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Preface

In this set of lecture notes, we will be concerned with linear partial differential equa-
tions of the form

Here Q is a domain in R”, u : Q — R is the unknown, (a;;) = (a;;), (b;) and c are
given coefficients, f and g; are given sources, and repeated indices are summed from
1 to n. The coeflicients (a;;) are assumed to be uniformly elliptic, i.e. there exists
A > 1 such that

%|§|2 < ()66 < AP for all z € O, € € R”.

In order to solve , one needs to supplement it with a boundary condition. Here
we will only consider an important boundary condition called the Dirichlet boundary
condition

u = ug on Of) (2)

where ug is a given function.

When the coefficients and the sources are sufficiently nice, a classical solution to
(1-(@) is a function u € C*(2) N C(Q) such that (I)-(2) are satisfied in the usual
sense.

If we multiply (2)) by a function p € C*(Q) with ¢ = 0 on 9 and integrate by
parts over (), we get

/Q[az‘jajuaM + biOup + cup] = /Q[fSO — gi0;p]. (3)

It is important to note that makes sense for u € C*(2) which is in contrast with
(1)) which requires two derivatives. In fact, all it requires are that v and J;u are
integrable. Now if u € C(€) is such that (3)) holds for all ¢ € C*(Q) with ¢ =0 on
082, we say that u is a weak solution to ([1)).

The introduction of weak solutions is not merely a methodological matter. In
many physical applications, be it linear like or nonlinear, classical solutions need
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not exist. For example, in problems arising in composite materials, the coefficients
a;; does not have to be even continuous, and the notion of classical solutions to (1)
becomes obscured.

The so-called wvariational approach to partial differential equation (of the kind

-) roughly consists of 3 stages:

e One makes precise the notion of weak solutions, and in particular the functional
spaces — Sobolev spaces in this course — in which solutions live.

e One establishes existence (and uniqueness) of weak solutions.

e One studies if weak solutions have better regularity than what was preset in
the definition of weak solutions. For example, one would like to understand if,
for nice coefficients and sources, are weak solutions to — classical?

As this course is an introduction to the field, I have no intention of being thorough.
In fact, I have deliberately cut out or over-simplified a number of important topics
to better illustrate other important points. For a more complete treatment, students
are encouraged to consult the texts mentioned at the beginning of this set of lecture
notes.
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Chapter 1

Lebesgue Spaces

1.1 Definition of Lebesgue spaces

Let E be a measurable subset of R". For 1 < p < oo, we let LP(E) denote the space
of measurable functions f : £ — R for which [, |f|”dx is finite, i.e.

EP(E):{f:E—HM f is measurable onEand/E|f|pdm<oo}.

We let LP(E) denote the set of all equivalence classes in £P(F) under the equivalence
relation

f~gif f=gae inFE. (1.1)

Functions belonging to LP(E) is sometimes referred to as p-integrable functions.
When it is clear from the context what E is, we will write £P and LP in place of
LP(E) and LP(E), respectively. Let

1£1lze(z) = [/E|f|de}l/p (1<p< o),

so that LP(F) consists of [equivalence classes of] measurable functions f for which
| fllLr () is finite.

When p = oo, we define L*(F) as follows. For a measurable set E of positive
measure and a measurable function f defined on F, define the essential supremum of
f on E by

esssup f =inf{c¢ > 0: f < ca.e. in E}.
E

A measurable function f is said to be essentially bounded, or simply bounded, on E
if esssupy | f| is finite. The set of all essentially bounded measurable functions on E
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8 CHAPTER 1. LEBESGUE SPACES

is denoted by L£>*(E). The set of equivalence classes of £L2(F) under the equivalence
relation is denoted by L*(FE).

For simplicity, instead of saying equivalent classes in LP(FE), we will call them
‘functions’ in LP(E).

The set of measurable functions f which belongs to LP(K) for any compact set
K C E is denoted by LV (E).

loc

Theorem 1.1.1. Suppose that 1 < p < oco. For all f,g € LP(E) and X\ € R, we have
that f + \g € LP(E). In order words, LP(E) is a vector space.

Proof. Exercise. O

1.2 Holder’s inequality and Minkowski’s inequal-
ity
Theorem 1.2.1 (Holder’s inequality). If1 < p < oo and }%—1—}% =1, then || fgllr1(p) <
1Al ey 9l 2o iy -
In the above, we use the convention that, when f does not belong to L?(E) or g

does not belong to LP'(E), the right hand side of Holder’s inequality is assumed to
take the value co. Also, in the special case that p = ¢ = 2, we have Cauchy-Schwarz’

inequality: || fgllz ey < |fll2e)llgllc2z)-

Proof. When p =1 or p = oo, the inequality is obvious. If || f||z» = 0 or ||g||;» = 0,
then fg = 0 a.e. and so the conclusion is also obvious. We assume henceforth that
1 <p<oo, [[fller >0 and ||g|| . > 0.

Consider first the case in which || f|jz» = 1 and ||g||;» = 1. Using Young’s in-
equality |fg| < L[ f[P + J[g[”", we have

1 1, ., 1 1 / 1 1
_ P P -1
/E!fg! < /E];\f!p + ol = Sl + Sl = 2+ 5 =1 = 1Fllelgler

In the general case, let f = mf and g = mg so that || f]l» = 1 and
|G|l » = 1. By the above, we have ||fg||,: < 1, which gives precisely || fg|lr: <
1F 1|z llgll o O
Theorem 1.2.2 (Minkowski’s inequality). If 1 < p < oo, then ||f + gllwrm <

| fllzecey + 119l e e)-

Again, in this inequality, if f or g does not belong to LP(E), the right hand side
is assumed to take the value oo.
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Proof. 1If p =1 or p = oo, the conclusion is obvious. Suppose that 1 < p < co. Using
Holder’s inequality we have

/ElfllfﬂLglp‘1 < Ao lllf + gl ey = F Lo llf + gllEs"

L7-1

Likewise,
/ gllf + gl < gl llf + glZ5.
E

Summing up the two estimate we then have

If + gl = /E [FILf+ gl + /E gl1f + gl"~ < (1fllee + llgllzo)llf + gllE

If [|f 4+ g|lz» = 0, there is nothing to prove. Otherwise, we can divide both side by
|f+ g||’£;1 to get the conclusion. O

1.3 Banach space properties

Recall that a set X is called a Banach space (over R) if it satisfies the following
properties

(1) (Linearity) X is a vector space.

(2) (Norm) X is a normed space, i.e. there is a map = — ||z|| from X into [0, 00)
such that

(i) [|z]| = 0 if and only if x = 0.
(ii) [[Az| = [A|||lz] for all X € R,z € X.
(iii) flz +yll < [l=[[ + [y for all z,y € X.

(3) (Completeness) X is complete with respect to its norm, i.e. every Cauchy se-
quence in X converges in X.

1.3.1 Completeness

Theorem 1.3.1 (Riesz-Fischer’s theorem). If 1 < p < oo, then LP(E) is a Banach
space with norm || - || Lr(g) -
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Proof. Properties (1), (2)(i) and (ii) are clear. Property (2)(iii) is precisely Minkowski’s
inequality. Let us prove (3), i.e. the completeness of LP. Suppose that ( fx) is a Cauchy
sequence in LP. We need to show that fj converges in L” to some f € LP.

Consider first the case p = oo. For every k, m, we have that | fo— fin| < || fe—fmllz=
except for a set of measure zero, which we denote by Zj ,,,. Let Z be the union of all
those Z ,,,’s. Then Z has measure zero and | fi — fi| < || fx — finllz in E'\ Z for all k
and m. It follows that fi converges uniformly in £\ Z to some measurable function
f. Now, for any k, we have

\fe — f] < sup | fe = fmllzee in B\ Z.

Since f, is essentially bounded and the right hand side is bounded (in fact can be
made arbitrarily small for large k), we have that f is essential bounded, i.e. f € L.
Also, sending k — oo in the above inequality also shows that ||fx — f|lz~ — 0, i.e.
fr converges to f in L.

We now consider the case 1 < p < co. For any € > 0 we have that

{z € B |fula) — fu(z)] >} < glp/E|fk(m) — fa(@)P = glprk(l") = (@) 175,

and so
klim H{z € E: |fe(x) — fm(z)| > }| = 0 for every € > 0.
,M—>00

By a result from integration theory, this implies that f; converges in measure to some
measurable function f. Furthermore, there is a subsequence f;, which converges to
f ae. in E.

We next show that || fx — f|lzr — 0 as k — oo. Indeed, fix any § > 0, and select K
such that || fx, — fillzr < 0 for kj, k > K. Letting j — oo and using Fatou’s lemma,
we have for every k > K that

£ = il = [ 17 = 5 < timint [ |s, - s <.

We hence have || fx, — f|lz» — 0 as k — oo. Now, by Minkowski’s inequality, we have
I fllze < W fxlle + |f = frlloe < o0, and so f € LP. This completes the proof. O

1.3.2 Dual spaces

Proposition 1.3.2 (Converse to Holder’s inequality). Let f be measurable on E. If
1<p<o0o and%—i—}%:l, then

£y =sup { [ 7939 € LB, lluvisy < 1 and g is integrabic}.
E
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Proof. Call the supremum on the right hand side a. Then a < || f]|z» by Holder’s
inequality. We proceed to prove the opposite inequality. If || f||z» = 0, the result is
obvious. We henceforth assume that || f||z» > 0.

Case 1: 0 < || f]lz» < 0.
Case 1(a): 1 < p < co. Let

go() = signf ()| f ()P~ £l 27

Then go € L7, ||goll»» =1 and so a > [, fg = || ||, as desired.

Case 1(b): p = 0.
For small ¢ > 0 and large N > 0, let E.y = {x € E : |z| < N and |f(z)| >
| fll= — €}, which has positive measure. Let go(z) = ﬁsignf(x)XEa’N(a:). Then

lgoller =1 and a > [, fgo > | fll — €. Sending ¢ — 0 we obtain o > || f| o-.
Case 2: || f]|z» = 0o. Let

B 0 if |x| > k,
filw) = { min(|f(z), k) if 2] < k.

Then f, € L? and || fx||r» — ||f||zr = oo by the monotone convergence theorem. By
Case 1, we have that || fx||» = [}, frgr for some non-negative g, with ||ge||» = 1. As
|f] > fr >0, it follows that

/E|f|gk2/Efkgk:kaHLp%oo.

Let gi(x) = signf(z)gx(z), we thus have

OzZ/Efﬁic:/Efgk%OO,

and so o = oo as desired. O

Recall that if X is a (real) normed vector space with norm | - ||, then its dual
space X* is defined as the space of all bounded linear functional 7" : X — R, which
is a normed space with norm

IT[|+ = sup{|T'z| : x € X, [l]| = 1}.

We have the following characterisation of dual spaces of Lebesgue space, which we
will not prove.
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Theorem 1.3.3 (Riesz’ representation theorem). Let 1 < p < oo and p’ = z%' Then
there is an isometric isomorphism 7 : (LP(E))* — LP (E) so that

Tg= /EW(T)g for all g € LP(E).

A consequence of the above result is that LP(E) is reflexive for 1 < p < oc.

Remark 1.3.4. The dual space of L*(E) is **NOT** L'(E).

1.3.3 Separability

Theorem 1.3.5. For1 < p < oo, the space LP(E) is separable, i.e. it has a countable
dense subset.

This theorem will be proven later when we consider dense subsets of LP spaces.

1.3.4 Weak/Weak™ convergence
Definition 1.3.6. Let X be a normed vector space and X* its dual.

(i) We say that a sequence (x,,) in X converges weakly to some v € X if Tx,, — Tx
for all T € X*. We write x,, — x.

(i1) We say that a sequence (T,,) in X' converges weakly* to some T € X* if T,z —
Tx for allx € X. We write T,, =* T

We have the following important theorems on weak and weak* convergence.

Theorem 1.3.7 (Weak sequential compactness in reflexive Banach spaces). Every
bounded sequence in a reflexive Banach space has a weakly convergent subsequence.

Theorem 1.3.8 (Helly’s theorem on weak* sequential compactness in duals of sep-
arable Banach spaces). FEvery bounded sequence in the dual of a separable Banach
space has a weakly* convergent subsequence.

Applying the above result to Lebesgue spaces (noting that LP(FE) is reflexive for
1 < p < oo by Riesz’ representation theorem (Theorem [1.3.3) and is separable for
1 < p < 0o by Theorem [1.3.5)), we obtain:

Theorem 1.3.9. Assume that 1 < p < oo and (fx) is a bounded sequence in LP(E).
Then there exists a subsequence fy, and a function f € LP such that

/ fr,9 — / fg forall g € LPI(E).
E E

(In other words, fr, — f in L? if 1 <p < oo or fy, = f in LP if p=o0.)
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We sum up in the following table:

Reflexivity | Separability | Dual Space | Sequential compactness
of the closed unit ball
r Yes Yes I Weak and weak*
l<p<oo
Lt No Yes L Neither
L No No Strictly larger Weak*
than L'

1.4 Hilbert space properties

Recall that a set H is called a Hilbert space (over R) if it satisfies the following
properties

(1) (Linearity) H is a vector space.

(2) (Inner product) H is an inner product space, i.e. there is a map (z,y) — (x,y)
from X x X into R such that

(1) <$1 + /\132,y> = <:L'17y> + /\<[L‘2,y> for all A € Raxbx%y € Ha
(ii) (z,y) = (y,z) for all z,y € H,
(ili) (x,x) >0 for all x € H and (z,x) = 0 if and only if x = 0.

(3) (Completeness) H is complete with respect to its associated norm ||z|| = /(z, x).

Theorem 1.4.1. The space L*(E) is a Hilbert space with inner product

(f.g) = /E fo.

Proof. Exercise. O]

1.5 Density

In this subsection, we consider subsets of LP which are dense in LP.
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1.5.1 Approximation by simple functions

Theorem 1.5.1. Let 1 < p < oo. The set of all p-integrable simple functions is
dense in LP(E).

Recall that a measurable function is called simple if it assumes only a finite number
of values, all of which are finite.

Proof. Fix some f € LP. We need to show that there is a sequence of p-integrable
simple function (fy) such that f, — f in LP. By splitting f = f* — f~, it suffices
to consider the case that f is non-negative. In this case, a result from integration
theory asserts that there is a non-decreasing sequence (fy) of simple functions such
that fy — f a.e. Now we have |fy — f|P < |f|? for all k£ and |fy — f|? — 0 a.e. The
dominated convergence theorem then implies that f plfe = fIP = 0,ie fr — fin
LP. O

In the next result, we consider a class of dyadic cubes whose construction is as
follows: One considers a lattice of R™ of size 1 and the corresponding set Ky of closed
cubes with edge of length 1 and vertices at those lattice point. By bysecting each
cube in K one obtains 2" subcubes of edge length % The set of all these subcubes is
denoted as K. By repeating this process, one obtains finer set of cubes K, of cubes
of edge length 27 each of which is a subcube of a cube in K,,_; and contains 2"
non-overlapping smaller cubes in K,,,;. The union of all these K,,’s is called a class
of dyadic cubes.

Theorem 1.5.2. Let 1 < p < oo. The set of all finite rational linear combinations
of characteristic functions of cubes belonging to a fized class of dyadic cubes is dense

in LP(R").

Proof. Fix a class of dyadic cubes of R™ and let .# denote the set of all finite linear
combinations of a characteristic functions of those cubes. In view of Theorem
and of Q in R, to show that .% is dense in LP, it suffices to show that characteristic
functions of a measurable set of finite measure belongs to the closure of .%.

Indeed, since any open set can be written as a countable union of non-overlapping
dyadic cubes, characteristic functions of open sets belong to the closure of .#. Now
if I/ is a measurable set of finite measure, then we can select U, D E such that
Ui \ E| < £ so that xp, — xg in LP. As xy, € Z, it follows that yg € 7, as

k
wanted. ]

We have a couple of applications.

Proof of Theorem[1.3.5. Let .Z be the dense subset of LP(R™) in Theorem|L.5.2] Note
that .# is countable, and so this proves the theorem when £ = R".
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For general E, let .Z be the set of restrictions to E of functions in .%. Then .Z is
countable and dense in LP(E). O

Theorem 1.5.3 (Continuity in LP). If f € LP(R™) for some 1 < p < oo, then

lim {|f(-+y) = f()llr@n) = 0.

ly|—0
It should be clear that the above statement is false for p = occ.

Proof. We will only give a sketch. Details are left as an exercise. Let &/ denote
the set of functions f in L? such that ||f(- +vy) — f(-)||lz» — 0 as |y| — 0. Using
Minkowski’s inequality, it can be shown that

(i) o is a vector subspace of LP, i.e. finite linear combinations of members of &/
belongs to <.

(i) < is closed in LP| i.e. if (fy) is a sequence in o/ and fy, — f in LP, then f € .

Now, by direct computation, yg € & if F is a cube. Hence, by (i), &/ contains
the set in Theorem [1.5.2 which is dense in L?. By (ii), &/ = LP. O

1.5.2 Convolution

Let f and g be measurable functions on R". The convolution f % g of f and g is
defined by

(f*9)(x) =

R

fWg(x —y)dy

wherever the integral converges.

Theorem 1.5.4 (Young’s convolution theorem). Let p, ¢ and r satisfy 1 < p,q,q < oo
and 3+ =L+ 1 If f e LP(R") and g € LUR"), then f g € L"(R") and
1 * gllr@ny < [flle@mllgll Logen).-

Proof. We will only deal with the case ¢ = 1 and » = p. The general case is left as
an exercise.

Note that |f x g| < |f| * |g|, we may assume without loss of generality that f and
g are non-negative.

Case 1: p=1.
First note that as g is measurable, the function G(z,y) = g(z — y) defines a
measurable function on R” x R”. Thus, as f and g are both non-negative, the integral

— T —vy)dydx
I /R%nf(y)g( y) dy
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is well-defined. Furthermore, by Tonelli’s theorem,

£l = [ { ] fata =y}

1= [ { [ ste=vac}rway
~{ [ ste=was}{ [ s} =151l

which proves the theorem.
Case 2: p = co. We have

Fra@l= [ o= ndy <1l | oo =)y = 17l lglo-

n

This also proves the theorem.

Case 3: 1 < p < co. In this case we write

£ra@l = [ Fate = )3liste = )7 dy.

Applying Holder’s inequality, we obtain

1
ol

gl —y)dy}” = | x g(@)|7 gl

|f*g(x)] < { Rnf(y)pg(x ) dy}'l’{/

n

and so ) )
1f * glle < |7 g(@)|| 5 lgll7:-

Now recall that f? € L! and so we have from Case 1 that

177 gl < I f1Zollgllz-

The conclusion is readily seen from the above two inequalities. O]

For k = 0,1,..., let C¥(R") denotes the space of functions on R™ whose partial
derivatives up to and including those of order k exist and are continuous. Let C*(R")
denote the set of functions in C*(R™) which have compact supports.

Lemma 1.5.5. If f € LP(R") for some 1 < p < oo and g € C*(R™) for some k > 0,
then f * g € C*(R™) and

I*(f*g)(z) = (f*0%g)(x)

for any multi-index o = (v, ..., ap) with |a| = o + ...+ a, < k.
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Proof. Let us first consider the case £ = 0: Suppose that ¢ is continuous and com-
pactly supported. We will show that f % g is continuous. Indeed, for z € R", we
have

If*g($+2)—f*g($)\=‘ RTLJ‘?(y)uf/(rfﬂJrz—y)dy— IRnf(:t/)g(x—y)dy‘
:‘ . (x —u)g(u+ z)du — . (:C—u)g(u)du)
< ” |f(z = w)llg(u+2) — g(u)| du.

Using Holder’s inequality, this gives

[fxgle+2) = Frgl@)] < 1f(z=)lerllgl-+2) = gCllw = [ Fllzellg(- +2) =gl -

Now as ¢ is continuous and compactly supported, g is uniformly continuous. Hence
for every given € > 0, we can select 6 > 0 such that || f||z»]lg(- + 2) — g()|l.» < e
The continuity of f * g follows.

Now consider the case k = 1. We showed above that f * g is continuous. Consider
the partial derivative 0, f * g at some fixed point . We have

A R e
As g has compact support and x is a fixed point, the integrand on the right hand side
of the above identity vanishes outside of a compact set, say K. Since f € LP(R")
and K has bounded measure, f € L!'(K). Since g is differentiable, we have, as
t — 0, that g(x_yﬂei)_g(x_y), as a function of y, converges uniformly to 9,,g(x — y)
and is bounded by some large constant M in K. An application of the dominated
convergence theorem thus gives

o1
lim ~[(f * g)(z +ter) = frg(@)] = | f(Y)Ong(e —y) = (f * Oung)(2).
R?’L
Therefore 0,,(f * g) exists and is equal to f * 0., ¢, which is continuous by the case
k = 0. Clearly the same conclusion hold for other partial derivatives, which conclude
the case k = 1.
Finally, applying the case k = 1 repeatedly, we obtain the conclusion for £ > 2. [

1.5.3 Approximation of identity

A family of kernels {o. : € > 0} with the property that f *x o. — f as € — 0 in some
suitable sense is called an approximation of identity.
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Theorem 1.5.6 (Approximation of identity). Let o be a non-negative function in
C>(R™) such that [,, 0= 1. Fore >0, let

€
If f € C(R™), then f * p. converges uniformly on compact subsets of R™ to f.

Note that we have fR" 0e = 1 for every . A family (p.) as in the statement is
call a family of mollifiers, and the family (f * o) is called a regularization of f by
mollification.

Proof. Exercise. O]

Theorem 1.5.7 (Approximation of identity). Let o be a non-negative function in
LY(R™) such that [, 0=1. Fore >0, let

1 /x
0e(x) = g@(g)-
If f € LP(R™) for some 1 < p < oo, then
lim £ % 0. — f ey = 0.

Proof. Let f. = [ % 0.. As [, 0- =1, we have

f@) = 1) [ o.v)dy
Hence
o) = f@)l < 1= 9) = F@)lew)ldy
= | 1= 9) = F@)lew)] oo(y) | dy

Applying Holder’s inequality, this gives

1 1

) = 1@ < { [ 1= - s@Plewla} { [ e}

Rn

-{ | 1@ =y) = f@)Ple:(v)] dy}fl’.
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It follows that
[FA=al S/ |f(x —y) = f(@)["|o-(y)| dy dx.
n R’I’L

In particular, if we let d(y) := [p. |f(z —y) — f(x)[P dz, then, in view of Tonelli’s
theorem,

.= 1 < | St dn (1.2

Now, for given n > 0, using the continuity property in LP (Theorem [1.5.3]), we
can find r > 0 such that d(y) < n/2 for |y| < r. Note also that ¢ is bounded:
d(y) < 27| f|I5, for all y. Hence

I~ 1l <7 [

{lyl<r}

S L
ly|>r/e

@xy>dy—+u5anﬁ/“ o-(y) dy

ly|>r

As o € L', the last integral goes to zero as € — 0. Hence there is some & (depending
on 1) such that || f. — f||¥, < n for any ¢ < &. The conclusion follows. O

1.5.4 Approximation by smooth functions

Theorem 1.5.8. For 1 <p < oo, the space C°(R") is dense in LP(R").

Proof. Pick an arbitrary non-negative kernel p € C2°(R") with [, 0 = 1. For € > 0,

let 1,z
0:(®) = 8”9(5>'

Let f € LP, 1 < p < oo. Fix some n > 0. We would like to find some f,, € C2°(R")
such that || f, — fll» <.

First, select g and h in LP such that f = g + h, g has compact support and
2|l < n/2, e.g. by letting g = fx{z|<ry for some suitably large R.

Let g. = g* 0.. As g and p. have compact supports, so does g.. By Lemma [1.5.5]
ge € C°(R"), hence g. € C*(R"). By Theorem [1.5.7, g. — ¢ in LP. So we can select
some small € such that ||g. — g||» < n/2. By Minkowski’s inequality, this gives

l9e = fller < llg- = gllze + llg = fllze <
We can now conclude with the choice f, = g.. O]

Theorem 1.5.9. For 1 < p < oo, the space C*(E) is dense in LP(E).
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Here C*°(E) is the space of restrictions to E of functions which are smooth on
some open sets containing £.

Proof. For every f € LP(E), we define f : R" \ R by f(z) = f(z) for z € E and
f(x) = 0if x ¢ E. Then f € LP(R"). By Theorem [1.5.8 there is a sequence
(fr) C C°(R™) which converges to f in LP(R™). A desired sequence of approximations

for f is given by (fi|r). O

1.6 A criterion for strong pre-compactness

A set A in a normed vector space X is called pre-compact if every sequence in A has
a sub-sequence which converges in X.

Recall the following theorem concerning pre-compactness in the space of continu-
ous functions.

Theorem 1.6.1 (Ascoli-Arzela’s theorem). Let K be a compact subset of R™. Suppose
that a subset F of C(K) satisfies

(1) (Boundedness) sup;cz || fllomx) < oo,

(2) (Equi-continuity) For every € > 0, there exists 6 > 0 such that |f(x) — f(y)| < e
forall f € F and z,y € K with |x — y| < 0.

Then .Z is pre-compact in C(K).
The following is an analogue in L” spaces.

Theorem 1.6.2 (Kolmogorov-Riesz-Fréchet’s theorem). Let 1 < p < oo and Q be an
open subset of R™. Suppose that a subset F of LP(Q)) satisfies

(1) supsez || fllzr) < o0,

(2) For every e > 0, there exists § > 0 such that || f(- +y) — f()|lzr@) < € for all
f €% and |y| <9, where f is the extension by zero of f to the whole of R™.

Then, for every bounded open subset w of Q such that w C €, the set F|, of restric-
tions to w of functions in F is pre-compact in LP(w).

Proof. Without loss of generality we may assume that €2 is bounded. We need to
show that every sequence of .7 |, admits a convergent subsequence.
For f € .7, let f be the extension (by zero) of f to the whole of R"™ by letting

fl@)=0forz e R"\ Q. Let Z = {f: f € F}.
Note that the set .# is bounded in both LP(R") and L'(R™).
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Let (Qn) be a family of mollifiers such that the support of g, is contained in B, (0).
For f € .Z, Let f] = 01 % f. We will use the following two properties of the

approximants f] :

(P1) Recall from the proof of Theorem (cf. (1.2))) the estimate

1y = Flosn __Jén|Lf<-+-y>-—=f<ouzmm@g@;<y>dy.

Keeping in mind that fR" 01 = 1, we thus have, with the notation in property
J
(2), that

1
||fg f||pr)<€f0rallf€ andj>5

(P2) Next we show that, for each fixed j, the set .Z; = {f;]. : f € Y} satisfies the
condition of Ascoli-Arzela’s theorem. Indeed, by Young’s convolution inequality,

£l Lo ey < ||f||L1(Rn)||Q§||L°o(Rn) <C(j).
Also,

@ -Fwl< [ fey-2 - oo -2)|1fe)las

< ||Q§||Lz‘p(ﬂ%<")|ﬂf =yl fller @y < CG)|x — 2]

Now, if (gx) is a sequence in %, we construct a convergent subsequence as follows.
For [ = 1, select j; so that, by (P1), ||g L% F = flloew) < 1 for all f € #. Then by

(P2) and Ascoli-Arzela’s theorem, we can select a subsequence (gku)) so that o1 *g, )
P J1 T

is convergent in C'(w) and hence in LP(w). Proceed inductively, we select for [ > 2,
some j; > ji_1 such that |01 * f — f| 1r(w) < 7 for all f € F and a subsequence (gk(z))
gl
of (g,a-1) so that o1 g, o) is convergent in Lp( ). Let (gx,) = (g,0) be the diagonal
P Il P !
subsequence, which is a subsequence of all previously constructed subsequences and
so satisfies that, for every 7, ||po * gi, — gi|lrr@w) < 2 for all I > r and p1 * g, is
J ir

convergent in LP(w). It follows tlfat, for every r, we can select NV, sufficiently large so
that ||gx, — gk.||r() < 2 for all [, s > N,. Hence (gy,) is Cauchy and hence convergent
in LP(w). O
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Chapter 2

Sobolev Spaces

Throughout this chapter, €2 is a domain in R"™.

2.1 Weak derivatives

Definition 2.1.1. Let f € L} () and a = (a, . .., a,) be a multi-index. A function

loc

g € Li,.(Q) is said to be a weak a-derivative of f if

/ fopdr = (1) / gp dx for all ¢ € CF(Q). (2.1)
Q Q

We write g = 0“f in the weak sense.

In the above definition, the function ¢ is called a test function.

Remark 2.1.2. In Definition one can use Cial(Q) in place of C(Q2) for the
space of test functions. This is because if ¢ € C’la‘(Q), then o, * @ — ¢ in Cl°! for a
suitable sequence of mollifiers (0,). The assertion then follows by applying dominated
convergence theorem.

Example 2.1.3. If u € C*(Q), then its classical derivatives 0*u are weak derivatives
for |a| < k.

Example 2.1.4. Let I = (—1,1) and u(x) = |z|. Its weak first derivative is u'(x) =
sign(z).

Example 2.1.5. Let [ = (—1,1) and u(x) = sign(x). Then u has no weak derivatives.

Lemma 2.1.6. Let f € L} () and o = (ay,...,a,) be a multi-index. The weak

loc
a-deriwative of f, if exists, is uniquely defined up to a set of measure zero.

23
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An equivalent statement is as follows.

Lemma 2.1.7 (Fundamental lemma of the Calculus of Variations). Let g € L;. ().
If |ogpde =0 for all ¢ € C(Q), then g =0 a.e. in .

Proof. We will only give a sketch and leave the details as exercise. By using an
exhaustion by compact subsets, it is enough to consider the case g € L'(€) and Q
is bounded. By density fQ gp = 0 for all ¢ € C.(2). Select a continuous function
h € C.(2) such that ||g — h||z: is as small as one prefers. Using Tietze-Uryhsohn’s
theorem, take a continuous function ¢ € C.(£2) which take values 1 on {h > §} and
—1 on {h < —¢}. All this will imply that [|g||.1, [[h]|r:, [, he and [, gh(= 0!) are
about the same, modulo small errors which can be made as small as one wishes, and
so the conclusion follows. O

2.2 Definition of Sobolev spaces

Definition 2.2.1. For k > 0 and 1 < p < oo, the Sobolev space W*P(Q) is the set
of all functions in LP(S)) whose weak partial derivatives up to and including order k
exist and belong also to LP(Q). For p =2, we also write H*(Q) for W*2(Q).

When the context makes clear what (2 is, we write W*? and H* in place of W"?(Q)

and H*(Q).
We equip W*P(Q) with the norm

1
lullwer@ = [ 3 107l

| <k

For p = 2, we equip W*2(Q) = H*(Q) with the inner product

<U, U>Wk,2(g) = Z <8°‘u, aa’U>L2(Q).

la|<k

Theorem 2.2.2. For k > 0 and 1 < p < oo, WFP(Q) is a Banach space. When
p =2, Wr2(Q) is a Hilbert space.

Proof. We will only show completeness; the proofs of other properties are routine.
Suppose that (u,,) is a Cauchy sequence in W*P. Then, for |a| < k, (0%uy,) is
Cauchy in L? and hence converges to some v, € LP. Set u = v(q,... o).
Recalling that

/ Um0 dz = (1)1 / 0%up, p dx for all p € C2°(Q),
Q Q
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we can send m — oo to obtain
/u@o‘tpdm— (— )'O‘/vagodx for all p € C°(Q).
Q Q

This shows that u belongs to W*? with weak derivatives 0“u = v,, which further
implies that ||u,, — u|/yr» — 0. Hence (u,,) is convergent. O

We make the following useful observation from the proof:

Remark 2.2.3. If (u,,) C LP(QQ) converges strongly in LP to u and if, for some
multi-index o, (0%u,,) C LP(Q2) converges strongly in LP to v, then v is the a-weak
derivative of u. If p < 0o, the conclusion continues to hold if the strong convergence
15 relaxed to weak convergence.

Definition 2.2.4. For k > 0 and 1 < p < oo, the Sobolev space WEP(Q) is the
closure of C®(Q) in WEP(Q), i.e. u € WeP(Q) if and only if there is a sequence
(ty,) C C(Q) such that u,, — uw in WHP(Q). For p = 2, we also write HY(Q) for
Wi (Q).

We interpret W*P(Q) as the subspace of W*?(Q) such that “0% = 0 on 9Q” for
|a] < k—1. The sense in which this property is understood will be made precise later
on.

We now list some elementary properties of Sobolev spaces.

Proposition 2.2.5. Assume that u,v € W*P(Q) and || < k. Then
(i) 0%u € WFlelr(Q) and 0°(0°u) = 0°FBu for |B] < k — |a.

(i1) 0*(Au + v) = X\0%u + 0% for all X € R.

(iii) If V' is an open subset of 2, then u € WEP(Q)).

(iv) (Leibnitz’ rule) If ¢ € C(Q), then Cu € WHP(Q) and

ol
8(51 ----- ﬁn)(@ a1 —PB1,...y Qp— 571)
W= 2T P TR AT

Proof. Exercise. ]

Proposition 2.2.6 (Integration by parts). Let u € W*P(Q) and v € Wé‘:’p/(Q) with
E>0,1<p<o0 andl—l—l:l. Then

/80‘uv dr = (—1) / ud®vdz for all |a| < k.
Proof. As v € WE there exists v,, € C®(Q) such that v,, — v in W*?. The

conclusion follows by sending m — oo in the identity fQ 0wy, = (—1) fQ u0“vy,.
m
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2.3 Approximation by smooth functions

2.3.1 Weak derivative and convolution

We fix a non-negative function ¢ € C°(B;(0)) such that [, 0 = 1 and define for
e > 0 the mollifiers o.(z) = o(x/e) as usual.

Lemma 2.3.1. Assume f € WH*P(R™) for some k > 0 and 1 < p < oo, then
[ 0. € C*R") and

O“(f x 0.) = 0“f x 0. in R"™ for any || < k.

Proof. From Lemma [1.5.5] we know that f * 0. € C* and 0°(f % 0.) = f * 0%0.
Hence

0°(f % 02) () = / 0%0.(a — )/ (y)dy

n

= (=Dl [ 8%0.(z — y) f(y)dy.

]Rn

Using the definition of weak derivatives in the last integral, we obtain

n

0°(f * 02)(x) = (~1)lel(~1)l! / 0c (2 — )0 f(y)dy,

from which the conclusion follows. O]

2.3.2 Approximation by smooth functions

An immediate consequence of Lemma and Theorem is the following ap-
proximation result.

Theorem 2.3.2 (Approximation by smooth functions). Assume that u € W*P(R")
for some k>0, 1 <p< oo and let u. := u* g.. Then u. € C*(R") N WkEP(R") and
u. converges to u in W*P(R") as e — 0.

For Sobolev spaces on domains of R", we also have

Theorem 2.3.3 (Meyers-Serrin’s theorem on global approximation by smooth func-
tions). Let k > 0 and 1 < p < oo. For every u € W*P(Q) there exist a sequence
() C C°(Q) N WHEP(Q) such that u,, converges to u in W*P(Q).
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We would like now to understand if functions in W*?(Q2) can be approximated by
functions in C*(Q), i.e. if C>°(Q) is dense in W*P(Q). For k = 0, we knew this is
true. It turns out that for k£ > 1, this is not always true, for example when €2 is a disk
in R? with one small line segment removed. We thus need to restrict our attention
to some suitable class of domains.

Definition 2.3.4. Let 2 C R" be a domain.

(1) O is said to be Lipschitz (or C™) if for every xo € OS) there exists a radius
ro > 0 such that, after a relabeling of coordinate azes if necessary,

Q N BTO(xO) = {._'L' € BT()(:EO) Xy > ,}/(xlv cee 7'-7;71—1)}
for some Lipschitz (or C™) function .

(i1) Q is said to satisfy the segment condition if every xo € 08 has a neighborhood
U, and a non-zero vector y,, such that if z € QN U,,, then z+ty,, € S for all
te(0,1).

It can be shown that when 02 is Lipschitz, ) satisfies the segment condition.
We state without proof the following result.

Theorem 2.3.5 (Global approximation by functions smooth up to the boundary).
Suppose k > 1 and 1 < p < co. If Q satisfies the segment condition, then the set of
restrictions to Q of functions in C°(R™) is dense in W*P(Q).

Corollary 2.3.6. Fork > 1 and 1 < p < oo, the space CZ(R") is dense in WFP(R™).
In order words W*P(R™) = WFP(R").

2.4 Extension

Lemma 2.4.1. Assume that k > 0 and 1 < p < oo. If u € WiP(Q), then its

extension by zero @ to R™ belongs to WP (R™).

Proof. Exercise. m
We have the following result:

Theorem 2.4.2 (Stein’s extension theorem). Assume that Q is a bounded Lipschitz
domain. Then there exists a linear operator sending functions defined a.e. in £ to
functions defined a.e. in R™ such that for every k >0, 1 < p < oo and u € WHP(Q)
it hold that Fu = u a.e. and

||EU”ka(Rn) < Ok,p,QHUHka(Q)

We call E a total extension for 2 and Fu an extension of u to R™.
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2.5 Traces

Of importance in the study of partial differential equations is the determination of
boundary values. If u € C(Q), then u|sg makes sense in the usual way. If u is a
Sobolev function, u needs not be continuous and typically is defined only a.e. in €.
Since 0f2 has (n-dimensional Lebesgue) measure zero, this begs for a study of what
‘the restriction of u to 92" might mean. This will be taken care of by the notion of
trace operator.

Theorem 2.5.1. Letk > 1 and 1 < p < oo, and assume that ) is bounded and OS) is
Ck=LY regular. Then there exists a linear operator T : W*P(Q) — LP(9S) such that

(Z) Tu= u|39 ifu € Wk’p(Q) N C(Q),
(i) T is bounded, i.e. || Tu||zro0) < Crpallullwrsq

The operator T is called the trace operator.
Recall that C*~1! functions are those whose partial derivatives up to and including
order k — 1 exist and are Lipschitz.

“Proof”. To avoid technical difficulties, we will only consider a simple setting where
k = 1, 90 contains a flat piece I = {(2/,0) : |2/] < 2r} C {z, = 0}, Q contains
B3 (0) :== {(2',,) : |2'| < 2r,z, > 0}, and where we will only be concerned with the
trace of w on I' = {(2/,0) : |2'| <r} C {x, = 0}. We will show that
[ullzery < C, g pllullwreq) for all u € CH(Q). (2.2)
Once this is established, we can define a local trace operator as follows. For u €
C®(Q), we let Tru = ulp. As C=(Q) is dense in W'?(Q) (by Theorem [2.3.5),
estimate allows us to define Tru for all u € W?(Q) and Tt is a bounded linear
operator from WP(Q) into LP(T).
To prove (2.2), fix a smooth function ¢ € C°(B,,(0)) such that ¢ =1 in B,(0).
Consider the function (u. We have

P da' < [ Clur da! = — o (Clul?) dn] d
flpas< | [l

= [ e <0 [ b s Dulup s
B3,.(0)

where here and below C'is some generic constant Wthh will always be independent
of u. Using Young’s inequality, |a|[b[P~! < %]a|” + %]b\p, we thus have

Jrar<c [+ Dap)de. < Clullwoe)
r B3,(0)

as desired. [
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We have the following characterization of W™ in terms of trace.

Theorem 2.5.2 (Trace-zero functions in W), Let 1 < p < oo, and 2 be a bounded
Lipschitz domain. Suppose that w € W'(Q). Then u € Wy (Q) if and only if
Tu=0.

One direction is very easy: If u € Wy, then there is some u,, € C°(£2) such that
Uy — w in WP, Clearly Tu,, = 0 and so by continuity of 7', Tu = 0. We omit the
difficult proof of the converse.

2.A Distributions and distributional derivatives

Let 2(Q)) = C°(R2), called the space of test functions, be endowed with the following
notion of convergence (i.e. topology): For (¢,,) C Z2(Q2) and ¢ € 2(Q), we say
that ¢, — ¢ in Z2(Q) if there exists a compact set K such that all ¢,,’s and ¢ are
supported in K and 0%p,, — 0%p uniformly in K for every multi-indices «.

Clearly 2(Q) is a linear vector space. A functional 7' : Z(£2) — R is said to be
continuous if it is continuous with respect to the above topology, i.e. if ,, — ¢ in
2(9), then T, — Tp.

Definition 2.A.1. A continuous linear functional from 2(Q) into R is called a dis-
tribution. The set of all distributions is denoted by Z'(£2).

Example 2.A.2. Every function f € L}, (Q) defines a canonical distribution Ty by

loc

Ty(p) = /Qfso-

If a distribution T equals to Ty for some f € L.(Q), we say that T is a regular

distribution. We say that a regular distribution T' belongs to LP(Y) (or Lj .(2)) if
T =Ty for some f € LP(Q) (or f € L} (Q)).

loc

Lemma 2.A.3. Suppose that f,g € L}, .(Q). Then Ty =T, if and only if f = g a.e.

Proof. It is clear that if f = g a.e. then Ty = T,. Conversely if Ty = T, then
Jo(f —9)p =0 for all ¢ = 2(Q) = C*(Q). We knew that this implies f = g a.e.
(cf. Lemma [2.1.6)). O

Definition 2.A.4. Let T € 2'(2) and « be a multi-index. The distributional -
derivative of T is defined by

0°T(p) = (=) T(8¢).
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In particular, every distribution has partial derivatives up to any order. Clearly
if g € L,.(Q) is a weak a-derivative of f € L},.(2), then T, is the distributional
a-derivative of Ty. In this way, the Sobolev space W*?(Q) comprises of functions in
LP(€2) whose distributional partial derivatives up to and including order & also belong

to LP(92).



Chapter 3

Embedding Theorems

If X; and X, are two Banach spaces, we say that X; is embedded in X, if X; C Xo.
We write X; — X,;. We say that the embedding is continuous if there exists a
constant C such that ||ul|x, < Cllul|x, for all u € X;. To keep the discussion simple,
whenever we use the term ‘an embedding’, we mean ‘a continuous embedding’. When
X is embedded in X5, we say that the embedding is compact if bounded subsets of
X1 are pre-compact in Xo.

A major account for the usefulness of Sobolev spaces in analysis, in particular the
study of differential equations, is their embedding characteristics. We will consider
embeddings of W*P(Q) into

(i) Lebesgue spaces L7(€2),

(ii) Holder spaces C7(9Q2).

3.1 (agliardo-Nirenberg-Sobolev’s inequality

In this section, we assume 1 < p < n. We are interested in establishing an inequality
of the form

||u||Lq(Rn) S OHDUHLP(Rn) for all u € Wl’p(Rn), (31)

where the constant C' may depend on n and p but is independent of u. When this
holds, it clearly follows that W'?(R") — LI(R").

A simple but deep(!) scaling argument shows that if holds, then ¢ must
equals to . To see this fix a function u € C°(R") € WHP(R"). For A > 0, let
ux(z) = u(Ax), which is also of compact support. Then gives that

HUAHL‘?(R") S CHDU)\HLP(RTL) for all A > 0. (32)

31
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A direct computation gives [[ux||7qgny = A" [l Fo(gny and || Dul|7p gy = A7 (| Dulppgny-
Plugging into (3.2) we obtain

||u||Lq(]Rn) S C)\l_%—i_%HDUHLp(Rn). (33)

Now if 1 — % + % # 0, the right hand side of can be made arbitrarily small
by sending A either to 0 or co, which is impossible when u Z 0. We thus have that
1-24+2=01e ¢=;%.
Definition 3.1.1. For 1 < p < n, we call the number p* = % the Sobolev conjugate
of p.

Note that p* > p.

Theorem 3.1.2 (Gagliardo-Nirenberg-Sobolev’s inequality). Assume 1 < p < n.
Then there exists a constant C,, , such that

HuHLp*(Rn) S Cn,pHDUHLl’(R") fOT’ all u € Wl’p(Rn). (34)

Proof. We will only give the proof for p = 1. The more general case can be established
by applying the case p = 1 to |u|” for some suitable v > 1 and is left as an exercise.
We knew from Corollary ﬁ that WHH(R") = W' (R") and so C°(R™) is dense
in WL1(R™). Tt thus suffices to consider u € C°(R").
Since u has compact support, we have for every x that

u(x) = / 8x1u(y17$2>"'7xn) dyl'

—0o0
This implies

|u($)|§/ | Du(y, T2,y .., Tp)| dys.

Similar estimates hold for other variables. Multiplying all these estimates and taking
(n — 1)-th root yields

1

Integrating in x; yields

/OO |u(x)|ﬁ dr; < /OO H [/OO \Du(ml,...,yi,...,xn)]dyi}mdasl
—00 -0 ;. e )

S [/ ’Du(ylax%"-7xn)|dyl]n71><

oo 00 B
X/ H|:/ |Du(x17'"ina'-wIn>|dyii|n71 dxy.
T =g VT
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Applying Holder’s inequality to the last integral yields

1

/ |u(a:)\ﬁ dr, < [/ ]Du(yl,xg,...,xn)\dyl] "

o
1

XH[/ / |Du(x1,...,yi,...,xn)|dyidx1]n71
=g Vo0 J—o0

Integrating in x5 yields

1
/ / 2|71 dry day < / / | Du(xq, y2,x3,...,xn)|dy2da:1} "
a=T
X/ |:/ ‘Du(y17x27'-'7xn>’dy1:| X
XH[/ / |DU(5E177Z/17,-’17n)|dyzd$1}ﬁd:v2
=3 =00/ o0

Applying Holder’s inequality then yields

1
/ / |n ! dml d.ﬁUg / / |DU xl)y%x?ﬂ s ,$n>| dy2 d-rli| ! X
=1
/ / |Du(y17x27"'7$n>|dy1 dx2i| X

XH[/ / / ]Du(xl,...,yi,...,xn)|dyid:v1da:2]ﬁ.
i=3 —00 J —00 J -0

Proceeding in this way with other variables, we eventually obtain

1

|u(z H/ / |Du(x1,...,yz-,...,xn)|dx1...dyg...alxn}m

]Rn
|Du| dzx,
R
which proves (3.4]) for p =1 (with C' = 1.) O

Theorem 3.1.3 (Gagliardo-Nirenberg-Sobolev’s inequality). Assume that Q is a
bounded Lipschitz domain and 1 < p < n. Then, for every q € [1,p*], there ex-
ists Cppq0 such that

ulla) < Crpaallullwirq for allu e Wl’p(Q).
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Proof. Let E be the extension operator in Stein’s extension theorem (Theorem [2.4.2]).
By Gagliardo-Nirenberg-Sobolev’s inequality, we have that

[ull o) < [[Eullposgey < CllEullwrsge) < Cllullwisg)-

As Q has finite measure, we also have that |u||ze) < Cllul| (o) and so the conclu-
sion follows. ]

Remark 3.1.4. When Q is bounded and p = n, we have that W' (Q) — W1(Q)
for any 1 < s < n and so Wh(Q) — LY(Q) for any 1 < q¢ < oo. It turns out
that W (Q) does not embed into L>(Q2) unless n = 1. For example, for n > 2, the
function u(x) = Inln(1 + |71\) belongs to W (B1(0)) but is clearly unbounded.

3.2 Friedrichs’ inequality

Theorem 3.2.1 (Friedrichs’ inequality). Assume that Q2 is a bounded open set and
1 <p < oo. Then, there exists Cpq such that

llullr ) < CpallDul| oy for all v € WyP(Q).
Note that only the derivatives of u appear on the right hand side.

Remark 3.2.2. By Friedrichs’ inequality, for bounded open €2, on Wol’p(Q), the norm
| Dul| e (o) is equivalent to ||ullwis().

Proof. We may assume that € is contain in the slab S := {(2’,z,) : 0 < z,, < L}.
Since C°(1) is dense in W, ?(Q), we only need to consider v € C°(Q). Extend u to
be zero in R \ 2 so that u € C°(R™). We have

()| < / " |owu(a, 1) dt

and so, by Hélder’s inequality,

u(z)? < | / O’ 1) de]” < a2 / \Du(e!, ) dt.
0 0

It follows that

L L In
[ullfnq) = / / \u(z', z,)|P da, do’ < / / xﬁl/ |Du(z', ¢)|P dt dzx,, dx'.
Rnfl 0 R"fl 0 0
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Interchanging order of differentiation yields

L Tn
Jul i < / / / Du(! P di do’ do,
0 Rnfl O

L
B 1
S/O b | Dullfp o) dan = ]QLPHD"“‘HQP(Q)’

which concludes the proof with Cp, o = L p_%. O]

Theorem 3.2.3 (Friedrichs-type inequality). Assume that Q0 is a bounded open set
and 1 < p < n. Suppose that 1 < q < p*ifp<n, 1 <p < oo ifp=mn, and
1 <qg<ooifp>n. Then there exists Cppq0 such that

lullzo@ < Cupaall Dull oy for all u€ Wor ().

Proof. Since C2°(Q) is dense in W, (), we only need to consider u € C°(Q). Extend
u to be zero in R™ \ 2 so that u € C>°(R™).

If p < n, then by Gagliardo-Nirenberg-Sobolev’s inequality, ||ul| ;o= () < C|Dul|rr ().
But, as € has finite measure, |[u||zqq) < Cl|ul|1+q) and so the conclusion follows.

If p > n, then by Morrey’s inequality and Friedrichs’ inequality, ||ullz~@) <
Cllullwir) < C||Dul|rr(). The conclusion also follows.

The case p = n is left as an exercise. O

Remark 3.2.4. In some literature, Friedrichs’ and Friedrichs-type inequalities are
sometimes referred to as Poincaré’s inequality. Other Poincaré-type inequalities will
be considered later in Section [3.J.

3.3 Morrey’s inequality

In this section, we assume p > n. We will show that if u € WP(Q), then it is Holder
continuous.

Definition 3.3.1. Let a € (0,1]. A function u : Q@ — R is said to be a-Holder

continuous if

[u] 0.0 () := sup {% cxFyYE Q} < 00.

The space of all a-Holder continuous functions on € is denoted by C%*(Q2) or simply
C*(2). It can be made a Banach space with the norm

HUHCO’Q(Q) = HUHCO(Q) -+ [u]co,a(g).
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Theorem 3.3.2 (Morrey’s inequality). Assume that n < p < oo. Then every u €
WLP(R") has a (1 — =)-Hélder continuous representative. Furthermore there exists a
constant C,,, such that

< Cnm“u”WLp(Rn). (35)

”uH Ol—E(Rn)

Remark 3.3.3. In view of Ascoli-Arzela’s theorem (Theorem m), we thus have
for p > n that the embedding W'»(Q) — C%?(Q) is compact for every 0 < f < 1—12.

We will use the following lemma.

Lemma 3.3.4. There holds

1 | Du(y)|
u(y) —u(x dyg—r”/ ———dy
/B )~y < S [P

for all w € CY(R") and balls B,(x) C R".

Proof. First, for every § € 0B,(0) and s € (0,7), we have
S d S
|u(z + s0) —u(z)| < / |£u(:1: +t0)| ds < / | Du(x + t0)| ds.
0 0

Integrating over 6 and using Tonelli’s theorem give

/ u(z + s0) — u(x)| do g/ / | Du(z + 6)] do dt
631(0) 631(0)

D
[ o [ o,
9Bi(z tr Bo() | — x|"

Now multiplying both sides by s"~! and integrating over s, we get

/ lu(y) — u(x |dy—// u(z + s0) — u(z)| dos"ds
r( 8B1

D " 1 D
DL [t [ 0L,
B [y — 2| 0 o Jp ly— "

which gives the lemma. O]

Proof of Theorem[3.3.3 Case 1: p € (n, ).

Suppose for the moment that has been proved for u € C*(R™) N WP(R™).
Now if u € WL?(R™), then by Theorem [2.3.2] there exists u,, € C*=(R") N WLP(R")
such that u,, — u in WP, Applying (3.5)) to w,, — u., we see that the sequence
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Uy, 18 Cauchy in C%'7% and so converges (uniformly) to some u € C%'=%. But as
U, converges a.e. to u (due to the WP convergence), we have that u = @ a.e., i.e.
u has a continuous representative. Returning to inequality for u,, and sending
m — oo, we see that also hold for .

From the above discussion, it suffices to prove for u € C°(R™) N WHP(R"),

i.e. we need to show
lu(z)] < Cllullwir@wny for a.ex € R”, (3.6)

and
lu(z) —u(y)| < Cllullwie@ny|z — y|' v for ac.x,y € R”. (3.7)

Applying Lemma to u on B,(x) we have

r’ Du(y
/ uly) —u(@)dy <" [ 2L,
By (z) " J B (x) ly — x|

Using Holder’s inequality on the right hand side we get

r’ 1 Bl
[, 1) = uly < Dl [ [y )

Br(@) [y — x| 7=

n T n717<n_1)l’ %
=Cyr ||DU||LP(BT(m))[ S p-1 ds] .
0

As p > n, we have that (np_fll)p < n and so the integral in the square bracket converges.
We thus have
n(p—1)
/ " lu(y) — w(x)|dy < Chpl|Dull e, @)yr » + (3.8)
Br(x

Now, note that
fuz)] < / uly) — ulz)] dy + / fu(y)|dy.
Bi(z) By (z)

Thus, by applying (3.8 to estimate the first term and Holder’s inequality to estimate
the second term, we obtain

[u()| < CoplllDull o sy (2)) + Ul ey ()] < Crpllullwie@ny,

which is (3.6]).
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We turn to (3.7)). Pick some arbitrary  # y and let r = |z — y|. Set W =
B,(x) N B,(y) # 0. We have

u(z) — uly |_|W|/ u(z |dz+|W|/ luly) — u(2)|dz

u(z) — u(2)|dz + == uy) — u(z)|dz

HW Bu(2) |W|&@

Now as |W| = C,r", estimate (3.7)) is readily seen from the above inequality and

(3-8).

Case 2: p = oo.

We will only give a sketch. Details are left as exercise.

Suppose that v € Wh*°(R"). Then u € VV;;(R”) for any ¢ < oo. In particular,
using extension theorems and Case 1, we have that u has a continuous representative
(see also Theorem [3.3.5 below), Wthh we henceforth assume to coincide with .

By approximating u by functions in C2_(R") N W2 (R™), we can show that the
conclusion of Lemma [3.3.4 holds for u. We hence have

/()mww—wwu@sff Dula)] g,

n Jp @ ly—x"t
We can now follows the proof of Case 1 to obtain (3.8)), and hence (3.6) and (3.7).
For bounded domain we have:

Theorem 3.3.5 (Morrey’s inequality). Suppose that n < p < oo and ) is a bounded
Lipschitz domain. Then every u € W'(Q) has a (1 — =)-Holder continuous repre-
sentative and

el a3 gy < Crpallullwisey.

Proof. The theorem follows from Morrey’s inequality for R™ and by mean of extension.
Details are left as exercise (cf. Theorem [3.1.3]). O

3.4 Rellich-Kondrachov’s compactness theorem

Theorem 3.4.1 (Rellich-Kondrachov’s compactness theorem). Let Q2 be a bounded
Lipschitz domain and 1 < p < oo. Let 1 < g < p* whenp < n, 1 < g <
when p =n, and 1 < p < oo when p > n. Then the embedding WP (Q) < L()
is compact, i.e. every bounded sequence in W'P(Q2) contains a subsequence which
converges in L1(€2).
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Remark 3.4.2. (i) For 1 < p < n, the embedding W'P(Q) — LP (Q) is in fact
not compact.

(ii) For every 1 < p < oo, the embedding W'F(Q2) — LP(Q) is always compact.

We will only consider the case ¢ = p < oo where no prior knowledge of Gagliardo-
Nirenberg-Sobolev’s or Morrey’s inequalities is needed. We will need the following
lemma (compare Theorem [1.5.3)).

Lemma 3.4.3. Let 1 < p < oo. For every v € WHP(R") and y € R, it holds that

[o(y +-) = v()lle@n) < Y[l Dol Lo @)

Let us assume for now the above lemma and proceed with the proof of Rellich-
Kondrachov’s theorem.

Proof of Theorem when 1 < p = q < oo. Suppose that (u,,) is bounded in W?(Q).
We need to construct a subsequence (um,,) which converges in LP().

Let £ : W'?(Q) — WP(R™) be an extension operator (which exists due to Stein’s
extension theorem; Theorem . Fix some large ball By such that Q C By and
select a cut-off function ¢ € C°(Bg) such that ( = 1 in Q. It is easy to check that
the map u — Fu := (Fu is also an extension of W'?(Q) to W'?(R"). Thus replacing
E by FE if necessary, we may assume that Eu has support in By for every w.

Let v,, = Eu,,. To conclude, we show that (v,,) is pre-compact in LP(Bg) by
using Kolmogorov-Riesz-Fischer’s theorem (Theorem [1.6.2). It is clear that (v,,) is
bounded in LP(Byg). Also, by Lemma , we have

[vm(y + ) = Om () eoeny < [yl|DOm | 2o n)-
As (Dv,y,) is bounded in LP(R™), we can find for every € > 0 some § > 0 so that
Sup || vm (y + ) — V()| Lrmny < € whenever |y| < 0. (3.9)

Applying Kolmogorov-Riesz-Fischer’s theorem, we obtain the conclusion. O]

Proof of Lemma([3.4.3 By density (Theorem [2.3.2)), it suffices to show the stated
inequality for v € C*°(R™) N W1?(R"). We have

1
lo(y +7) — v(a |</ |—vty+:c|dt§|y|/ Doty + )| dt.
0

Thus
lo(y + ) = Ol gy < Iyl / / Doty + o) dt] da.
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Applying Holder’s inequality to the integral inside the square brackets we get

1
lo(y+ ) = 0Oy < ll? / / Doty + )P dt dz.

Interchanging the order of integration we obtain

lo(y+ ) = () gy < P / / Doty + 2)P dw dt = [yl?]| Dol g

as desired. [

3.5 Poincaré’s inequality

In the following, for a given integrable function u : 2 — R, we denote by g the

constant ]
Uq = —/u
9] Jo

Theorem 3.5.1 (Poincaré’s inequality). Suppose that 1 < p < oo and 2 is a bounded
Lipschitz domain. There exists a constant C,, o > 0 such that

|lu — ﬂQHLp(Q) < Cn,p7Q||DU||LP(Q) for all u € Wl’p(Q).
Note that only the derivative of u appears on the right hand side.

Proof. Suppose by contradiction that the conclusion fails. Then we can find (u,,) C
WP such that
[t = (@ )all o) > M| Dum|| Lr0)-

In particular, ||tm — (Um)allze@) > 0. Set

[tm = (@m)allLr()

Um =

so that ||vm|r@) = 1, (Um)e = 0 and || Duvy|/p@) < . This implies that (v,,)
is bounded in W'?(Q). By the Rellich-Kondrachov’s compactness theorem, after
extracting a subsequence if necessary, we may assume that (v,,) converges strongly
in LP(Q2) to some v € LP(1).

As (v,,) converges to v strongly in LP(2), we have

(i) lvllzr@) = im ||vp, || r@) = 1, and
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As Dw,, converges strongly to 0 in LP(£2), it follows that v is weakly differentiable
with Dv = 0. Hence

(iii) v = constant a.e. in 2.

Clearly (i), (ii) and (iii) amount to a contradiction. O
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Chapter 4

Functional Analytic Methods for
PDEs

We now turn to the PDEs part of the course. We will consider linear, second-ordered
partial differential equations of the form

Here €2 is a domain in R, u : Q@ — R is the unknown, (a;;) = (a;;), (b;) and ¢ are
given coefficients, f and g; are given sources, and repeated indices are summed from
1 to n.

Equation can be written in a more compact form Lu = —div(aDu) + b -
Du+ cu = f 4 divg where a = (a;5) is an n x n matrix and b = (b;) and g = (g;) are
vectors. For this reason, (4.1)) is called an equation in divergence form. Equations in
non-divergence form takes the form

Lu= —a;;0;0;u + b;j0;u + cu = f + 0;g; in Q. (4.2)

Clearly, when a;; is differentiable, one can recast an equation in divergence form as
one in non-divergence form and vice versa. But this is not always possible for less
regular coefficients.

In this course, we will only deal with equations in divergence form.

4.1 Dirichlet boundary value problem for second-
ordered elliptic equations

Definition 4.1.1. Let a = (a;;) : Q@ — R™™ be symmetric and have measurable
entries.

43
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(i) We say that a is elliptic
a;j(x)& & > 0 for all £ € R" and a.e. x € (L.
(In other words, a is non-negative definite a.e. in €.)

(i) We say that a is strictly elliptic if there exists a constant A > 0 such that

aij(2)& & > NEP for all € € R™ and a.e. x € Q.

(i1i) We say that a is uniformly elliptic if there exist constants 0 < X < A < oo such
that
MEP < aij(2)& & < AP for all € € R™ and a.e. z € .

Note that if a is uniformly elliptic, then a;; € L*(2).
In this set of notes, we will assume that

a;j, bi, ¢ belongs to L°(€2) and are given, and (a;;) is uniformly elliptic.

The Dirichlet boundary value problem for L is to find for given sources f and g
and a given boundary data uy a function u satisfying

{ Lu= f+0ig; in Q,

U = Ug on 0f). (BVP)

Definition 4.1.2. Suppose a € C'(Q2),b,c € C(Q). For a given f € C(Q), g € C'(Q)
and ug € C(09), a function u € C*(Q) N C(Q) is called a classical solution to the

Dirichlet boundary value problem (BVP)) if it satisfies (BVP)) in the usual sense.

Now if u is a classical solution for (BVP)), we can multiply the equation Lu = f
by a smooth test function ¢ € C2°(Q2) and integrate over Q (and by parts) to obtain

/[az‘jaj“@'sﬁ + bj0jup + cup] = /[fs& — 9:0ip).
Q Q

By mean of approximation, the above identity holds true for ¢ € H}(2), and the
identity make sense for u belonging to H*(€2). This motivates the following definition.

Definition 4.1.3. Let a,b,c € L>(Q), f € L*(Q), g € L*() and up € H'(Q).
(i) The bilinear from B(-,-) associated with the operator L defined in (4.1)) is

B(u,v) = /[aijaju@-v + b;0;uv + cuv)] u,v € H(Q).
Q
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(ii) We say that u € H'(Q) is a weak solution (or generalized solution) to the
equation Lu = f + 0;g; in ) if

B(u, ) = (f,¢) — (g:, Dip) for all p € HY (),

where (-,-) denotes the inner product of L*(Q). When this holds, we say inter-
changeably that u satisfies Lu = f + 0;g; in € in the weak sense.

(iii) We say that u € H'(Q) is a weak solution (or generalized solution) to the
Dirichlet boundary value problem (BVP)) if u—uy € H}(Q) H and if Lu = f+40;g;
in the weak sense.

Note that in the above definition, the boundary data wug is given as a function
belong to H'(€). In particular, it is defined on all of €. This is merely a technical
point and can be taken care of by introducing appropriate functional spaces on 02
which is ignored in this course.

We have the following estimates for the bilinear form B.

Theorem 4.1.4 (Energy estimates). Suppose that a,b,c € L>®(Q), a is uniformly
elliptic, L is as in (4.1)) and B is its associated bilinear form. There exists some large
constant C' > 0 such that

[B(u, )] < Cllull ol o, (43)
A
Nl < Blu,u] + Cllulltaqa (4.4)

Here X\ 1s the constant appearing in the definition of ellipticity of a.

Proof. The proof of (4.3)) is easy and left as an exercise. Let us prove (4.4). By the
strict ellipticity and Cauchy-Schwarz’ inequality, we have

)\HDUH%Q(Q) < /Qaij@-uﬁju = B(u,u) — /Q[biaiuu + cu?]
< B(u, u) + [[b]| @ [ Dull 2@y ull 2 () + llell oo 1ull 22y
< Bl u) + A Dullia + 55 IlEmalleliam) + lellzmollulia)
It follows that
AUl < Blusw) + (5 by + el el

from which the conclusion follows. O]

IThis would be the same as saying that the traces of v and of uy agree on 92 when 0 is
sufficiently regular.
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4.2 Existence theorems

4.2.1 Existence via the direct method in the calculus of vari-
ations

In some cases, the Dirichlet boundary value problem (BVP) can be solved by a
variational approach. Let us illustrate this in the case b =0 and ¢ > 0.
We will need the following result from functional analysis.

Theorem 4.2.1 (Mazur). Let K be a closed convex subset of a normed vector space
X, (x,) be a sequence of points in K converging weakly to x. Then x € K.

We prove:

Theorem 4.2.2 (Existence via direct minimization). Suppose that a,c € L*(2), a
is uniformly elliptic, ¢ > 0 a.e. in Q, b =0 and L is as in (4.1)). Then for every
fel*Q), ge L*Q) and uy € HY(Q), the Dirichlet boundary value problem (BVP)

has a unique weak solution v € H*(£2).

Proof. The key point is that the problem (BVP)) is related to the following so-called

variational energy
1

We will show that the solution to (BVP]) is the unique minimizer or I on X := {u €
HY Q) :u—wuy € H}(Q)}.

Let a = infx I € [—o0, I[ug]]. Then we can pick u,, € X such that I[u,,| — a.
Step 1: We show that the sequence (u,,) is bounded in H'().

Indeed, we have by strict ellipticity and the non-negativity of ¢ that

)\||Dum||%2(9) < /Qaij@uﬁju < B(u,u)
< 20 uy) + 2(f, um) — 2{(gi, Ostin)
2 A
< 2 [um] + 20| 2@y lwmll20) + FH9llz2(0) + S Dm0

we we have used Cauchy-Schwarz’ inequality. As I[u,,] — a < I[ug], we thus have
that (/[u,,]) is bounded. Hence we can find some C' such that

||Dum||%2(ﬂ) < O+ Clluml|2(@)- (4.5)
By Minkowski’s inequality, this implies

1D (1t = w0)l[72(0) < (1Dl 720 + C + Cllumllzze) < €+ Cllum| r2o)-
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By Friedrichs’ inequality (Theorem , this implies
[t — w072y < C + Clltm|| 20,
and so by Minkowski’s inequality,
lumllZ2 @) < luollZeg) + C + Cllumllza@) < €+ Cllumllz2(@)- (4.6)

Putting together (4.5)) and (4.6)) we conclude Step 1.

Step 2: The subconvergence of (u,,) to a minimizer of /|x.

Since H'(Q) is reflexive, the bounded sequence (u,,) has a weakly convergent
subsequence. We still denote this subsequence (u,,) and say u,, — u in H'(Q).

We also have that u,, —ug — u — ug. Note that H}(Q) is closed (by definition)
and convex. By Mazur’s theorem, H} () is weakly closed, and so u — uy € H} (),
ie. ue X.

We claim that liminf I[u,,] > I[u] (and so I[u] = «, i.e. w minimizes I|x). By
the weak convergence of u,, and Du,, to u and Du, respectively, in L?(2), we have
that (f, um) — (f,u) and (g;, Qi) — (gi, O;u). Thus it suffices to show that

lim inf B(tm, ) > B(u, u). (4.7)

mM—00

To this end, we use the explicit form of B:

B(tm, um) — Blu,u) = /[aijaium(?jum + cu?) — /[aijaiu(?ju + cu?)
Q Q

N /Q[aijai(um — )0 (U — u) + c(um — u)?]

+ /[aijai(um — u)0ju + a;;0;udj(Um — u) + 2¢(uy, — w)ul.
Q

The first integral on the right hand side is non-negative due to the ellipticity. The
second integral converges to zero as D(u,, —u) — 0 and (u,, —u) — 0 in L*(2). This
proves ([4.7). So we have a = liminf I[u,,,] > I[u]. Asu € X and o = infx [ it follows
that I[u] = o = infx I, which concludes Step 2.

Step 3: We show that u is a weak solution to the problem (BVP).
As u—wug € H} (), we only need to show that B(u,p) = (f, ) for all ¢ € H}(Q).
Indeed, if ¢ € H}(Q), then u + teo € X and so Iu] < Iu + typ| for every t € R. It is
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clear that the map t — I[u + ty] is differentiable and so

d

0 = —| I t
dt lt=0 [+ )
d

dt

1 1
= / [gaijaiuaw + 5%‘3@'@5@% + cup — fo + gi0;p]
0

1 1
o et 6008y ut t0) + Selu+ t0)* = flu+ t0) + gidilu + 1)
=0 Jgo

Q
= B(u,p)— (f,¢) + (9, i),

which gives the required identity.

Step 4: We prove the uniqueness: If @ is also a weak solution to (BVP)), then u = u
a.e.

Indeed, as B(u,p) = {f,¢) — (g:,0ip) = B(u,p) for all ¢ € H}(Q), we thus
have that B(u — u,¢) = 0 for all ¢ € HY(Q). Asu—1u € H}(Q) it follows that
B(u—u,u—u) = 0. Hence, by the ellipticity and the non-negativity of ¢, this implies
that

MD(u— )72 < B(u—t,u—1u) =0,
and so [|[D(u — @)|[2(q) = 0. By Friedrichs’ inequality (Theorem |3.2.1)), this then
gives ||u — @[/ 2(0) = 0, and so v = @ a.e., which concludes the proof. O

4.2.2 Fredholm alternative
For more general coefficients, problem (BVP)) does not always have a solution.

Example 4.2.3. Let Q = (0,7) C R, L = —;i—zz — 1, ug = 0. If the problem (BVP)
has a weak solution, then [ f(x) sinadx = 0. Forifu € Hy(0,7) is a weak solution,
then

/ f(z)sinzdr = / [u/(z)(sinx) —u(x) sinz]de = / w(z)[—(sinz)”"—sin z] dz = 0.
0 0 0
We will see that this is also a sufficient condition for existence.

Definition 4.2.4. Let Lu = —0;(a;;0;u) + bju; + cu. The formal adjoint L* of L is
defined as the operator

L*v = —@(aij@jfu) — @(bﬂ)) + cv.
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We say that L*v = f + 0;g; in Q in the weak sense if

B(p,v) = (g, f) = (0up, i) for all ¢ € Hy(9).
where B is the bilinear form associated to L and (-,-) is the inner product of L*(2).

Note that if u is a solution to (BVP)) and v € H}(Q) satisfies L*v = 0, then, as
u—up € Hy(Q),

(f,v) — {(gi, Oiv) fu=lt0i9: B(u,v) = B(ug,v) + B(u — ug, v) =0 B(ugp,v).
We will see now that this is the main ‘obstacle’ for existence and uniqueness.

Theorem 4.2.5 (Fredholm alternative). Suppose that Q is a bounded Lipschitz do-
main. Suppose that a,b,c € L>*(Q), a is uniformly elliptic, and L is as in (4.1)).

(i) We have the dichotomy: either

For each f € L*(Q), g € L*(Q) and ug € H' (), there
exists a unique weak solution u € H*(Q) to the boundary (4.8)

value problem (BVP)),

or

There exists a non-trivial weak solution 0 Z w € H'(Q) to
the homogeneous problem

(4.9)

(Hom)

Lu=0 in,
u=0 on 0N

(ii) In case (4.9) holds, the space N of weak solutions to (Homl) is a finite dimen-
sional subspace of H}(QY). Furthermore, the dimension of N is equal to the
dimension of the space N* C H} () of weak solutions to

{ L'v=0 nQQ,

v=0>0 on Of). (Hom?*)

(111) Finally, the boundary value problem (BVP)) has a solution if and only if
Blug,v) = (f,v) — {go, O0) for all v € N

We will only the pursue the proof of (i) and omit that of (ii) and (iii). Part (i)
can be equivalently restated as follows.
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Theorem 4.2.6 (Uniqueness implies existence). Suppose that ) is a bounded Lip-
schitz domain. Suppose that a,b,c € L>(2), a is uniformly elliptic, and L is as
mn . If the only weak solution to is the trivial solution, then for every
f e L*9Q), g € L*(Q) and uy € HY(Q), the boundary value problem has a

unique weak solution v € H'(Q).

An immediate consequence of this theorem is the following (which is stronger than
Theorem [4.2.2]).

Theorem 4.2.7. Suppose that §2 is a bounded Lipschitz domain. Suppose that a,b,c €
L>(Q), a is uniformly elliptic, and L is as in (4.1)). If the bilinear form B associated
to L is coercive, i.e. there is a constant C > 0 such that

B(w,w) > C’Hw||%z(9) for all w € C*(Q),

then the boundary value problem (BVP)) has a unique solution for every f € L*(Q),
g € L*(Q) and ug € H(Q).

Let us start with some functional analytic preliminaries.

Definition 4.2.8. Let H be a Hilbert space. An bounded linear operator K : H — H
1s said to be compact if K maps bounded subset of H into pre-compact subsets of H.

Theorem 4.2.9 (Projection theorem). If Y is a closed subspace of a Hilbert space
H, then'Y and Y+ are complementary subspaces: H =Y ® Y™, ie. everyax € H
can be decomposed uniquely as a sum of a vector in' Y and in Y.

Theorem 4.2.10 (Fredholm alternative). Let H be a Hilbert space and K : H — H
be a compact bounded linear operator. Then we have the dichotomy that either [ — K
is invertible or Ker(I — K) is non-trivial.

Proof. (=Not for examination—) Suppose that Ker(I — K) = 0. To conclude, we need
to show that V = Im(/ — K) is the whole of H. Suppose by contradiction that V' is
a proper subspace of H.

Step 1: We show that V' is closed.

Suppose that (u,,) C H is such that v,, = (I — K)(u,,) € V converges to some
x € H. We need to show that z € V.

We claim that (u,,) is bounded. Otherwise, there is a subsequence (u,,) with

[tm, || — oo. Let @y, = ”Z%” and U, = (I — K)tym,; = HZmTJ” Note that as (vy,)
J J

is convergent, ¥p,; — 0. On the other hand, as (@,,,) is bounded and K is compact,
we can assume after passing to a subsequence if necessary that K, converges to
some y € H. It follows that Um; = Um; + Ky, converges to y. We hence have on
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one hand that |y[| = 1 (due to ||tm,|| = 1) and on the other hand that (I — K)y =0
(as the common limit of (I — K)(m,) = ¥m;). These contradicts one another as
Ker(I — K) = 0. The claim is proved.

As (uy,) is bounded and K is compact, there is a subsequence such that Ky,

converges to some z € H. It follows that u,,, = vn, + Ku,, — = + 2z and so
x= (I — K)(x+ z) € V. This finishes Step 1.

Step 2: Let Vy = H and define inductively V11 = (I — K)(V,,,). We show that each
Vint1 is a proper closed subspace of V,,,, m > 0.

For m = 0, this follows from the contradiction hypothesis that V;, =V is a proper
subspace of H and Step 1 that V; =V is closed. Assume that the statement has been
proved for some m > 0. We need to show that V,,.5 is a proper closed subspace of
Vina1-

Note that I — K maps V,,,1 into V41 and so K maps V,,,; into V,,,1. Since
Vini1 is a closed subspace of H, it is a Hilbert space, and so Step 1 applied to the
compact map Kly,, , shows that V,, o = (I — K)(V;,41) is a closed subspace of V1.

Next, as V;,41 is a proper subspace of V,,, we can pick u € V,, \ V,p1. Now if
we had V10 = Viui1, then as (I — K)u € V.41 = Vo we could find w € V,, such
that (I — K)u = (I — K)*w. As Ker(I — K) = 0, this would imply u = (I — K)w C
(I — K)(V;n) = Vipsa, which would be a contradiction. Hence V42 is a proper
subspace of V1.

Step 3: We conclude using the projection theorem.

From Step 2, we have a nested sequence of proper closed subspaces H = Vj D
Vi D V4 D ... By the projection theorem (Theorem [4.2.9)), we can decompose V,, into

direct sum of orthogonal complementary closed subspaces V,,, = V.11 ® W,,11 where
Wi ={w eV, (v,w) =0V v €V}
Select w,, € Wy,41 such that ||w,4q1|| = 1. As K is compact (Kw,,) has a

convergent subsequence. To reach a contradiction, we shows that (Kw,,) has no
Cauchy subsequence.

Fix m > [. Then w,, € Wyi1 C Viog, { — K)w, € (I — K)(V}) = Vi41 and
(I — K)wy, € (I = K)(Viy) = Vipe1r C Vigy. It follows that

Kw, — Kw,, = (I — K)w,, — (I — K)w; — wy,, + w;
N - 7 N~

€Vigr eEWip

and so, by Pythagoras’ theorem, ||Kw; — Kw,,|| > ||w]| = 1. Hence (Kw,,) has no
Cauchy subsequence. The proof is complete. m

Proof of Theorem[{.2.6. Step 0: Reduction to the case ug = 0.
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Note that the problem (BVP]|) can be recast as a problem for & = u — ug as follows:

Li=f+0g inQ,
u=0 on 0f).

where f = (f —biOiug — cup) and §; = ¢; + a;;0;up. Thus it is enough to consider the
case ug = 0, which we will assume from now on.

Step 1: Consideration of the top order operator L, defined by Lyy,u = —0;(a;;0;u).
We knew from Theorem that for every f € L*(Q) and g € L?(2), the problem

Ltopu = f + aigi in €,
{ u=0 on 0f) (BVP:o)

has a unique solution u € Hj(2). We denote this solution as A(f, g) so that A defines
a linear operator from L?(Q2) x (L*(Q))™ into HJ(2). Also, as u € HJ(f2), we can use
it as a test function in the weak formulation of (BVP,,,|) to obtain

Biop(u, u) < (f,u) — (g5, 0wy < C(|fll2) + lgllz2@) 1wl 1@,

where By, is the bilinear form associated with Ly,,. By ellipticity, we have By, (u, u) >
M| Dul|2, (- Thus, in view of Friedrichs’ inequality (Theorem [3.2.1), we have

[ullF ) < 1DulZ2(q) < CBuop(u,u) < CI| fllz2@) + lgll 2@ lullar @),

and so
IACS, D) = llullme) < C[fllz2@) + lgllrz)-
This shows that A is a bounded operator.

Step 2: We recast (BVP)) as an equation in the form (/ — K')u = x where K is a linear
operator from H} () into itself.
Observe that (BVP)) is equivalent to

Lipyu = (f — b;0ju — cu) + 0;9;  in €,
u=~0 on 0f).

So u € H} () is a weak solution to (BVP)) if and only if
u=A(f — b;0;u — cu,g).
We now define K : H}(Q2) — Hy(2) by

Ku = A(=b;0;u — cu,0).
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and let z = A(f,g) € Hj (). Clearly, as A is bounded linear, so is K. We are thus
led to show that (I — K')u = x has a unique solution u, given that the kernel of I — K
is trivial.

Step 3: In view of the Fredholm alternative (Theorem , to conclude it suffices
to show that K is compact, i.e. for every bounded sequence (u,,) C H}(Q2), there is
a subsequence ,,; such that (Ku,,,) is convergent.

As H'(Q) is reflexive and (u,,) and (Ku,,) are bounded, we may assume after
passing to a subsequence that (u,,) and (Kwu,,) converges weakly in H! to some
u € Hg(Q) and w € H}(Q). In addition, by Rellich-Kondrachov’s theorem, we may
also assume that (u,,) converges strongly in L? to wu.

We claim that w = Ku. Indeed, since Ku,, = A(—b;0;u,, — cu,,,0), we have
B(Kup, @) = (—b;j0ity, — Cly,, ) for all ¢ € H}(Q). The weak convergence of (u,,),
(Duy,), and (Ku,,) to u, Du and w, respectively, in L? thus implies that B(w, ) =
(=b;0;u — cu, ) for all o € HY(S). This means that w = A(=b;0;u — cu,0) = Ku, as
claim.

Let 4, = u, —u. Then Ku, = A(—b0u, — cly,0) and so B(Kt,,,p) =
(—b;Otlyy, — Clpy, @) for all p € Hi(Q). In particular, for ¢ = K,,, we have

B(Kiiyn, Kity) = (=b;0itty — Clty, Kby, ) — 0.
< ~ - v

—0 in L2 —0 in L2

On the other hand, by ellipticity and Friedrichs’ inequality (Theorem [3.2.1)),
. . . L.
B(Ktiyp, Kty,) > )‘HDKumH%?(Q) = EHKumH%ﬂ(Q)

It follows that K, — 0 in H', i.e. (Ku,,) converges strongly in H' to Ku. This
shows that K is compact and concludes the proof. O

4.2.3 Spectrum of elliptic differential operators under Dirich-
let boundary condition

In this section, we restrict our attention to the case that ¢ = 0 and ug = 0.

Theorem 4.2.11 (Spectrum of elliptic operators). Suppose that Q is a bounded Lip-

schitz domain. Suppose that a,b,c € L>®(Q), a is uniformly elliptic, and L is as in

(4.1). Then there exists an at most countable set ¥ C R such that the boundary value
problem

Lu=Xu+f nQ,

{ u=10 on 0f) (EBVP)
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has a unique solution if and only if X ¢ ¥. Furthermore, if ¥ is infinite then ¥ =
)\13/\2§—>OO

The set X is called the (real) spectrum of the operator L.
The heart of the theorem above is the following general result for compact oper-
ators, whose proof is omitted.

Theorem 4.2.12 (Spectrum of compact operators). Let H be a Hilbert space of
infinite dimension, K : H — H be a compact bounded linear operator and o(K) be
its spectrum (i.e. the set of A € C such that \I — K is not invertible). Then

(1) 0 belongs to o(K).
(i) o(K)\{0} = 0,(K)\{0}, i.e. \I —K has non-trivial kernel for A € o(K)\ {0}.
(111) o(K)\ {0} is either finite or an infinite sequence tending to 0.

Proof of Theorem |4.2.11. By Theorem there exists some large p > 0 such that
the operator L, u = Lu+ pu has a coercive bilinear form B, (u,v) = B(u,v)+ u{u, v).
By Theorem {4.2.7] the problem

Lyou=f inQ,
u=20 on 0f)

is uniquely solvable for every f € L?(2). Call the solution K f so that K is a bounded
linear map from L?(f2) into itself. Note that as K(L*(Q2)) C H(Q) and Hj () is
compactly embedded in L*(Q), K is a compact operator.

Now let X be the set of A € R such that (EBVP)) is not always uniquely solvable.
By the Fredholm alternative, A € X if and only if the problem

Lu=MAu in €,
u=0 on 0f)

has a non-trivial solution. In other words, this means that the equation K ((u+A)u) =
u has a non-trivial solution. The conclusion then follows from Theorem 212 [

4.3 Regularity theorems

4.3.1 Differentiable leading coefficients

We will now turns to the study of regularity. We have
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Theorem 4.3.1 (Interior H? regularity). Suppose that a € C'(Q), b,c € L®(Q), a
is uniformly elliptic, and L is as in ([£.1). Suppose that f € L*(Q). If u € H'(Q)
satisfies Lu = f in  in the weak sense then u € HE (), and for any open w such
that i C ) we have

[ull 2wy < CU[fllz20) + llull @)

where the constant C' depends only on n,Q, w,a,b,c.

Theorem 4.3.2 (Global H? regularity). Suppose that a € C*(Q), b,c € L*(Q), a
is uniformly elliptic, and L is as in (4.1)) and that 0Q is C? regular. Suppose that
f e L2Q). Ifu € HYQ) satisfies Lu = f in Q in the weak sense then u € H?(S2)
and

[ullmr2(0) < Cllfllz2)

where the constant C' depends only on n,€), a,b,c.

Theorem 4.3.3 (Global C* regularity). Suppose that a,b,c € C*(2), a is uniformly
elliptic, and L is as in (4.1) and that OS2 is C™ regular. Suppose that f € C*(Q). If
u € H}(Q) satisfies Lu = f in  in the weak sense then u € C*(1).

To understand better the idea, let us focus on the proof of Theorem |4.3.1] in the
simplest but nevertheless important case a = (6;;), b=0, c =0, i.e. L =—A, and
is the ball By and w is the ball B;.

We start with an important auxiliary result.

Lemma 4.3.4. Suppose that u € C>°(R™). Then
| D*ul| r2rny = || Aul|r2gn).

Proof. The proof is a direct computation using integration by parts. We compute

||D2u||%2(Rn) = / @@u@zaju = — @u&,@fu
R"

R

- / PudPu = || Al 2.

which is exactly what we claimed. O

Proof of Theorem in the above simple setting. Step 1: Reduction to regular es-
timates for solutions which vanish near 0f).

Fix a cut-off function ¢ € C°(By) such that ( =1 in B;. Let w := (u. We claim
that satisfies —Aw = ((f — D( - Du) — 0;(u0;C) in By in the weak sense, i.e.

/ Dw - Dv = / [((f — D¢ - Du)v 4+ uD( - D] for all v € H)(Bs).
Bs Bo
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Using w = (u, we see that this is equivalent to
(Du-Dv = / (Cf — D¢ - Du)v for all v € Hy(Bs),
B2 B
which upon rearranging term is equivalent to

Du-D(¢v) = [ f(¢v) for all v € Hy(By),
By Bs
As (v € H}(B;) and —Au = f in B, in the weak sense, this latter identity holds
true, whence the original identity.
Now if the conclusion has been established for functions which vanish near the
boundary, then such estimate applies to w. Hence w € H?(B;) and

w28,y < C(|(Cf—DE-Du)=0i(udiQ)| L2 (Byy 1w 51(By)) < CUISf N 22(Bo) Full 1 (B

which gives the desired estimate.

Step 2: Reduction to a priori estimate on the whole space and conclusion of proof.

Suppose that u € H}(By) vanishes near 9B, and satisfies —Au = f in By in the
weak sense for some f € L?(By). Extend u to be zero outside of Bs.

Fix a non-negative function ¢ € C2°(B;) with [, 0 = 1 and let p.(z) = e "p(x/¢)
be the usual mollifiers. Set u. = . * v and f. = g. * f. Then u,, f. € C*(R").

We claim that —Awu,. = f. in R". By Lemma [2.3.1, we know that

Oiu. = 0. * Oju.

We hence use Fubini's theorem o compute for v € C2*(B,) that

Du.- Do = /R [ ete = w000 )0, 06w i
— [ o] [ oo~ p)onote)de] ay
— [ 0] [ Bnoule wyete) ds] dy
- / O,uly)| /R B0z — y)o(a) de| dy
- /R N / 0, u(y)dy, 0 = y) dy|o(x) da
[ [ twete=nar]oteraa
- [ s

Bs
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Since v € C°(R™) is arbitrary, this shows that —Au, = f. in R" the weak sense. As
both u, and f. are smooth, we thus have that —Awu. = f. in the classical sense, as
claimed.

We are now in position to apply Lemma We have

D% el 2(gny = (| Ae| p2mmy = | fell2n)
By Young’s convolution inequality, we thus have

HD2u€||L2(Rn) < [ fllz2sa)-

This implies on the one hand that, along a subsequence, (D?u.) converges weakly to
some A € L*(R") with || A||z@gny < [|f]|12(8,)- Since we also knew that (u.) converges
strongly to u in H'(R") (by Theorem [2.3.2)), can send ¢ — 0 in the identity

/ ua&@jv = aiajuav
n R

to see that u admits weak second derivatives in and D*u = A € L*(R").
We have thus shown v € H*(R") and and || D?ul|z2zn) < [|f]|12(8,), from which
the assertion follows. O

Let us now briefly indicate how the results in the case L = —A can lead to results
the case of variable coefficients. First of all, the case when a is a constant matrix can
be reduced to the case of the Laplacian by a change of variable. The case of variable
coefficients is treated using the so-called method of freezing coefficients. If x4 is a
given point in Q, let ap; = a;;(xo) and L°u = —0;(af;0;u). Then the equation Lu = f
can be re-expressed as

Lou = —(CL%- — aij)&»aju + @-aijaju — bz@u —cu + f

Now if the global regular estimate for L° has been established, then we will have,
after suitably cutting off the solution so that u is compactly supported in w as in
Step 1 above, that

||UHH2(w) S CH — (a?j — aij)&i@ju —|— @-aij(()ju — bﬁzu —cu + f||L2(w)
< Csup |ay; — aij| || D?ul| 2wy + Cllull ) + 1 f1l2()-

Now if w is chosen sufficiently small from the start so that C'sup,, |af; — a;;| is smaller
than 1 (which is possible since a is continuous), then the term containing second
derivative on the right hand side above can be absorbed into the left hand side,
yielding the desired estimate. The case of general non-small w is treated by using a
finite cover of small balls.
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4.3.2 Bounded measurable leading coefficients

We conclude this set of lecture notes with the following remarkable result which only
requires that the coefficients are measurable.

Theorem 4.3.5 (De Giorgi-Moser-Nash’s theorem). Suppose that a,b,c € L>®(Q), a
1s uniformly elliptic, and L is as in . If u € HY(Q) satisfies Lu = f in Q in the
weak sense for some f € LY(Q) with ¢ > %, then u is locally Hélder continuous, and
for any open w such that w C 2 we have

[ullcoaw) < CUfllLa@) + lullzi@)

where the constant C' depends only on n,Q,w,a,b,c. and the Holder exponent «
depends only on n,Q,w,a.

Let us remark that the fact that the coefficients a is discontinuous renders the
method of freezing coefficients inapplicable. No matter how small the subdomain
w is, the coefficients a;; can be as jumpy as one would like them to be and so the
character of solutions to such operator is far different from that for operators with
constant coefficients. In fact, if in the above theorem, if the coefficients a;; are a-
Holder continuous and if ¢ > n, it can be shown that the solution v will then have
B-Holder continuous derivatives for any 5 € (0, min(a, 1 — 2)).

To keep the discussion more transparent we will only consider the case that b = 0,
¢c =0and f = 0, Q is the ball B, and w is the ball B;. We will be content
with establishing only local L* bound of solutions which are already known to be
bounded, i.e. we are turning a qualitative property (boundedness) into a quantitative
property (an actual bound for its L>°-norm). Such estimates are referred to as a priori
estimates. A careful adaptation of the argument will in fact remove the boundedness
assumption, but we will not pursue here.

Theorem 4.3.6. Suppose that a € L™= (By), a is uniformly elliptic, b= 0, c =0 and
L is as in (4.1)). If u € H'(By) N L>®(By) satisfies Lu = 0 in By in the weak sense,
then

HUHL‘X’(Bl) < CHUHL2(BQ)

where the constant C' depends only on n,a.

We will use the so-called Moser iteration method. When u € H'(By) N L>(By),
the chain rule will give that u? € H'(By) for any p > 1. In particular, we can obtain
estimates by using cut-off versions of powers of u as test functions, in a way similar
to how we obtained energy estimates.
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Proof. (~Not for examination—) To illustrate the main ideas while avoiding technical-
ity, we assume an artificial condition that u > 0.

Let ¢ € C*(By). Fix some p > 1 for the moment. Using (?u” as test function
(note that this makes sense as u > 0), we have

0 = B(u, Cu?) :/

Bo

a;;0;ud;(CuP) = /B [pCPuP ™~ ay;0;u0;u + 2¢uPa;;0;udiC].

Thus by using ellipticity on the second term and Cauchy-Schwarz’ inequality on the
second term, we have

[ pw o <c [ whipg
By

Bo
This implies that
D't < cp [ wiDgp

Bg BZ

and so

ID(Cu™ )P < /

Bs

2(¢*|Du’7 |2 + wP*| D¢ < Cp / w2 4+ |DCJY

BQ B2

By the Friedrichs-type inequality (Theorem [3.2.3), we hence have with x = " that

[t <cp [ enic s pgp (410)
Bs Bs

Now, if 1 < ry < r; <2, we can select ¢ € C(B,,) such that ( =1 in B,, and
|D(| < h(fr?, where C' is a universal constant (the reason why this ¢ exists is left as
an exercise). Using this in (4.10) we obtain

1 1
[/ |u|(p+1)x}>< < [ |Cu%|2x]x
By, B>

C
<cp [ Py pep < L / P,
By (r1 = r2) Bry

In other words, we have

Clp+1)7s
ull posix(p,,) < [m] ull o1 (5,,)- (4.11)

Roughly speaking, as we are shrinking the domain, we get better in integrability. An
inequality of this kind is called a reversed Holder’s inequality.
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One would like to somehow send p — oo in to obtain an L* bound in
the limit. As one does this, one would need to use a sequence of nested ball B,, D
B,, D ... D B;. A possible obstacle then occurs: on the right hand side of ,
the difference of the radii occurs on the denominator and this is goes to zero along
the sequence of nested balls The key point to observe here is that at the same time,
this factor is raised to the — power, and is going to zero.

Let us now detail the above scheme. We start withr; =2, 1o =14+271 p, =1,

p2 = 2x — 1. Then (4.11)) gives
C

[l L2x(s,,) < [ﬁ

3
| *ellzec,,)
Then we let 73 = 1 + 272, p3 = 2x% — 1 so that

C

2x
lll ooy < |57~ Nullzoniay)-

Proceeding in this way with r, = 1 4+ 27%*! and p, = 2x*~! — 1 we have
C } =2

sy < [55) ™ Wil

Putting together these estimates we get

=

:'l_
lull o 5, 5 < 1 7l as
LN (Byy) 9-2(j— 1) (Bry)

j=2

< O3 Ti=x 0" Q)QZ?:Q(Jfl)X_(j_Q)HUHH(BH)-

As the sums -, x~ U2 and > sali — 1)x~U=2 converge, we can now safely send
k — oo to obtain
lulloe By < Cllullz2(8,),

as desired. O
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