B4.3 Distribution Theory

Lecture 12: Localization of distributions

1. Restriction of a distribution
2. Distributions are locally determined
3. Support and singular support of a distribution
4. Distributions with compact support

The material corresponds to pp. 55-61 in the lecture notes and should be covered in Week 6.

Restriction of a distribution:

We think of distributions on Ω as generalized functions on Ω, but it is not in general possible to assign pointwise values to a distribution. It is however easy to define the restriction of a distribution to any non-empty open subset ω of Ω.

Let ω be a non-empty open subset of Ω, a fixed non-empty open subset of \mathbb{R}^{n}. Then if $\phi \in \mathscr{D}(\omega)$ we may extend ϕ to $\Omega \backslash \omega$ by 0 to get a test function on Ω. Formally, define the map ext: $\mathscr{D}(\omega) \rightarrow \mathscr{D}(\Omega)$ by

$$
\operatorname{ext}(\phi)= \begin{cases}\phi & \text { in } \omega \\ 0 & \text { in } \Omega \backslash \omega .\end{cases}
$$

Then it is easy to see that ext is linear and \mathscr{D}-continuous. The operation of taking restriction to ω is now the dual operation.

Restriction of a distribution:

If $u \in \mathscr{D}^{\prime}(\Omega)$ its restriction to $\omega,\left.u\right|_{\omega}$, is defined as

$$
\left\langle\left. u\right|_{\omega}, \phi\right\rangle:=\langle u, \operatorname{ext}(\phi)\rangle, \quad \phi \in \mathscr{D}(\omega)
$$

Clearly $\left.u\right|_{\omega} \in \mathscr{D}^{\prime}(\omega)$ and the map restrict: $\mathscr{D}^{\prime}(\Omega) \rightarrow \mathscr{D}^{\prime}(\omega)$ given by

$$
\operatorname{restrict}(u):=\left.u\right|_{\omega}
$$

is linear and \mathscr{D}^{\prime}-continuous.

Distributions are locally determined: if $u, v \in \mathscr{D}^{\prime}(\Omega)$ and for each $x \in \Omega$ there exists an open neighbourhood ω_{x} of x in Ω so

$$
\left.u\right|_{\omega_{x}}=\left.v\right|_{\omega_{x}},
$$

then $u=v$.
Theorem If $u \in \mathscr{D}^{\prime}(\Omega)$ has the property that for each $x \in \Omega$ there exists an open neighbourhood ω_{x} of x in Ω so $\left.u\right|_{\omega_{x}}=0$, then $u=0$.

The proof of this result is a typical smooth partition of unity argument.

Proof of localization result: Assume $u \in \mathscr{D}^{\prime}(\Omega)$ has the property that for each $x \in \Omega$ there exists an open neighbourhood ω_{x} of x in Ω so $\left.u\right|_{\omega_{x}}=0$. Want to show that $u=0$.

Let $\phi \in \mathscr{D}(\Omega)$. Then $\operatorname{supp}(\phi)$ is a compact subset of Ω and

$$
\left\{\omega_{x}: x \in \operatorname{supp}(\phi)\right\}
$$

is an open cover, so there exist finitely many points $x_{1}, \ldots, x_{m} \in \operatorname{supp}(\phi)$ with the property that

$$
\operatorname{supp}(\phi) \subset \omega_{x_{1}} \cup \ldots \cup \omega_{x_{m}}
$$

By use of theorem on smooth partitions of unity (see Theorem 2.13 in lecture notes) we find $\phi_{1}, \ldots, \phi_{m} \in \mathscr{D}(\Omega)$ so $\operatorname{supp}\left(\phi_{j}\right) \subset \omega_{x_{j}}$ and

$$
\sum_{j=1}^{m} \phi_{j}=1 \text { on } \operatorname{supp}(\phi)
$$

Proof of localization result continued:

Consequently, $\left(\phi \phi_{j}\right) \mid \omega_{x_{j}} \in \mathscr{D}\left(\omega_{x_{j}}\right), \operatorname{ext}\left(\left(\phi \phi_{j}\right) \mid \omega_{x_{j}}\right)=\phi \phi_{j}$ and

$$
\phi=\sum_{j=1}^{m} \phi \phi_{j} .
$$

We can now calculate:

$$
\begin{aligned}
\langle u, \phi\rangle & =\left\langle u, \sum_{j=1}^{m} \phi \phi_{j}\right\rangle=\sum_{j=1}^{m}\left\langle u, \phi \phi_{j}\right\rangle \\
& =\sum_{j=1}^{m}\left\langle\left. u\right|_{\omega_{x_{j}}},\left.\left(\phi \phi_{j}\right)\right|_{\omega_{x_{j}}}\right\rangle=0 .
\end{aligned}
$$

Since $\phi \in \mathscr{D}(\Omega)$ was arbitrary we conclude that $u=0$.

Cauchy's integral formula:

Let Ω be a non-empty open subset of \mathbb{C} and $f \in C^{1}(\Omega)$. If $\overline{B_{r}\left(z_{0}\right)} \subset \Omega$, then we have

$$
f\left(x_{0}, y_{0}\right)=\frac{1}{2 \pi \mathrm{i}} \int_{\partial B_{r}\left(z_{0}\right)} \frac{f(x, y)}{z-z_{0}} \mathrm{~d} z-\frac{1}{\pi} \int_{B_{r}\left(z_{0}\right)} \frac{\frac{\partial f}{\partial \bar{z}}(x, y)}{z-z_{0}} \mathrm{~d}(x, y) .
$$

Here we use the notation $z_{0}=x_{0}+\mathrm{i} y_{0}$ and $z=x+\mathrm{i} y$ and the first integral on the right-hand is is a contour integral, as defined in Part A Metric Spaces and Complex Analysis, where the circle $\partial B_{r}\left(z_{0}\right)$ is traversed counter-clockwise.

Proof of CIF using localization of distributions:

Recall from Example 4.23 in the lecture notes that $\frac{\partial}{\partial \bar{z}}\left(\frac{1}{\pi z}\right)=\delta_{0}$. It follows that

$$
\frac{\partial}{\partial \bar{z}}\left(\frac{1}{\pi\left(z-z_{0}\right)}\right)=\delta_{z_{0}}
$$

Now

$$
u=\frac{1}{\pi\left(z-z_{0}\right)} \mathbf{1}_{B_{r}\left(z_{0}\right)} \in \mathrm{L}^{1}(\Omega)
$$

is locally in Ω of the form distribution times C^{∞} function and so we may apply the Leibniz rule to calculate its derivatives:

$$
\begin{aligned}
\frac{\partial u}{\partial \bar{z}} & =\frac{\partial}{\partial \bar{z}}\left(\frac{1}{\pi\left(z-z_{0}\right)}\right) \mathbf{1}_{B_{r}\left(z_{0}\right)}+\frac{1}{\pi\left(z-z_{0}\right)} \frac{\partial}{\partial \bar{z}}\left(\mathbf{1}_{B_{r}\left(z_{0}\right)}\right) \\
& =\delta_{z_{0}}+\frac{1}{\pi\left(z-z_{0}\right)} \frac{\partial}{\partial \bar{z}}\left(\mathbf{1}_{B_{r}\left(z_{0}\right)}\right)
\end{aligned}
$$

Proof of CIF using localization of distributions continued:

In order to calculate the derivative

$$
\frac{\partial}{\partial \bar{z}}\left(\mathbf{1}_{B_{r}\left(z_{0}\right)}\right)
$$

one uses the divergence theorem as we did in a previous lecture (see Examples 4.21 and 5.24 in lecture notes):

$$
\left\langle\frac{\partial}{\partial \bar{z}}\left(\mathbf{1}_{B_{r}\left(z_{0}\right)}\right), \phi\right\rangle=-\frac{1}{2 \mathrm{i}} \int_{\partial B_{r}\left(z_{0}\right)} \phi(x, y) \mathrm{d} z
$$

for $\phi \in \mathscr{D}(\Omega)$. Combination of the above yields:

$$
\phi\left(x_{0}, y_{0}\right)=\frac{1}{2 \pi \mathrm{i}} \int_{\partial B_{r}\left(z_{0}\right)} \frac{\phi(x, y)}{z-z_{0}} \mathrm{~d} z-\frac{1}{\pi} \int_{B_{r}\left(z_{0}\right)} \frac{\frac{\partial \phi}{\partial \bar{z}}(x, y)}{z-z_{0}} \mathrm{~d}(x, y) .
$$

Proof of CIF using localization of distributions continued:

We must extend the formula to $f \in C^{1}(\Omega)$.
Take a cut-off function $\chi \in \mathscr{D}(\Omega)$ between $\overline{B_{r}\left(z_{0}\right)}$ and $\partial \Omega$. For instance, we can use

$$
\chi=\rho_{d} * \mathbf{1}_{B_{r+d}\left(z_{0}\right)}
$$

for $d=\operatorname{dist}\left(B_{r}\left(z_{0}\right), \partial \Omega\right) / 3$. Then define $\chi f=0$ on $\mathbb{R}^{2} \backslash \Omega$ and put

$$
\phi=\rho_{\varepsilon} *(\chi f)
$$

for $\varepsilon<d$. Hereby $\phi \in \mathscr{D}(\Omega)$ and so we get

$$
\begin{aligned}
\left(\rho_{\varepsilon} *(\chi f)\right)\left(x_{0}, y_{0}\right)= & \frac{1}{2 \pi \mathrm{i}} \int_{\partial B_{r}\left(z_{0}\right)} \frac{\left(\rho_{\varepsilon} *(\chi f)\right)(x, y)}{z-z_{0}} \mathrm{~d} z \\
& -\frac{1}{\pi} \int_{B_{r}\left(z_{0}\right)} \frac{\frac{\partial\left(\rho_{\varepsilon} *(\chi f)\right)}{\partial \bar{z}}(x, y)}{z-z_{0}} \mathrm{~d}(x, y) .
\end{aligned}
$$

The result now follows by passing to the limit $\varepsilon \searrow 0$ (Exercise: check that this is true!)

The support of a distribution:

Definition Let $u \in \mathscr{D}^{\prime}(\Omega)$. The support of $u, \operatorname{supp}(u)$, is the set of $x \in \Omega$ for which there is no open neighbourhood to which the restriction of u vanishes. Thus the complement $\Omega \backslash \operatorname{supp}(u)$ is the open set of all $x \in \Omega$ having an open neighbourhood in which u vanishes.
By the localization of distributions, the complement $\Omega \backslash \operatorname{supp}(u)$ therefore contains all open subsets of Ω where u vanishes and it is therefore the largest such open subset of Ω.

Note that $\operatorname{supp}(u)$ is a relatively closed subset of Ω and for $\phi \in \mathscr{D}(\Omega)$:

$$
\langle u, \phi\rangle=0 \text { when } \operatorname{supp}(u) \cap \operatorname{supp}(\phi)=\emptyset .
$$

Exercise: When $u \in C(\Omega)$ we have two definitions of support. Show that they are consistent.

The singular support of a distribution:

Definition Let $u \in \mathscr{D}^{\prime}(\Omega)$. The singular support of u, $\operatorname{sing} \cdot \operatorname{supp}(u)$, is the set of $x \in \Omega$ for which there is no open neighbourhood to which the restriction of u is a C^{∞} function. Thus the complement $\Omega \backslash \operatorname{sing} \cdot \operatorname{supp}(u)$ is the open set of all $x \in \Omega$ having an open neighbourhood in which u is a C^{∞} function.
By the localization of distributions, the complement $\Omega \backslash \operatorname{sing} . \operatorname{supp}(u)$ therefore contains all open subsets of Ω where u is a C^{∞} function and it is therefore the largest such open subset of Ω.

Note that sing.supp (u) is a relatively closed subset of Ω and that

$$
\text { sing. } \operatorname{supp}(u) \subseteq \operatorname{supp}(u)
$$

because the 0 -function in particular is C^{∞}.

Support and singular support example:

Let $x_{0} \in \Omega$ and ω be an open subset of Ω. Then

$$
\operatorname{supp}\left(\delta_{x_{0}}\right)=\operatorname{sing} \cdot \operatorname{supp}\left(\delta_{x_{0}}\right)=\left\{x_{0}\right\}
$$

and

$$
\begin{aligned}
& \operatorname{supp}\left(\mathbf{1}_{\omega}\right)=\bar{\omega} \cap \Omega, \\
& \operatorname{sing} \cdot \operatorname{supp}\left(\mathbf{1}_{\omega}\right)=\Omega \cap \partial \omega .
\end{aligned}
$$

Another extension of a distribution:

We have seen that a distribution on Ω of order at most k extends uniquely to $C_{c}^{k}(\Omega)$. We now turn to another extension that is sometimes useful and that is inspired by the notion of localization.

Let us start with the case of a regular distribution $u \in L_{\text {loc }}^{1}(\Omega)$. In this case we see from the fundamental lemma of the calculus of variations that

$$
u=0 \text { almost everywhere on } \Omega \backslash \operatorname{supp}(u)
$$

and therefore that the integral

$$
\int_{\Omega} u \phi \mathrm{~d} x
$$

is well-defined for all $\phi \in \mathrm{C}^{\infty}(\Omega)$ with $\operatorname{supp}(u) \cap \operatorname{supp}(\phi)$ compact. In fact, $\left\{\phi \in \mathrm{C}^{\infty}(\Omega): \operatorname{supp}(u) \cap \operatorname{supp}(\phi)\right.$ compact $\}$ is a vector subspace of $\mathrm{C}^{\infty}(\Omega)$ and the map

$$
\phi \mapsto \int_{\Omega} u \phi \mathrm{~d} x
$$

is linear there!

Another extension of a distribution:

Theorem Let $u \in \mathscr{D}^{\prime}(\Omega)$ and A be a relatively closed subset of Ω that contains the support of u. Then there exists a unique linear functional

$$
U:\left\{\phi \in \mathbb{C}^{\infty}(\Omega): A \cap \operatorname{supp}(\phi) \text { compact }\right\} \rightarrow \mathbb{C}
$$

satisfying

$$
U(\phi)=\langle u, \phi\rangle \text { for } \phi \in \mathscr{D}(\Omega)
$$

and

$$
U(\phi)=0 \text { for } \phi \in C^{\infty}(\Omega) \text { with } A \cap \operatorname{supp}(\phi)=\emptyset
$$

In fact, $U(\phi)=\langle u, \psi \phi\rangle$, where ψ is any $\psi \in \mathscr{D}(\Omega)$ with $\psi=1$ on $A \cap \operatorname{supp}(\phi)$, will do.

Remark The domain of U is largest when we take $A=\operatorname{supp}(u)$, but the uniqueness part of the statement is useful also for more general sets. We shall denote this unique extension of u by u again. Thus $U=u$ (though in the proof below we shall still use U.)

Proof of the extension theorem:

We start by remarking that the statement makes sense: the domain of U

$$
\left\{\phi \in C^{\infty}(\Omega): A \cap \operatorname{supp}(\phi) \text { compact }\right\}
$$

is easily seen to be a vector subspace of $C^{\infty}(\Omega)$.
Uniqueness: Let $\phi \in \mathrm{C}^{\infty}(\Omega)$ with $A \cap \operatorname{supp}(\phi)=: K$ compact. Take a cut-off function $\psi \in \mathscr{D}(\Omega)$ so $\psi=1$ near K. Write

$$
\phi=\psi \phi+(1-\psi) \phi
$$

and note that $\psi \phi \in \mathscr{D}(\Omega), A \cap \operatorname{supp}((1-\psi) \phi)=\emptyset$, so

$$
U(\phi)=U(\psi \phi)+U((1-\psi) \phi)=\langle u, \psi \phi\rangle .
$$

Any such extension of u must have this value at ϕ, so there can be at most one.

Proof of the extension theorem continued:

Existence: We saw that we must use $U(\phi)=\langle u, \psi \phi\rangle$ as definition. To see that it is feasible we must therefore check that for each $\phi \in \mathrm{C}^{\infty}(\Omega)$ with $A \cap \operatorname{supp}(\phi)$ compact this value is independent of the chosen cut-off functions ψ, and that it has the asserted properties.

Let $\psi_{i}(i=1,2)$ be two such cut-off functions: $\psi_{i} \in \mathscr{D}(\Omega)$ with $\psi_{i}=1$ near $K:=A \cap \operatorname{supp}(\phi)$. Then

$$
\psi_{i} \phi \in \mathscr{D}(\Omega) \text { and } \operatorname{supp}(u) \cap \operatorname{supp}\left(\left(\psi_{1}-\psi_{2}\right) \phi\right)=\emptyset,
$$

where the last set is empty because $\operatorname{supp}(u) \subseteq A$. It follows that $\left.\left\langle u,\left(\psi_{1}-\psi_{2}\right) \phi\right)\right\rangle=0$ and therefore that $\left\langle u, \psi_{1} \phi\right\rangle=\left\langle u, \psi_{2} \phi\right\rangle$. We can therefore consistently define $U(\phi):=\langle u, \psi \phi\rangle$ for ϕ in the prescribed subspace and ψ a corresponding cut-off function. It is routine to check that U hereby has the claimed properties.

Distributions of compact support: Any $u \in \mathscr{D}^{\prime}(\Omega)$ with $\operatorname{supp}(u)$ compact. We use the extension result in this case: let $\psi \in \mathscr{D}(\Omega)$ be a cut-off function between $\operatorname{supp}(u)$ and $\partial \Omega$. Then u admits a unique extension (denoted by u again) to

$$
\left\{\phi \in \mathrm{C}^{\infty}(\Omega): \operatorname{supp}(u) \cap \operatorname{supp}(\phi) \text { compact }\right\}=\mathrm{C}^{\infty}(\Omega)
$$

and we have seen that

$$
u(\phi):=\langle u, \psi \phi\rangle \text { for } \phi \in \mathbb{C}^{\infty}(\Omega)
$$

Corresponding to the compact set $K:=\operatorname{supp}(\psi)$ we find by the boundedness property of u two constants $c_{K} \geq 0, m_{K} \in \mathbb{N}_{0}$ so

$$
|u(\phi)|=|\langle u, \psi \phi\rangle| \leq c_{K} \sum_{|\alpha| \leq m_{K}} \sup \left|\partial^{\alpha}(\psi \phi)\right|
$$

for all $\phi \in \mathrm{C}^{\infty}(\Omega)$.

Distributions of compact support continued:

By the Leibniz rule we have

$$
\partial^{\alpha}(\psi \phi)=\sum_{\beta \leq \alpha}\binom{\alpha}{\beta} \partial^{\beta} \psi \partial^{\alpha-\beta} \phi
$$

and so if $c(m, n)$ is the number of multi-indices $\alpha \in \mathbb{N}_{0}^{n}$ of length $|\alpha| \leq m$ we have

$$
\begin{equation*}
|u(\phi)| \leq c \sum_{|\alpha| \leq m} \sup _{K}\left|\partial^{\alpha} \phi\right|, \tag{1}
\end{equation*}
$$

where we can use the constants

$$
c=c_{K} 2^{m_{K}} c\left(n, m_{K}\right) \max _{|\alpha| \leq m_{K}} \sup \left|\partial^{\alpha} \psi\right| \text { and } m=m_{K}
$$

We note that (1) holds for all $\phi \in \mathrm{C}^{\infty}(\Omega)$ and it shows in particular that the distribution u has order at most m. In particular we conclude that a distribution of compact support always has finite order, and that it admits a unique extension to $\mathrm{C}^{\infty}(\Omega)$ satisfying the boundedness property (1). In the next lecture we will see that the converse is also true.

