transport), then one can show that (4.59) is modified to

dθ

dt
= −m(θ, p)

dp

dt
, (4.60)

where m is a small term which describes transport of latent heat in a saturated
atmosphere. Crucially it is positive, so that θ increases with height, which means
the atmosphere is stably stratified. This defines a wet adiabat θw as a function of
p, but since p ≈ p(z) is hydrostatic (pz ≈ −ρ in (4.53)), we can equally well take
it to be θw(z). Figure 4.6 shows a numerical solution of the (dimensionless) coupled
system describing the hydrostatic pressure and corresponding wet adiabatic potential
temperature θw, which is

dθw
dz

= m(θw, p)ρ,
dp

dz
= −ρ, ρ =

p1−α

θw
, (4.61)

with both being equal to one at z = 0. Note that θz ∼ 0.1, of similar size to the
Rossby number.

It turns out that the deviation from the wet adiabat is important. A simple esti-
mate follows from consideration of radiative transport in a grey, opaque atmosphere,
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when it can be approximately represented by an effective thermal conductivity. When
scaled, this leads to a modified form of the energy equation in the form

dθ

dt
= −m(θ, p)

dp

dt
+
αH

Pe
, H = c∗

∂

∂z

(
k∗
∂T

∂z

)
, (4.62)

where c∗ and k∗ are O(1) functions of θ and p, so that the heating term H ∼ O(1).
The quantity

Pe =
Uh2

κl
(4.63)

is a reduced Péclet number, κ being the effective thermal diffusivity for radiative heat
transport. Estimates for this suggest it is large, Pe ∼ 20.

At this point, we realise that we took l ∼ 1,000 km and U ∼ 20 m s−1 based on
typical observed values. But the system is self-contained, and these scales ought to
be deducible from the model. And indeed they are: we now define U and l through
the suggested distinguished balance of terms:

F 2 sinλ0

Ro
=

α

Pe
= ε2, (4.64)

where it is conventional to define the (modified) Rossby number as

ε =
Ro

sinλ0

=
U

fl
, (4.65)

in which the Coriolis parameter f is defined as

f = 2Ω sinλ0. (4.66)

Note that at this point we now lose touch with the tropics, as we assume sinλ0 ∼ O(1),
and not zero. It is not difficult to accommodate λ0 = 0 though (see question 4.4).
This leads to the definitions

U =

(
ακg

fh

)1/2

, l = U

(
h2

ακf 2

)1/3

, (4.67)

and calculation of these using values suggested previously leads to U ≈ 26 m s−1,
l ≈ 1290 km. Success!
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4.4.2 A reduced model

With these (and earlier) assumptions, the equations (4.52), (4.53), (4.62) and (4.58)
become

dρ

dt
+ ρ∇.u = 0,

ε
du

dt
− v sinλ

sinλ0

+ δw
cosλ

sinλ0

= − 1

ε2

1

ρ

∂p

∂x
,

ε
dv

dt
+ u

sinλ

sinλ0

= − 1

ε2

1

ρ

∂p

∂y

δ

[
δε
dw

dt
− u cosλ

sinλ0

]
= − 1

ε2

(
1

ρ

∂p

∂z
+ 1

)
,

dθ

dt
= −m(θ, p)

dp

dt
+ ε2H,

ρ =
p1−α

θ
. (4.68)

We now adopt the formal asymptotic limits

m ∼ Σ ∼ ε, δ ∼ ε2 (4.69)

(these also justify our earlier neglect of the various curvilinear terms in (4.35)), and
we define the O(1) function Γ(θ, p) by

m =
εΓ

ρ
. (4.70)

In addition we define

β =
Σ cotλ0

ε
∼ O(1), (4.71)

so that
sinλ

sinλ0

= 1 + εβy +O(ε2). (4.72)

This approximation by a linear dependence on y is called the beta-plane approxima-
tion.

The first two components of the momentum equation momentum equation imply

p = p̄(z) + ε2P, (4.73)

and therefore, because
∂p

∂z
≈ −ρ+O(ε4), (4.74)

we have
ρ = ρ̄(z) +O(ε2), (4.75)

and therefore also
θ = θ̄(z) + ε2Θ. (4.76)
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Expanding the equations in powers of ε up to terms of O(ε) (but the energy
equation to O(ε2)), we thus obtain the reduced approximate system

ρ̄ux + ρ̄vy + (ρ̄w)z = 0,

ε
du

dt
− v(1 + εβy) = −1

ρ̄
Px,

ε
dv

dt
+ u(1 + εβy) = −1

ρ̄
Py,

p̄′ = −ρ̄, ρ̄ =
p̄1−α

θ̄
,

ε2dΘ

dt
+ wθ̄′ = εwΓ + ε2H. (4.77)

Note that Γ(θ, p) ≈ Γ(θ̄, p̄) is a function of z only.

4.4.3 Geostrophic flow

We already saw that the neglect of the acceleration terms causes the existence of
Taylor columns and isobaric flow in laboratory conditions. Much the same is true
here. We put ε = 0 in the x and y momentum equations, and this gives

ρ̄u ≈ −Py, ρ̄v ≈ Px, (4.78)

which in turn implies in the mass conservation equation that (ρ̄w)z = O(ε). Thus we
write

w = εW (4.79)

on the basis of a boundary condition that w = 0 at z = 0. More generally, the no
flow through condition at the ground is modified by the small friction terms (which
we have ignored) in the momentum equation; these cause the existence of a boundary
layer (the planetary boundary layer) to occur. The effect of rotation in this boundary
layer is to cause a small vertical velocity at the top of the layer, proportional to the
square root of an appropriately defined Ekman number E, and this velocity is often
called Ekman pumping.

The rotation forces the vertical velocity to be even smaller than the shallowness of
the flow would suggest. A consequence of (4.78) is that u.∇Hp ≈ 0, which implies that
horizontal winds are approximately along isobars. This odd behaviour (we normally
expect fluid flow to be down pressure gradients) is entirely due to the rapid rotation
of the planet. A consequence of (4.79) is that the material derivative is essentially
horizontal, which is to say that in (4.77) we have

d

dt
≈ D

Dt
≡ ∂

∂t
+ u

∂

∂x
+ v

∂

∂y
, (4.80)

and this is used below.
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This kind of flow is called geostrophic flow. In it the velocity is determined by the
pressure field. The question then arises, how to determine the pressure field. The
answer to this question lies in extending the geostrophic approximation by going to
the next order in ε, and this leads to an equation called the quasi-geostrophic potential
vorticity equation.

4.5 The quasi-geostrophic potential vorticity equa-

tion

With the adoption of (4.79), the energy equation in (4.77) takes the form

W (θ̄′ − εΓ) = ε

(
H − dΘ

dt

)
. (4.81)

Now since, according to (4.74)
∂p

∂z
= −ρ+O(ε4), it follows, using (4.73), (4.76) and

(4.68)6, that

Pz = − p̄
1−α

θ̄

[
(1− α)P

p̄
− Θ

θ̄

]
, (4.82)

and this can be manipulated to the form

Θ = θ̄2 ∂

∂z

[
P

p̄1−α

]
. (4.83)

The geostrophic wind approximation (4.78) suggests that we write

P = ρ̄ψ, (4.84)

where ψ is the geostrophic stream function, thus

u = −∂ψ
∂y
, v =

∂ψ

∂x
. (4.85)

Bearing in mind that ρ̄ =
p̄1−α

θ̄
, it follows that

Θ = θ̄2 ∂

∂z

[
ψ

θ̄

]
=
∂ψ

∂z
+O(ε), (4.86)

since θ̄′(z) = O(ε). This relation, together with the geostrophic wind approximation,
gives us the thermal wind equations:

∂u

∂z
= −∂Θ

∂y
,

∂v

∂z
=
∂Θ

∂x
. (4.87)
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Next we form an equation for the (vertical) vorticity

ζ =
∂v

∂x
− ∂u

∂y
= ∇2ψ (4.88)

by cross differentiating (4.77)2.3 to eliminate the pressure derivatives. Using the con-
servation of mass equation, together with (4.79) and (4.80), we derive the quasi-
geostrophic potential vorticity equation (QGPVE)

Dζ

Dt
+ β

∂ψ

∂x
=

1

ρ̄

∂(ρ̄W )

∂z
, (4.89)

where D/Dt denotes the horizontal material derivative introduced above; note that

D

Dt
==

∂

∂t
− ∂ψ

∂y

∂

∂x
+
∂ψ

∂x

∂

∂y
, (4.90)

and that the left hand side is the material derivative of ζ + βy: this quantity is the
potential vorticity.

The unknown in the QGPVE is W . Surprisingly, its determination comes from
the energy equation (4.81). Let us denote the stratification function S(z) by

S(z) =
1

ε

[
dθ̄

dz
− dθw

dz

]
, (4.91)

and note that by observation (and assumption) it is positive and O(1). It is related to
the Brunt-Väisälä frequency N , which is the frequency of small vertical oscillations
in the atmosphere; in fact S ∝ N2. Positive S (and thus real N) indicates a stably
stratified atmosphere. If S were to become negative, the atmosphere would become
unstably stratified and it would overturn. The energy equation is thus

DΘ

Dt
= H −WS. (4.92)

In summary, we have the vorticity ζ and potential temperature Θ defined in terms
of the stream function ψ by (4.88) and (4.86). Two separate equations for ζ and Θ
are then (4.89) and (4.92), from which W and S(z) must also be determined, the
latter by averaging the equations.

By an application of Green’s theorem in the plane, we have that∫ ∫
A

DΛ

Dt
dS =

∂

∂t

∫ ∫
A

Λ dS −
∮
∂A

Λ dψ, (4.93)

where A is any horizontal area at fixed z. In particular, if A is a closed region on the
boundaries of which ψ is constant in space, i. e., there is no flow through ∂A, then the
boundary integral is zero.4 Let an overbar denote a spatial horizontal average over

4We have in mind that A is the region of zonal mid-latitude flow, bounded to the north by the
polar front, and to the south by the tropical front. We can allow A to be a periodic strip on the
sphere also.
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A. Putting Λ = Θ, it follows that

∂Θ̄

∂t
= H −WS, (4.94)

where W (z) is the horizontal average of W . Applying the same procedure to (4.89),
we have

∂ζ̄

∂t
=

1

ρ̄

∂

∂z
[ρ̄W ]. (4.95)

It turns out that the Ekman pumping boundary condition, to which we alluded
on page 124, gives a value of W at z = 0 of

W 0 = E∗ζ̄0, (4.96)

where ζ̄0 is the spatially averaged vorticity at the surface, and

E∗ =

√
E

2ε2
, E =

εV
2Ωh2

, (4.97)

where the vertical eddy diffusivity was introduced in (4.25). Integrating (4.95), we
have (using ρ̄ = 1 at z = 0)

ρ̄W =

∫ z

0

ρ̄ζ̄t dz + E∗ζ̄0, (4.98)

and it follows from this that the stratification parameter is defined by the relation

ρ̄

S
=

∫ z

0

ρ̄ζ̄t dz + E∗ζ̄0

H − Θ̄t

. (4.99)

We can go further if we assume that the solutions are stationary (not necessarily
steady), i. e., a well-defined time average exists.5 The time averages of the time
derivative terms are zero, and thus it simply follows (since H, S and ρ̄ are functions
only of z) that

H = ŴS, ρ̄Ŵ = Ŵ0, (4.100)

where Ŵ is the time average of W , and the constant Ŵ0 is the value of the surface
boundary value of Ŵ at z = 0. The Ekman pumping boundary condition (4.96)
implies that

Ŵ0 = E∗ζ̂0, (4.101)

where ζ̄0 is the space averaged vorticity at the surface.
The two equations in (4.100) define S and Ŵ , and in particular we find that

ρ̄

S
=
E∗ζ̂0

H
. (4.102)

5This is what we would generally expect. Unbounded drift of ψ would indicate breakdown of the
perturbation expansion because of the presence of secular terms.

127



This equation thus defines the stratification function S(z) for a stationary (but
not necessarily steady) atmosphere.6 Evidently, the wet adiabatic profile (S = 0) is
obtained (in stationary conditions) only if the heating rate H is zero.

We can now use the identity

∂

∂z

[
K(z)

DΘ

Dt

]
=

D

Dt

[
∂

∂z

(
K(z)

∂ψ

∂z

)]
(4.103)

to show, using (4.92), that

1

ρ̄

∂

∂z
[ρ̄W ] =

1

ρ̄

∂

∂z

[
ρ̄H

S

]
− D

Dt

[
1

ρ̄

∂

∂z

(
ρ̄

S

∂ψ

∂z

)]
, (4.104)

and therefore (4.89) can be written

D

Dt

[
∇2ψ + βy +

1

ρ̄

∂

∂z

(
ρ̄

S

∂ψ

∂z

)]
=

1

ρ̄

∂

∂z

[
ρ̄H

S

]
= 0, (4.105)

using (4.102). This is one form of the quasi-geostrophic potential vorticity equation.
It is precisely that given by Pedlosky (1987, equation(6.5.21)). It is a single equation
for the geostrophic stream function ψ, providing the stratification S is known. In
most treatments of its solutions, the stratification parameter S is assumed known
(from measurements for example), and then the equation (4.105) can be considered
on its own. However, in reality S must be determined from (4.102), which indicates
that the stratification is determined in terms of the solution of the equation (4.105)
itself, which is thus an integro-differential equation for the stream function ψ. This
equation is apparently only well-posed if S > 0, i. e., if the time mean surface value
of the vorticity ζ̂0 is positive (assuming also that H > 0), but there seems to be
no obvious reason why this should necessarily be the case. Actually, the situation
is reminiscent of the internal waves we discussed on page 104 (see figure 4.2). If
the stratification became negative, it seems the atmosphere would become inherently
unstable. It would start to ‘boil’, with severe convective storms shrouding the planet.
The mild, quasi-geostrophic description of the weather would no longer be apt, and
climate change would be a sudden, dramatic reality. The day after tomorrow, indeed.
The possibility of such a catastrophic scenario appears to have entirely bypassed
climate scientists.

4.6 Rossby waves

We now return to our earlier discussion of atmospheric waves in section 4.3. There we
described gravity waves, known as Poincaré waves. These are the rotational equiva-
lent of high frequency sound waves. However, one possible mode had zero frequency,

6This derivation is somewhat similar to that of Pedlosky (1987); however, he did not provide an
explicit recipe for S(z). See also question 4.5.
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and we postponed discussion of it. In reality, the zero frequency was essentially a con-
sequence of geostrophic approximation, but in the quasi-geostrophic approximation
these waves are found to have non-zero frequency; they are called Rossby waves.

We seek a wave motion corresponding to the zero frequency geostrophic gravity
wave mode satisfying (4.46) with ω = 0. This is the Rossby wave, and it is most
simply examined by studying (4.105) in the absence of heating, and assuming that the
stratification parameter S is prescribed. (Such simplifications are in fact commonly
made in studying the properties of (4.105).) We define a vertical eigenfunction Ψ(z)
satisfying the ordinary differential equation

1

ρ̄

[ ρ̄
S

Ψ′
]′

= −m2Ψ, (4.106)

where for suitable homogeneous boundary conditions on Ψ, m2 will be positive. With
H = 0, ψ = 0 is a solution of (4.105), and small amplitude solutions of the equation
will satisfy the linearised equation

∂

∂t

[
∇2ψ +

1

ρ̄

∂

∂z

(
ρ̄

S

∂ψ

∂z

)]
+ β

∂ψ

∂x
= 0. (4.107)

This has solutions
ψ = Ψ(z) exp[i(kx+ ly + ωt)], (4.108)

providing

ω =
kβ

k2 + l2 +m2
. (4.109)

These are Rossby waves. The wave speed −ω/k is negative, so that the waves move
westwards (relative to the mean flow, which is here zero). The sphericity of the Earth
(i. e., β > 0) is essential in causing the waves to move.

4.7 Baroclinic instability

Gravity waves are the sound of the atmosphere. Like a bell which reverberates when
struck, gravity waves are excited externally. For example, when the atmosphere flows
over mountains, the waves are visualised by the periodic rows of clouds which form
in the lee. However, they do not play a prominent part in large scale weather flows,
because they are damped fairly rapidly by friction, and they are generated by external
effects such as topographic forcing, not by internal dynamics.

Rossby waves, on the other hand, do play an important part in the day to day
weather, and this is because they are continually generated by an instability in the
underlying basic zonal flow. This instability is called baroclinic instability, and it is
responsible for the basic wave-like nature of the circulation in mid-latitudes.

We consider the stability of a basic state which is taken to be a purely zonal flow.
Because the quasi-geostrophic model is essentially inviscid (and conductionless), there
is no unique such state. In the absence of the heating term H on the right hand side of
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(4.105), any zonal stream function ψ(y, z) satisfies the QG equation (4.105). However,
we would expect that over sufficiently long time scales, the potential temperature Θ of
a zonal flow would become equal to the underlying surface temperature Θ0(y), which
ultimately is what drives the flow. A local expansion on the mid-latitude length scale
of the global O(ε) variation in θ suggests the prescription of Θ0 = −y at z = 0. The
choice Θ = −y implies the zonal flow

ψ = k − yz; (4.110)

generally, k = k(z) but we will take it as constant, k = 1. We will use (4.110) as the
basic state whose stability we wish to study.

4.7.1 The Eady model

The simplest model in which baroclinic instability is manifested is the Eady (1949)
model. In this model, the tropopause is considered to be a rigid lid, so that we impose

W = 0 at z = 1. (4.111)

Basal friction is ignored, corresponding to E∗ = 0 in (4.96), so that

W = 0 at z = 0. (4.112)

The Earth’s sphericity is ignored by putting β = 0 in (4.105), the heating term H = 0
(consistent with the basic state (4.110), and both the density ρ̄ and the stratification
S are taken as constant. The equation to be solved is thus the QG equation in the
form

D

Dt

[
∇2ψ +

1

S

∂2ψ

∂z2

]
= 0, (4.113)

with boundary conditions which derive from (4.92):

D

Dt

(
∂ψ

∂z

)
= 0 at z = 0, 1, (4.114)

together with the no flow conditions ∂ψ/∂x = 0 on y = ±1. In addition, (4.89)
implies that

D

Dt

∫ 1

0

ζ dz = 0. (4.115)

This is automatically satisfied when ψ satisfies (4.113) and (4.114).
We write

ψ = 1− yz + Ψ, (4.116)

and linearise for small Ψ to find(
∂

∂t
+ z

∂

∂x

)[
∇2Ψ +

1

S

∂2Ψ

∂z2

]
= 0, (4.117)
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Figure 4.7: Wave speed of perturbations in the Eady model. Instability occurs where
the wave speeds are complex conjugates, for µ <∼ 2.4.

subject to (
∂

∂t
+ z

∂

∂x

)
∂Ψ

∂z
− ∂Ψ

∂x
= 0 on z = 0, 1,

Ψ = 0 on y = ±1. (4.118)

We seek solutions as linear combinations of the form

Ψ = A(z)eσt+ikx+ilny , (4.119)

where ln = 1
2
nπ, and n is an integer. The appropriate linear combination of the

y-dependent part is sin lny for n even, and cos lny for n odd. Then

(ikz + σ)
[
A′′ − µ2A

]
= 0, (4.120)

where
µ2 = (k2 + l2)S, (4.121)

and
(ikz + σ)A′ − ikA = 0 on z = 0, 1. (4.122)

Smooth solutions of (4.120) are linear combinations of coshµz and sinhµz, and
the dispersion relation which results from satisfaction of the boundary conditions in
(4.120) is

c = − σ
ik

=
1

2
± 1

µ

[(µ
2
− coth

µ

2

)(µ
2
− tanh

µ

2

)]1/2

, (4.123)
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Figure 4.8: Growth rate σR of perturbations in the Eady model as a function of
wavenumber k when the stratification S = 0.25. The growth rate is well approximated

by σR ≈ 0.145k(kc − k)1/2, where kc =

√
µ2
c

S
− π2

4
is the maximum wavenumber for

instability.

where c is the wave speed. Figure 4.7 shows the (real) value of c as a function of
(positive) µ. Since µ/2 > tanh(µ/2), it is clear that c is complex for µ < µc, where

µc
2

= coth
µc
2
, µc ≈ 2.399. (4.124)

Complex conjugate values of c indicate instability, and this occurs for µ < µc.
Instability occurs if k2 + l2 < µ2

c/S, and thus is effected by the minimum values
k = 0, l = 1

2
π, and the Eady instability criterion is

S <
4µ2

c

π2
≈ 2.218; (4.125)

this is readily satisfied in the Earth’s atmosphere.
Evidently, the waves (stable or unstable) move to the east in the northern hemi-

sphere, as is observed. The wave speed of unstable waves is 0.5, and the growth rate
is

σR =
k

µ

[(
coth

µ

2
− µ

2

)(µ
2
− tanh

µ

2

)]1/2

. (4.126)

The growth rate goes to zero as k → 0, and also as µ→ µc. Since, for the fundamental

mode (n = 1) µ2 =

(
k2 +

π2

2

)
S increases with k, it appears that the growth rate

is maximum for an intermediate value of k. Indeed, figure 4.8 shows a typical graph
of the growth rate plotted as a function of wave number k. Although linear stability
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gives us no information about the eventual form of the growing waves, it is plausible
that the maximum growth rate at wavenumber km selects the preferred wavelength
of disturbances as 2π/km. This appears to be consistent with actual synoptic scale
waves in mid-latitudes.

4.7.2 The Charney model

A slightly more complicated model of baroclinic instability is the Charney (1947)
model. It is similar to the Eady model, but assumes a stratification of the form
ρ̄ = e−λz, and also β 6= 0. It retains the assumption of constant S and that the basic
flow is a simple shear flow, ψ = −yz. If, as before, we put

ψ = −yz + Ψ, ψ = Φ(z)eik(x−ct)+lny, (4.127)

then the linearised equation for Φ becomes

(z − c)(Φ′′ − λΦ′ −K2SΦ) + (λ+ βS)Φ = 0, (4.128)

where K2 = k2 + l2n, and the boundary conditions are still given by (4.122):

(z − c)Φ′ − Φ = 0 on z = 0, 1. (4.129)

The analysis of this is still possible, but is more complicated (see Pedlosky 1987, pp.
532 ff,). In particular, at the point of instability where c is real, there is a critical
layer at z = c if 0 < c < 1. This is similar to the Rayleigh equation in hydrodynamic
stability theory.

4.8 Frontogenesis

What has all this to do with the weather? If we look at a weather map, or listen to a
weather forecaster on a mid-latitude television station, we will hear about fronts and
depressions, low pressure systems, cyclones and anti-cyclones. These are indeed the
standard bearers of the atmosphere, bringing their associated good and bad weather,
storms, rainfall and snow. We are now in a position at least to describe how these
features occur.

The weather is described, at least in essence, by some form of the geostrophic
or quasi-geostrophic equations. Dissipative effects due to eddy viscosity and eddy
thermal conductivity have a short term (days) effect in the planetary boundary layer
within a kilometre or so of the surface, but only control the mean temperature of the
troposphere over much longer time scales. As a consequence, weather is effectively
described by a conservative system, indeed certain approximate models can be written
as a Hamiltonian system, and as a consequence it is subject to the same sort of large
amplitude fluctuations as those which characterise instability in such systems.

The basic poleward gradient of surface temperature attempts to drive a zonal
flow, which is linearly unstable in the presence of a sufficiently small stratification
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Figure 4.9: Contours of temperature (dashed lines) and potential temperature (solid
lines) in a forming front.

parameter S. The very simplest representation of this instability is found in the Eady
model (4.113) and (4.114), which is a nonlinear hyperbolic equation for the potential
vorticity. The consequence of the instability is that the steady, parallel characteristics
of the zonal flow are distorted and intersect, forming a shock, as illustrated in figure
4.9. This is a front. It consists of a tongue of cold air intruded under warmer air, and
the width of the front is typically of order 100 km.

As the front develops, the baroclinic instability also distorts the flow in a wave
like pattern. The effect of this is to bend the front round, as illustrated in figure
4.10, forming a series of vortex-like rings. In the atmosphere, these are the cyclonic
disturbances which form the mid-latitude low pressure storm systems, with typical
dimensions of 2000 km. They also occur in the ocean, forming coherent rings of some
50 km diameter.

The description above is a little idealistic. On the Earth, fronts are an intrinsic
consequence of the difference in properties between different air masses. The mid-
latitude cells, for example, are bounded north and south by fronts across which the
wind direction and the temperature changes. The warm mid-latitude westerlies are
bounded polewards by the cold polar easterlies. The situation is complicated by
continents and oceans. Continental air is dry, whereas oceanic air is moist. As a
consequence of these geographic variations there are a number of different types of air
masses, and the boundaries between these provide the seeds for frontal development.
The fronts move and distort as shown in figure 4.10, but it is more sensible to think of
the roll-up of a planar front and the formation of storm systems as a result of (Kelvin-
Helmholtz like) instability of a linear vortex sheet, rather than as a consequence of
shock formation in the nonlinear wave evolution of the quasi-geostrophic potential
vorticity equation (QGPVE) . In fact, the QGPVE does not do a very good job of
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Figure 4.10: Two views of the formation of cyclonic depressions from a baroclinically
unstable front. The illustration resembles the Kármán vortex street which forms at
moderate Reynolds number in the flow past a cylinder. The upper diagram shows
isobars, the front, and cloud cover (stippled); the lower diagram shows isotherms,
and flow of cold air (solid arrows) and warm air (dashed arrows). From Barry and
Chorley (1998), page 162.

numerical weather front prediction.7

4.9 Depressions and hurricanes

The storm systems which develop as shown in figure 4.10 are called cyclones. They
are like vortices which rotate anti-clockwise, and are associated with low pressure at
their centres (thus they are also called depressions). Conversely, a high pressure vortex
rotating clockwise is called an anti-cyclone. A severe storm with central pressure of
960 millibars represents a dimensionless amplitude of 0.04 ∼ ε2, and is thus within
the remit of the quasi-geostrophic scaling.

In the tropics, tropical cyclones occur, and the most severe of these is the hur-
ricane, or typhoon. In essence, the hurricane is very similar to the mid-latitude
depression, consisting of an anti-clockwise rotating vortex, with wind convergence at

7This comment is due to Peter Lynch.
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the surface, and divergence at the tropopause. It is, however, fuelled by convection,
and can be thought of as the result of a strong convective plume interacting with the
Coriolis force, which causes the rotation, and in fact organises it into a spiral wave
structure, as can be seen in satellite images by the spiral cloud formations.

The hurricane is distinguished by its high winds, high rainfall and relatively small
size (hundreds rather than the thousands of kilometres of a mid-latiude cyclone).
The strongest hurricane on record was hurricane Gilbert in 1988, where the central
pressure fell to 888 mbar, and maximum windspeeds were in excess of 55 m s−1 (200
km hr−1). The strong convection is a consequence of evaporation from a warm ocean,
and it is generally thought that hurricane formation requires a sea surface temperature
above 27◦ centigrade, or 300 K. Relative to a mean surface temperature of 288 K,
this is an amplitude of 12 K, and dimensionlessly 12/288 ≈ 0.04, of O(ε2). In the
tropics, the Rossby number ε is higher, and near the equator the quasi-geostrophic
approximation breaks down, but hurricanes do not form in a band near the equator.

Hurricanes typically move westwards in the prevailing tropospheric winds, and
dissipate as they move over land, where the fuelling warm oceanic water is not present,
and surface friction is greater. They develop a central eye, which is relatively calm
and cloud free, and in which air flow is downwards. In hurricanes, this eye is warm.

4.10 Notes and references

Exercises

4.1 It will be helpful in the following to use the summation convention, in which
summation over repeated suffixes is understood. The Kronecker delta is δij, and
equals 1 if i = j, and 0 otherwise. The alternating tensor εijk is 1 if {i, j, k} is an
even permutation of {1, 2, 3}, −1 if it is an odd permutation, and 0 otherwise.

Show that
εijkεipq = δjpδkq − δjqδkp.

Show that the determinant of a matrix A = (aij) is

detA = εijka1ia2ja3k.

Show that
Ω× (Ω× r) = (Ω.r)r− Ω2r.

Show that

∇× a = εijkei
∂ak
∂xj

.

finally, show that
Ω× (Ω× r) = −1

2
∇|Ω× r|2.
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4.2 A fluid flows in a rapidly rotating container D such that its velocity is given by
the system

∇.u = 0,

ut + k× u = −∇p.

Assuming k is in the z direction, show that

∇× (k× u) = −uz,

∇.(k× u) = −k.ω, ω = ∇× u.

Hence show that p satisfies

∇2ptt + pzz = 0 in D.

Next, show that

uttt + ut + k(k.∇)p− k×∇pt = −∇ptt,

and deduce that if u.n = 0 on the boundary ∂D, then

(n.k)pz − n× k.∇pt + n.∇ptt = 0 on ∂D.

Oscillatory solutions of the form p = φ(r)eiλt are sought. Write down the
equation satisfied by φ, and show that it is hyperbolic (with z being the time-

like variable) if |λ| < 1, and that the ‘wave speed’ is
λ√

1− λ2
.

Write down the equation and boundary conditions for φ in the two-dimensional
(x, z) unit square [0, 1]×[0, 1], and deduce that normal mode solutions cosmπx cosnπz
exist, and find the corresponding values of λ.

4.3 Derive a reference state for a dry atmosphere (no condensation) by using the
equation of state

p =
ρRT

Ma

,

the hydrostatic pressure
∂p

∂z
= −ρg,

and the dry adiabatic temperature equation

ρcp
dT

dt
− dp

dt
= 0.

Show that
T̄ = T0 −

gz

cp
, p̄ = p0p

∗(z),
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where

p∗(z) =

(
1− gz

cpT0

)Macp/R

.

Use the typical values cpT0/g ≈ 29 km, Macp/R ≈ 3.4, to show that the pressure
can be adequately represented by

p̄ = p0 exp(−z/H),

where here the scale height is defined as

H =
RT0

Mag
≈ 8.4 km.

(A slightly better numerical approximation near the tropopause is obtained if
the scale height is chosen as 7 km.)

4.4 A dimensionless model of atmospheric motion is given by

dρ

dt
+ ρ∇.u = 0,

ε
du

dt
− v sinλ = − 1

ε2

1

ρ

∂p

∂x
,

ε
dv

dt
+ u sinλ = − 1

ε2

1

ρ

∂p

∂y

O(ε2) = − 1

ε2

(
1

ρ

∂p

∂z
+ 1

)
,

dθ

dt
= −εΓ

ρ

dp

dt
+ ε2H,

ρ =
p1−α

θ
,

where Γ(θ, p) is a positive O(1) function, and ε � 1. (Note the distinction to
(4.68).)

In the tropics, it is appropriate to take λ = εβy, β = O(1).

4.5 Suppose that θ satisfies the equation

Dθ

Dt
+ εW

∂θ

∂z
= ε2ΓW + ε2H, (∗)

where Γ and H are constants, W = W (x, y) and the horizontal material deriva-
tive is given by

D

Dt
=

∂

∂t
− ∂ψ

∂y

∂

∂x
+
∂ψ

∂x

∂

∂y
,

where ψ is the geostrophic stream function.
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The equation is to be solved in the region V : −L < x < L, −1 < y < 1,
0 < z < 1, with the boundary condition θ = 1 + ε2Θ0(y) on z = 0, and
an initial condition for θ. We can assume without loss of generality that the
average of Θ0 over y is zero. (Why?) Assume that ψ = ±1 on y = ±1, and that
it is periodic in x (with period 2L). Comment on the suitability of the initial
and boundary conditions. Does it matter whether W is positive or negative??

If A is any horizontal section of V , show that∫
A

Dθ

Dt
dS =

∂

∂t

∫
A

θ dS ,

and deduce that the equation
Dθ

Dt
= g

only has a bounded solution if ḡ(z) = 0, where ḡ is the time average of

∫
A

g dS.

By expanding θ as θ0 + εθ1 + ε2θ2 + . . . and assuming that the solution remains
regular, find the equations satisfied by θi, i = 1, 2, 3, and show that a solution
exists in which θ0 = θ0(z); whence also

θ0 = 1

and θ1 = θ1(z), and θ1 is given by

θ1 =

(
Γ +

H

W

)
z;

whence
Dθ2

Dt
= H

(
1− W

W

)
. (†)

Suppose now that θ2 =
∂ψ

∂z
; show that

D

Dt

[
∂θ2

∂z

]
=

∂

∂z

(
Dθ2

Dt

)
, and deduce

that a solution for θ2 can be found in the form θ2 = θ̄2(z) + Θ(x, y), where
Θ(x, y) is a particular solution of (†), and show that the secularity constraint
at O(ε3) implies that we can take θ̄2 = 0. Deduce that ψ = zΘ(x, y).

Suppose now that a diffusion term ε2∂
2θ

∂z2
is added to the right hand side of (∗).

Show that the preceding discussion still applies, but now Θ represents an outer
solution for θ2 away from the boundary z = 0. By writing θ2 = Θ + χ and
z = εZ, show that χ satisfies the approximate boundary layer equation

Dχ

Dt
+W

∂χ

∂Z
=
∂2χ

∂Z2
,
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with boundary conditions

χ → 0 as Z →∞,

χ = χ0(x, y) = Θ0 −Θ on Z = 0.

For the particular case of a steady zonal flow in which
D

Dt
= u

∂

∂x
, u = u(y),

W = W (y) and χ0 =
∑
k

χ̂k(y)eikx, show that

χ =
∑
k

χ̂k(y)eikx−αZ ,

where

α =

(
W 2

4
+ iku

)1/2

− W

2
. (‡)

By writing
W 2

4
+ iku = (p+ iq)2, p > 0, and defining the square root in (‡) as

having p > 0, show that Reα > 0 irrespective of the sign of W . How would you
expect Θ to behave over long time scales in this case?

4.6 The mass and momentum equations for atmospheric motion in the rotating
frame of the Earth can be written in the form

ρt + ∇. [ρu] = 0,

ρ

[
du

dt
+ 2Ω× u

]
= −∇p− ρgk̂,

where (x, y, z) are local Cartesian coordinates at latitude λ = λ0. What is the
magnitude of Ω?

Scale the variables by writing

x, y ∼ l, z ∼ h, u, v ∼ U, w ∼ δU, t ∼ l

U
,

ρ ∼ ρ0, T ∼ T0, p = p0p̄(z) + ρ0Ωl sinλ0 P,

where

δ =
h

l
, p0 = ρ0gh =

ρ0RT0

M
,

and show that the horizontal components take the form

ε
du

dt
− fv = −1

ρ
Px,

ε
dv

dt
+ fu = −1

ρ
Py,
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where

f =
sinλ

sinλ0

,

and give the definition of the Rossby number ε. Show that in a linear approxi-
mation,

f ≈ 1 + εβy,

where

β =
l

RE

cotλ0

ε
= O(1),

and RE is Earth’s radius.

The dimensionless pressure Π = p/p0, density ρ, temperature T and potential
temperature θ in the atmosphere satisfy the relations

ρ =
Π

T
, T = θΠα, −∂Π

∂z
= ρ,

where α =
R

Macp
is constant. Assuming that

Π = p̄+ ε2P, θ = θ̄ + ε2Θ,

and that ε� 1, deduce that ρ ≈ ρ̄(z), and thence that

w = O(ε), ρ̄u ≈ −Py, ρ̄v ≈ Px.

Show also that consistency between the two forms of scaled pressure requires
the definition of the velocity scale to be

U =
4(Ωl sinλ0)3

gh
,

and determine this value, if l = 1,500 m, λ0 = 45◦, g = 9.8 m s−2, h = 8 km.

Show that

Θ ≈ θ̄2 ∂

∂z

[
P

p̄1−α

]
,

and by defining a stream function via P = ρ̄ψ and assuming that θ̄ ≈ 1, deduce
that Θ ≈ ψz, and hence deduce the thermal wind equations:

∂u

∂z
= −∂Θ

∂y
,

∂v

∂z
=
∂Θ

∂x
.

4.7

4.8
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4.9 The quasi-geostrophic potential vorticity equation is

d

dt

[
∇2ψ +

1

ρ̄

∂

∂z

(
ρ̄

S

∂ψ

∂z

)]
+ βψx =

1

ρ̄

∂

∂z

(
ρ̄H

S

)
,

where ∇2 =
∂2

∂x2
+

∂2

∂y2
, and ρ̄, S and H are functions of z, the first two being

positive. The horizontal material derivative is

d

dt
=

∂

∂t
+ u

∂

∂x
+ v

∂

∂y
, u = −ψy, v = ψx.

In the Eady model of baroclinic instability, solutions to the QGPVE are sought
in a channel 0 < y < 1, 0 < z < 1, with boundary conditions

d

dt
ψz = 0 at z = 0, 1, ψx = 0 at y = 0, 1,

and it is supposed that ρ̄ and S are constant, and β = H = 0. Show that a
particular solution is the zonal flow ψ = −yz, and describe its velocity field.
By considering the thermal wind equations, explain why this is a meaningful
solution.

By writing ψ = −yz + Ψ and linearising the equations, derive an equation for
Ψ, and show that it has solutions

Ψ = A(z)eik(x−ct) sinnπy,

providing
(z − c)(A′′ − µ2A) = 0,

(z − c)A′ = A on z = 0, 1,

where you should define µ.

Using the fact that xδ(x) = 0, show that if 0 < c < 1, the solution can be found
as a Green’s function for the equation A′′ − µ2A = 0.

Give a criterion for instability, and show that for the normal mode solutions in
which A is analytic,

c =
1

2
± 1

µ

{(µ
2
− coth

µ

2

)(µ
2
− tanh

µ

2

)}1/2

,

and hence show that the zonal flow is unstable if µ < µc, where

µ

2
= coth

µ

2
,

and calculate this value. Deduce that the flow is unstable for S < Sc, and
calculate Sc.

4.10
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Chapter 5

Two-phase flows

Two-phase flow occurs in numerous situations in industry, as well as in nature. Two-
phase flow refers to the coexistence of two phases of a substance in a flow. By a
phase, we typically refer to the state of matter: gas, liquid or solid. And indeed
typically (though not always) the phases are liquid and gas, as for example in the
common occurrence of steam-water flows, or liquid and solid, as in flows of coal slurries
or sediment-laden rivers, or gas and solid, as in fluidised bed reactors or explosive
volcanic eruptions. But more generally we refer to two-phase flows as occurring in
the flow of two different substances: for example, the flow of oil and water in an oil
well is a two-phase flow. Actually, in that case there may also be gas, so that one has
a three-phase flow.

In some of these examples, phase change is important. For example in boilers,
water is heated as it flows through a bank of channels, until it starts to boil. This
leads to a two-phase flow region until (possibly)dryout occurs, and the flow is of
superheated steam. The boundaries which physically divide the various régimes are
called the boiling boundary and the superheat boundary.

A similar situation occurs in nuclear reactors where liquid sodium is commonly
used as a coolant. Here it is important that dryout does not occur, since the insulating
properties of vapour reduce the cooling efficiency of the flow. Two-phase flow also
occurs in condensers, where superheated steam is cooled through the reverse sequence
of two-phase and then sub-cooled regions.

Natural examples of two-phase flows include volcanic eruptions, where a variety of
such flows can occur, for example ash flows (gas/solid), and Strombolian eruptions,
where dissolved gases are exsolved as the magma rises (and loses pressure), so that
the erupting flow is of a gas/liquid mixture.

Examples such as those above commonly involve turbulent flow, which brings its
own complications, but already dictates the use of some form of averaging, and we
shall see that averaging is essential to a useful description of two-phase flow. But
there are also examples of slow two-phase flows in which inertia is not important, but
averaging in some fashion still occurs. The simplest, slightly trivial example is that
of unsaturated flow in groundwater (see chapter 2); trivial, because one commonly
ignores the motion of the second phase (air). But the use of Darcy’s law for the pore
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Figure 5.1: Flow patterns in vertical flow.

fluid momentum is already an example of the use of averaging; indeed, one can derive
Darcy’s law by the use of homogenisation, which is a form of spatial averaging (see
section 2.1.1 on page 29).

Important slow two-phase flows occur in the ubiquitous formation of ‘mushy zones’
in solidification processing of alloys; but the same process occurs during the formation
of sea ice. Another such example is in the formation and transport of magma deep
within the Earth. Both these examples involve phase change (as do steam/water
flows), and their modelling consequently involves the use of the energy equation in
quite unexpected ways.

5.1 Flow régimes

Modelling two-phase flow is complicated by a variety of factors. For a start, the
distribution of phases means that averaging must be done so that average variables
such as void fraction can be defined. (This is analogous to the definition of variables
such as porosity in permeable media.)

A further complication is that confined turbulent two-phase flows can exist in a
variety of régimes, all of which will generally occur in a boiling flow, for example.
For the flow of an externally heated liquid in a tube (a common industrial example),
boiling commences when small bubbles are nucleated at the wall, detach and are
taken up by the fluid. Initially, the liquid away from the walls may still be sub-cooled
(below boiling point), so that heat transfer to the vapour is predominantly at the wall.
When the liquid reaches saturation (and in fact becomes slightly superheated), then
this régime of bubbly flow evolves, by virtue of bubble coalescence and evaporation at
the bubble interfaces, to the régime known as slug flow, in which plugs of gas filling
the tube alternate with slugs of bubbly fluid. As the evaporation proceeds, the gas
plugs become irregular, and one gets churn flow, which leads finally to annular flow,
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Figure 5.2: Flow régime map due to Hewitt and Roberts (1969).

in which the liquid is confined to a film at the tube wall, and the gas flows in the core.
Shearing between the gas and the liquid causes droplets to be eroded and entrained
in the gas. The sequence of flows is portrayed in figure 5.1. Various experimentally
based laws to determine parametric criteria for which type of régime a particular
flow will adopt lead to the construction of flow régime maps, an example of which is
shown in figure 5.2. Such figures are entirely based on experiment, and there is little
understanding of what causes the transition between the phases.

5.2 A simple two-phase flow model

Two-phase flow equations are averaged in various ways: in time, cross-sectionally, in
space. Another method of averaging is the ensemble average, which is a conceptual
average over different realisations of the flow. This in fact is the method of choice, as
it avoids awkwardness (for example in time-averaging) of trying to separate what is
rapidly fluctuating behaviour from the slower secular variation; ensemble averaging
essentially appeals to the ergodic hypothesis1 of chaotic behaviour in Hamiltonian

1The ergodic hypothesis is most easily framed in the context of the motion of a large number of
perfectly elastic particles in a box (the hard-sphere gas) which interact via collision but otherwise
move at constant velocity between collisions. It asserts that the time average of position and velocity
of a single particle trajectory is equal to the instantaneous average of these quantities over all
particles.
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systems.
Let us begin by considering the simplest model for one-dimensional flow of gas and

liquid in a tube. We seek relations for cross-sectionally averaged variables representing
the two fluids. In keeping with the ergodic hypothesis, we might suppose that the
cross-sectional average in itself incorporates a time or ensemble average. The variables
of concern are the void fraction α, which is the gas volume fraction; u and v, which
are the liquid and gas velocities; and averaged pressures pl and pg for each phase. We
take z to be the axial coordinate along the tube. As an example, we concentrate on
air-water flow, for example, for which the viscous stresses are manifested through the
wall friction, while the internal friction is largely due to Reynolds stresses; both of
these terms must in general be constituted. In writing the simplest model (in order
to examine its structure), we will in fact omit frictional terms for the moment. We
also ignore gravity.

Ignoring surface tension, it superficially seems reasonable to take pg = pl = p, and
then equations conserving mass and momentum of each phase are

(αρg)t + (αρgv)z = 0,

{ρl(1− α)}t + {ρl(1− α)u}z = 0,

{ρl(1− α)u}t + {ρl(1− α)u2}z = −(1− α)pz,

(αρgv)t + (αρgv
2)z = −αpz. (5.1)

Here, ρg and ρl are the gas and liquid densities, which themselves must be prescribed
by equations of state. In keeping with our aim to keep things simple, we will take
them as constant. These equations can be derived from first principles in the usual
way. But there are hidden assumptions involved; in particular, we have made the
assumption (in the acceleration terms) that the average of the square is equal to the
square of the average. If the (ensemble) average velocity is cross-sectionally uniform,
this is fine, but in practice it is inaccurate. One way to modify the equations is to
introduce profile coefficients: we come back to these later. Another apparent oddity
is the weighting of the pressure gradient, for example in the gas momentum equation,
where instead of the term −αpz, we might expect to see −(αp)z. We return to this
later when considering averaging.

The equations (5.1) represent four equations for the variables α, u, v, p. These are
simple generalisations of Euler’s equations to the case of two-fluid motion. As com-
monly done, we can use the conservation of mass equations to simplify the momentum
equations, and the model then takes the form (with the densities constant)

αt + (αv)z = 0,

−αt + {(1− α)u}z = 0,

ρl(ut + uuz) = −pz,

.ρg(vt + vvz) = −pz. (5.2)
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5.2.1 Boundary conditions

In the absence of viscous terms, this system of four first order equations will have
characteristics which we expect to be real, and we expect to apply initial conditions
for α, u, v at t = 0, and four boundary conditions. Thinking of how one might do
an experiment, we might prescribe an outlet pressure, and then, if we imagine the
two phases being supplied at the inlet from separate streams, we could apply α, u
and v there. In fact, the determination of p can obviously be uncoupled from the
system, so that effectively it is a third order system, with p being determined by a
quadrature. Actually, we can go further, since addition of the two mass conservation
equations show that there is a first integral, so that in fact the system reduces to a
second order system. On account of this, two of the characteristic speeds are infinite,
corresponding to the instantaneous transmission of information which is implicit in a
quadrature. Let us now calculate these.

5.2.2 Characteristics

The equations (5.2) can be written in the form

Aψt +Bψz = 0, (5.3)

where ψ = (α, u, v, p)T and, if ρg and ρl are constant,

A =


1 0 0 0
−1 0 0 0
0 ρl 0 0
0 0 ρg 0

 , B =


v 0 α 0
−u 1− α 0 0
0 ρlu 0 1
0 0 ρgv 1

 . (5.4)

The characteristics
dz

dt
= λ are defined by the solutions of

det (λA−B) = 0. (5.5)

The reason for this in general is as follows. We assume B−1A is diagonalisable, as is
generally the case. If P is the matrix of column eigenvectors of B−1A satisfying

B−1AP = PD−1, (5.6)

where D = diag (λi) (λ−1
i are the eigenvalues of B−1A), then the substitution ψ = Pu

transforms (5.3) to
ut +Duz = −(P−1Pt +DP−1Pz)u, (5.7)

and thus each component satisfies an ordinary differential equation

dui
dt

= −[(P−1Pt +DP−1Pz)u]i (5.8)

on the characteristic
dz

dt
= λi. This is all very well if the matrix multiplying u on the

right hand side does not involve derivatives of u, but in general it will, since A and
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B and therefore P will generally depend on u. The most familiar example is that of
the shallow water equations, where it turns out (see question 5.2) that the matrix P
is actually constant, so that in that case ui is constant on its characteristic and is a
Riemann invariant.

Even in that case, it does not help to solve the system except in simple cases, since
the different characteristics have different directions, and generally λi is a function of
all the uj. But in general, the right hand side will depend also on derivatives of u, so
the equation (5.7) is even less useful. The problem is that the linear transformation
from ψ to u is not the most appropriate one. Suppose more generally, that we define
a transformation

ψ = g(u) (5.9)

for some vector function g. If we define the Jacobian matrix G via

Gij =
∂gi
∂uj

, (5.10)

then ψt = Gut, ψz = Guz, and thus applying (5.6) to (5.3) yields

P−1Gut +DP−1Guz = 0, (5.11)

and thus we should choose the transformation g(u) by solving G = P ; this gives a
set of differential equations for each gi. Specifically, we want

∂gi
∂uj

= Pij, (5.12)

of which the solution is just

gi =

∫ u

Pij duj, (5.13)

provided ∮
Pij duj = 0 (5.14)

for each i and any closed loop in u space. This can be effected by appropriate
normalisation of the columns of P .

We do not pursue this further here, but simply take (5.5) as the recipe for the
characteristics. Using (5.4), we then find that the eigenvalues λ must satisfy

ρg(1− α)(λ− v)2 + ρlα(λ− u)2 = 0, (5.15)

with the other two being infinite, as already mentioned. Hence

λ =
u± isv
1± is

, s =

[
ρg(1− α)

ρlα

]1/2

. (5.16)

It follows that there are two complex characteristics unless u = v. Consequently, the
model is ill-posed as it stands. To see the practical effect of complex characteristics,
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consider a uniform state ψ = ψ0, subject to small perturbations proportional to
exp(σt + ikz). Such solutions exist if σ = ikλ = ∓kλI + ikλR, where λ = λR ± iλI
represents (5.16). Thus if λI 6= 0, there are unstable solutions, moreover these grow
arbitrarily fast at very short wavelengths. These grid scale instabilities are a practical
sign of an ill-posed problem.

So, this model is wrong, although it seems to be based on sound physical principles.
What is the matter? Well, there are various simple fixes. Inserting profile coefficients
in the momentum flux terms is one. But there is something more fundamental than
this. In the present formulation, the two phases exert no influence on each other, they
are not aware of each other, and this is not right. If one phase moves relative to the
other, there will be an interfacial drag, and there will be acceleration terms between
the phases. The interfacial drag does not affect ill-posedness, but the interphasic
acceleration terms (called virtual mass terms) may do, as they involve derivatives of
the variables.

The other important issue is the assumption of constant pressures. We have
already seen in chapter 2 that in unsaturated groundwater flow, the air and water
pressures differ by a suction which depends on the water volume fraction, or in that
in consolidation theory, that the effective pressure (which is the difference between
the overburden pressure and the pore pressure) is a function of porosity; morepver,
these descriptions are essential to the integrity of the model. A similar concept is
likely to be generally the case.

5.2.3 Modifications

One possible resolution of the issue of ill-posedness lies in the inclusion of a number
of terms which have been neglected in (5.1), and which should be included in more
realistic models. We now introduce some of these, although where they come from
must wait till we consider the formal process of averaging in section 5.3. We will
continue to focus on gas-liquid mixtures, and will assume the liquid density ρl is
constant, but allow the possibility of variable gas density ρg. We now present an
elaboration of (5.1), and will then discuss the added terms in sequence. The model
is

(ρgα)t + (ρgαv)z = Γ,

ρl[−αt + {(1− α)u}z] = −Γ,

ρl{(1− α)u}t + ρl{Dl(1− α)u2}z] = −(1− α)
∂pl
∂z
− (1− α)ρlg +M − F,

(ρgαv)t + (ρgαv
2)z = −α∂pg

∂z
− αρgg −M. (5.17)

There are in fact other terms one can include, but these are the most important in
practice. We now consider them in turn.
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Phase change

The first extra term in the two conservation of mass equations is the source term
Γ; this represents change of phase, and is of importance in a number of practical
situations, such as steam-water flows, where due to external heating, the water boils.
This, evidently, is what happens in a boiler. Phase change is of importance in other
two-phase systems, such as the convective motion of clouds, solidification of alloys
(section ?? and the degassing flow in volcanic vents (section ??. The question in
a boiling flow is then, what determines Γ? As one might expect, this involves an
appropriate form of the energy equations, and this is discussed in section 5.2.5.

Profile coefficients

We have already mentioned profile coefficients. These arise in averaging, because the
formulation in (5.1) assumes implicitly that the velocity profiles are plug flow, i. e.,
constant across the cross section. This is generally not the case, particularly for the
liquid (continuous) phase, and the quantity Dl in (5.17)3 indicates this. It is naturally
greater than one in practice.

Gravity

Obviously, (5.1) had no gravitational acceleration, and equally obviously, this should
be included. Although the equations of the model can equally apply to flow in an
inclined channel, in which case g would be the downstream component of gravity, we
will focus here on a vertical channel. Sub-horizontal two-phase flow is important in
oil pipelines, for example, and the corresponding régime diagrams are different, but
the same general precepts apply.

Interfacial drag

The most obvious apparent feature of a two-phase flow is that there is a drag between
the phases. Generally this is manifested in two ways: viscous friction at the inter-
face generates an interfacial drag, and this is denoted by the term M in the model.
Particularly for gas bubbles in liquid, one would suppose that this term is small, but
in practice it is commonly assumed that the flow is turbulent, so that the frictional
effects are manifested by Reynolds stresses. One particular constitutive assumption
which embodies this is to take

M =
3CDαρl|v − u|(v − u)

4dB
(5.18)

for bubbly flow, where CD is a drag coefficient and dB is bubble diameter, and other
such prescriptions are available for other flow régimes.

The other effect of obstruction of each phase by the other is a purely inviscid one.
If a bubble moves through a fluid, the fluid must be displaced, and this requires work
to be done. In the averaged equations, this effect is manifested by various terms, and
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in particular virtual mass terms. They are not shown in (5.17) but will be included
in later versions of the model.

Wall friction

The final added term in (5.17) is the wall friction term F . For flow in a tube, this
represents the effect of turbulent friction at the wall. Most flow régimes have liquid
at the wall, and so this term is present only in the liquid momentum equation. A
common prescription is to take

F =
4fρlu

2

d
, (5.19)

where d is the tube diameter and f is a friction factor, usually small (it is dimension-
less). The form of F arises for the following reason: the original form of the liquid
momentum equation as a cross-sectional average is

{ρlA(1− α)u}t + . . . = . . .− Cτ, (5.20)

where A is the cross-sectional area, C is the circumferential length, and τ is the wall
stress. The choice τ = fρlu

2 is a common assumption in turbulent flows, and the

factor
4

d
is just

C

A
.

5.2.4 Constitution of the pressures

In some circumstances, it is essential to take differing values of the two phasic pres-
sures, to represent the idea that even in the absence of relative motion, a differential
pressure will be related to a change of volume fraction. We will illustrate this for a
bubbly flow using a description in Batchelor’s (1967) book, not because it is particu-
larly significant in that case, but because it can be in other situations. It is also the
only example I know of where a form of bulk viscosity can be derived, as opposed to
postulated.

As is commonly the case in prescribing such constitutive relations, its form follows
from a local description of the dynamics. We consider the motion of an incompressible
fluid of viscosity µ containing spherical bubbles of a compressible gas. If we consider
one such bubble of radius a, with far-field pressure being pl and the ;iquid being at
rest there, and we suppose that the gas pressure pg inside the bubble is uniform, then
mass and momentum equations for the liquid are

∂

∂r
(r2u) = 0,

ρl(ut + uur) = −pr + µ

(
urr +

2

r
ur −

2

r2
u

)
, (5.21)

where r is the spherical polar radius (measured from the centre of the bubble). It
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follows that

u =
a2ȧ

r2
,

pl − p = ρl

1
2
u2 −

·
(a2ȧ)

r

 , (5.22)

and that the normal stress σrr = −p+ 2µ
∂u

∂r
is given by

pl + σrr = ρl

1
2
u2 −

·
(a2ȧ)

r

− 4µa2ȧ

r3
. (5.23)

At the bubble wall, we require the normal stress σrr = −pg +
2γ

a
, if we allow for a

surface tension γ. It follows that

pl − pg = −ρl
[

3
2
ȧ2 + aä

]
− 4µȧ

a
− 2γ

a
. (5.24)

If a fluid contains n bubbles of small diameter a per unit volume (which move with

the fluid), so that the void fraction α =
4πna3

3
, then since

dα

dt
= ∇.u (5.25)

(following the fluid), it follows that

∇.u =
3αȧ

a
, (5.26)

and thus (5.24) provides a constitutive law giving pl − pg in terms of α and ∇.u. In
the particular case that bubble size is sufficiently small and that surface tension can
be ignored, this is just

pl − pg = −κ∇.u, (5.27)

where

κ =
4µ

3α
. (5.28)

This has the form of a bulk viscosity relation (κ is the bulk viscosity), and has the same
interpretation as given by Batchelor, because the local thermodynamic equilibrium
pressure is that at the interface, pg, while the dynamic pressure is that in the far field,
pl. It is an appropriate choice when the liquid is very viscous (in the case of magma
transport, the ‘liquid’ is actually a solid!).

For industrial scale flows, where we might take a tube height of 10 m, and thus a
gravitational head of 105 Pa, assuming bubble sizes of 1 cm and a time scale of 1 s,
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the inertial and viscous terms in (5.24) are negligible, and the surface tension term is
small, but becomes significant for smaller millimetre-sized bubbles.

When there is relative motion between bubbles and liquid, a potential flow calcu-
lation suggests

pl − pg = ξρl(v − u)2, (5.29)

where ξ ∼ 1
4
. This relation is due to Stuhmiller (1977), and it can be added to the

other terms in (5.24). It scales the pressure difference with the liquid acceleration,
and is thus important in rapid flows.

5.2.5 Phase change and the energy equation

The phase change term in (5.17) is determined through consideration of energy con-
servation. Just as for mass and momentum, there will be two energy equations, one
for each phase; and just as in the mass and momentum equations there will be an
interfacial transport term which transports heat between the phases. This transport
occurs if there is a difference between the local phasic average temperatures, and it is
generally assumed that the corresponding heat transfer coefficient is so large that the
two averaged temperatures are approximately equal. This being the case, it suffices
to write a single energy equation for the whole mixture. It is a little awkward to do
this. The form of energy conservation for a single phase fluid is

∂

∂t

[
1
2
ρu2 + ρe+ ρΦ

]
+ ∇.

[
{1

2
ρu2 + ρe+ ρΦ}u

]
= ∇. (σ.u)−∇.q, (5.30)

Here e is the internal energy, Φ is the potential energy, and q is the heat flux. In the
usual way (Fowler 2011, p. 819), the mass and momentum single-phase conservation
laws can be used to simplify this to the form

ρ
de

dt
= σij ε̇ij −∇.q, (5.31)

and thus also

ρ

[
de

dt
+ p

dv

dt

]
= τij ε̇ij −∇.q, (5.32)

where the specific volume is v =
1

ρ
. The viscous dissipation term τij ε̇ij can generally

be ignored, and if we introduce the enthalpy

h = e+ pv, (5.33)

this takes the approximate form (cf. (4.22))

ρ
dh

dt
− dp

dt
= −∇.q. (5.34)

The equation is useful in this form because the latent heat L is just defined as

L = hg − hl, (5.35)
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evaluated at the saturation temperature (boiling point, for example).
Averaging of the energy equation or, as we can now call it, the enthalpy equation,

is awkward because of the adiabatic term
dp

dt
. Luckily, this term is commonly small.

For example, for steam and water at around atmospheric pressure, L ∼ 2.2 × 106 J
kg−1 and ρg ∼ 0.6 kg m−3, and thus ρgL ∼ 1.3 × 106 Pa, and this is usually much
larger than any applied pressure drop. If we then drop the adiabatic term and write
(5.34) in the form

(ρh)t + ∇. (ρhu) = −∇.q, (5.36)

it becomes amenable to averaging, as described in section 5.3. If we are simply
concerned with the mixture energy equation, on the basis that the phase temperatures
are the same, then we simply add weighted versions of (5.36), so that

{αρghg + (1− α)ρlhl}t + ∇. {αρghgv + (1− α)ρlhlu} ≈ Q, (5.37)

where averaging of the heat transport over both phases simply gives the externally
applied heat flux Q at the wall. The temperature is simply given by its saturation
value, and although this will vary somewhat with pressure, the variation is usually
small and can be ignored.2 In this case we can take

hl = hsat, hg = hsat,+L, (5.38)

and (5.37) reduces to the simple form

L [(αρg)t + ∇. (αρgv)] = Q, (5.39)

and thus simply

Γ =
Q

L
. (5.40)

This simply says that all external heat supply is used in adding latent heat.

5.3 Averaging: two-fluid models

The formal process by which we derive equations for two-phase flow is by an appro-
priate method of averaging. Let us examine this process in greater detail. There are
many different ways of approaching averaging, and here we follow that outlined by
Drew and Wood (1985), or Drew (1983). The idea is to use indicator functions Xk

for each phase (labelled by k) such that Xk(x, t) = 1 if x is in phase k at time t,
and Xk = 0 otherwise. Xk is an example of a generalised function, whose derivatives
must be defined in a roundabout way, as discussed below. Averaged equations can
be obtained by multiplying the pointwise conservation laws for phase k by Xk, and

2In fact, the Clapeyron equation gives the variation of the saturation temperature Tsat as
∆T

Tsat
=

∆v∆p

L
≈ vg∆p

L
, which is small when the adiabatic term is, as already assumed.
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averaging. The question arises, what average is used? One naturally thinks of a
spatial average, or a time average, but these have disadvantages as follows. Since we
wish to define averages which are functions of space and time, averages must be local.
For example, we could define the void fraction as

α(x, t) = X̄g ≡
1

T

∫ t

t−T
Xg(x, t

′) dt′, (5.41)

which is a local time average. We could define a local space average similarly. The
problem then is that time variation on scales less that T is suppressed, so there is
an implicit assumption that there is an asymptotic separation between fluctuation
time scales and macroscopic time scales, but how to determine this separation is
unclear. So the preferred method is to in effect use the averaging which is used in
statistical mechanics, which is an ensemble average. We mentioned this earlier. In a
sense it is subject to the same criticism. In order to obtain an ensemble average (of a
deterministic system), one assumes chaotic solutions (and thus the ergodic hypothesis)
which seems reasonable, and then the averaging is done over the initial conditions. It
is simplest to think of this in the absence of phase transition. Then a fluid element
in each phase remains in that phase, and the element has a location x(t, ξ) such that
x(0, ξ) = ξ. If the initial phase distribution is given by Xk = X0

k(ξ), then

Xk(ξ, 0) = X0
k(ξ), (5.42)

and the average is defined rather messily as

α[x(ξ, t), t] = X̄g =
1

|N(ξ)|

∫
N(ξ)

Xg[x(ξ′, t), t] dξ′, (5.43)

where N(ξ) is some local neighbourhood of ξ. The same issue arises, how large should
this neighbourhood be, but the ergodic hypothesis suggests it can be indefinitely
small, provided t is large enough. In practice, the details of averaging do not overtly
appear in the description.

A typical conservation law has the form

∂

∂t
(ρψ) + ∇.(ρψv) = −∇.J + ρf. (5.44)

Multiplying by Xk and averaging yields (the overbar denotes the average)

∂

∂t
(Xkρψ) + ∇.[Xkρψv] = −∇.[XkJ] +Xkρf

+ρψ

{
∂Xk

∂t
+ vi.∇Xk

}
+ {ρψ(v − vi) + J}.∇Xk, (5.45)

where we assume that ∇f = ∇f̄ ,
∂f

∂t
=
∂f̄

∂t
, which will be the case for sufficiently

well-behaved f . In (5.45), vi is the average interfacial velocity of the boundary of
phase k, and derivatives of Xk are interpreted as generalised functions.
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The type example of a generalised function δ(x), which is defined by the recipe∫ ∞
−∞

φ(x)δ(x) dx = φ(0) (5.46)

for any smooth test function satisfying φ(±∞) = 0. More generally, such functions
are defined in a similar way, by integration using test functions. As a particular
example

∂Xk

∂t
+ vi.∇Xk = 0, (5.47)

since if φ is any smooth test function vanishing at large values of x and t, then∫∫
φ

[
∂Xk

∂t
+ vi.∇Xk

]
dV dt = −

∫∫
Xk

[
∂φ

∂t
+ vi.∇φ

]
dV dt

= −
∫ ∞
−∞

∫
Vk(t)

[
∂φ

∂t
+ vi.∇φ

]
dV dt

= −
∫ ∞
−∞

d

dt

∫
Vk(t)

φ dV dt = −
[∫

Vk(t)

φ dV

]∞
−∞

= 0. (5.48)

The last term in (5.45) is related to the interfacial surface average, since ∇Xk

picks out interfacial values. If w is a function of x and t, w.∇Xk is defined via a test
function φ(x, t) by∫

V

φw.∇Xk dV = −
∫
V

Xk∇.(φw) dV = −
∫
Vk

∇.(φw) dV = −
∫
Sk

φwn dS, (5.49)

where wn is the normal component of w at the interface, pointing away from phase
k. This suggests that w.∇Xk can be identified with the surface average of −w.n.

Now put ψ = 1, J = 0, f = 0 in (5.44), corresponding to mass conservation. Then
equations of conservation of mass of each phase are, from (5.45),

∂

∂t
(Xkρ) + ∇.[Xkρv] = ρ(v − vi).∇Xk. (5.50)

The form of (5.50) suggests that we define the average phase volume, density and
velocity as follows:

αk = Xk, ρk =
Xkρ

αk
, vk =

Xkρv

αkρk
, (5.51)

so that (5.50) gives
∂

∂t
(αkρk) + ∇.[αkρkvk] = Γk, (5.52)

where Γk = ρ(v − vi).∇Xk, and represents a mass source due to phase change (with-
out which v = vi at the interface).
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Next, consider momentum conservation. With appropriate interpretation of tensor
notation,3 we put

ψ = v, J = pI− τ , f = g, (5.53)

where τ is the deviatoric stress tensor, g is gravity. Then

∂

∂t
(Xkρv) + ∇.[Xkρvv] =

∇.[Xk(−pI + τ )] +Xkρg + {ρv(v − vi) + (pI− τ )}.∇Xk. (5.54)

NowXkρv = αkρkvk, and we would like to haveXkρvv = αkρkvkvk; but evidently the
latter is not the case. Since the flow is normally turbulent, this can be circumvented
by separating v (and, more generally ψ) into mean and fluctuating parts, thus v =
vk + v′k, so that

Xkρvv = αkρkvkvk +Xkρv′kv
′
k; (5.55)

The second term can be interpreted as the averaged Reynolds stress. The momentum
equation can thus be written as

∂

∂t
(αkρkvk) + ∇.[αkρkvkvk] =

∇.[αk(Tk + T′k)] + αkρkg + Mk + vmkiΓk, (5.56)

where

αkTk = Xk(−pI + τ ),

αkT
′
k = Xkρv′kv

′
k,

Mk = (pI− τ ).∇Xk,

vmki =
[ρv(v − vi).∇Xk]

[ρ(v − vi).∇Xk]
. (5.57)

Evidently, the average pressure in phase k is pk =
Xkp

αk
. If we neglect viscous stresses,

we can write the interfacial momentum source as

Mk = p∇Xk = pki∇αk + M′
k, (5.58)

where
M′

k = (p− pki)∇Xk, (5.59)

pki is the average interfacial pressure on phase k, and we use ∇Xk = ∇αk. Thus the
momentum equation can be written as

∂

∂t
(αkρkvk) + ∇.[αkρkvkvk] = −αk∇pk − (pk − pki)∇αk

+∇.[αkT
′
k] + αkρkg + M′

k + vmkiΓk. (5.60)

3In particular, the tensor vv has components vivj , and the divergence of a second rank tensor σ

with components σij is the vector ei
∂σij
∂xj

.
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Commonly, we might assume pk = pki and the pressure term is explicitly −αk∇pk.
This explains why we took the pressure gradient terms in (5.1) in the form that we
did.

5.3.1 Jump conditions

Before we consider particular forms for some of these interfacial average terms, we
note that at the interface between the phases, the conservation laws imply jump
conditions, and these too must be averaged. The averaged jump conditions provide
some constraints on the interfacial averages. For the general purpose conservation
law (5.44), the corresponding jump condition is

[{ρψ(v − vi) + J}.n12]21 = −m, (5.61)

where m is the interfacial source of ψ and the unit normal n12 points from phase 1
to phase 2. In mass conservation this will be zero, but for momentum it corresponds

to surface tension. Since n12 = − ∇X1

|∇X1|
, (5.61) takes the form, when averaged,

[
{ρψ(v − vi) + J}.∇X1

]2

1
= m̄ ≡ m|∇X1|, (5.62)

Applying this to the interfacial average terms in (5.52) and (5.56), it follows that∑
Γk = 0,∑

Mk + vmkiΓk = m̄, (5.63)

since of course ∇X2 = −∇X1 (and for the momentum equation, m is a vector).

5.3.2 Constitutive laws

We have already indicated that the mass source term Γg = −Γl is determined, often
quite simply, by the energy equation. It remains to constitute the various pressures
in the momentum equations, along with the interfacial source terms. To provide a
focus, we consider a gas-liquid bubbly flow as an example.

Commonly the phase change momentum velocity vki is ignored on the basis that
it is small, and we shall follow this assumption. Drew and Wood (1985) provide a
parameterisation based on the work of Ishii (1975).

A natural assumption is to take

pg = pgi = pli +
2γ

rb
, (5.64)

where γ is surface tension, and rb is a suitable mean bubble radius. As mentioned
earlier in (5.29), a representative prescription for the continuous phase pressure dif-
ference is

pl − pli = ξρl(v − u)2. (5.65)
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It remains to constitute the interfacial drag terms M′
k. We define

m̄ =
2γ∇α

rb
, (5.66)

and then with the above assumptions, (5.63) implies that the interfacial drag terms
are equal and opposite,

M′
g + M′

l = 0. (5.67)

The dispersed phase drag term M′
g consists of several different parts, each of them a

force per unit volume. Most straightforward is the actual interfacial drag, which at
low bubble Reynolds number would be due to viscous stresses, but at higher relative
velocities is due to Reynolds stresses at the bubble scale. In any event, we prescribe

MD
g =

3αρlCD|v − u|(v − u)

8rb
, (5.68)

as we did earlier: CD is the drag coefficient. Other flow régimes have different such
prescriptions. There are other terms as well. The virtual mass force is

MVM
g = CVMαρl

[{
∂v

∂t
+ (v.∇)v

}
−
{
∂u

∂t
+ (u.∇)u

}]
. (5.69)

Other terms are the Faxén force, the lift force and the Basset force, but will not be
discussed here. The interfacial drag term is then the sum of these forces, for example

Mg = MD
g + MVM

g . (5.70)

5.3.3 One-dimensional flows: cross-sectional averaging

For flow in a tube, with z being the axial coordinate. One can integrate the equa-
tions (5.52) and (5.56) over the cross-sectional area, and we end up with the one-
dimensional model provided earlier. The additional integration provides a couple
of extra features in the momentum equations. With k being a unit vector in the
z-direction, integration over a penny-shaped volume of cross-sectional area A and
height δz, followed by taking the limit δz → 0, leads to

∂

∂t

∫
A

αkρkvk dA+
∂

∂z

∫
A

αkρkvkvk dA =

∫
∂A

αk(Tk + T′k).n ds+ . . . , (5.71)

where rather awkwardly we define the average upwards velocity to be vk = vk.k. If we
now take the axial component of this vector equation, we have the one-dimensional
equation in the form

∂

∂t

∫
A

αkρkvk dA+
∂

∂z

∫
A

αkρkv
2
k dA =

∫
∂A

αkk.(Tk + T′k).n ds+ . . . . (5.72)

The expression on the right is the wall stress, which we introduced in (5.19).
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The other distinguishing feature in a wall-bounded one-dimensional flow is that
there may be systematic cross-flow variation of the local mean velocity. We naturally
define cross-sectional averages (with an overbar) as

ᾱk =
1

A

∫
A

αk dA, ᾱkρ̄k =
1

A

∫
A

αkρk dA, ᾱkρ̄kv̄k =
1

A

∫
A

αkρkvk dA, (5.73)

but in general the advective term in (5.72) is not equal to Aᾱkρ̄kv̄
2
k as we would wish,

unless vk is uniform across the tube. For example, suppose that

vk = 2v̄k(1− r2) (5.74)

in a tube of unit radius; then v2 = 4
3
v̄2. In general, we close the system by assuming

that
1

A

∫
A

αkρkv
2
k dA = Dkᾱkρ̄kv̄

2
k, (5.75)

where Dk is known as a profile coefficient.

Profile coefficients and well-posedness

Profile coefficients are one cosmetic way in which the ill-posedness of (5.2) can be
removed. Let us adjust that model by writing

αt + (αv)z = 0,

−αt + [(1− α)u]z = 0,

ρg(αv)t + ρg(Dgαv
2)z = −αpz,

ρl[(1− α)u]t + ρl[Dl(1− α)u2]z = −(1− α)pz. (5.76)

It will usually be appropriate to choose Dg = 1, but we allow Dl 6= 1. Then the last
two of (5.76) can be written as

ρg[vt + vvz] = −pz,

ρl

[
ut + (2Dl − 1)uuz − (Dl − 1)

[
u2

1− α

]
αz

]
= −pz, (5.77)

and the system can be written as (5.3) for ψ = (α, u, v, p)T , with

A =


1 0 0 0
−1 0 0 0
0 ρl 0 0
0 0 ρg 0

 , B =


v 0 α 0
−u (1− α) 0 0

−ρl(Dl − 1)u2

(1− α)
ρl(2Dl − 1)u 0 1

0 0 ρgv 1

 .

(5.78)
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The characteristics
dz

dt
= λ satisfy det(λA−B) = 0, hence with s defined in (5.16),

(λ− u)2 = ν[u2 + 2u(λ− u)]− s2(λ− v)2, (5.79)

where ν = Dl − 1. For small values of s and ν, we see that λ is real provided

ν > s2(u− v)2/u2, (5.80)

so that practically, a profile coefficient above one is sufficient to make the basic system
have real characteristics, and hence be well-posed. Other possibilities to render the
system well-posed can be chosen. In practice, any realistic model will (and should)
be well-posed, otherwise it will be physically meaningless. This needs to be borne in
mind when attempting numerical solution of the model.

5.3.4 Scaling the model

We return to the one-dimensional model (5.17):

(ρgα)t + (ρgαv)z = Γ,

ρl[−αt + {(1− α)u}z] = −Γ,

ρl{(1− α)u}t + ρl{Dl(1− α)u2}z] = −(1− α)
∂pl
∂z
− (1− α)ρlg +M − F,

(ρgαv)t + (ρgαv
2)z = −α∂pg

∂z
− αρgg −M, (5.81)

where we take (cf. (5.70))

M =
3CDαρl|v − u|(v − u)

4dB
+ CVMαρl(v̇ − u̇), (5.82)

and we have written
v̇ = vt + vvz, u̇ = ut + uuz. (5.83)

The wall friction is

F =
4fρl|u|u

d
, (5.84)

and we suppose the pressure relations

pl − pli = ξρl(v − u)2, (5.85)

and

pg = pgi = pli +
2γ

r∗bα
1/3
, (5.86)

where r∗b is a maximal bubble radius and γ is the surface tension.
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Now we scale the equations (for bubbly flow) as follows:

u, v ∼ U, z ∼ l, t ∼ l

U
, p− pa ∼ ρlgl, Γ ∼ ρgU

l
, (5.87)

We take ρl and ρg to be constant, and define their ratio to be

δ =
ρg
ρl
, (5.88)

and this is normally small. Since Γ =
Q

L
is prescribed, we could sensibly use the

Γ-scaling to define U ; here, however, we suppose U is determined from the inlet
boundary condition, for example. The resulting dimensionless model can be written
in the form

αt + (αv)z = Γ,

−αt + {(1− α)u}z = −δΓ,

F 2
[
{(1− α)u}t + {Dl(1− α)u2}z

]
= −(1− α)

[
pz + 1− σ

(
1

α1/3

)
z

+ ξF 2{(v − u)2}z
]

+
Λ|v − u|(v − u)

α1/3
− κ|u|u+ CVMF

2α(v̇ − u̇),

δF 2{(αv)t + (αv2)z} = −αpz − δα−
Λ|v − u|(v − u)

α1/3
− CVMF 2α(v̇ − u̇),

(5.89)

where

F 2 =
U2

gl
, Λ =

3CDl

8r∗b
F 2, κ =

4fl

d
F 2, σ =

2γ

ρgglr∗b
. (5.90)

To get some idea of the size of these parameters, we use laboratory scale values
U ∼ 1 m s−1, l ∼ 10 m, g ∼ 10 m s−2, d ∼ 0.1 m, r∗b ∼ 0.01 m, ρl ∼ 103 kg m−3,
ρg ∼ 1 kg m−3, CVM , CD, ξ ∼ 1, γ ∼ 70 mN m−1, f ∼ 0.01, and then

δ ∼ 10−3, F 2 ∼ 10−2, Λ ∼ 10, κ ∼ 4× 10−2, σ ∼ 10−4. (5.91)

These are all small, apart from Λ, and neglecting the small terms leads to the
simplified system

αt + (αv)z = Γ,

−αt + {(1− α)u}z = 0,

0 = −(1− α)(pz + 1) +
Λ|v − u|(v − u)

α1/3
,

0 = −αpz −
Λ|v − u|(v − u)

α1/3
. (5.92)
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This is now easily solved. We find

pz = −(1− α), v − u = α2/3

(
1− α

Λ

)1/2

,

u = u0 + Γ(z − r)− α5/3

(
1− α

Λ

)1/2

, (5.93)

where r and u0 are suitable functions of t, and then α satisfies the first order equation

αt + qz = Γ, q = α{u0 + Γ(z − r)}+
α5/3(1− α)3/2

√
Λ

, (5.94)

which can be examined using the method of characteristics.
One issue in the above reduction is that the pressure drop is bounded; in fact it

is hydrostatic, in terms of the mixture density. This precludes applying a pressure
drop to the system which is larger than hydrostatic, which seems wrong. A possible
resolution is that for such large applied pressure drops, the wall friction becomes
significant, and in fact such an assumption then determines the velocity scale.

5.3.5 Homogeneous and drift-flux models

There are two commonly used two phase flow models other than the two-fluid model.
The homogeneous model is motivated by the observation that the interfacial friction
parameter

Λ =
3CDU

2

8gr∗b
(5.95)

is relatively large if the bubble size is small. In this case (5.93) implies that v ≈ u and
it suffices to consider equations of total mass and momentum of the mixture, thus

ρt + (ρu)z = 0,

ρ[ut + uuz] = −pz − ρg −
4fρl|u|u

d
, (5.96)

in which the mixture density is

ρ = αρg + (1− α)ρl. (5.97)

The ‘equation of state’ for this model follows from the enthalpy equation, which we
take to be

ρ
dh

dt
= Q, (5.98)

again neglecting the adiabatic term. Here the mixture enthalpy is defined by

ρh = αρghg + (1− α)ρlhl, (5.99)

bearing in mind that also hg − hl = L, the latent heat.
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Drift-flux model

The drift-flux model allows a relative motion, but rather than have separate momen-
tum equations, it considers total momentum conservation in the form

[αρgv + (1− α)ρlu]t + [αρgv
2 + (1− α)ρlu

2]z = −pz − ρg −
fρl|u|u
d

, (5.100)

and similarly the total enthalpy equation is (ignoring the adiabatic terms)

[αρghg + (1− α)ρlhl]t + [αρgvhg + (1− α)ρluhl]z = Q. (5.101)

One could additionally add profile coefficients. There are, however, two mass conser-
vation equations

(αρg)t + (αρgv)z = Γ,

ρl [−αt + {(1− α)u}z] = −Γ, (5.102)

and the extra velocity is prescribed by a constitutive law for the drift flux

V = (1− α)(v − u), (5.103)

commonly as a function of α. This is essentially equivalent to the reduction in (5.93).
This is rather akin to the status of Darcy’s law.

5.3.6 A simple model for annular flow

Annular flows occur when the gas superficial velocity is large enough (see figure 5.2),
and in this section we non-dimensionalise a suitable model for this régime. Because
annular flows commonly occur in boilers, for example, we will include a more elaborate
discussion of the enthalpy equations,; in particular, we consider enthalpy equations
for each phase, because the liquid must be superheated in order that boiling occur at
the interface.

To do this, we return to the averaging procedure. We will, however, continue to
ignore the adiabatic term in the enthalpy equation. In this case, the basic coservation
law is (5.36), and putting ψ = h and J = q in (5.44), we are led in essentially the
same way as for the momentum equation to the phase-averaged enthalpy equations

∂

∂t
(αkρkhk) + ∇.[αkρkhkvk] = −α∇. [[αk(qk + q′k)] + Ek + hkiΓk, (5.104)

where Ek is the interfacial heat transfer, and hkiΓk is the interfacial enthalpy flux;
these are defined by

Ek = q.∇Xk, hkiΓk = ρh(v − vi).∇Xk ; (5.105)

the turbulent energy flux is defined similarly to the Reynolds stress as

q′k = Xkρh′kv
′
k, (5.106)
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where we have written h = hk + h′k in phase k. Associated with (5.104) is the jump
condition

Eg + El + LΓ = 0, (5.107)

where the latent heat L = hgi − hli.
Unless we are in a geological (large scale) situation where the saturation tem-

perature changes appreciably with pressure (for example, this may be relevant in a
volcanic conduit), we may take the temperature to be almost constant, so that the
heat flux terms qk and q′k will be neglected. The terms Ek represent heat transfer to
the interface, and are commonly represented in the form

Ek = Hk(Ti − Tk), (5.108)

where T is temperature and Hk are heat transfer coefficients. These are large, which
is why one normally takes the temperature in the phases to be equal, but we retain
the separate temperatures for the moment. In an annular flow, the gas velocity is
much larger than that of the liquid, so we take Eg = 0; the jump condition then
simply prescribes the degree of superheat in the liquid. Specifically,

Tl = Ti +
LΓ

Hl

. (5.109)

We will assume that this superheat is small, for which the criterion is that the excess
sensible heat is small compared to the latent heat, thus Hl � cplΓ, where cpl is the
specific heat of the liquid. It then follows that our earlier discussion is appropriate,
and the enthalpy equations simply combine to give

Γ =
Q

L
, (5.110)

as in (5.40).
We now write α and β as gas and liquid volume fractions (thus β = 1 − α), and

we write a two-fluid model in the form

(αρg)t + (αρgv)z = Γ,

(βρl)t + (βρlu)z = −Γ,

(βρlu)t + (Dlβρlu
2)z = −βpz − βρlg − Flw + Fli,

(αρgv)t + (αρgv
2)z = −αpz − αρgg − Fli, (5.111)

where we assume equal pressures, and ignore virtual mass terms.
The main distinction between this and bubbly flow is that the gas velocity is much

larger than the liquid velocity, and the interfacial drag term is different. By analogy
with the wall friction term we discussed earlier, we choose

Flw =
4

d
flwρl|u|u,

Fli =
4
√
α

d
fliρg|v − χu|(v − χu). (5.112)
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The factor
√
α accounts for the smaller cross section of the gas core; the coefficient χ

(≈ 2) accounts for the fact that interfacial waves, called disturbance waves, commonly
occur on the interface, so that the friction exert ed on the gas core is primarily due
to the resistance which they offer. χu is the speed of these waves.

Nondimensionalisation

In the following, we take ρg and ρl as constants for simplicity. We scale the variables
by writing

z ∼ l, u ∼ U, v ∼ V, p− pa ∼ P, , β ∼ B, t ∼ l

U
, (5.113)

where the scales U, V, P and B are chosen by balancing the following terms:

(αρgv)z ∼ Γ ∼ (βρlu)z, Flw ∼ Fli ∼ αpz; (5.114)

this leads to

V =
Γl

ρg
, U =

(
δfli
flw

)1/2

V, B =
δV

U
, P =

4lfliρgV
2

d
, (5.115)

where we define
δ =

ρg
ρl
. (5.116)

For simplicity we will also take

fli = flw = f, (5.117)

say, which implies
U

V
=
√
δ, B =

√
δ, (5.118)

and then we obtain the dimensionless set

−δβt + {(1−
√
δβ)v}z = 1,

βt + (βu)z = −1,

δ3/2Π[(βu)t +Dl(βu
2)z] = −

√
δβpz −

√
δGβ − |u|u

+|v − χ
√
δu|(v − χ

√
δu),

Π
[√

δ{(1−
√
δβ)v}t + {(1−

√
δβ)v2}z

]
= −(1−

√
δβ)pz − δG(1−

√
δβ)

−|v − χ
√
δu|(v − χ

√
δu), (5.119)

where the extra parameters are defined by

Π =
d

4fl
, G =

gd

4fU2
=

Π

F 2
, F 2 =

U2

gl
. (5.120)
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The aspect ratio
d

l
is small, but so also is the friction factor f , with orders of

magnitude for each of 10−2 being relevant. So the parameter Π could be large or
small, but generally it is reasonable to take it as being O(1). Earlier we proposed
that the ‘Froude’ number F was small in the case of bubbly flow, which would suggest
G is large, but in the case of annular flow this depends on the size of the liquid velocity,
which in industrial contexts (at high ambient pressure) may be a good deal higher
than we presumed earlier. So we will suppose that also G ∼ O(1), although relaxation
of this assumption is easily made.

Simplification

With the assumption that δ � 1, we neglect all the corresponding terms in (5.119),
and thus we have the reduced system

vz = 1,

βt + (βu)z = −1,

0 = −|u|u+ |v|v,

Π(v2)z = −pz − |v|v, (5.121)

and these are easily solved. If v = v0 and β = β0 at z = 0, then

v = u = v0 + z, (5.122)

so that
βt + {(v0 + z)β}z = −1, (5.123)

and the pressure drop down the tube (of dimensionless length 1) is

∆p = Π(1 + 2v0) + v2
0 + v0 + 1

3
. (5.124)

(5.123) is easily solved using characteristics. In the characteristic (z, t) space, there
is a small time transient region in which the initial condition for β is used, and
thereafter the inlet condition is used. If the inlet condition is constant, then this is
just the steady solution

β =
β0v0 − z
v0 + z

, (5.125)

and dryout occurs at z = β0v0.
It should be noted that this approximate solution does not allow prescription

of an inlet velocity condition for u; this is because of the loss of the acceleration
terms, which constitute a singular perturbation: satisfaction of an inlet condition
for u requires an inlet boundary layer where the acceleration terms are important.
It should also be noted that in the common situation where a pressure drop rather
than an inlet velocity is prescribed, (5.124) indicates a minimum pressure drop for
which the above solution is valid. For lower pressure drops, other terms must become
important, or else the annular régime can not be maintained.
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Figure 5.3: Geometry of heated flow in a boiler tube.

5.3.7 Disturbance waves

5.4 Density wave oscillations

Density wave oscillations in two phase flow have been of concern in the nuclear
industry for a long time. In a steam generating boiler, water in an array of pipes is
heated externally, and begins to boil as it flows along the pipes. In certain situations,
the resulting two phase flow can be oscillatorily unstable, which is an undesirable
feature in industrial systems. The instability mechanism is the same one that produces
chugging in a domestic back boiler, if the pipework to the hot water tank is incorrectly
installed (i. e., a section of pipe from fire to hot water tank is inclined downwards),
and also the same that produces geysering in geothermal springs. A more direct
analogy is in certain types of effusive volcanic eruptions, such as that at Villarrica
volcano in Chile, where the magma flow in the vent appears to oscillate between a
bubbly flow régime and a slug flow régime.

The simplest model to describe the instability was posed and analysed by Davies
and Potter (1967). They studied a homogeneous two phase flow model, in which it
is assumed that in the two phase region, the liquid and vapour phases move with the
same velocity. This is the simplest assumption, though it is inaccurate, particularly
in the annular flow régime. Nevertheless it appears to capture the essence of the
instability, and serves as a useful starting point.
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The geometry of the flow under consideration is shown in figure 5.3. Heat is added
to the flow at a rate Q (units W m−3, thus heat flux per unit length of the tube),
and we suppose that the flow consists of two régimes, a sub-cooled region occupying
the initial part of the tube 0 < z < r(t), and a two-phase region r < z < l, in which
liquid and vapour coexist as a bubbly flow. In practice, such two phase flows pass
through a succession of flow régimes, from bubbly to slug to churn to annular, as
the vapour fraction increases. To model such different régimes at all requires a more
sophisticated two fluid model, but it is not known with any theoretical confidence
what controls the transition between the different régimes, so that the effort involved
may not be appropriate.

We will study a homogeneous model of the two phase region. We suppose that
the flow is driven by a pressure drop ∆p, and that the inlet temperature and pressure
(and thus also enthalpy) are prescribed. Equations describing the flow are those of
conservation of mass, momentum and energy, and they take the form

ρt + (ρu)z = 0,

ρ(ut + uuz) = −pz − ρg −
4fρu2

d
,

ρ
dh

dt
− dp

dt
= Q, (5.126)

where ρ is density (of the liquid in the single phase region, of the mixture in the two-

phase region), u is velocity, p is (total) pressure, and h is enthalpy;
d

dt
is the material

derivative
∂

∂t
+ u

∂

∂x
, fρu2 is the wall stress, g is the gravitational acceleration, and

d is the tube diameter. These are to be solved subject to the conditions

h = h0 at z = 0,

−
∫ l

0

pz dz = ∆p. (5.127)

We may note that where previously we used fρlu
2 as the wall stress, here we

choose τ = fρu2. The difference is largely cosmetic, since in practice the friction
factor would be prescribed as a function of void fraction, Reynolds number, and so
on. Since the wall stress accounts for Reynolds stresses, the use of ρ is in fact perhaps
more natural. In our discussion, we will take f to be constant as a convenience.

One simplification which we immediately make is to suppose that

∆p

ρgL
� 1, (5.128)

where ρg is vapour density and L is latent heat. This is well satisfied in industrial
contexts, and guarantees that the adiabatic pressure derivative term in the enthalpy
equation can be ignored, which we henceforth do. For steam–water systems, this is a
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good approximation. For example, ρgL ≈ 270 bars (1 bar = 105 Pa = 105 N m−2) at
an operating pressure of 30 bars, and ρgL ≈ 13 bars at atmospheric pressure (where
we take vapour density at the boiling point).

5.4.1 Sub-cooled region

In the single phase sub-cooled liquid near the inlet, we suppose the liquid is incom-
pressible, so that ρ = ρl is constant, and thus u = U(t), and

ht + Uhz =
Q

ρl
. (5.129)

With the inlet condition (5.127)1, this is easily solved by the method of characteristics
to give

z =

∫ t

s

U(θ) dθ,

h =
Q

ρl
(t− s) + h0. (5.130)

We assume here that Q is constant. A more realistic assumption is to have Q depend
on u (via a heat transfer coefficient), and it is possible to treat this case also, though
less easily. We define the saturation enthalpy of the liquid at the boiling point to be
hsat, and we define the inlet sub-cooling to be

∆h = hsat − h0; (5.131)

then h = hsat defines the location of the boiling boundary z = r(t), and we find

r(t) =

∫ t

t−τ
U(θ) dθ, (5.132)

where

τ =
ρl∆h

Q
. (5.133)

Note that (5.132) introduces a delay τ into the system: the boiling boundary position
r(t) depends on the history of the inlet velocity U(t).

5.4.2 Two-phase region

In the two phase liquid–vapour region z > r, we define the void fraction α to be the
volume fraction of vapour. We then have the definitions of two phase density and
enthalpy:

ρ = ρl(1− α) + ρgα,

ρh = ρlhl(1− α) + ρghgα, (5.134)
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where suffixes l and g indicate liquid and gas properties; note that the latent heat is

L = hg − hl, (5.135)

and we will assume that the boiling temperature is constant, thus hl = hsat. Elimi-
nating α yields h as a function of ρ, and we substitute this into (5.126) to find that
ρ and u in z > r satisfy the equations

ρt + uρz = −uzρ,
ρgρlL

∆ρ
uz = Q, (5.136)

where
∆ρ = ρl − ρg, (5.137)

and the equations (5.136) are subject to the boundary conditions

ρ = ρl, u = U(t) on z = r. (5.138)

When this pair of equations is solved, then the inlet velocity is found by requiring
that the prescribed pressure drop is

∆p =

∫ l

0

[
ρ(ut + uuz) + ρg +

4fρu2

d

]
dz. (5.139)

5.4.3 Non-dimensionalisation

At this point it is convenient to non-dimensionalise the model. We scale the variables
as follows:

ρ ∼ ρl, z, r ∼ l, t ∼ τ, u, U ∼ u0 =
l

τ
; (5.140)

we then find the dimensionless veocity in the two-phase region to be

u = U + µ(z − r), (5.141)

and the density there satisfies

ρt + [U + µ(z − r)] ρz = −µρ, (5.142)

where

µ =
ρl∆h

ρgL
, (5.143)

subject to the condition that

ρ = 1 on z = r, (5.144)

171



where the boiling boundary is given by

r =

∫ t

t−1

U(θ) dθ. (5.145)

This is easily solved using the method of characteristics, and we obtain the implicit
solution

z = r(t′)eµ(t−t′) +

∫ t

t′
[U(s)− µr(s)] eµ(t−s) ds, ρ = e−µ(t−t′). (5.146)

Eliminating t′, integrating the U(s) part of the integral by parts using (5.145), and
changing the variable of integration, we can simplify the solution to the form

z = r(t) +

∫ ln 1
ρ

0

1

µ
U1

(
t− ξ

µ

)
eξ dξ, (5.147)

in which U1(η) = U(η − 1).
The single phase pressure drop is

∆psp = ∆pirU̇ + ∆pgr + ∆pfrU
2, (5.148)

where

∆pi = ρlu
2
0, ∆pf =

4f lρlu
2
0

d
, ∆pg = ρlgl, (5.149)

and the corresponding two-phase pressure drop is

∆ptp = ∆pi

∫ 1

r

ρ(ut + uuz) dz + ∆pg

∫ 1

r

ρ dz + ∆pf

∫ ρ

r

u2 dz. (5.150)

We define the pressure drop scale to be ∆pf , and then in terms of the dimensionless
parameters

γ =
∆pg
∆pf

=
gd

4fu2
0

, δ =
∆pi
∆pf

=
d

4fl
= γF 2 (5.151)

(note that δ is distinct from its earlier usage as density ratio), the dimensionless

pressure drop Π =
∆p

∆pf
is given by

Π =

[
U2r +

∫ 1

r

ρu2 dz

]
+ γ

[∫ 1

r

ρ dz + r

]
+ δ

[∫ 1

r

ρ(ut + uuz) dz + U̇r

]
. (5.152)

5.4.4 A reduced model

The model thus reduces to solving (5.152), subject to the definitions in (5.141), (5.145)
and (5.147). The delay (scaled to be one) in this system is explicitly represented by
the delayed function U1(t) = U(t− 1), but a second (smaller) delay corresponding to
transit through the two-phase region is manifested in (5.147)
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The model depends on the four parameters Π, µ, γ and δ. It is common to
describe the behaviour of the system in terms of two dimensionless parameters known
as the sub-cooling number Nsub and the phase change number Npch. In terms of the
parameters defined above, these are defined by

Nsub = µ, Npch =
µ

U
. (5.153)

Stability diagrams are often given in terms of these parameters. (Obviously, assuming
that U is constant, i. e., under steady state conditions.)

It is generally the case that ρg � ρl; on the other hand, the enthalpy sub-cooling is
∆h = cp∆T , where cp is the specific heat and ∆T is the sub-cooling as a temperature

deficit below the boiling temperature; at atmospheric pressure,
L

cp
≈ 550 K, so that

the relevant Stefan number
L

cp∆T
can be quite large. But at least at atmospheric

pressure, the density ratio dominates, and µ is large. Boilers typically operate at
high pressure, where the density ratio between steam and water is much smaller (for
example a factor of 50 at 30 bars), and so µ may not be so high. Nevertheless, we shall
suppose it is sufficiently large that an approximation based on this can be developed.

To estimate the parameters γ and δ, we take u0 = 1 m s−1, l = 10 m, d = 10−2

m, f = 0.01, g ∼ 10 m s−2. From these we find γ ≈ 2.5, δ ≈ 0.025. Thus it seems

reasonable to suppose that γ ∼ O(1), and δ ∼ 1

µ
� 1. It should be pointed out that

since u ∼ µ, then also ρ ∼ 1

µ
, which implies, since ρ ≈ 1 − α, that α ≈ 1 when well

into the two-phase region. This would certainly imply that régime transition occurs,
and annular flow becomes appropriate at high values of α. This needs to be borne in
mind in practice.

Further, if ρ ∼ 1

µ
, then ξ ∼ ln

1

µ
in the integral of (5.147), and thus

ξ

µ
� 1. It

then follows that we can expand the argument of U1 in (5.147), and this leads to the
explicit approximation

ρ ≈ U1

U1 + µ(z − r)
. (5.154)

Using this together with (5.141), we find successively∫ 1

r

ρu2 dz = U1

[
ṙ2

µ
ln

{
U1 + µ(1− r)

U1

}
+ (2U − U1)(1− r) + 1

2
µ(1− r)2

]
,∫ 1

r

ρ dz =
U1

µ
ln

{
U1 + µ(1− r)

U1

}
,∫ 1

r

ρ(ut + uuz) dz =
U̇U1

µ
ln

{
U1 + µ(1− r)

U1

}
+ µU1(1− r), (5.155)

and it then follows that the dimensionless pressure drop equation (5.152) takes the
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approximate form

Π ≈ 1
2
µU1(1− r)2 + (γ + U2 + δU̇)r + U1(2U − U1)(1− r) + δµU1(1− r), (5.156)

where we have omitted on the right a small term

U1L

µ

[
(U − U1)2 + γ + δU̇

]
, L = ln

{
1 +

µ(1− r)
U1

}
. (5.157)

The terms in (5.156) are of comparable size, except that the term δrU̇ is promoted;
the logarithmic term in (5.157) seems safe to neglect, as we have done.

5.4.5 Steady states

We begin by calculating the steady state solutions for U as a function of the prescribed
pressure drop Π. In the steady state, r = U , and thus (5.156) takes the form (dropping
the logarithmic term)

Π = 1
2
µU(1− U)2 + γU + U2 + δµU(1− U). (5.158)

We would normally expect that U would increase monotonically with Π, but because
(5.158) is a cubic, this need not always be the case. Figure 5.4 shows steady states
of U as a function of applied pressure drop. Evidently multiple steady states occur.
The middle branch is unstable, this instability being known as Ledinegg instability.
In the steady state r = U , so that the Ledinegg values 0.49 <∼ U <∼ 0.85 (in figure
5.4) correspond to situations where the boiling boundary approaches the outlet. In-
cidentally, this figure shows why it is necessary to include the apparently relatively
small second, third and fourth terms in (5.158), which are of O(1); it is because the
maximum of the ‘large’ first term is just 2.2 when µ = 30.

5.4.6 Instability and ill-posedness

Oscillatory instabilities can occur as well as the direct Ledinegg instability. To study
these we begin by considering only the first term in (5.156). Thus we have

Π ≈ 1
2
µU1(1− r)2, r =

∫ t

t−1

U(θ) dθ. (5.159)

This innocuous-looking delay integral equation is ill-posed. We can see the ill-
posedness as follows. If we define

W =

∫ t

U(θ) dθ, (5.160)

then r = W −W1, and (5.159) is

Ẇ1 =
2Π

µ(1−W +W1)2
, (5.161)
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Figure 5.4: Multiple steady states of (5.156) when µ = 30, γ = 2.5, δ = 0.025.

which is an equation of advanced type, i. e., a delay equation with negative delay.
In assessing the instability of the steady state, we then find an infinite number of
unstable states, whose (complex) growth rate σ tends to infinity in the complex plane
with Reσ > 0.4

To be specific, denote the steady state as r = U = U∗, and linearise the reduced
model (5.159). The solutions are exponential, thus

U − U∗ = eσt, r − U∗ =
1

σ

(
1− e−σ

)
eσt, (5.162)

and we require σ to satisfy the transcendental equation

g0(σ) = 1
2

(1− U∗)2 e−σ − U∗ (1− U∗)
σ

(
1− e−σ

)
= 0. (5.163)

It is straightforward to show that this equation has an infinite number of roots in the
complex plane, and these tend to the essential singularity at∞ in the right half plane,
Reσ > 0. This accumulation of rapidly growing modes is the signal of an ill-posed
equation of advance.

Ignoring the later terms in (5.156) is thus a singular approximation. There are a
number of apparently smaller terms in (5.156) which might regularise the model. The
principal suspect in this regard is the sub-cooled frictional pressure drop. Adding this
yields the model

Π ≈ 1
2
µU1(1− r)2 + U2r. (5.164)

4An equation of advanced type is typified by the example u̇ = −u(t+ τ), where τ is positive. Its
solution requires knowledge of the future, and so is expected to be ill-posed. Its solutions are eσt,
where σ = −eστ , and clearly as σ → ∞, so also Reσ → ∞, and we associate this property with
ill-posedness.
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This gives an equation of mixed type, and regularises the model if µ is small enough.
Linear stability of the steady state yields the equation for the growth rate σ as

g1(σ) = g0(σ) +
U∗2

µ

[
2 +

1− e−σ

σ

]
= 0. (5.165)

Of concern is the sector where σ → ∞. It is easy to show that Reσ cannot tend to
+∞. If Reσ is bounded, then we find

σ ≈ ln

[
µ(1− U∗)2

4U∗

]
± (2n+ 1)iπ (5.166)

for large integer n, and thus the model is regularised if

µ <
4U∗

(1− U∗)2
. (5.167)

This conditional regularisation of the model is reminiscent of the conditional regu-
larisation of two fluid models of bubbly flow for low enough void fraction, associated
(perhaps) with flow régime transition boundaries.

The fact that the regularisation is conditional, and in particular does not apply
for sufficiently large µ, suggests that a further regularisation is necessary. The correct
term to include is the derivative term, thus we replace (5.164) by

Π ≈ 1
2
µU1(1− r)2 + (U2 + δU̇)r. (5.168)

This unequivocally regularises the model. Linear stability of the steady state is de-
termined by values of σ for which

g2(σ) = g1(σ) +
δU∗σ

µ
= 0. (5.169)

Now as σ →∞, we must have

δU∗σ

µ
+ 1

2
(1− U∗)2e−σ ≈ 0, (5.170)

and it follows from this that

σ ≈ 2niπ − ln 2nπ + . . . (5.171)

for large integer n. The problem is thus regularised, although of course there will be
many unstable modes with smaller |σ| (for sufficiently small δ).

Based on the above discussion, we now solve (5.156) numerically. We write the
equation in the form of a pair of differential-delay equations,

Ẇ = U,

νrU̇ = Π− 1
2
µU1(1− r)2 − (γ + U2)r − q2 − q3, (5.172)
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Figure 5.5: Solution of (5.172) with µ = 30, γ = 2.5, δ = 0.025, Π = 2 and ν = 40.

where

q2 = δµU1(1− r), q3 = U1(2U − U1)(1− r), r = W −W1, (5.173)

and the parameter ν = δ, but we wish to use ν as an independent parameter in our
numerical solution. If we include only the terms discussed above in the regularisation
analysis (i. e., put γ = q2 = q3 = 0), then the model is just

νrU̇ = Π− 1
2
µU1(1− r)2 − rU2,

Ẇ = U,

r = W −W1, (5.174)

and we will use this below in discussing stability. The solution behaviour for (5.174)
is not dramatically different to that of (5.172).

The equations in (5.172) have the appearance of a singularly perturbed system
(when ν � 1), and it is often challenging to find asymptotic solutions of such equa-
tions. In addition, this system has an added twist. If we fix the parameters µ = 30,
δ = 0.025, γ = 2.5, Π = 2, and progressively reduce ν from a very high value, we
find that the steady state at Π = 2, U = 0.14 (see figure 5.4) has a Hopf bifurcation
to a stable limit cycle as ν is reduced through ≈ 53. As ν decreases, the amplitude
grows until at ν ≈ 40 (as shown in figure 5.5) the inlet velocity decreases to zero,
and for ν <∼ 40, reversed flow occurs. The model is not applicable for reversed flow,
and indeed the numerical solution breaks down in that case. This appears consistent
with theoretical stability results of many authors, which indicate that instability is
commonplace at large µ. The twist here is that the model itself precludes attainment
of the relevant desired asymptotic limit, where ν = δ � 1.
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5.4.7 Stability analysis

In solving (5.172), we have found the following behaviours. Firstly, if we put γ =
q2 = q3 = 0, as in (5.174), then the steady state is stable for high ν, but has limit
cycle behaviour at ν ≈ 20. If we now include gravity, thus γ = 2.5, this behaviour is
shifted to ν ≈ 35. If additionally q2 6= 0, this behaviour is further shifted to ν ≈ 40,
and introduction of q3 6= 0 makes little difference to this (as described earlier). So the
qualitative behaviour of the simplified model (5.174) and that of the more complete
system (5.172) are similar, and in this section we will therefore deal with the simpler
one.

If we perturb the equilibrium U = r = U∗, then the resulting linearised equation
has solutions U − U∗ = eσt, providing

νσ2 + (2V + Ae−σ)σ −B(1− e−σ) = 0, (5.175)

where

A =
µ(1− V )2

2V
, B = µ(1− V )− V. (5.176)

First note that σ = 0 is always a solution of this; this represents the invariance of
(5.174) to time translation and does not signal instability. Due to Picard’s theorem,
(5.175) has infinitely many roots σ(V, µ, ν) which accumulate at σ = ∞. Moreover,
at large ν these all have negative real part. Suppose that Reσ > 0 for some σ; then
|e−σ| < 1 and so |1− e−σ| < 2 is also bounded. Since from (5.175),

σ =
1

2ν

[
−(2V + Ae−σ)±

{
(2V + Ae−σ)2 + 4νB(2V + Ae−σ)(1− e−σ)

}1/2
]
,

(5.177)
it follows that σ � 1 for large ν; expanding (5.175) for small σ then leads to

σ ≈ −B − A− 2V

ν − A+ 1
2
B
, (5.178)

and this is real negative if V < 1
3
; if V > 1

3
, it becomes positive if µ >

6V 2

(1− V )(3V − 1)
;

but this just correspnds to the Ledinegg instability discussed above. Discounting this
possibility, it follows that in fact Reσ < 0 for large ν.

Thus instability may occur as ν is reduced, and this will be of Hopf type (always
excluding the Ledinegg case which we have already discussed), and will occur at
ν = νc where σ = iΩ, and thus

ν =
AΩ sin Ω +B cos Ω

Ω2
,

Ω =
B sin Ω

2V + A cos Ω
. (5.179)

If we confine ourselves to the case where µ is large, then

Ω ≈ 2V tan Ω

1− V
. (5.180)
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Since we discount Ledinegg, we assume V < 1
3
. Then (5.180) has an infinite number of

non-zero roots ±Ω0,±Ω1, . . . with Ωk ∈ (kπ, (k + 1
2
)π), and the corresponding values

of ν are approximately

ν =
µ(1− V )

Ω2 cos Ω
. (5.181)

Instability first occurs for Ω = Ω0, and thus

νc ≈
µ(1− V )

Ω2
0 cos Ω0

, (5.182)

and is of O(µ), as suggested by the numerical results.
To get a more explicit idea of the dependence on ν on V , we consider the limit

V � 1, when Ω0 ≈ 1
2
π − (1− V )

πV
, and this leads to

νc ≈
µ(1− V )2

πV
, (5.183)

and it turns out this is an excellent approximation all the way t V = 0.25, after which
it diverges from true value, which tends to infinity as V → 1

3
. Equally, we can look

at the limit V → 1
3
, when Ω→ 0, and we then find

νc ≈
2µ(1− V )

9(1− 3V )
. (5.184)

It is then tempting to look for a uniform approximation, even iif there is no basis
for this. But barging ahead with the matched asymptotic expansion idea of adding

 0

 5

 10

 15

 20

 0  0.1  0.2  0.3

νc /µ

V

Figure 5.6: The approximation to νc/µ in (5.185) (blue) overlying the exact expression
(5.182) in red.
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the two approximations and subtracting a ‘common part’, we actually find that the
expression

νc = µ

[
(1− V )2

πV
+

2(1− V )

9(1− 3V )
− 1

2

]
(5.185)

provides an essentially perfect uniform approximation to the exact solution! This is
shown in figure 5.6.

Outlook

In practice, of course, we should have ν = δ and small. All of the above indicates
that when µ � 1, the steady state is wildly unstable. Perhaps this is why boilers

commonly operate at high pressure, where the density ratio
ρl
ρg

, and thus µ, is reduced.

On the other hand, the large value of µ implies in itself that a transition to annular
flow would occur, and the stability characteristics might be quite different.

Exercises

5.1 A basic two fluid model of two-phase flow is given by the equations

(αρg)t + (αρgv)z = Γ,

{ρl(1− α)}t + {ρl(1− α)u}z = −Γ,

ρg[vt + vvz] = −pz −
M

α
,

ρl[ut +Dluuz] = −pz +
M

1− α
,

where α is void fraction, u and v are liquid and gas phase velocities, p is pressure,
and ρg and ρl are gas and liquid densities; the constant Dl > 1 is a profile coeffi-
cient, and Γ and M are interfacial source and drag terms, which are prescribed
algebraic functions of the variables.

Explain how to find the characteristics of this system when written in the form

Aψt +Bψx = c.

(i) Assuming ρg and ρl are constant and ρg � ρl, show that the characteristics
are generally real.

(ii) If
dρg
dp

=
1

c2
g

,
dρl
dp

=
1

c2
l

,

calculate approximate values of the characteristics if u, v � cl, cg and ρg � ρl,
and comment on the physical significance of these.

180



5.2 The shallow water equations are given by

ht + (hu)x = 0,

ut + uux + ghx = 0,

By a suitable transformation, show that they can be written in the form

ut + uux + 2ssx = 0,

2st + sux + 2usx = 0,

and by defining ψ = (u, s)T , write this in the form

Aψt +Bψx = 0.

Find the eigenvalues λ± and corresponding eigenvectors of A−1B, and show
that the matrix of column eigenvectors P such that BP = APD, where D =
diag (λ+, λ−), is a constant matrix. Hence show, by defining ψ = Pv, that
vt +Dvx = 0, and give the Riemann invariants vi in terms of u and s.

5.3 Consider a two-phase (liquid-gas) flow through a pipe with cross-sectional area
A. The coordinate system is chosen so that the z-axis points along the centre
of the pipe, and x and y are the cross-sectional coordinates; t denotes time.
Averaged quantities (denoted by bars) only depend on z and t.

(a) Define the indicator function Xg(x, y, z, t) for the gas phase and use it to
derive the mass conservation equation

∂(αρ̄g)

∂t
+
∂(αρ̄gv̄)

∂z
= 0.

In your derivation, the gas volume fraction α(z, t), the gas average density
ρ̄g(z, t) and gas average velocity v̄(z, t) must be defined as integrals over the
pipe cross section. What is the analogous equation (and definitions) for the
liquid phase with density ρ̄l(z, t) and average velocity ū(z, t)?

(b) Now consider an annular flow through a circular pipe of radius R with a
gas core and the liquid flowing along the wall, so that the gas-liquid interface
is located at radius R

√
α. Assume that ρg > 0 and ρl > 0 are constant. The

momentum conservation equations are

ρg

[
∂(αv̄)

∂t
+
∂(αv̄2)

∂z

]
= −α∂p̄

∂z
− Fgl

A
,

ρl

[
∂{(1− α)ū}

∂t
+
∂{(1− α)Dlū

2}
∂z

]
= −(1− α)

∂p̄

∂z
+

(Fgl − Flw)

A
,

where Dl > 1 is a constant. Fgl denotes the interfacial drag on the gas due to
the liquid, and Flw is the drag on the liquid at the wall. Assume that

Fgl = 2πR
√
αρgfgl(v̄ − ū)|v̄ − ū|, Flw = 2πRρlflwū|ū|,
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where fgl and flw are dimensionless friction factors. At z = 0, the inlet condi-
tions are α = α0, v̄ = v̄0, ū = ū0, and p̄ = p̄0.

Now introduce scalings R/fgl for z and R/fglU for t, as well as

α = 1−Bβ, ū = Uu, v̄ = V v, p̄ = pa + Pp,

with B =
flw
fgl

, V = α0v̄0, P = ρgV
2, U = εV , and ε =

(
ρgfgl
ρlflw

)1/2

.

Non-dimensionalise the four mass and momentum equations, writing the equa-
tions in terms of variables β, u, v, p and parameters ε, Dl and B. Express the
non-dimensional inlet values, β0, u0, v0 and p0 in terms of given quantities.

(c) Suppose 0 < Dl− 1� 1, B � 1, ε� 1. Derive the leading order equations
for the steady state, and find solutions for u > 1, v > 0, β > 0 that satisfy the
inlet conditions β = β0, v = 1, u = u0.

5.4

5.5 The energy equation for a one-dimensional two-phase flow in a tube is given by

ΓL+ αcpg(Tt + vTz) + (1− α)ρlcpl(Tt + uTz)− {(αpg)t + (αpgv)z}

−[{(1− α)pl}t + {(1− α)plu}z] = Q,

where
Γ = (αρg)t + (αρgv)z = −[{(1− α)ρl}t + {(1− α)ρlu}z],

and the temperatures of the two phases are assumed equal, and denoted by T .

The enthalpy of each phase satisfies dhk = cpk dT , and is related to the internal
energy ek by

hk = ek +
pk
ρk

;

L = hg − hl is the latent heat. Deduce that the energy equation can be written
in the form

(αρgeg)t + (αρgegv)z + [(1− α)ρlel]t + [(1− α)ρlelu]z = Q.

Define the mixture density by

ρ = ρl(1− α) + ρgα,

the mixture pressure by
p = (1− α)pl + αpg,

the mixture internal energy by

ρe = αρgeg + (1− α)ρlel,
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and the mixture enthalpy by

h = e+
p

ρ
;

deduce that
ρh = αρghg + (1− α)ρlhl.

If the flow is homogeneous, deduce that

ρ
de

dt
= Q,

where
d

dt
is the material derivative, and if the pressure drop along the tube

∆p� ρgL, show that
de

dt
≈ dh

dt
, and deduce that

∂u

∂z
=

(ρl − ρg)Q
ρgρlL

.

5.6 Write down the two-fluid model for two-phase flow in a pipe of length l and
diameter d, including a phase change term and an interfacial drag term, a liquid
profile coefficient Dl of O(1), wall friction and gravity. The interfacial drag term
is taken to be

M =
3CDαρl

4db
(v − u)2,

where db is bubble diameter and CD is a drag coefficient of O(1), and the wall
friction term is

4fρlu
2

d
,

where f is a friction factor.

Assuming that the phase densities ρg and ρl are constant, the phase pressures
are equal, and that a suitable velocity scale is U , make the model dimensionless,
and show that it can be written in the form

αt + (αv)z = Γ,

−αt + {(1− α)u}z = −δΓ,

δF 2[(αv)t + (αv2)z] = −αpz − δα−
α(v − u)2

ν2
,

F 2[{(1− α)u}t + {Dl(1− α)u2}z] = −(1− α)pz − (1− α) +
α(v − u)2

ν2
− κu2,

and define the parameters δ, F , ν and κ. For flow in an oil well, suitable choices
are U = 0.5 m s−1, l = 103 m, d = 10 cm, db = 1 cm, CD = 0.4, f = 0.005,
ρg = 1.1 kg m−3, ρl = 103 kg m−3. By using these values, compute the values of
the dimensionless parameters, and by neglecting those which are small, derive
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a simplified model for α and u, assuming boundary conditions α = 0, u = V (t)
at z = 0, and that Γ is constant.

If V is constant, find the steady state solution, and show that it breaks down
(α(z) becomes multi-valued) if ν > 55/2V .

5.7 An approximate homogeneous two-phase model for density wave oscillations in
a pipe of length l is given by

ρt + uρz = −uzρ,

ρ(ut + uuz) = −pz − ρg −
4fρlu

2

d
,

ρ(ht + uhx) = Q,

where Q is constant, and

h ≈ h∗ +
ρgL

ρ

in the two-phase region; h∗, L and Q are constants, ρg and ρl are (constant) gas
and liquid densities, h is enthalpy, and ρ, p and u are mixture density, pressure
and velocity. For h < hsat, the saturation enthalpy, only liquid is present, ρ = ρl,
and the above relation for h is irrelevant.

Boundary conditions for the flow are that

h = h0 < hsat, u = U(t) at z = 0,

h = hsat on z = r(t),

where the unknown boiling boundary r(t) is to be determined, and the pressure
drop along the pipe, ∆p, is prescribed.

Show that

r(t) =

∫ t

t−τ
U(s) ds,

and give the definition of τ . Show that the pressure drop in the single phase
region is

∆psp = [∆piU̇ + ∆pg + ∆pfU
2]r,

where

∆pi = ρlu
2
0, ∆pg = ρlgl, ∆pf =

4f lρlu
2
0

d
, u0 =

l

τ
.

Non-dimensionalise the two-phase model by scaling

ρ ∼ ρl, z, r ∼ l, t ∼ τ, u, U ∼ u0,

and show that the two-phase velocity and density satisfy

u = U +
z − r
ε

, z = r + ε

∫ − ln ρ

0

U1(t− εξ)eξ dξ, r =

∫ t

t−1

U(s) ds,
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where U1(t) = U(t − 1), and give the definition of ε. Write down an integral
expression for the two-phase pressure drop in the form

∆ptp =

∫ 1

r

(∆piΦi + ∆pgΦg + ∆pfΦf ] dz,

where the functions Φk depend on u and ρ and their derivatives.

If U = V in the steady state, explain why 0 < V < 1. Write down an expression
for ∆p as a function of V . Show that if V is sufficiently close to one, ∆p is an
increasing function of V , but that if ε is sufficiently small, it is a decreasing
function of V over part of its range.

Now suppose that ∆pi = ∆pg = 0. To examine the stability of the steady state
(denoted by a suffix zero for r, u and ρ), write

U = V + v, r = r0 + r1, u = u0 + u1, ρ = ρ0 + ρ1,

and linearise the equations. Hence derive expressions for r1, u1 and ρ1.

By taking v = eσt, derive an algebraic equation for σ from the condition that
the perturbation to ∆p is zero. If only the single phase pressure drop term is
included, show that

σ = −1
2
(1− e−σ),

and deduce that the steady state is stable.

If only the two-phase pressure drop is included, and ε is assumed to be small,
show that

σ = γ(eσ − 1), γ =
2(1− 2V )

1− V
,

and deduce that Reσ →∞ as σ →∞ ∈ C, and thus that the model is ill-posed.

If both pressure drops are included (and the two-phase approximation for small
ε is used), show that

σ = −Γ(1− e−σ)

δ − e−σ
, δ =

4εV 3

(1− V )2
, Γ = γ + 1

2
δ,

and deduce that the model is ill-posed for δ < 1.

Finally, if the inertial term in the single phase region (only) is included, show
that

νσ2 + σ(δ − e−σ) + Γ(1− e−σ) = 0, ν =
2εV 2∆pi

(1− V )2∆pf
,

and deduce that the model is well-posed, but the steady state is unstable for
small ε.

5.8
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