
B4.3 Distribution Theory MT20

Lecture 14: Convolution of distributions one of which has compact support

1. The definition and making sense of it
2. Examples
3. The convolution product is ‘commutative’
4. The differentiation rule for convolution products
5. The support rule for convolution products

The material corresponds to pp. 61–66 in the lecture notes and should be
covered in Week 7.
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Definition of convolution of two distributions one of which has
compact support: Let u ∈ D ′(Rn) and v ∈ E ′(Rn). We then define u ∗ v
and v ∗ u by the rules

⟨u ∗ v , ϕ⟩ = ⟨u, ṽ ∗ ϕ⟩, ϕ ∈ D(Rn)

and
⟨v ∗ u, ϕ⟩ = ⟨v , ũ ∗ ϕ⟩, ϕ ∈ D(Rn),

respectively.

Well-defined? –Yes, u ∗ v is since ṽ ∗ ϕ ∈ D(Rn). Inspection then shows
u ∗ v : D(Rn) → C is linear. Likewise, for v ∗ u since ũ ∗ ϕ ∈ C∞(Rn).
Recall also that we have the commutativity ṽ ∗ϕ = ϕ∗ ṽ and ũ ∗ϕ = ϕ∗ ũ.

Remark It is not possible to define a useful convolution product for two
arbitrary distributions. We confine attention to the case where one of the
distributions has compact support, though it is possible, and useful, to
define convolution in wider generality. For instance, we already did an
aspect of that when we defined convolution of two L1 functions.
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The convolution products u ∗ v and v ∗ u are distributions

We must show they are D continuous, or equivalently, that they have the
boundedness property. We show that v ∗ u has the boundedness property
and leave the corresponding result for u ∗ v as an exercise.

Fix a compact set K in Rn and let ϕ ∈ D(K ).

Since v ∈ E ′(Rn) it satisfies an E ′ bound: there exist a compact set L in
Rn and constants c ≥ 0, m ∈ N0 so∣∣⟨v , ψ⟩∣∣ ≤ c

∑
|α|≤m

sup
L

∣∣∂αψ∣∣ ∀ψ ∈ C∞(Rn)

We use this with ψ = ũ ∗ ϕ and note that ∂α(ũ ∗ ϕ) = ũ ∗ (∂αϕ) so∣∣⟨v ∗ u, ϕ⟩
∣∣ ≤ c

∑
|α|≤m

sup
L

∣∣ũ ∗ (∂αϕ)
∣∣. (1)
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They are distributions continued...

Here we have (ũ ∗ (∂αϕ))(x) = ⟨u, τ−x(∂
αϕ)⟩ and so, if x ∈ L, then

supp
(
τ−x(∂

αϕ)
)
⊆ K + x ⊆ K + L. We therefore employ the boundedness

property of u on the compact set K + L to find constants C ≥ 0, M ∈ N0
so ∣∣⟨u, ψ⟩∣∣ ≤ C

∑
|β|≤M

sup
∣∣∂βψ∣∣ ∀ψ ∈ D(K + L)

Take ψ = τ−x(∂
αϕ) to get

sup
x∈L

∣∣(ũ ∗ (∂αϕ))(x)
∣∣ ≤ sup

x∈L
C

∑
|β|≤M

sup
y∈Rn

∣∣∂βτ−x(∂
αϕ)(y)

∣∣
≤ C

∑
|β|≤M+m

sup |∂βϕ|

Plug this into (1) to conclude that v ∗ u satisfies a boundedness property
on K .
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Further properties of compactly supported distributions

Lemma 1. Let
(
ρε
)
ε>0 be the standard mollifier on Rn. If v ∈ E ′(Rn),

then ρε ∗ v ∈ D(Rn), supp(ρε ∗ v) ⊆ supp(v) + Bε(0) and

⟨ρε ∗ v , ϕ⟩ → ⟨v , ϕ⟩ as ε↘ 0

for each ϕ ∈ C∞(Rn).

Except for the convergence everything has been proved before. The
convergence follows if one makes use of an E ′ bound for v . We leave the
details as an exercise. In fact, the same argument gives a continuity
property for compactly supported distributions that we highlight:

Lemma 2. Let v ∈ E ′(Rn). If (ϕj) is a sequence in C∞(Rn) so that for
each multi-index α ∈ Nn

0, ∂
αϕj → 0 locally uniformly on Rn, then

⟨v , ϕj⟩ → 0.
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Example Let α ∈ Nn
0 and u ∈ D ′(Rn). Then(

∂αδ0
)
∗ u = ∂αu.

Why? – Because supp(∂αδ0) = {0} is compact, the convolution is defined
as a distribution. For ϕ ∈ D(Rn) we calculate using definitions:

⟨(
(
∂αδ0

)
∗ u), ϕ⟩ = ⟨u,

(̃
∂αδ0

)
∗ ϕ⟩.

Here we have, using among other results a lemma from last lecture,

(
(̃
∂αδ0

)
∗ ϕ)(x) =

⟨(̃
∂αδ0

)
, ϕ(x − ·)

⟩
=

⟨
∂αδ0, ϕ(·+ x)

⟩
=

⟨
δ0, (−1)|α|(∂αϕ)(·+ x)

⟩
= (−1)|α|(∂αϕ)(x).

Consequently, ⟨
(
∂αδ0

)
∗ u, ϕ⟩ = ⟨u, (−1)|α|∂αϕ⟩ = ⟨∂αu, ϕ⟩, as required.
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Linear partial differential operators with constant coefficients: This
is in multi-index notation given as p(∂), where p(x) ∈ C[x ] is a polynomial,
so

p(∂) =
∑
|α|≤d

cα∂
α

If the polynomial p(x) has degree d , then we say the operator p(∂) has
order d .
Since the convolution product v ∗ u is bilinear in (v , u) ∈ E ′(Rn)× D ′(Rn)
the previous example yields

p(∂)u =
(
p(∂)δ0

)
∗ u,

for all u ∈ D ′(Rn), that is, it can be written as a convolution with the
distribution p(∂)δ0. We conclude that linear partial differential equations
with constant coefficients on distributions are a special case of convolution
equations on distributions (so given v ∈ E ′(Rn) and f ∈ D ′(Rn) find all
u ∈ D ′(Rn) with v ∗ u = f ).

Exercise: Show that u ∗
(
∂αδ0

)
= ∂αu for all α ∈ Nn

0 and u ∈ D ′(Rn).
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‘Commutativity’ of the convolution product

Lemma If u ∈ D ′(Rn) and v ∈ E ′(Rn), then u ∗ v = v ∗ u.

Before giving the proof we make some observations.
First if ϕ, ψ ∈ D(Rn), θ ∈ C∞(Rn) we have the ‘associativity’:

(θ ∗ ϕ) ∗ ψ = θ ∗ (ϕ ∗ ψ)

This follows easily by a calculation using Fubini’s theorem to swap
integration orders.
If in addition u ∈ D ′(Rn) and v ∈ E ′(Rn), then

(u ∗ ϕ) ∗ ψ = u ∗ (ϕ ∗ ψ) (2)

and
(v ∗ θ) ∗ ϕ = v ∗ (θ ∗ ϕ) (3)
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‘Commutativity’ of the convolution product continued...

Proof of (2) and (3): We focus on (3) and leave the similar proof of (2)
as an exercise. Calculate using the definitions and associativity

⟨(v ∗ θ) ∗ ϕ, ψ⟩ = ⟨v ∗ θ, ϕ̃ ∗ ψ⟩
= ⟨v , θ̃ ∗ (ϕ̃ ∗ ψ)⟩
= ⟨v , (θ̃ ∗ ϕ̃) ∗ ψ⟩

= ⟨v , (̃θ ∗ ϕ) ∗ ψ⟩
= ⟨v ∗ (θ ∗ ϕ), ψ⟩

□
We extend (2), (3) by replacing ϕ by v , θ by u, respectively:

(u ∗ v) ∗ ψ = u ∗ (v ∗ ψ) (4)

and
(v ∗ u) ∗ ϕ = v ∗ (u ∗ ϕ) (5)
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‘Commutativity’ of the convolution product continued...

Proof of (4) and (5): We focus on (4) and leave the similar proof of (5)
as an exercise. Calculate for ϕ ∈ D(Rn) using definitions and associativity

⟨(u ∗ v) ∗ ψ, ϕ⟩ = ⟨u ∗ v , ψ̃ ∗ ϕ⟩
= ⟨u, ṽ ∗ (ψ̃ ∗ ϕ)⟩
(3)
= ⟨u, (ṽ ∗ ψ̃) ∗ ϕ⟩

= ⟨u, (̃v ∗ ψ) ∗ ϕ⟩
= ⟨u ∗ (v ∗ ψ), ϕ⟩,

where we used (v ∗ ψ)(x) = ⟨v , ψ(x − ·)⟩, hence

(̃v ∗ ψ)(x) = ⟨v , ψ(−x − ·)⟩ = ⟨ṽ , ψ(−x + ·)⟩ = (ṽ ∗ ψ̃)(x)

concluding the proof. □
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Proof of ‘Commutativity’ of the convolution product:
For ϕ, ψ ∈ D(Rn) we calculate

(u ∗ v) ∗ (ϕ ∗ ψ) (4)
= u ∗

(
v ∗ (ϕ ∗ ψ)

)
(3)
= u ∗

(
(v ∗ ϕ) ∗ ψ

)
comm.
= u ∗

(
ψ ∗ (v ∗ ϕ)

)
(2)
= (u ∗ ψ) ∗ (v ∗ ϕ)

comm.
= (v ∗ ϕ) ∗ (u ∗ ψ)

where we used the commutative rule twice for v ∗ ϕ, ψ ∈ D(Rn) and
u ∗ ψ ∈ C∞(Rn), v ∗ ϕ ∈ D(Rn), respectively.
We are now ready to conclude.
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Proof of ‘Commutativity’ of the convolution product continued...

We have established the convolution identity:

(u ∗ v) ∗ (ϕ ∗ ψ) = (v ∗ ϕ) ∗ (u ∗ ψ) (6)

for all ϕ, ψ ∈ D(Rn). If
(
ρε
)
ε>0 is the standard mollifier on Rn, then we

consider (6) with ϕ = ρε. We would like to take ε↘ 0. Since ρε ∗ ψ → ψ
in D(Rn), we get for χ ∈ D(Rn) on the left-hand side,

⟨(u∗v)∗(ρε∗ψ), χ⟩ = ⟨u∗v , ˜(ρε ∗ ψ)∗χ⟩ → ⟨u∗v , ψ̃∗χ⟩ = ⟨(u∗v)∗ψ, χ⟩.

On the right-hand side we have since v ∗ ρε → v (by Lemma 1) and
u ∗ ψ ∈ C∞(Rn) that

⟨(v∗ρε)∗(u∗ψ), χ⟩ = ⟨v∗ρε, (̃u ∗ ψ)∗χ⟩ → ⟨v , (̃u ∗ ψ)∗χ⟩ = ⟨v∗(u∗ψ), χ⟩.
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Proof of ‘Commutativity’ of the convolution product continued...

From the last identity we get

(u ∗ v) ∗ ψ = v ∗ (u ∗ ψ).

Finally take ψ = ρε and let ε↘ 0: on the left-hand side

⟨(u ∗ v) ∗ ρε, χ⟩ → ⟨u ∗ v , χ⟩

and on the right-hand side

⟨v ∗(u∗ρε), χ⟩ = ⟨v , ˜(u ∗ ρε)∗χ⟩ = ⟨v , ũ∗(ρε∗χ)⟩ → ⟨v , ũ∗χ⟩ = ⟨v ∗u, χ⟩.

This concludes the proof. □
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The differentiation rule for convolution:

Let u ∈ D ′(Rn), v ∈ E ′(Rn) and α ∈ Nn
0. Then

∂α(u ∗ v) = (∂αu) ∗ v = u ∗ (∂αv).

Proof: We use the convolution identity (6) with the choices ϕ = ρs and
ψ = ρt for s, t > 0 whereby

(u ∗ v) ∗ (ρs ∗ ρt) = (ρs ∗ u) ∗ (ρt ∗ v)

By the previous differentiation rules we have(
∂α(u ∗ v)

)
∗ (ρs ∗ ρt) = (ρs ∗ ∂αu) ∗ (ρt ∗ v)

= (ρs ∗ u) ∗ (ρt ∗ ∂αv).

Now let first s ↘ 0 and then t ↘ 0 to conclude the proof. □
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The support rule for convolutions:

Let u ∈ D ′(Rn), v ∈ E ′(Rn). Then we have

supp(u ∗ v) ⊆ supp(u) + supp(v).

Proof: By (4) we have for each ε > 0 that (u ∗ v) ∗ ρε = u ∗ (v ∗ ρε) and
since v ∗ ρε ∈ D(Rn) we can apply a previously established support rule to
get

supp
(
(u ∗ v) ∗ ρε

)
⊆ supp(u) + supp(v ∗ ρε)
⊆ supp(u) + supp(v) + supp(ρε)
= supp(u) + supp(v) + Bε(0).

Now let ϕ ∈ D(Rn) with
(
supp(u) + supp(v)

)
∩ supp(ϕ) = ∅. Because

supp(u) + supp(v) is closed and supp(ϕ) is compact it follows that

d := dist
(
supp(ϕ), supp(u) + supp(v)

)
> 0.
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Proof of support rule continued...

For ε0 ∈ (0, d) we then have(
supp(u) + supp(v) + Bε0(0)

)
∩ supp(ϕ) = ∅.

Thus for ε ∈ (0, ε0),

0 = ⟨(u ∗ v) ∗ ρε, ϕ⟩ → ⟨u ∗ v , ϕ⟩, as ε↘ 0,

and so u ∗ v vanishes on the open set Rn \
(
supp(u) + supp(v)

)
, and so

Rn \
(
supp(u) + supp(v)

)
⊆ Rn \ supp(u ∗ v)

proving the support rule. □
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