B4.3 Distribution Theory MT20

Lecture 12: Localization of distributions

1. Restriction of a distribution

2. Distributions are locally determined

3. Support and singular support of a distribution
4

. Distributions with compact support

The material corresponds to pp. 55—61 in the lecture notes and should be
covered in Week 6.
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Restriction of a distribution:

We think of distributions on Q as generalized functions on €, but it is not
in general possible to assign pointwise values to a distribution. It is
however easy to define the restriction of a distribution to any non-empty
open subset w of €.

Let w be a non-empty open subset of 2, a fixed non-empty open subset of
R"™. Then if ¢ € 2(w) we may extend ¢ to Q\ w by 0 to get a test
function on Q. Formally, define the map ext: Z(w) — 2(Q2) by

ext(9) = { o in 9\ w.

Then it is easy to see that ext is linear and Z-continuous. The operation
of taking restriction to w is now the dual operation.
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Restriction of a distribution:

If ue 2'(Q) its restriction to w, ul,, is defined as
(Ulw, @) = (v, ext(9)), ¢ € D(w)
Clearly ul, € 2'(w) and the map restrict: 2'(Q) — 2'(w) given by
restrict(v) == ul,

is linear and 2’-continuous.
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Distributions are locally determined: if u, v € 2’'(Q) and for each
x € Q there exists an open neighbourhood w, of x in Q so

u|wx = v|wx7
then u = v.

Theorem If u € 2'(2) has the property that for each x € Q there exists
an open neighbourhood wy of x in Q so ul,, =0, then u=0.

The proof of this result is a typical smooth partition of unity argument.
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Proof of localization result: Assume u € 2'(Q2) has the property that for
each x € Q there exists an open neighbourhood wy of x in Q so ul,, = 0.
Want to show that u = 0.

Let ¢ € Z(Q2). Then supp(¢) is a compact subset of Q and

{wx DX E supp(¢)}

is an open cover, so there exist finitely many points xi, ... , x, € supp(¢)
with the property that

supp(¢) C wy, U ... Uwy,,.

By use of theorem on smooth partitions of unity (see Theorem 2.13 in
lecture notes) we find ¢1, ..., om € Z(2) so supp(¢;) C wx; and

> ¢ =1 on supp(¢)

j=t
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Proof of localization result continued:

Consequently, (¢¢j)|wxj € I(wx;), ext((qbqu)\wxj) = ¢¢; and

b= ¢¢;.
j=1

We can now calculate:

(u,0) = <U72¢¢J> Z u, ¢;)
j=1
= (e (60))],) =0
j=1
Since ¢ € Z(Q2) was arbitrary we conclude that u = 0. 0
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Cauchy’s integral formula:

Let Q be a non-empty open subset of C and f € C}(Q).
If B/(z9) C €, then we have

1 f(x, 1 9 (x,
f(Xo,)/o)Z/ () dZ—/ Md(><7y)-
8B, ( B (z0)

2mi 2)Z — 20 ™ zZ— 29

Here we use the notation zp = xg + iyp and z = x + iy and the first
integral on the right-hand is is a contour integral, as defined in Part A
Metric Spaces and Complex Analysis, where the circle 0B, (z) is traversed
counter-clockwise.
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Proof of CIF using localization of distributions:
Recall from Example 4.23 in the lecture notes that %(ﬂ—lz) = Jp. It follows

that
9 (1 N\ _5
oz \n(z—z))

Now

is locally in Q of the form distribution times C* function and so we may
apply the Leibniz rule to calculate its derivatives:

@ = g # 1 _f_#é(l )
oz 0z \n(z— 2) Br(z0) w(z — z9) 0z Br(0)

19
77 (L)

I ST S
ot m(z — 29
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Proof of CIF using localization of distributions continued:

In order to calculate the derivative

0
%(lBr(ZO))

one uses the divergence theorem as we did in a previous lecture (see
Examples 4.21 and 5.24 in lecture notes):

0 1
<8Z(]-B,(zo))7¢> =5 /8&(20)?5()(,)/) dz

for » € 2(82). Combination of the above yields:
o)

1 ) 1 99 (x,
Som) =5 [ D L] =00 4 )
9B (20) B/ (z0) 4

27 z— 2 s — 20
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Proof of CIF using localization of distributions continued:

We must extend the formula to f € C}(Q).
Take a cut-off function x € Z(Q2) between B,(z) and 9. For instance,
we can use

X = Pd * 1B, 4(z0)

for d = dist(B,(z0),0Q)/3. Then define xf =0 on R?\ Q and put

¢ = pe * (xf)
for e < d. Hereby ¢ € 2(Q) and so we get
1 (pe * (X)) (x.¥)
(pe * (xF))(x0,0) = o /83,(z0) 7~ 7 dz
a(pex(xf))
1 — 7\ %Y
= / g (x.y) d(x,y).
T JB,(z0) zZ— 29

The result now follows by passing to the limit ¢ N\, 0 (Exercise: check that

this is truel) O
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The support of a distribution:

Definition Let u € 2'(Q2). The support of u, supp(u), is the set of x € Q
for which there is no open neighbourhood to which the restriction of u
vanishes. Thus the complement Q \ supp(u) is the open set of all x € Q
having an open neighbourhood in which u vanishes.

By the localization of distributions, the complement Q \ supp(u) therefore
contains all open subsets of Q2 where u vanishes and it is therefore the
largest such open subset of Q.

Note that supp(u) is a relatively closed subset of Q and for ¢ € 2(Q):

(u,#) = 0 when supp(u) Nsupp(¢p) = 0.

Exercise: When u € C(€2) we have two definitions of support. Show that
they are consistent.
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The singular support of a distribution:

Definition Let u € 2'(Q). The singular support of u, sing.supp(u), is the
set of x € Q for which there is no open neighbourhood to which the
restriction of u is a C* function. Thus the complement Q \ sing.supp(v) is
the open set of all x € Q having an open neighbourhood in which v is a
C* function.

By the localization of distributions, the complement Q \ sing.supp(u)
therefore contains all open subsets of Q where u is a C* function and it is
therefore the largest such open subset of Q.

Note that sing.supp(u) is a relatively closed subset of Q and that

sing.supp(u) C supp(v)

because the 0-function in particular is C*.
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Support and singular support example:

Let xg € Q and w be an open subset of Q. Then

supp(dy,) = sing.supp(dx,) = {xo}
and

supp(L,) =@ N Q,
sing.supp(1ly) = 2N Jdw.
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Another extension of a distribution:

We have seen that a distribution on Q of order at most k extends uniquely
to CX(Q). We now turn to another extension that is sometimes useful and
that is inspired by the notion of localization.

Let us start with the case of a regular distribution v € L{ (). In this case
we see from the fundamental lemma of the calculus of variations that

u =0 almost everywhere on Q\ supp(u),

/ngbdx

is well-defined for all ¢ € C*°(Q2) with supp(u) Nsupp(¢) compact. In fact,
{d) € C*°(Q) : supp(u) N supp(e) compact} is a vector subspace of

C*(Q2) and the map
¢+ / ug dx
Q
is linear therel
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Another extension of a distribution:

Theorem Let u € 2'(Q2) and A be a relatively closed subset of Q that
contains the support of u. Then there exists a unique linear functional

U: {qb € C*®(Q) : Ansupp(¢p) compact } —C

satisfying
U(¢) = (u,9) for ¢ € 2(Q)
and
U(p) =0 for ¢ € C°(Q) with AN supp(¢) = 0.

In fact, U(¢) = (u,v¢), where ¢ is any 1 € 2(Q) with ¢» =1 on
AN supp(¢), will do.

Remark The domain of U is largest when we take A = supp(u), but the
uniqueness part of the statement is useful also for more general sets.

We shall denote this unique extension of u by u again. Thus U = u
(though in the proof below we shall still use U.)
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Proof of the extension theorem:

We start by remarking that the statement makes sense: the domain of U
{¢ € C®(Q) : ANsupp(¢) compact }

is easily seen to be a vector subspace of C*°(Q2).

Uniqueness: Let ¢ € C*°(Q2) with AN supp(¢) =: K compact. Take a
cut-off function ¢ € Z(Q2) so ¢ =1 near K. Write

¢=vo+(1—1)o
and note that ¢ € 2(Q), AN supp((l — w)¢>) = (), so
U(¢) = U(vg) + U((1 = ¥)¢) = (u,v9).

Any such extension of u must have this value at ¢, so there can be at most
one.
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Proof of the extension theorem continued:

Existence: We saw that we must use U(¢) = (u,¥¢) as definition. To see
that it is feasible we must therefore check that for each ¢ € C*°(Q) with
AN supp(¢p) compact this value is independent of the chosen cut-off
functions 1), and that it has the asserted properties.

Let ¢; (i = 1,2) be two such cut-off functions: ¢; € 2(Q) with ¢; =1
near K := AN supp(¢). Then

i € 2(Q) and supp(u) Nsupp((1 — ¥2)p) = 0,

where the last set is empty because supp(u) C A. It follows that

(u, (1 — 2)¢)) = 0 and therefore that (u, 1) = (u, ¥2¢).

We can therefore consistently define U(¢) := (u,v¢) for ¢ in the
prescribed subspace and v a corresponding cut-off function. It is routine to
check that U hereby has the claimed properties. O
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Distributions of compact support: Any u € 2'(Q) with supp(v)
compact. We use the extension result in this case: let 1) € 2(Q2) be a
cut-off function between supp(v) and 9Q. Then u admits a unique
extension (denoted by u again) to

{¢ € C=(Q) : supp(u) Nsupp(¢) compact } = C=(Q)
and we have seen that
u(¢) == (u,y¢) for ¢ € C=(Q).

Corresponding to the compact set K := supp(¢)) we find by the
boundedness property of u two constants cx > 0, mk € Ny so

|u(@)] = [{u,90)| < ek D sup|d*(1e)]

o] <mk
for all ¢ € C*(Q).
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Distributions of compact support continued:

By the Leibniz rule we have

()= 3 (g) 05y,

BLa
and so if ¢(m, n) is the number of multi-indices o € N of length |a| < m
we have

u(@)] < c Y suplogl, (1)
K
la]<m
where we can use the constants
c = cx2™c(n,mk) max sup|0*Yp| and m = mg.

o] <mk
We note that (1) holds for all ¢ € C>°(2) and it shows in particular that
the distribution u has order at most m. In particular we conclude that a
distribution of compact support always has finite order, and that it admits
a unique extension to C°°(QQ) satisfying the boundedness property (1).

In the next lecture we will see that the converse is also true.
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