
B4.3 Distribution Theory MT20

Lecture 13: Distributions of compact support and convolution

1. Characterization of distributions of compact support
2. Discussion of the boundedness property
3. Distributions supported at a single point
4. Convolution of distribution with test function revisited
5. Convolution of a compactly supported distribution with a C∞ function

The material corresponds to pp. 59–65 in the lecture notes and should be
covered in Week 7.
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Distributions of compact support: Let u ∈ D ′(Ω) be a compactly
supported distribution on Ω, a non-empty open subset of Rn.

In the last lecture we saw that, given any ψ ∈ D(Ω) satisfying ψ = 1 on
supp(u) the functional

C∞(Ω) ∋ ϕ 7→ ⟨u, ψϕ⟩

is independent of the choice of ψ and defines an extension of u.
Furthermore this is the unique such extension satisfying the condition that
it vanishes on ϕ ∈ C∞(Ω) with supp(u) ∩ supp(ϕ) = ∅. We therefore also
denote this extension by u.

Corresponding to the compact neighbourhood K = supp(ψ) of supp(u) we
found constants c = cK ≥ 0, m = mK ∈ N0 so∣∣⟨u, ϕ⟩∣∣ ≤ c

∑
|α|≤m

sup
K

|∂αϕ| (1)

holds for all ϕ ∈ C∞(Ω).
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Definition of the class E ′(Ω): it is the set of all linear functionals
v : C∞(Ω) → C for which there exist a compact subset L of Ω and
constants c ≥ 0, m ∈ N0 such that∣∣v(ϕ)∣∣ ≤ c

∑
|α|≤m

sup
L

|∂αϕ| (2)

holds for all ϕ ∈ C∞(Ω). (L. Schwartz who also wrote E (Ω) for C∞(Ω).)

We refer to a bound of the form (2) as an E ′ bound and note that any
compactly supported distribution on Ω admits a unique extension to
C∞(Ω) that belongs to E ′(Ω).

It is clear that E ′(Ω) is a vector space under the usual definitions of
addition and multiplication with scalar.
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What are the functionals in the class E ′(Ω)?

Assume v ∈ E ′(Ω), so v : C∞(Ω) → C is a linear functional satisfying an
E ′-bound (say (2) holds).

Then the restriction of v to D(Ω), v |D(Ω), is a distribution on Ω:
it is clearly linear and by the E ′-bound (2) it has the boundedness property.

The restriction also has compact support contained in L:
if ϕ ∈ D(Ω) and supp(ϕ) ∩ L = ∅, then we infer from the E ′-bound (2)
that v(ϕ) = 0. Therefore

supp(v |D(Ω)) ⊆ L, a compact subset of Ω.
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Characterization of E ′(Ω) and compactly supported distributions:
Let Ω be a non-empty open subset of Rn. Then the set of all compactly
supported distributions on Ω coincides with E ′(Ω) in the following sense:

(i) A compactly supported distribution u ∈ D ′(Ω) admits a unique
extension to a functional U ∈ E ′(Ω). If ψ ∈ D(Ω) satisfies ψ = 1 on
supp(u), then U(ϕ) = ⟨u, ψϕ⟩ for all ϕ ∈ C∞(Ω) and the definition is
independent of ψ. In the E ′ bound for U we can take any compact
neighbourhood K of supp(u) (and it is important to note that the
corresponding constants cK , mK in general depend on K ).

(ii) The restriction of a functional U ∈ E ′(Ω) to D(Ω), U|D(Ω), is a
compactly supported distribution on Ω. If L is the compact set appearing
in the E ′ bound (2) for U, then the support of the distribution U|D(Ω) will
be contained in L.

Notation We do not distinguish between u and U and denote both simply
by u.
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A subtle point about the E ′ bound

When u ∈ D ′(Ω) has compact support, then its unique extension to a
functional in E ′(Ω) is found by taking ψ ∈ D(Ω) so ψ = 1 on supp(u) and
putting u(ϕ) = ⟨u, ψϕ⟩ for all ϕ ∈ C∞(Ω). Using the boundedness
property of u on the compact set K = supp(ψ) we get an E ′ bound for the
extension:

|u(ϕ)| ≤ c
∑
|α|≤m

sup
K

|∂αϕ| ∀ϕ ∈ C∞(Ω)

where the contants c = cK and m = mK will depend on K in general.

Here the set K is a compact neighbourhood of supp(u): a compact set
containing supp(u) in its interior.

It is in general not possible to obtain an E ′ bound for the extension of u
with the compact set K replaced by supp(u).
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Example Define for ϕ ∈ C∞(R),

⟨u, ϕ⟩ =
∞∑
j=1

ϕ(1
j )− ϕ(−1

j )

j
.

Because (use FTC)∣∣∣∣∣ϕ(
1
j )− ϕ(−1

j )

j

∣∣∣∣∣ =

∣∣∣∣∫ 1

0

(
ϕ′
(
t
j

)
+ ϕ′

(
− t

j

)) dt
j2

∣∣∣∣
≤ 2

j2
max
|x |≤1

∣∣ϕ′(x)∣∣
the series converges absolutely for each ϕ. It is then routine to check that
u : C∞(R) → C is a linear functional with the boundedness property

∣∣⟨u, ϕ⟩∣∣ ≤
2

∞∑
j=1

1
j2

 max
[−1,1]

|ϕ′| ∀ϕ ∈ C∞(R)

Thus u ∈ E ′(R) and so the restriction of u to D(R) is a distribution with
compact support (and of order at most 1.)
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Example continued... Note that if x /∈ A, where

A =
{1

j : j ∈ Z \ {0}
}
∪
{
0
}

then r = dist(x ,A) > 0 and so A ∩ (x − r , x + r) = ∅. Thus for all
ϕ ∈ D(R) with supp(ϕ) ⊂ (x − r , x + r) we have ⟨u, ϕ⟩ = 0. Therefore
supp(u) ⊆ A and it is not difficult to see that in fact supp(u) = A: if
x ∈ A, then

ϕ(y) = ρε(y − x − ε)

is a test function with support [x , x + 2ε] and ⟨u, ϕ⟩ ̸= 0 for all sufficiently
small ε > 0.

Could we have an E ′ bound for u with the compact set K = supp(u)?
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Example continued... Assume we did have such a bound: there exist
constants c ≥ 0, m ∈ N0 so (with K = supp(u))

∣∣⟨u, ϕ⟩∣∣ ≤ c
m∑

k=0

sup
K

∣∣ϕ(k)∣∣
holds for all ϕ ∈ C∞(R). We claim this cannot be true! To see this fix
s ∈ N so

s∑
j=1

1
j > c .

Define
ϕ = ρε ∗ 1

[
1
s −ε,1+ε]

with ε ∈ (0, 1
2s(s+1)). Then ϕ ∈ D(R) and

ϕ = 1 near [1s , 1]
ϕ = 0 near supp(u) \ [1s , 1]
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Example continued... According to the assumed E ′ bound we have by
construction of ϕ: ∣∣⟨u, ϕ⟩∣∣ ≤ c

m∑
k=0

sup
K

∣∣ϕ(k)∣∣ = c ,

but by the definition of u we also get

⟨u, ϕ⟩ =
∞∑
j=1

ϕ(1
j )− ϕ(−1

j )

j
=

s∑
j=1

1
j .

By our choice of s this is the required contradiction.

Conclusion: For a compactly supported distribution u we can for each
compact neighbourhood K of its support obtain an E ′ bound:

|u(ϕ)| ≤ c
∑
|α|≤m

sup
K

|∂αϕ| ∀ϕ ∈ C∞(Ω)

The constants c = cK , m = mK depend on the set K and will in general
diverge when we shrink the compact neighbourhood K to supp(u).
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But E ′ bounds with K = supp(u) hold in special cases:
(1) Let x0 ∈ Ω and α ∈ Nn

0 be a multi-index. Then u = ∂αδx0 is a
compactly supported distribution on Ω with supp(u) = {x0}. We clearly
have the E ′ bound∣∣⟨u, ϕ⟩∣∣ ≤ ∣∣(∂αϕ)(x0)

∣∣ ∀ϕ ∈ C∞(Ω)

(2) Let v ∈ L1
loc(Ω). It can be shown that

supp(v) =
{
x ∈ Ω :

∫
Ω∩Br (x)

|v(y)| dy > 0 for all r > 0
}
.

If K = supp(v) is compact, then we have the E ′ bound∣∣⟨v , ϕ⟩∣∣ ≤ ∫
K
|v(y)| dy max

K
|ϕ| ∀ϕ ∈ C∞(Ω)

Lecture 13 (B4.3) MT20 11 / 20



Characterization of distributions supported at a single point

Theorem Let Ω be a non-empty open subset of Rn and x0 ∈ Ω. If
u ∈ D ′(Ω) and supp(u) = {x0}, then there exist m ∈ N0 and cα ∈ C
corresponding to multi-indices α ∈ Nn

0 of lengths at most m, so

u =
∑
|α|≤m

cα∂
αδx0 .

This an important result, but its proof is not examinable (though you can
find it in the lecture notes).
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Example Find all distributions u ∈ D ′(R) satisfying xu = 0 in D ′(R).
Assume u is a solution. If x0 ̸= 0, say x0 > 0, and ϕ ∈ D(R) is supported
in (0,∞), then ψ(x) = ϕ(x)/x , x ∈ R, is a test function. Therefore
0 = ⟨xu, ψ⟩ = ⟨u, xψ⟩ = ⟨u, ϕ⟩, and so by definition of support,
x0 /∈ supp(u). We argue similarly for x0 < 0, so supp(u) ⊆ {x0}. If the
support is empty then u = 0 and if the support is non-empty, then it must
be {x0}. But then the characterization of distributions of point support
gives that

u ∈ span
{
δ
(k)
0 : k ∈ N0

}
.

It is easy to check that δ0 satisfies the equation. What about δ(k)0 for
k ∈ N? We calculate for ϕ ∈ D(R) using definitions:

⟨xδ(k)0 , ϕ⟩ = (−1)k⟨δ0, dk

dxk (xϕ(x))⟩ = (−1)kkϕ(k−1)(0)

that clearly does not vanish for all ϕ. Therefore δ(k)0 are not solutions for
k ∈ N. We conclude that u must have the form cδ0 for some c ∈ C, and
as it is easily seen that these distributions indeed all are solutions this must
be the general solution.
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Convolution of distribution with test function revisited

Recall that we used the adjoint identity scheme to define the convolution of
u ∈ D ′(Rn) with θ ∈ D(Rn): u ∗ θ ∈ D ′(Rn) is given by rule

⟨u ∗ θ, ϕ⟩ = ⟨u, θ̃ ∗ ϕ⟩ for ϕ ∈ D(Rn)

where θ̃(x) := θ(−x). Likewise we defined θ ∗ u, but since θ̃ ∗ ϕ = ϕ ∗ θ̃ we
have u ∗ θ = θ ∗ u. We furthermore proved that
(i) u ∗ θ ∈ C∞(Rn),
(ii) (u ∗ θ)(x) = ⟨u, θ(x − ·)⟩, x ∈ Rn,
(iii) ∂α(u ∗ θ) = (∂αu) ∗ θ = u ∗ (∂αθ) for all α ∈ Nn

0.

Lemma about support of convolution For u ∈ D ′(Rn), θ ∈ D(Rn) we
have

supp(u ∗ θ) ⊆ supp(u) + supp(θ).

(It is an exercise to show that the right-hand side is a closed set.)
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Proof of Lemma about support of convolution: Since u ∗ θ ∈ C∞(Rn)
the support of u ∗ θ as a distribution is the same as the support as a
continuous function, so is the closure of the set {x ∈ Rn : (u ∗ θ)(x) ̸= 0}.
Now note that

(u ∗ θ)(x) = ⟨u, θ(x − ·)⟩ = ⟨u, θ̃(· − x)⟩ = ⟨u, τ−x θ̃⟩,

so (u ∗ θ)(x) = 0 when supp(u) ∩ supp(τ−x θ̃) = ∅. Put

A =
{
x ∈ Rn : supp(u) ∩ supp(τ−x θ̃) = ∅

}
.

We have shown that u ∗ θ = 0 on A.
We claim that A is an open set. Indeed, because supp(u) is closed and
supp(τ−x θ̃) is compact we have that supp(u) ∩ supp(τ−x θ̃) = ∅ if and
only if

dist(supp(u), supp(τ−x θ̃)) > 0,

so A must be open (why?). Since u ∗ θ = 0 on A we must have
supp(u ∗ θ) ⊆ Rn \ A.
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Proof of Lemma about support of convolution continued...

We must relate supp(u) + supp(θ) to A.
If x /∈ supp(u) + supp(θ), then x − y /∈ supp(u) for all y ∈ supp(θ), that
is, (x − supp(θ)) ∩ supp(u) = ∅. But

x − supp(θ) = x + supp(θ̃) = supp(τ−x θ̃),

so it follows that x ∈ A. Consequently,

Rn \
(
supp(u) + supp(θ)

)
⊆ A,

and therefore
Rn \ A ⊆ supp(u) + supp(θ)

concluding the proof □
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Convolution of compactly supported distribution with C∞ function
We proceed similarly to the adjoint identity scheme and start by observing
that for θ ∈ C∞(Rn) and ϕ, ψ ∈ D(Rn) we have ψ ∗ θ, θ̃ ∗ ϕ ∈ C∞(Rn).
We may now apply Fubini’s theorem to obtain the following adjoint identity
variant: ∫

Rn

(ψ ∗ θ)ϕ dx =

∫
Rn

ψ(θ̃ ∗ ϕ) dx . (3)

Definition Let v ∈ E ′(Rn) and θ ∈ C∞(Rn). We then define v ∗ θ by the
rule

⟨v ∗ θ, ϕ⟩ = ⟨v , θ̃ ∗ ϕ⟩

for ϕ ∈ D(Rn).

Hereby v ∗ θ : D(Rn) → C is a well-defined linear functional. To see that it
is a distribution on Rn we must check that it is D continuous (or that it
has the boundedness property). Suppose ϕj → 0 in D(Rn) and consider

⟨v ∗ θ, ϕj⟩ = ⟨v , θ̃ ∗ ϕj⟩.
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Convolution of compactly supported distribution with C∞ function
Because v ∈ E ′(Rn) it satisfies an E ′ bound: for a compact set L in Rn

and constants c ≥ 0, m ∈ N0 we have∣∣⟨v , ϕ⟩∣∣ ≤ c
∑
|α|≤m

sup
L

∣∣∂αϕ∣∣ (4)

for all ϕ ∈ C∞(Rn). Next, because ϕj → 0 in D(Rn) we find a compact
subset K of Rn so supp(ϕj) ⊆ K for all j and

sup
Rn

|∂βϕj | → 0

for all multi-indices β ∈ Nn
0. Now if α ∈ Nn

0 and |α| ≤ m, then

sup
L

∣∣∂α(θ̃ ∗ ϕj)∣∣ ≤ sup
x∈L

∫
K
|θ(y − x)(∂αϕj)(y)| dy

≤
∫
K−L

|θ| dy sup
Rn

|∂αϕj |

and therefore in view of (4), ⟨v ∗ θ, ϕj⟩ → 0, as required.
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Convolution of compactly supported distribution with C∞ function

So v ∗ θ ∈ D ′(Rn) when v ∈ E ′(Rn), θ ∈ C∞(Rn). We note that because
of the adjoint identity variant (3) the distributional definition is consistent
with the usual definition when v ∈ D(Rn).

Defining θ ∗ v by the rule ⟨θ ∗ v , ϕ⟩ = ⟨v , ϕ ∗ θ̃⟩ for ϕ ∈ D(Rn) we get
nothing new: θ ∗ v = v ∗ θ because ϕ ∗ θ̃ = θ̃ ∗ ϕ for all ϕ ∈ D(Rn).

Lemma Let v ∈ E ′(Rn), θ ∈ C∞(Rn). Then
(i) v ∗ θ ∈ C∞(Rn) and (v ∗ θ)(x) = ⟨v , θ(x − ·)⟩, x ∈ Rn,
(ii) ∂α(v ∗ θ) = (∂αv) ∗ θ = v ∗ (∂αθ) for all α ∈ Nn

0,
(iii) supp(v ∗ θ) ⊆ supp(v) + supp(θ).

We omit the proofs that are, up to minor adaptations, the same as those
we gave for u ∗ θ when u ∈ D ′(Rn), θ ∈ D(Rn).
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Looking ahead to next lecture...

If v ∈ E ′(Rn) and θ ∈ D(Rn), then the lemma gives v ∗ θ ∈ C∞(Rn) and

supp(v ∗ θ) ⊆ supp(v) + supp(θ).

Since both supports on the right-hand side are compact, so is their sum,
hence also supp(v ∗ θ) is compact and thus v ∗ θ ∈ D(Rn) in this case.
We also record that the operations dilation with r > 0, drv , L1 dilation
with r > 0, vr = r−ndr−1v , translation by h ∈ Rn, τhv , and reflection in
the origin, ṽ , all map E ′(Rn) to itself.

How should we define u ∗ v when u ∈ D ′(Rn) and v ∈ E ′(Rn)?
It is the distribution defined by the rule

⟨u ∗ v , ϕ⟩ = ⟨u, ṽ ∗ ϕ⟩, ϕ ∈ D(Rn).

Since ṽ ∗ ϕ ∈ D(Rn) the definition makes sense and we will show it is a
distribution on Rn and investigate some of its properties in the next lecture.
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