B4.3 Distribution Theory MT20

Lecture 12: Localization of distributions

- 1. Restriction of a distribution
- 2. Distributions are locally determined
- 3. Support and singular support of a distribution
- 4. Distributions with compact support

The material corresponds to pp. 55-61 in the lecture notes and should be covered in Week 6.

Restriction of a distribution:

We think of distributions on Ω as generalized functions on Ω , but it is not in general possible to assign pointwise values to a distribution. It is however easy to define the *restriction of a distribution* to any non-empty open subset ω of Ω .

Let ω be a non-empty open subset of Ω , a fixed non-empty open subset of \mathbb{R}^n . Then if $\phi \in \mathscr{D}(\omega)$ we may extend ϕ to $\Omega \setminus \omega$ by 0 to get a test function on Ω . Formally, define the map ext: $\mathscr{D}(\omega) \to \mathscr{D}(\Omega)$ by

$$\operatorname{ext}(\phi) = \left\{ egin{array}{cc} \phi & ext{ in } \omega \ 0 & ext{ in } \Omega \setminus \omega \end{array}
ight.$$

Then it is easy to see that ext is linear and \mathscr{D} -continuous. The operation of *taking restriction to* ω is now the dual operation.

Restriction of a distribution:

If $u \in \mathscr{D}'(\Omega)$ its *restriction to* ω , $u|_{\omega}$, is defined as

 $\langle u|_{\omega},\phi
angle:=\langle u,\mathrm{ext}(\phi)
angle, \hspace{1em}\phi\in\mathscr{D}(\omega)$

Clearly $u|_{\omega} \in \mathscr{D}'(\omega)$ and the map restrict: $\mathscr{D}'(\Omega) \to \mathscr{D}'(\omega)$ given by $\operatorname{restrict}(u) := u|_{\omega}$

is linear and \mathscr{D}' -continuous.

Distributions are locally determined: if $u, v \in \mathscr{D}'(\Omega)$ and for each $x \in \Omega$ there exists an open neighbourhood ω_x of x in Ω so

$$u|_{\omega_x} = v|_{\omega_x},$$

then u = v.

Theorem If $u \in \mathscr{D}'(\Omega)$ has the property that for each $x \in \Omega$ there exists an open neighbourhood ω_x of x in Ω so $u|_{\omega_x} = 0$, then u = 0.

The proof of this result is a typical smooth partition of unity argument.

Proof of localization result: Assume $u \in \mathscr{D}'(\Omega)$ has the property that for each $x \in \Omega$ there exists an open neighbourhood ω_x of x in Ω so $u|_{\omega_x} = 0$. Want to show that u = 0.

Let $\phi \in \mathscr{D}(\Omega)$. Then $\operatorname{supp}(\phi)$ is a compact subset of Ω and

 $\{\omega_x: x \in \operatorname{supp}(\phi)\}$

is an open cover, so there exist finitely many points $x_1, \ldots, x_m \in \text{supp}(\phi)$ with the property that

$$\operatorname{supp}(\phi) \subset \omega_{x_1} \cup \ldots \cup \omega_{x_m}.$$

By use of theorem on smooth partitions of unity (see Theorem 2.13 in lecture notes) we find $\phi_1, \ldots, \phi_m \in \mathscr{D}(\Omega)$ so $\operatorname{supp}(\phi_j) \subset \omega_{x_j}$ and

$$\sum_{j=1}^m \phi_j = 1$$
 on $\operatorname{supp}(\phi)$

Proof of localization result continued:

Consequently, $(\phi\phi_j)|_{\omega_{x_j}} \in \mathscr{D}(\omega_{x_j})$, $\operatorname{ext}((\phi\phi_j)|_{\omega_{x_j}}) = \phi\phi_j$ and

$$\phi = \sum_{j=1}^m \phi \phi_j.$$

We can now calculate:

$$egin{array}{rcl} \langle u, \phi
angle &=& \left\langle u, \sum_{j=1}^m \phi \phi_j
ight
angle = \sum_{j=1}^m \langle u, \phi \phi_j
angle \ &=& \sum_{j=1}^m \langle u|_{\omega_{x_j}}, (\phi \phi_j)|_{\omega_{x_j}}
angle = 0. \end{array}$$

Since $\phi \in \mathscr{D}(\Omega)$ was arbitrary we conclude that u = 0.

Cauchy's integral formula:

Let Ω be a non-empty open subset of \mathbb{C} and $f \in C^{1}(\Omega)$. If $\overline{B_{r}(z_{0})} \subset \Omega$, then we have

$$f(x_0, y_0) = \frac{1}{2\pi \mathrm{i}} \int_{\partial B_r(z_0)} \frac{f(x, y)}{z - z_0} \, \mathrm{d}z - \frac{1}{\pi} \int_{B_r(z_0)} \frac{\partial f}{\partial \overline{z}}(x, y) \, \mathrm{d}(x, y).$$

00

Here we use the notation $z_0 = x_0 + iy_0$ and z = x + iy and the first integral on the right-hand is is a contour integral, as defined in Part A *Metric Spaces and Complex Analysis*, where the circle $\partial B_r(z_0)$ is traversed counter-clockwise.

Proof of CIF using localization of distributions:

Recall from Example 4.23 in the lecture notes that $\frac{\partial}{\partial \overline{z}} \left(\frac{1}{\pi z}\right) = \delta_0$. It follows that

$$\frac{\partial}{\partial \overline{z}} \left(\frac{1}{\pi (z - z_0)} \right) = \delta_{z_0}$$

Now

$$u = \frac{1}{\pi(z-z_0)} \mathbf{1}_{B_r(z_0)} \in L^1(\Omega)$$

is locally in Ω of the form *distribution times* C^{∞} *function* and so we may apply the Leibniz rule to calculate its derivatives:

$$\begin{aligned} \frac{\partial u}{\partial \overline{z}} &= \frac{\partial}{\partial \overline{z}} \left(\frac{1}{\pi (z - z_0)} \right) \mathbf{1}_{B_r(z_0)} + \frac{1}{\pi (z - z_0)} \frac{\partial}{\partial \overline{z}} (\mathbf{1}_{B_r(z_0)}) \\ &= \delta_{z_0} + \frac{1}{\pi (z - z_0)} \frac{\partial}{\partial \overline{z}} (\mathbf{1}_{B_r(z_0)}) \end{aligned}$$

Proof of CIF using localization of distributions continued:

In order to calculate the derivative

$$\frac{\partial}{\partial \overline{z}} (\mathbf{1}_{B_r(z_0)})$$

one uses the divergence theorem as we did in a previous lecture (see Examples 4.21 and 5.24 in lecture notes):

$$\left\langle \frac{\partial}{\partial \overline{z}} (\mathbf{1}_{B_r(z_0)}), \phi \right\rangle = -\frac{1}{2\mathrm{i}} \int_{\partial B_r(z_0)} \phi(x, y) \, \mathrm{d} z$$

for $\phi \in \mathscr{D}(\Omega)$. Combination of the above yields:

$$\phi(x_0, y_0) = \frac{1}{2\pi \mathrm{i}} \int_{\partial B_r(z_0)} \frac{\phi(x, y)}{z - z_0} \, \mathrm{d}z - \frac{1}{\pi} \int_{B_r(z_0)} \frac{\frac{\partial \phi}{\partial \overline{z}}(x, y)}{z - z_0} \, \mathrm{d}(x, y).$$

Proof of CIF using localization of distributions continued:

We must extend the formula to $f \in C^1(\Omega)$. Take a cut-off function $\chi \in \mathscr{D}(\Omega)$ between $\overline{B_r(z_0)}$ and $\partial \Omega$. For instance, we can use

$$\chi = \rho_d * \mathbf{1}_{B_{r+d}(z_0)}$$

for $d = \operatorname{dist}(B_r(z_0), \partial \Omega)/3$. Then define $\chi f = 0$ on $\mathbb{R}^2 \setminus \Omega$ and put

$$\phi = \rho_{\varepsilon} * \left(\chi f\right)$$

for $\varepsilon < d$. Hereby $\phi \in \mathscr{D}(\Omega)$ and so we get

$$\begin{aligned} (\rho_{\varepsilon} * (\chi f))(x_0, y_0) &= \frac{1}{2\pi \mathrm{i}} \int_{\partial B_r(z_0)} \frac{(\rho_{\varepsilon} * (\chi f))(x, y)}{z - z_0} \, \mathrm{d}z \\ &- \frac{1}{\pi} \int_{B_r(z_0)} \frac{\frac{\partial(\rho_{\varepsilon} * (\chi f))}{\partial \overline{z}}(x, y)}{z - z_0} \, \mathrm{d}(x, y). \end{aligned}$$

The result now follows by passing to the limit $\varepsilon \searrow 0$ (Exercise: check that this is true!)

The support of a distribution:

Definition Let $u \in \mathscr{D}'(\Omega)$. The support of u, $\operatorname{supp}(u)$, is the set of $x \in \Omega$ for which there is *no* open neighbourhood to which the restriction of u vanishes. Thus the complement $\Omega \setminus \operatorname{supp}(u)$ is the open set of all $x \in \Omega$ having an open neighbourhood in which u vanishes. By the localization of distributions, the complement $\Omega \setminus \operatorname{supp}(u)$ therefore contains all open subsets of Ω where u vanishes and it is therefore the

largest such open subset of Ω .

Note that $\operatorname{supp}(u)$ is a *relatively closed subset of* Ω and for $\phi \in \mathscr{D}(\Omega)$:

$$\langle u, \phi \rangle = 0$$
 when $\operatorname{supp}(u) \cap \operatorname{supp}(\phi) = \emptyset$.

Exercise: When $u \in C(\Omega)$ we have two definitions of *support*. Show that they are consistent.

The singular support of a distribution:

Definition Let $u \in \mathscr{D}'(\Omega)$. The singular support of u, sing.supp(u), is the set of $x \in \Omega$ for which there is *no* open neighbourhood to which the restriction of u is a C^{∞} function. Thus the complement $\Omega \setminus \operatorname{sing.supp}(u)$ is the open set of all $x \in \Omega$ having an open neighbourhood in which u is a C^{∞} function.

By the localization of distributions, the complement $\Omega \setminus \operatorname{sing.supp}(u)$ therefore contains all open subsets of Ω where u is a C^{∞} function and it is therefore the *largest* such open subset of Ω .

Note that sing.supp(u) is a relatively closed subset of Ω and that

```
sing.supp(u) \subseteq \text{supp}(u)
```

because the 0-function in particular is C^{∞} .

Support and singular support example:

Let $x_0 \in \Omega$ and ω be an open subset of Ω . Then

$$\operatorname{supp}(\delta_{x_0}) = \operatorname{sing.supp}(\delta_{x_0}) = \{x_0\}$$

and

$$supp(\mathbf{1}_{\omega}) = \overline{\omega} \cap \Omega, \\ sing.supp(\mathbf{1}_{\omega}) = \Omega \cap \partial \omega.$$

Another extension of a distribution:

We have seen that a distribution on Ω of order at most k extends uniquely to $C_c^k(\Omega)$. We now turn to another extension that is sometimes useful and that is inspired by the notion of localization.

Let us start with the case of a regular distribution $u \in L^1_{loc}(\Omega)$. In this case we see from the fundamental lemma of the calculus of variations that

u = 0 almost everywhere on $\Omega \setminus \text{supp}(u)$,

and therefore that the integral

$$\int_{\Omega} u\phi \, \mathrm{d}x$$

is well-defined for all $\phi \in C^{\infty}(\Omega)$ with $\operatorname{supp}(u) \cap \operatorname{supp}(\phi)$ compact. In fact, $\{\phi \in C^{\infty}(\Omega) : \operatorname{supp}(u) \cap \operatorname{supp}(\phi) \text{ compact}\}$ is a vector subspace of $C^{\infty}(\Omega)$ and the map

$$\phi \mapsto \int_{\Omega} u\phi \,\mathrm{d}x$$

is linear there!

Another extension of a distribution:

Theorem Let $u \in \mathscr{D}'(\Omega)$ and A be a relatively closed subset of Ω that contains the support of u. Then there exists a unique linear functional

$$U \colon ig\{ \phi \in \mathsf{C}^\infty(\Omega) : \, A \cap \operatorname{supp}(\phi) \, \, \mathsf{compact} \, ig\} o \mathbb{C}$$

satisfying

$$U(\phi) = \langle u, \phi
angle$$
 for $\phi \in \mathscr{D}(\Omega)$

and

$$U(\phi) = 0$$
 for $\phi \in C^{\infty}(\Omega)$ with $A \cap \operatorname{supp}(\phi) = \emptyset$.

In fact, $U(\phi) = \langle u, \psi \phi \rangle$, where ψ is any $\psi \in \mathscr{D}(\Omega)$ with $\psi = 1$ on $A \cap \operatorname{supp}(\phi)$, will do.

Remark The domain of U is largest when we take A = supp(u), but the uniqueness part of the statement is useful also for more general sets. We shall denote this unique extension of u by u again. Thus U = u (though in the proof below we shall still use U.)

Proof of the extension theorem:

We start by remarking that the statement makes sense: the domain of U

 $\{\phi \in \mathsf{C}^{\infty}(\Omega) : A \cap \operatorname{supp}(\phi) \text{ compact } \}$

is easily seen to be a vector subspace of $C^{\infty}(\Omega)$.

Uniqueness: Let $\phi \in C^{\infty}(\Omega)$ with $A \cap \operatorname{supp}(\phi) =: K$ compact. Take a cut-off function $\psi \in \mathscr{D}(\Omega)$ so $\psi = 1$ near K. Write

$$\phi = \psi \phi + (1 - \psi) \phi$$

and note that $\psi\phi\in\mathscr{D}(\Omega)$, $A\cap\mathrm{supp}ig((1-\psi)\phiig)=\emptyset$, so

$$U(\phi) = U(\psi\phi) + U((1-\psi)\phi) = \langle u, \psi\phi \rangle.$$

Any such extension of u must have this value at ϕ , so there can be at most one.

Proof of the extension theorem continued:

Existence: We saw that we must use $U(\phi) = \langle u, \psi \phi \rangle$ as definition. To see that it is feasible we must therefore check that for each $\phi \in C^{\infty}(\Omega)$ with $A \cap \operatorname{supp}(\phi)$ compact this value is independent of the chosen cut-off functions ψ , and that it has the asserted properties.

Let ψ_i (i = 1, 2) be two such cut-off functions: $\psi_i \in \mathscr{D}(\Omega)$ with $\psi_i = 1$ near $K := A \cap \operatorname{supp}(\phi)$. Then

 $\psi_i \phi \in \mathscr{D}(\Omega)$ and $\operatorname{supp}(u) \cap \operatorname{supp}((\psi_1 - \psi_2)\phi) = \emptyset$,

where the last set is empty because $\operatorname{supp}(u) \subseteq A$. It follows that $\langle u, (\psi_1 - \psi_2)\phi \rangle = 0$ and therefore that $\langle u, \psi_1 \phi \rangle = \langle u, \psi_2 \phi \rangle$. We can therefore consistently define $U(\phi) := \langle u, \psi \phi \rangle$ for ϕ in the prescribed subspace and ψ a corresponding cut-off function. It is routine to check that U hereby has the claimed properties. **Distributions of compact support:** Any $u \in \mathscr{D}'(\Omega)$ with $\operatorname{supp}(u)$ compact. We use the extension result in this case: let $\psi \in \mathscr{D}(\Omega)$ be a cut-off function between $\operatorname{supp}(u)$ and $\partial\Omega$. Then u admits a unique extension (denoted by u again) to

$$\{\phi \in \mathsf{C}^{\infty}(\Omega) : \operatorname{supp}(u) \cap \operatorname{supp}(\phi) \text{ compact }\} = \mathsf{C}^{\infty}(\Omega)$$

and we have seen that

$$u(\phi) := \langle u, \psi \phi \rangle$$
 for $\phi \in C^{\infty}(\Omega)$.

Corresponding to the compact set $K := \operatorname{supp}(\psi)$ we find by the boundedness property of u two constants $c_K \ge 0$, $m_K \in \mathbb{N}_0$ so

$$\left| u(\phi) \right| = \left| \langle u, \psi \phi \rangle \right| \leq c_K \sum_{|\alpha| \leq m_K} \sup \left| \partial^{lpha}(\psi \phi) \right|$$

for all $\phi \in C^{\infty}(\Omega)$.

Distributions of compact support continued:

By the Leibniz rule we have

$$\partial^{\alpha}(\psi\phi) = \sum_{\beta \leq \alpha} {\alpha \choose \beta} \partial^{\beta} \psi \partial^{\alpha-\beta} \phi,$$

and so if c(m, n) is the number of multi-indices $\alpha \in \mathbb{N}_0^n$ of length $|\alpha| \leq m$ we have

$$|u(\phi)| \le c \sum_{|\alpha| \le m} \sup_{\kappa} |\partial^{\alpha} \phi|, \tag{1}$$

where we can use the constants

$$c = c_{\mathcal{K}} 2^{m_{\mathcal{K}}} c(n,m_{\mathcal{K}}) \max_{|lpha| \leq m_{\mathcal{K}}} \sup |\partial^{lpha}\psi| ext{ and } m = m_{\mathcal{K}}.$$

We note that (1) holds for all $\phi \in C^{\infty}(\Omega)$ and it shows in particular that the distribution u has order at most m. In particular we conclude that a distribution of compact support always has finite order, and that it admits a unique extension to $C^{\infty}(\Omega)$ satisfying the boundedness property (1). In the next lecture we will see that the converse is also true.