B4.3 Distribution Theory MT20

Lecture 13: Distributions of compact support and convolution

Characterization of distributions of compact support
Discussion of the boundedness property

Distributions supported at a single point

Convolution of distribution with test function revisited

o s~ b=

Convolution of a compactly supported distribution with a C* function

The material corresponds to pp. 59-65 in the lecture notes and should be
covered in Week 7.
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Distributions of compact support: Let u € 2'(Q2) be a compactly
supported distribution on £, a non-empty open subset of R”.

In the last lecture we saw that, given any ¢ € 2(Q) satisfying ©» = 1 on
supp(v) the functional

C*(Q2) 3 ¢ = (u,¢9)

is independent of the choice of ¢ and defines an extension of u.
Furthermore this is the unique such extension satisfying the condition that
it vanishes on ¢ € C*>(Q) with supp(u) N supp(¢) = 0. We therefore also
denote this extension by u.

Corresponding to the compact neighbourhood K = supp(#) of supp(u) we
found constants ¢ = cx > 0, m = mk € Ny so

(w.)| < ¢ 3 suplod) (1)

laf<m

holds for all ¢ € C*°(Q).
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Definition of the class &’(Q): it is the set of all linear functionals
v: C(Q) — C for which there exist a compact subset L of Q and
constants ¢ > 0, m € Ng such that

V(@) <e > Slzplaacbl (@)

|| <m
holds for all ¢ € C*°(Q2). (L. Schwartz who also wrote &(2) for C*(Q2).)

We refer to a bound of the form (2) as an &’ bound and note that any
compactly supported distribution on  admits a unique extension to
C*°(Q) that belongs to &”(R2).

It is clear that &”(2) is a vector space under the usual definitions of
addition and multiplication with scalar.
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What are the functionals in the class &’(Q2)?

Assume v € &7(Q), so v: C®(Q) — C is a linear functional satisfying an
&'-bound (say (2) holds).

Then the restriction of v to Z(Q), v|g(q), is a distribution on Q:
it is clearly linear and by the &’-bound (2) it has the boundedness property.

The restriction also has compact support contained in L:
if ¢ € 2(Q2) and supp(¢) N L = (), then we infer from the &”’-bound (2)
that v(¢) = 0. Therefore

supp(v|g(q)) € L, a compact subset of Q.
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Characterization of &’(Q2) and compactly supported distributions:
Let ©Q be a non-empty open subset of R". Then the set of all compactly
supported distributions on Q coincides with &”(Q2) in the following sense:

(i) A compactly supported distribution u € 2'(Q2) admits a unique
extension to a functional U € &’(Q). If ¢ € 2(Q) satisfies 1) = 1 on
supp(u), then U(¢) = (u,¢) for all ¢ € C>(Q2) and the definition is
independent of 1. In the & bound for U we can take any compact
neighbourhood K of supp(u) (and it is important to note that the
corresponding constants ¢k, mk in general depend on K).

(i) The restriction of a functional U € &'(Q) to 2(Q), U|y(q), is a
compactly supported distribution on Q. If L is the compact set appearing
in the &” bound (2) for U, then the support of the distribution U|gq) will
be contained in L.

Notation We do not distinguish between v and U and denote both simply
by wu.
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BN
A subtle point about the &’ bound

When v € 2'(2) has compact support, then its unique extension to a
functional in &”7(Q) is found by taking 1 € 2(Q2) so ¢ = 1 on supp(u) and
putting u(¢p) = (u,v¢) for all p € C>°(R). Using the boundedness
property of u on the compact set K = supp()) we get an &’ bound for the
extension:

(@) <c 3 suplorg] o e Q)

la|<m

where the contants ¢ = cx and m = mg will depend on K in general.

Here the set K is a compact neighbourhood of supp(u): a compact set
containing supp(u) in its interior.

It is in general not possible to obtain an &’ bound for the extension of u
with the compact set K replaced by supp(u).

Lecture 13 (B4.3) MT20 6 /20



Example Define for ¢ € C*(R),

Because (use FTC)
¢(3) = o(—})
J

the series converges absolutely for each ¢. It is then routine to check that
u: C*(R) — C is a linear functional with the boundedness property

oo
1 !
[(u, )| < (212112) max |¢'] Vo CU(R)
Thus u € &'(R) and so the restriction of u to 2(R) is a distribution with
compact support (and of order at most 1.)
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Example continued... Note that if x ¢ A, where

A={L:jez\{0}}u{o}

then r = dist(x, A) > 0 and so AN (x — r,x + r) = (). Thus for all
¢ € Z(R) with supp(¢) C (x — r,x + r) we have (u,¢) = 0. Therefore
supp(u) C A and it is not difficult to see that in fact supp(u) = A: if
x € A, then

P(y) = pely —x—¢)
is a test function with support [x, x + 2¢] and (u, ¢) # 0 for all sufficiently
small e > 0.

Could we have an &’ bound for u with the compact set K = supp(u)?
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Example continued... Assume we did have such a bound: there exist
constants ¢ > 0, m € Ny so (with K = supp(u))

¢>‘ < CZSUp‘QS(k)‘
k=0 K

holds for all ¢ € C*°(R). We claim this cannot be true! To see this fix

s € Nso .
1
Z j > C.
j=1
Define
¢ = pex 1[ —e,1+¢€]
with € € (0, »; S+1)) Then ¢ € Z(R) and

¢ =1 near [%, 1]
¢ = 0 near supp(u) \ [%, 1]
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Example continued... According to the assumed &’ bound we have by
construction of ¢:

[(u,0)| < ¢ suple®] =c,
k=0 K

but by the definition of u we also get

[e's) 1y _ _1 s
<u,¢>=ZM L,

Jj=1

By our choice of s this is the required contradiction.

Conclusion: For a compactly supported distribution u we can for each
compact neighbourhood K of its support obtain an &’ bound:

u(@)l < c > supld®g| V¢ e CP(Q)
la|<m

The constants ¢ = cx, m = myg depend on the set K and will in general
diverge when we shrink the compact neighbourhood K to supp(u).
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But &’ bounds with K = supp(uv) hold in special cases:

(1) Let xp € Q2 and o € N be a multi-index. Then u = 0%, is a
compactly supported distribution on Q with supp(v) = {xp}. We clearly
have the &’ bound

[(u, 0)| < [(979) (x0)| Vo€ C¥(Q)

(2) Let v € LL .(Q). It can be shown that

supp(v) = {x € Q: lv(y)|dy >0 forall r>0}.
QNB,(x)

If K = supp(v) is compact, then we have the &’ bound

(v < [ Iyl dymaxlo] o e Cx(@)
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Characterization of distributions supported at a single point

Theorem Let Q be a non-empty open subset of R” and xg € Q. If
u € 2'(Q) and supp(u) = {xo}, then there exist m € Ng and ¢, € C
corresponding to multi-indices o € N{ of lengths at most m, so

U= cad.

la|<m

This an important result, but its proof is not examinable (though you can
find it in the lecture notes).
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BN
Example Find all distributions u € Z'(R) satisfying xu = 0 in 2'(R).
Assume u is a solution. If xg # 0, say xp > 0, and ¢ € Z(R) is supported
in (0,00), then ¥(x) = ¢(x)/x, x € R, is a test function. Therefore
0= (xu,v) = (u,xy) = (u, ¢), and so by definition of support,
xo ¢ supp(u). We argue similarly for xp < 0, so supp(u) C {xo}. If the
support is empty then u = 0 and if the support is non-empty, then it must
be {xo}. But then the characterization of distributions of point support
gives that

ue span{éék) ke No}.

)

It is easy to check that ¢y satisfies the equation. What about 6(()k for

k € N? We calculate for ¢ € Z(IR) using definitions:
(x84, 6) = (~1)" (B0, & (x())) = (~D*ks*~D(0)

that clearly does not vanish for all ¢. Therefore 5(()k) are not solutions for
k € N. We conclude that u must have the form cdg for some ¢ € C, and
as it is easily seen that these distributions indeed all are solutions this must
be the general solution.
Lecture 13 (B4.3) MT20 13 /20



Convolution of distribution with test function revisited

Recall that we used the adjoint identity scheme to define the convolution of
ue 2'(R") with 6 € 2(R"): ux0 € 2'(R") is given by rule

(ux0,¢) = (u,0x¢) forpe Z(R")

where 8(x) := 6(—x). Likewise we defined 6 * u, but since 6 x ¢ = ¢ * § we
have u* 6 = 0 x u. We furthermore proved that

(i) w6 e Co(Rn),
(i) (ux0)(x) = (u,0(x —")), x € R",
(iii) 0%(u=0) = (0“u) * 0 = u = (0*0) for all o € N.

Lemma about support of convolution For u € 2'(R"), § € 2(R") we
have

supp(u * ) C supp(u) + supp(0).
(It is an exercise to show that the right-hand side is a closed set.)
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Proof of Lemma about support of convolution: Since u* 6 € C*(R")
the support of u x 6 as a distribution is the same as the support as a
continuous function, so is the closure of the set {x € R" : (u x 6)(x) # 0}.
Now note that

(U 0)(x) = (u,6(x =) = (u,6(- = x)) = (u,7-xb),
so (u* 0)(x) = 0 when supp(u) Nsupp(7_xf) = 0. Put
A= {x € R": supp(u) Nsupp(r_xf) = 0}.

We have shown that ux 6 =0 on A.
We claim that A is an open set. Indeed, because supp(u) is closed and
supp(7_xf) is compact we have that supp(u) N supp(7_xf) = 0 if and
only if

dist(supp(u), supp(r_x6)) > 0,

so A must be open (why?). Since u*6 =0 on A we must have
supp(u * 6) CR"\ A.
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Proof of Lemma about support of convolution continued...

We must relate supp(u) + supp(€) to A.
If x ¢ supp(u) + supp(d), then x — y ¢ supp(u) for all y € supp(#), that
is, (x —supp(#)) Nsupp(u) = 0. But

x — supp(#) = x + supp(f) = supp(7_0),
so it follows that x € A. Consequently,
R"\ (supp(u) + supp(9)) € A,

and therefore
R™\ A C supp(u) + supp(0)

concluding the proof O
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Convolution of compactly supported distribution with C* function
We proceed similarly to the adjoint identity scheme and start by observing
that for § € C*°(R") and ¢, 1) € 2(R") we have ¥ * 6, 8 x ¢ € C(R").
We may now apply Fubini's theorem to obtain the following adjoint identity
variant:

[ w0yodx= [ w(dss)ix (3)

Definition Let v € &’(R") and 0 € C*°(R"). We then define v x 6 by the
rule

(v+0,¢) = <v,§*¢>
for o € 2(R").

Hereby v« 0: 2(R") — C is a well-defined linear functional. To see that it
is a distribution on R” we must check that it is & continuous (or that it
has the boundedness property). Suppose ¢; — 0 in Z(R") and consider

(vx0,¢)) = (v,0 ;).
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Convolution of compactly supported distribution with C* function
Because v € &'(R") it satisfies an &” bound: for a compact set L in R”
and constants ¢ > 0, m € Ny we have

[(v.0)] <c ) stip\é?o‘(ﬁ\ (4)

|a|<m

for all ¢ € C*°(R"). Next, because ¢; — 0 in Z(R") we find a compact
subset K of R" so supp(¢;) € K for all j and

sup |09 — 0
]Rn
for all multi-indices 8 € Ng. Now if o € Nj and |a| < m, then

sup|0%(B+ 6))| < sup / 60y — x)(0°6;)(y)| dy
L K

xEL
< / 16] dy sup [
K—L RN

and therefore in view of (4), (v * 6, ¢;) — 0, as required.
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Convolution of compactly supported distribution with C* function

So v e Z'(R") when v € &'(R"), 0 € C°(R"). We note that because
of the adjoint identity variant (3) the distributional definition is consistent
with the usual definition when v € 2(R").

Defining 0 * v by the rule (6« v, ¢) = (v, ¢ *NGN) for p € Z(R") we get
nothing new: 6 x v = v x 0 because ¢ 0 = 0 % ¢ for all p € Z(R").
Lemma Let v € &'(R"), § € C*°(R"). Then

(i) v« € C®(R") and (v*0)(x) = (v,0(x —)), x € R",

(i) 0%(v0) = (0"v)* 8 = v = (0“0) for all & € N,
(iii) supp(v * #) C supp(v) + supp(0).

We omit the proofs that are, up to minor adaptations, the same as those
we gave for ux 6 when u € 2'(R"), 6 € 2(R").
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Looking ahead to next lecture...
If v e &(R") and 6 € Z(R"), then the lemma gives v x § € C*°(R") and

supp(v * ) C supp(v) + supp(0).

Since both supports on the right-hand side are compact, so is their sum,
hence also supp(v ) is compact and thus v x 6 € Z(R") in this case.
We also record that the operations dilation with r > 0, d,v, L dilation
with r > 0, v, = r~"d,-1v, translation by h € R", 7,v, and reflection in
the origin, v, all map &’(R") to itself.

How should we define ux v when v € 2’'(R") and v € &'(R")?
It is the distribution defined by the rule

(usv, @) =(u,Vx9), ¢eIR).

Since 7 x ¢ € Z(R") the definition makes sense and we will show it is a
distribution on R" and investigate some of its properties in the next lecture.
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