Topics in fluid mechanics

Problem sheet 0.

1. The Boussinesq approximation for a stratified flow assumes the density ρ is constant in the equations ($\rho=\rho_{0}$), except where it occurs in the gravitational buoyancy term $-\rho g \mathbf{k}$ in the Navier-Stokes momentum equation. A two-dimensional, Boussinesq fluid flow has velocity $\mathbf{u}=(u, 0, w)$, and depends only on the coordinates x and z. Show that there is a stream function ψ satisfying $u=\psi_{z}$, $w=-\psi_{x}$, and that the vorticity

$$
\boldsymbol{\omega}=\boldsymbol{\nabla} \times \mathbf{u}=\nabla^{2} \psi \mathbf{j},
$$

and thus that

$$
\mathbf{u} \times \boldsymbol{\omega}=\left(\psi_{x} \nabla^{2} \psi, 0, \psi_{z} \nabla^{2} \psi\right)
$$

and hence

$$
\boldsymbol{\nabla} \times(\mathbf{u} \times \boldsymbol{\omega})=\left(\psi_{x} \nabla^{2} \psi_{z}-\psi_{z} \nabla^{2} \psi_{x}\right) \mathbf{j} .
$$

Use the vector identity $(\mathbf{u} . \boldsymbol{\nabla}) \mathbf{u}=\boldsymbol{\nabla}\left(\frac{1}{2} u^{2}\right)-\mathbf{u} \times \boldsymbol{\omega}$ to show that

$$
\nabla \times \frac{d \mathbf{u}}{d t}=\left[\nabla^{2} \psi_{t}-\psi_{x} \nabla^{2} \psi_{z}+\psi_{z} \nabla^{2} \psi_{x}\right] \mathbf{j}
$$

Show also that

$$
\nabla \times \rho \mathbf{k}=-\rho_{x} \mathbf{j}
$$

and use the Cartesian identity

$$
\nabla^{2} \equiv \operatorname{grad} \operatorname{div}-\operatorname{curl} \operatorname{curl}
$$

to show that

$$
\nabla \times \nabla^{2} \mathbf{u}=\nabla^{4} \psi \mathbf{j}
$$

Deduce that the momentum equation can be written in the form

$$
\rho_{0}\left[\nabla^{2} \psi_{t}+\psi_{z} \nabla^{2} \psi_{x}-\psi_{x} \nabla^{2} \psi_{z}\right]=g \rho_{x}+\mu \nabla^{4} \psi,
$$

where μ is the viscosity.
2. The Blasius boundary layer

Write down the dimensionless form of the Navier-Stokes equations for an incompressible viscous fluid, explaining what the Reynolds number is.
Fluid flows two-dimensionally past a flat plate $y=0, x>0$ at high Reynolds number $R e$, such that the dimensionless velocity (u, v) satisfies $u=v=0$ on $y=0, x>0$, and $u \rightarrow 1, v \rightarrow 0, p \rightarrow 0$ as $y \rightarrow \infty$. Show that the outer (inviscid) flow away from $y=0$ is $(u, v)=(1,0), p=0$. Show that a boundary
layer exists near $y=0$, where $v \sim \delta, y \sim \delta$, where $\delta=R e^{-1 / 2}$, and show that the corresponding equations for u and (rescaled) V are

$$
\begin{aligned}
u_{x}+V_{Y} & =0, \\
u u_{x}+V u_{Y} & =u_{Y Y} .
\end{aligned}
$$

By introducing a stream function $u=\psi_{Y}, V=-\psi_{x}$, deduce that

$$
\psi_{Y} \psi_{x Y}-\psi_{x} \psi_{Y Y}=\psi_{Y Y Y}
$$

Show that a similarity solution of the form $\psi=(2 x)^{1 / 2} f(\eta), \eta=Y /(2 x)^{1 / 2}$, exists, where f satisfies

$$
\begin{gathered}
f^{\prime \prime \prime}+f f^{\prime \prime}=0 \\
f(0)=f^{\prime}(0)=0, \quad f^{\prime}(\infty)=1
\end{gathered}
$$

$f(\eta)$ must be found numerically, and in common with many similarity solutions, there is a trick to do this by rescaling. Solve

$$
\begin{gathered}
F^{\prime \prime \prime}(\xi)+F(\xi) F^{\prime \prime}(\xi)=0 \\
F(0)=F^{\prime}(0)=0, \quad F^{\prime \prime}(0)=1
\end{gathered}
$$

(this can be done easily as an initial value problem, providing (as is the case) F^{\prime} cannot blow up at $\left.\infty\right)$). Put $f(\eta)=b F(a \eta)$, and show that the required solution is obtained by taking

$$
a=b=\sqrt{\frac{1}{F^{\prime}(\infty)}}
$$

Sketch the graph of $f^{\prime}(\eta)$. What does it represent?
3. [This is difficult.] A viscous, incompressible fluid of density ρ and mean depth d flows slowly down a rough surface inclined at an angle α to the horizontal. The flow is two-dimensional, and is driven by the downslope gravitational acceleration. If (x, z) are cartesian coordinates, with x pointing downslope, write down the equations of Stokes flow for the pressure p and stream function ψ, in which the inertial terms are neglected.
If the boundary conditions are of no slip at the base $z=b(x)$ and no normal stress at the top surface $z=s(x, t), \sigma_{n n}+p_{a}=\sigma_{n t}=0$, where p_{a} is atmospheric pressure, show that we can take

$$
\psi=\psi_{z}=0 \quad \text { at } \quad z=b
$$

and

$$
\begin{gathered}
\left(p-p_{a}\right)\left(1+s_{x}^{2}\right)+2 s_{x} \tau_{13}+\left(1-s_{x}^{2}\right) \tau_{11}=0, \\
\left(1-s_{x}^{2}\right) \tau_{13}-2 s_{x} \tau_{11}=0 \quad \text { at } \quad z=s,
\end{gathered}
$$

where you should define the normal deviatoric stress τ_{11} and the shear stress τ_{13} in terms of derivatives of ψ.
Write down the kinematic condition for the free surface, and show that it can be written in the form

$$
s_{t}+\frac{\partial \psi[x, s(x, t)]}{\partial x}=0 .
$$

By choosing suitable scales for the reduced pressure $p-p_{a}-\rho g(s-z) \cos \alpha$, stream function ψ, lengths x, z, s, b and time t, show that the equations can be written in the dimensionless form (the variables are all now dimensionless, in particular p is the dimensionless reduced pressure)

$$
\begin{gathered}
s_{x} \cot \alpha+p_{x}=\nabla^{2} \psi_{z}+1 \\
p_{z}=-\nabla^{2} \psi_{x}
\end{gathered}
$$

and write down the corresponding dimensionless boundary conditions. Show that the velocity scale U is given by

$$
U=\frac{\rho g d^{2} \sin \alpha}{\eta}
$$

where η is the viscosity.
Now assume the flow is steady. Show in this case that ψ is constant on $z=s$. For the particular case $b=0$, find an exact steady solution in which $s=1$, and show that in this case $\psi=\frac{1}{3}$ at $z=1$.
Next, suppose that b and thus $s-1$ are small, and that the downslope volume flux is prescribed, $\psi=\frac{1}{3}$ at $z=s$. By writing

$$
\psi=\frac{1}{2} z^{2}-\frac{1}{6} z^{3}+\Psi, \quad s=1+\sigma, \quad P=p+\sigma \cot \alpha
$$

show that

$$
P_{x}=\nabla^{2} \Psi_{z}, \quad P_{z}=-\nabla^{2} \Psi_{x}
$$

and show that linearised boundary conditions can be taken to be

$$
\begin{gathered}
\Psi_{z z}-\Psi_{x x}=\sigma, \quad \Psi+\frac{1}{2} \sigma=0, \quad P+2 \Psi_{z x}=\sigma \cot \alpha \quad \text { at } \quad z=1, \\
\Psi=0, \quad \Psi_{z}=-b \quad \text { at } \quad z=0 .
\end{gathered}
$$

Explain how the solution of this problem enables the determination of the surface perturbation σ.
[For the foolhardy: to solve the problem in terms of Fourier transforms, write $\Psi=f(z) e^{i k x}, P=g(z) e^{i k x}, b=B e^{i k x}, \sigma=\Sigma e^{i k x}$, show that $g=\left(f^{\prime \prime \prime}-k^{2} f^{\prime}\right) / i k$, that $f=a z \cosh k z+(b z+c) \sinh k z$, and that $f^{\prime}(0)=-B$, and also $f^{\prime \prime}(1)+$ $\left(k^{2}+2\right) f(1)=0, \Sigma=-2 f(1)$, and $f^{\prime \prime \prime}(1)-3 k^{2} f^{\prime}(1)+2 i k f(1) \cot \alpha=0$. Hence deduce that $\Sigma=K B$, where

$$
K=\frac{2 \cosh k}{1+k^{2}+\cosh ^{2} k-\frac{i \cot \alpha}{k^{2}}(\sinh k \cosh k-k)} .
$$

Note that $K(0)=1$, as it must (why?)]
4. Write down the equations and boundary conditions suitable to describe the motion of a layer of incompressible, inviscid fluid of mean depth h subject to a gravity force in the downwards z direction. Explain what it means for the flow to be irrotational, and in this case show that there is a velocity potential ϕ, and that (if the bed of the fluid is at $z=-h$ and the surface is at $z=\eta$)

$$
\begin{aligned}
& \nabla^{2} \phi=0, \\
& \phi_{z}=0 \text { at } z=-h, \\
& \phi_{z}=\eta_{t}+\nabla \phi \cdot \nabla \eta \text { at } z=\eta .
\end{aligned}
$$

Show that the quantity $\frac{p-p_{a}}{\rho}+\phi_{t}+\frac{1}{2}|\boldsymbol{\nabla} \phi|^{2}+g z$ is constant in the fluid (p_{a} is atmospheric pressure), and deduce a second boundary condition for the flow if $p=p_{a}$ at $z=\eta$.
A stream of depth h flows at constant speed U in the x direction and is uniform in the far field (thus $\phi=U x, \eta=0$). Show that these far field conditions define a uniformly valid solution for ϕ and η.
Now consider a small disturbance to the flow, so that η and $\Phi=\phi-U x$ are small. By linearising about the uniform state, write down a linear set of differential equations and boundary conditions for the perturbed velocity potential Φ and η, and by solving this, derive the dispersion relation relating wave speed c to wave number k in the form

$$
c=U \pm \sqrt{\frac{g}{k} \tanh k h} .
$$

Interpret this result physically.
5. Show that the equation describing conservation of mass of a shallow, incompressible, inviscid flow in $0<z<h$ is

$$
h_{t}+\nabla \cdot\left[\int_{0}^{h} \mathbf{u} d z\right]=0
$$

where $\mathbf{u}=(u, v, 0)$ is the horizontal velocity vector.
Show further that the horizontal component of momentum conservation,

$$
\mathbf{u}_{t}+(\mathbf{u} . \boldsymbol{\nabla}) \mathbf{u}+w \mathbf{u}_{z}=-\frac{1}{\rho} \boldsymbol{\nabla} p
$$

where w is the vertical component of velocity, and $\boldsymbol{\nabla}$ is the horizontal gradient vector, together with a hydrostatic balance

$$
p=p_{a}+\rho g(h-z),
$$

lead, when integrated from $z=0$ to $z=h$ using the kinematic condition

$$
w=h_{t}+\mathbf{u} . \boldsymbol{\nabla} h \quad \text { at } \quad z=h,
$$

to the integrated form

$$
\frac{\partial}{\partial t} \int_{0}^{h} \mathbf{u} d z+\boldsymbol{\nabla} \cdot\left[\int_{0}^{h}(\mathbf{u u}) d z\right]+g h \boldsymbol{\nabla} h=\mathbf{0}
$$

Deduce the (two-dimensional) form of the shallow water equations if it is assumed that \mathbf{u} is independent of z.
[The dyadic uu is the tensor with components $u_{i} u_{j}$, and the divergence of a tensor $\boldsymbol{\sigma}$ is the vector with i-th component $\partial \sigma_{i j} / \partial x_{j}$, where summation over j is understood.]
6. A train of (one-dimensional) ocean waves approaches the shore at $x=0$ from $x=+\infty$ over a sloping base at $z=-b(x)$; the undisturbed sea surface is at $z=0$, and the disturbed surface is $z=\eta(x, t)$, so that the water depth is $h=\eta+b$.
Show that the no flow through condition at $z=-b$ takes the form

$$
w=-u b^{\prime} .
$$

Derive the shallow water equations from first principles, and show that they take the form

$$
\begin{gathered}
h_{t}+(h u)_{x}=0 \\
u_{t}+u u_{x}+g \eta_{x}=0
\end{gathered}
$$

Hence show that if $m=g b^{\prime}(x)$ is constant, the Riemann invariants are $u \pm 2 c-m t$ on $\dot{x}=u \pm c$, where $c=\sqrt{g h}$.
Suppose that at $t=0, u=u_{0}(x)$ and $c=c_{0}(x)=K-\frac{1}{2} u_{0}(x)$. Show that $u+2 c-m t=2 K$ everywhere, and deduce that on the negative characteristics through $x=\xi, t=0$,

$$
u=u_{0}(\xi)+m t \quad \text { and } \quad x=\xi+\left[\frac{3}{2} u_{0}(\xi)-K\right] t+\frac{1}{2} m t^{2}
$$

and deduce that

$$
u=m t+u_{0}\left[x-\frac{3}{2} u t+K t+m t^{2}\right] .
$$

Hence show that waves will break (i. e., a shock forms) if $c_{0}^{\prime}(\xi)>0$ anywhere.
Do these initial conditions make any physical sense?

