
B4.3 Distribution Theory MT20

Lecture 12: Localization of distributions

1. Restriction of a distribution
2. Distributions are locally determined
3. Support and singular support of a distribution
4. Distributions with compact support

The material corresponds to pp. 55–61 in the lecture notes and should be
covered in Week 6.
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Restriction of a distribution:

We think of distributions on Ω as generalized functions on Ω, but it is not
in general possible to assign pointwise values to a distribution. It is
however easy to define the restriction of a distribution to any non-empty
open subset ω of Ω.

Let ω be a non-empty open subset of Ω, a fixed non-empty open subset of
Rn. Then if ϕ ∈ D(ω) we may extend ϕ to Ω \ ω by 0 to get a test
function on Ω. Formally, define the map ext : D(ω) → D(Ω) by

ext(ϕ) =
{
ϕ in ω
0 in Ω \ ω.

Then it is easy to see that ext is linear and D-continuous. The operation
of taking restriction to ω is now the dual operation.
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Restriction of a distribution:

If u ∈ D ′(Ω) its restriction to ω, u|ω, is defined as

⟨u|ω, ϕ⟩ := ⟨u, ext(ϕ)⟩, ϕ ∈ D(ω)

Clearly u|ω ∈ D ′(ω) and the map restrict : D ′(Ω) → D ′(ω) given by

restrict(u) := u|ω

is linear and D ′-continuous.
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Distributions are locally determined: if u, v ∈ D ′(Ω) and for each
x ∈ Ω there exists an open neighbourhood ωx of x in Ω so

u|ωx = v |ωx ,

then u = v .

Theorem If u ∈ D ′(Ω) has the property that for each x ∈ Ω there exists
an open neighbourhood ωx of x in Ω so u|ωx = 0, then u = 0.

The proof of this result is a typical smooth partition of unity argument.
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Proof of localization result: Assume u ∈ D ′(Ω) has the property that for
each x ∈ Ω there exists an open neighbourhood ωx of x in Ω so u|ωx = 0.
Want to show that u = 0.

Let ϕ ∈ D(Ω). Then supp(ϕ) is a compact subset of Ω and{
ωx : x ∈ supp(ϕ)

}
is an open cover, so there exist finitely many points x1, . . . , xm ∈ supp(ϕ)
with the property that

supp(ϕ) ⊂ ωx1 ∪ . . . ∪ ωxm .

By use of theorem on smooth partitions of unity (see Theorem 2.13 in
lecture notes) we find ϕ1, . . . , ϕm ∈ D(Ω) so supp(ϕj) ⊂ ωxj and

m∑
j=1

ϕj = 1 on supp(ϕ)
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Proof of localization result continued:

Consequently, (ϕϕj)|ωxj
∈ D(ωxj ), ext

(
(ϕϕj)|ωxj

)
= ϕϕj and

ϕ =
m∑
j=1

ϕϕj .

We can now calculate:

⟨u, ϕ⟩ =

⟨
u,

m∑
j=1

ϕϕj

⟩
=

m∑
j=1

⟨u, ϕϕj⟩

=
m∑
j=1

⟨u|ωxj
, (ϕϕj)|ωxj

⟩ = 0.

Since ϕ ∈ D(Ω) was arbitrary we conclude that u = 0. □
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Cauchy’s integral formula:

Let Ω be a non-empty open subset of C and f ∈ C1(Ω).
If Br (z0) ⊂ Ω, then we have

f (x0, y0) =
1

2πi

∫
∂Br (z0)

f (x , y)

z − z0
dz − 1

π

∫
Br (z0)

∂f
∂z (x , y)

z − z0
d(x , y).

Here we use the notation z0 = x0 + iy0 and z = x + iy and the first
integral on the right-hand is is a contour integral, as defined in Part A
Metric Spaces and Complex Analysis, where the circle ∂Br (z0) is traversed
counter-clockwise.
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Proof of CIF using localization of distributions:
Recall from Example 4.23 in the lecture notes that ∂

∂z

( 1
πz

)
= δ0. It follows

that
∂

∂z

(
1

π(z − z0)

)
= δz0

Now
u =

1
π(z − z0)

1Br (z0) ∈ L1(Ω)

is locally in Ω of the form distribution times C∞ function and so we may
apply the Leibniz rule to calculate its derivatives:

∂u

∂z
=

∂

∂z

(
1

π(z − z0)

)
1Br (z0) +

1
π(z − z0)

∂

∂z

(
1Br (z0)

)
= δz0 +

1
π(z − z0)

∂

∂z

(
1Br (z0)

)
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Proof of CIF using localization of distributions continued:

In order to calculate the derivative

∂

∂z

(
1Br (z0)

)
one uses the divergence theorem as we did in a previous lecture (see
Examples 4.21 and 5.24 in lecture notes):⟨

∂

∂z

(
1Br (z0)

)
, ϕ

⟩
= − 1

2i

∫
∂Br (z0)

ϕ(x , y) dz

for ϕ ∈ D(Ω). Combination of the above yields:

ϕ(x0, y0) =
1

2πi

∫
∂Br (z0)

ϕ(x , y)

z − z0
dz − 1

π

∫
Br (z0)

∂ϕ
∂z (x , y)

z − z0
d(x , y).
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Proof of CIF using localization of distributions continued:

We must extend the formula to f ∈ C1(Ω).
Take a cut-off function χ ∈ D(Ω) between Br (z0) and ∂Ω. For instance,
we can use

χ = ρd ∗ 1Br+d (z0)

for d = dist(Br (z0), ∂Ω)/3. Then define χf = 0 on R2 \ Ω and put

ϕ = ρε ∗
(
χf

)
for ε < d . Hereby ϕ ∈ D(Ω) and so we get

(ρε ∗
(
χf

)
)(x0, y0) =

1
2πi

∫
∂Br (z0)

(ρε ∗
(
χf

)
)(x , y)

z − z0
dz

− 1
π

∫
Br (z0)

∂(ρε∗
(
χf
)
)

∂z (x , y)

z − z0
d(x , y).

The result now follows by passing to the limit ε↘ 0 (Exercise: check that
this is true!) □
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The support of a distribution:

Definition Let u ∈ D ′(Ω). The support of u, supp(u), is the set of x ∈ Ω
for which there is no open neighbourhood to which the restriction of u
vanishes. Thus the complement Ω \ supp(u) is the open set of all x ∈ Ω
having an open neighbourhood in which u vanishes.
By the localization of distributions, the complement Ω \ supp(u) therefore
contains all open subsets of Ω where u vanishes and it is therefore the
largest such open subset of Ω.

Note that supp(u) is a relatively closed subset of Ω and for ϕ ∈ D(Ω):

⟨u, ϕ⟩ = 0 when supp(u) ∩ supp(ϕ) = ∅.

Exercise: When u ∈ C(Ω) we have two definitions of support. Show that
they are consistent.
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The singular support of a distribution:

Definition Let u ∈ D ′(Ω). The singular support of u, sing.supp(u), is the
set of x ∈ Ω for which there is no open neighbourhood to which the
restriction of u is a C∞ function. Thus the complement Ω \ sing.supp(u) is
the open set of all x ∈ Ω having an open neighbourhood in which u is a
C∞ function.
By the localization of distributions, the complement Ω \ sing.supp(u)
therefore contains all open subsets of Ω where u is a C∞ function and it is
therefore the largest such open subset of Ω.

Note that sing.supp(u) is a relatively closed subset of Ω and that

sing.supp(u) ⊆ supp(u)

because the 0-function in particular is C∞.
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Support and singular support example:

Let x0 ∈ Ω and ω be an open subset of Ω. Then

supp(δx0) = sing.supp(δx0) = {x0}

and
supp(1ω) = ω ∩ Ω,
sing.supp(1ω) = Ω ∩ ∂ω.
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Another extension of a distribution:

We have seen that a distribution on Ω of order at most k extends uniquely
to Ck

c (Ω). We now turn to another extension that is sometimes useful and
that is inspired by the notion of localization.

Let us start with the case of a regular distribution u ∈ L1
loc(Ω). In this case

we see from the fundamental lemma of the calculus of variations that

u = 0 almost everywhere on Ω \ supp(u),

and therefore that the integral ∫
Ω
uϕ dx

is well-defined for all ϕ ∈ C∞(Ω) with supp(u)∩ supp(ϕ) compact. In fact,{
ϕ ∈ C∞(Ω) : supp(u) ∩ supp(ϕ) compact

}
is a vector subspace of

C∞(Ω) and the map

ϕ 7→
∫
Ω
uϕ dx

is linear there!
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Another extension of a distribution:

Theorem Let u ∈ D ′(Ω) and A be a relatively closed subset of Ω that
contains the support of u. Then there exists a unique linear functional

U :
{
ϕ ∈ C∞(Ω) : A ∩ supp(ϕ) compact

}
→ C

satisfying
U(ϕ) = ⟨u, ϕ⟩ for ϕ ∈ D(Ω)

and
U(ϕ) = 0 for ϕ ∈ C∞(Ω) with A ∩ supp(ϕ) = ∅.

In fact, U(ϕ) = ⟨u, ψϕ⟩, where ψ is any ψ ∈ D(Ω) with ψ = 1 on
A ∩ supp(ϕ), will do.

Remark The domain of U is largest when we take A = supp(u), but the
uniqueness part of the statement is useful also for more general sets.
We shall denote this unique extension of u by u again. Thus U = u
(though in the proof below we shall still use U.)
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Proof of the extension theorem:

We start by remarking that the statement makes sense: the domain of U{
ϕ ∈ C∞(Ω) : A ∩ supp(ϕ) compact

}
is easily seen to be a vector subspace of C∞(Ω).

Uniqueness: Let ϕ ∈ C∞(Ω) with A ∩ supp(ϕ) =: K compact. Take a
cut-off function ψ ∈ D(Ω) so ψ = 1 near K . Write

ϕ = ψϕ+ (1 − ψ)ϕ

and note that ψϕ ∈ D(Ω), A ∩ supp
(
(1 − ψ)ϕ

)
= ∅, so

U(ϕ) = U(ψϕ) + U((1 − ψ)ϕ) = ⟨u, ψϕ⟩.

Any such extension of u must have this value at ϕ, so there can be at most
one.
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Proof of the extension theorem continued:

Existence: We saw that we must use U(ϕ) = ⟨u, ψϕ⟩ as definition. To see
that it is feasible we must therefore check that for each ϕ ∈ C∞(Ω) with
A ∩ supp(ϕ) compact this value is independent of the chosen cut-off
functions ψ, and that it has the asserted properties.

Let ψi (i = 1, 2) be two such cut-off functions: ψi ∈ D(Ω) with ψi = 1
near K := A ∩ supp(ϕ). Then

ψiϕ ∈ D(Ω) and supp(u) ∩ supp((ψ1 − ψ2)ϕ) = ∅,

where the last set is empty because supp(u) ⊆ A. It follows that
⟨u, (ψ1 − ψ2)ϕ)⟩ = 0 and therefore that ⟨u, ψ1ϕ⟩ = ⟨u, ψ2ϕ⟩.
We can therefore consistently define U(ϕ) := ⟨u, ψϕ⟩ for ϕ in the
prescribed subspace and ψ a corresponding cut-off function. It is routine to
check that U hereby has the claimed properties. □
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Distributions of compact support: Any u ∈ D ′(Ω) with supp(u)
compact. We use the extension result in this case: let ψ ∈ D(Ω) be a
cut-off function between supp(u) and ∂Ω. Then u admits a unique
extension (denoted by u again) to{

ϕ ∈ C∞(Ω) : supp(u) ∩ supp(ϕ) compact
}
= C∞(Ω)

and we have seen that

u(ϕ) := ⟨u, ψϕ⟩ for ϕ ∈ C∞(Ω).

Corresponding to the compact set K := supp(ψ) we find by the
boundedness property of u two constants cK ≥ 0, mK ∈ N0 so∣∣u(ϕ)∣∣ = ∣∣⟨u, ψϕ⟩∣∣ ≤ cK

∑
|α|≤mK

sup
∣∣∂α(ψϕ)∣∣

for all ϕ ∈ C∞(Ω).
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Distributions of compact support continued:

By the Leibniz rule we have

∂α(ψϕ) =
∑
β≤α

(
α

β

)
∂βψ∂α−βϕ,

and so if c(m, n) is the number of multi-indices α ∈ Nn
0 of length |α| ≤ m

we have ∣∣u(ϕ)∣∣ ≤ c
∑
|α|≤m

sup
K

|∂αϕ|, (1)

where we can use the constants

c = cK2mK c(n,mK ) max
|α|≤mK

sup |∂αψ| and m = mK .

We note that (1) holds for all ϕ ∈ C∞(Ω) and it shows in particular that
the distribution u has order at most m. In particular we conclude that a
distribution of compact support always has finite order, and that it admits
a unique extension to C∞(Ω) satisfying the boundedness property (1).
In the next lecture we will see that the converse is also true.
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