Saturday, 31 October 2020

17:19

Viscous Flow Lecture 7 Chapter Z: High Reynolds Number Flows

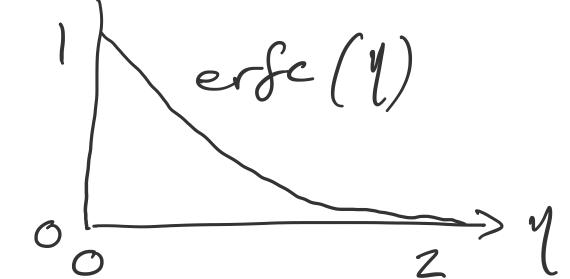
Thermal boundary layer over a semi-infinite flat plate in an invisced flevid. (A linear problem.) Dimensional problem for temperature T(x,y) in steady state. \rightarrow \rightarrow $T = T_{plake}$ on y = 0, x > 0 $\gg \infty$ \rightarrow \rightarrow The flow, keeps invited, C_{3} undestanked by the plate, $u = U\dot{u}$ everywhere. $U = \mathcal{F} = \mathcal{F} \mathcal{F}^{2} \mathcal{T}, \text{ thermal} \\ \text{diffusively is} \\ \mathcal{F} = \frac{k}{\mathcal{P} \mathcal{C} \mathcal{V}}.$ Dimensionless problem: Scale $x = 2\hat{x}, y = L\hat{y}, L$ orbitany T = T p + (Tylate-To) T We obtain (dropping the hats) $\frac{\partial T}{\partial x} = \frac{1}{Pe} \quad \nabla^2 T \quad away from \\ \mathcal{B}_{\mathcal{X}} = \frac{1}{Pe} \quad \nabla^2 T \quad \mathcal{B}_{\mathcal{E}} \quad \mathcal{B}_{\mathcal{E}}$ The Peclet number $Pe = \frac{LU}{K} = \frac{\frac{L^2}{K}}{\frac{L}{U}}$ $Pe = \frac{diffusive timescale}{advective timescale}$ The boundary conditions become on y=0, x>0 (place) T = 1as $z^2 + y^2 \rightarrow \infty$, $y \neq 0$ T->0 Boundary layer analysis for Pe>>1. Use the method of matched asymptotic expansions (end of DES 2).

Saturday, 31 October 2020

In the outer region, away from the plate, we expect TNTO + Pe To +--le >>1, the leading order PPE For B $\frac{\partial T_0}{\partial x} = 0.$ Hence To =0 everywhere by le upstream BC. This does not satisfy the BC T=1 on the plate, so ne need to bring back thermal diffusion in a boundary layer on le plate. To détermine le BL thickness $y = S(P_e) \gamma$ with $\gamma = O(1)$ put and $S(Pe) \rightarrow 0$ as $Pe \rightarrow \infty$. $\frac{\partial T}{\partial x} = \frac{1}{Pe} \frac{\partial^2 T}{\partial x^2} + \frac{1}{PeS^2} \frac{\partial^2 T}{\partial y^2}$ Dominant balance when $\frac{1}{PeS^2} = 1$. :- S = ____ BL thickness. Pose on chner exponsion $T \sim T_o(x,Y) + \frac{1}{Pe} T_i(x,Y) + \cdots$ At leading order: $\frac{\partial T_0}{\partial x} = \frac{\partial^2 T_0}{\partial Y^2} \quad \text{with } T_0 = 1$ We still have a partial differential equation, with no small

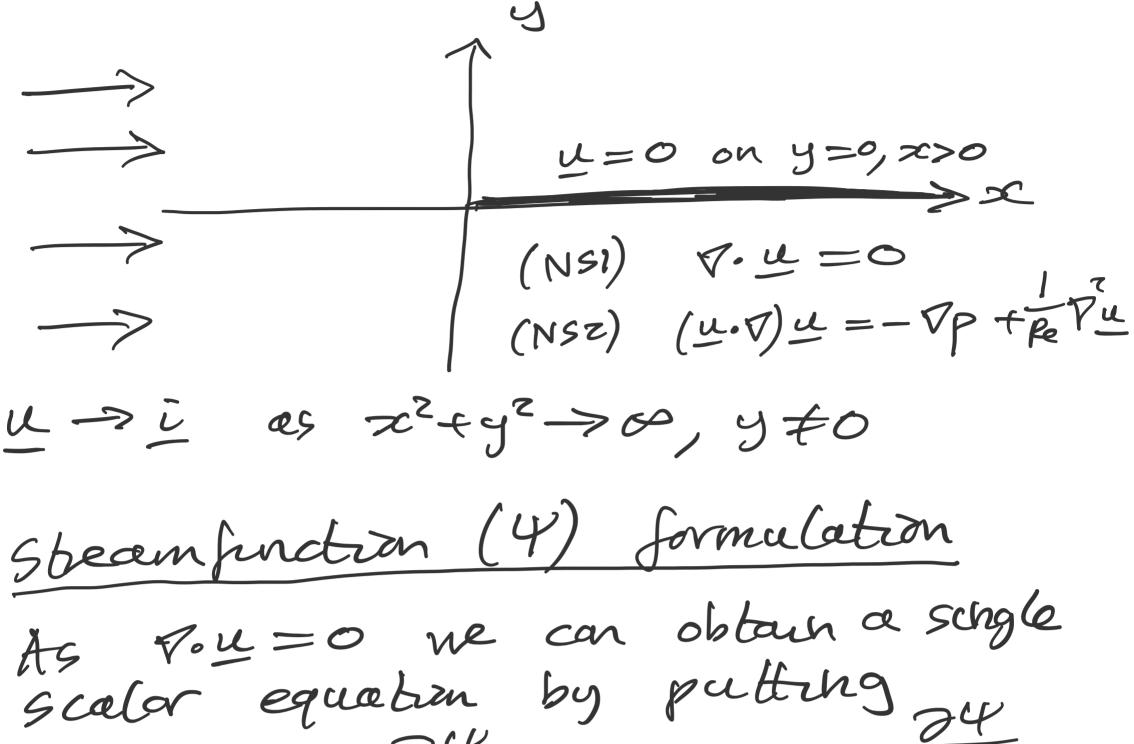
parameters left. To match the BL solution to the outer solution (To=0 everywhere) we impose the matching condition $T_0 \rightarrow O$ as $\gamma \rightarrow \pm c^{2}$, x > 0. The two solutions then concide in some intermediate region, in which y<<1 but Y>>1. In sheet 3 Ql it is shown that the similarity solution (treating ~ like time). $T_o(x,Y) = erfc\left(\frac{|Y|}{J4x^2}\right)$ agrees with the expansion of le of the exact BL solution as (?->00.

1 6



Vizcous boundary layer on a Geni-infinite plate. A noulinear problem

Dimensionless problem for p(x, y)and $\mu = \mu(x, y) \overline{i} + v(x, y) \overline{j}$.



 $u = \frac{\partial u}{\partial y}$ and $v = -\frac{\partial u}{\partial x}$. [Watch Ele sign convention.] Now ne con éliminate the pressure p by forming the vortitity equation for $\omega = -\nabla^2 \Psi$. $(\underline{u}, \overline{v})(\overline{v}^{2} \Psi) = \Psi_{y} \overline{v}^{2} \Psi_{z} - \Psi_{z} \overline{v}^{2} \Psi_{y}$ $= \frac{1}{Re} \nabla^2 \left(\nabla^2 \Psi \right)$ since $\exists_y(\exists_x) = \exists_z(\exists_y).$

unde as $-\frac{\partial(\Psi, \nabla^2 \Psi)}{\partial(\chi, \gamma)} = \frac{1}{Re} \nabla^4 \Psi$ $= \frac{1}{Re} \nabla^4 \Psi$ Revute as where $\frac{\partial(f,g)}{\partial(x,g)} = \frac{\partial f}{\partial x} \frac{\partial g}{\partial y} - \frac{\partial f}{\partial y} \frac{\partial g}{\partial x}$. This holds in the flend. On the plate (y=0, x>0) ne have WLOG ne can take $\Psi = \Psi y = 0$. As $z^2 + y^2 \rightarrow \infty$, $\mathcal{L} = (\mathcal{L}_y, -\mathcal{L}_z)$ so $y \rightarrow 1$, $y \rightarrow 0$. $\Rightarrow \forall \gamma y.$

Boundary layer analysis for Ke>>1 Saturday, 31 October 2020 In the outer region away from the plate, expand Yn Yot Re Y, t.... At leading order ne get $\frac{\partial(\psi_0, \nabla^2 \psi_0)}{\partial(\chi, \psi)} = 0.$ The outer flow is christial at leading order. The upstream BC = Yo = Y. This outer solution does not satisfy the no-slip is c on the plate $(Y_y = 0 \text{ on } y = 0) so$ we need a viscous BL on He plate to reduce u = 4yfrom 1 to O. Consider the BL on the upper side of the plate with $y \ge 0$. Determine the BL thickness S by putting y = S(Re) Y where $\gamma = O(1)$ and $S(Re) \rightarrow 0$ as $Re \rightarrow 0$. u = Hy ~ Hoy = 1 as Re-200 in the outer region. Scale $\Psi = S(Re) \overline{\Psi}(x,Y)$ with $\overline{\Psi} = O(1)$ as Re $\rightarrow \infty$. We do this to make $u = \frac{24}{39} = \frac{3}{8} \frac{24}{37} = O(1)$ The volume flux in the BL. small, 0(2), in the BL 3 3 small, so 4 surce Cle BL by O(S) across should charge ae BL. $4_{y} \nabla^{2} 4_{x} - 4_{x} \nabla^{2} 4_{y} = \frac{1}{Re} \nabla^{4} 4$ STY (STXX + S TXY) $-S\overline{\Psi}_{x}\left(\frac{s}{s}\overline{\Psi}_{xxy}+\frac{s}{s^{3}}\overline{\Psi}_{yyy}\right)$ = $\frac{1}{Re} \left(S \overline{Y}_{XXXX} + Z \frac{S}{S^2} \overline{Y}_{XX} \right)$ $+\frac{s}{s4}\overline{\Psi}_{\gamma\gamma\gamma})$ The 2HS is O(1/8), The RHS is O(Ress) These balance if $\frac{1}{8} = \frac{1}{ReS}$ $\overline{U_{-}^{e}}$, $S = \frac{1}{\sqrt{Re^{1}}}$ is the BL thickness scale. Expand Y ~ Yo + L YI + ... to obtain the leading order BL equation: _____ $\frac{\partial \Psi_{0}}{\partial Y} \frac{\partial^{2} \Psi_{0}}{\partial x \partial Y^{2}} - \frac{\partial \Psi_{0}}{\partial x} \frac{\partial^{3} \Psi_{0}}{\partial Y^{3}}$ $=\frac{\Im^{4}\Psi_{o}}{\Im^{4}\Psi}$ BCs on the plate $\Rightarrow P_0 = P_0 \gamma = 0$ on $\gamma = 0, x>0$ The outer solution has $\Psi^{-} \mathcal{C} = \mathcal{Y}$ as Re $\geq \mathcal{P}$. $y = Re^{-\frac{1}{2}} Y$ so $Y - Re^{-\frac{1}{2}} Y$. Y = Re 1/2 I so In Yas Y-700 $u \propto > 0$, The matching condition is for Y $as \gamma \rightarrow \infty, x > 0.$ Matching by intermediate variable (scales with Re between y and Y) 3 non-examinable and in the online printed notes.