B4.3 Distribution Theory MT20

Lecture 15: The singular support rule and applications to PDEs

- 1. Review of singular support
- 2. Two observations about the singular support
- 3. The singular support rule for convolution products
- 4. Fundamental solutions to PDEs
- 5. Applications to PDEs and elliptic regularity

The material corresponds to pp. 65–68 in the lecture notes and should be covered in Week 8.

Review of singular support

Let $u \in \mathscr{D}'(\Omega)$, where Ω is a non-empty and open subset of \mathbb{R}^n .

Recall that *u* is said to be C^{∞} on the open subset *O* of Ω if there exists $f \in C^{\infty}(O)$ such that

$$\langle u, \phi \rangle = \int_O f \phi \, \mathrm{d}x$$

holds for all $\phi \in \mathscr{D}(\Omega)$ with $\operatorname{supp}(\phi) \subset O$. If such f exists, then it is uniquely determined according to the fundamental lemma of the calculus of variations and the fact that it is C^{∞} .

The singular support of u, $\operatorname{sing.supp}(u)$, was defined as follows: $x \in \operatorname{sing.supp}(u)$ if there exists *no* open neighbourhood of x where u is C^{∞} . Thus $x \in \Omega \setminus \operatorname{sing.supp}(u)$ if there exists $r_x > 0$ so u is C^{∞} on $\Omega \cap B_{r_x}(x)$. Consequently, $\operatorname{sing.supp}(u)$ is relatively closed in Ω and we also always have

$$\operatorname{sing.supp}(u) \subseteq \operatorname{supp}(u)$$

Review of singular support

We asserted in an earlier lecture that u is C^{∞} on $\Omega \setminus \operatorname{sing.supp}(u)$ and that this is the *largest open subset of* Ω *with this property*. Let us convince ourselves that it is so:

For each $x \in \Omega \setminus \text{sing.supp}(u)$ we find $r_x > 0$ and $f_x \in C^{\infty}(\Omega \cap B_{r_x}(x))$ so (assume $r_x > 0$ is so small that $B_{r_x}(x) \subset \Omega$ and write $B_x := B_{r_x}(x)$)

$$\langle u, \phi \rangle = \int_{B_x} f_x(y) \phi(y) \, \mathrm{d}y$$

for all $\phi \in \mathscr{D}(\Omega)$ with $\operatorname{supp}(\phi) \subset B_x$. If $B_x \cap B_y \neq \emptyset$, then for $\phi \in \mathscr{D}(\Omega)$ with $\operatorname{supp}(\phi) \subset B_x \cap B_y$ we have

$$\int_{B_{\mathsf{x}}} f_{\mathsf{x}} \phi \, \mathrm{d} z = \langle u, \phi \rangle = \int_{B_{\mathsf{y}}} f_{\mathsf{y}} \phi \, \mathrm{d} z.$$

It follows from the fundamental lemma of the calculus of variations that $f_x = f_y$ almost everywhere on $B_x \cap B_y$, and by continuity equality holds everywhere. We can therefore piece these functions together.

Review of singular support

Define $f: \Omega \setminus \operatorname{sing.supp}(u) \to \mathbb{C}$ by $f(y) := f_x(y)$ when $y \in B_x$. Then f is a well-defined C^{∞} function. To see that u is represented by f on the open set $\Omega \setminus \operatorname{sing.supp}(u)$ we use a smooth partition of unity argument. Fix $\phi \in \mathscr{D}(\Omega)$ with $\operatorname{supp}(\phi) \subset \Omega \setminus \operatorname{sing.supp}(u)$. Because $\operatorname{supp}(\phi)$ is compact we can find finitely many balls B_{x_1}, \ldots, B_{x_m} covering the support: $\operatorname{supp}(u) \subset B_{x_1} \cup \ldots \cup B_{x_m}$. Next we use Theorem 2.13 from the lecture notes. It yields $\phi_j \in \mathscr{D}(\Omega), 1 \leq j \leq m$, so $0 \leq \phi_j \leq 1$, $\operatorname{supp}(\phi_j) \subset B_{x_j}$,

$$\sum_{j=1}^m \phi_j \leq 1$$
 in Ω and $\sum_{j=1}^m \phi_j = 1$ on $\operatorname{supp}(\phi)$.

Now

$$\langle u, \phi \rangle = \sum_{j=1}^{m} \langle u, \phi \phi_j \rangle = \sum_{j=1}^{m} \int_{B_{x_j}} f_{x_j} \phi \phi_j \, \mathrm{d}x = \int_{\Omega \setminus \mathrm{sing.supp}(u)} f \phi \, \mathrm{d}x$$

as required.

Two observations about the singular support

Observation 1. If $\chi \in C^{\infty}(\Omega)$ and $\chi = 0$ near sing.supp(*u*), then $\chi u \in C^{\infty}(\Omega)$.

It is important to note that in the statement we require that $\chi = 0$ in a neighbourhood of sing.supp(u). This is what *near* means. We return to this in an example below.

Proof: The statement amounts to $\operatorname{sing.supp}(\chi u) = \emptyset$. By assumption there exists an open subset O of Ω such that $\operatorname{sing.supp}(u) \subseteq O$ and $\chi = 0$ on O. If therefore $x \in \operatorname{sing.supp}(u)$, then $x \in O$ and so for $\phi \in \mathscr{D}(\Omega)$ with $\operatorname{supp}(\phi) \subset O$ we have $\langle \chi u, \phi \rangle = \langle u, \chi \phi \rangle = \langle u, 0 \rangle = 0$. \Box

Example Let $u = \delta'_0 \in \mathscr{D}'(\mathbb{R})$ and $\chi(x) = x$. Then $\operatorname{sing.supp}(u) = \{0\}$ and $\chi = 0$ on $\{0\}$ (but not *near* $\{0\}$!). Here we have $\chi u = -\delta_0$ so in this case $\operatorname{sing.supp}(\chi u) = \{0\}$.

Two observations about the singular support

Observation 2. Let ω be an open subset of Ω . If $\chi \in C^{\infty}(\Omega)$ and $\chi = 1$ on ω , then

$$\omega \cap \operatorname{sing.supp}(\chi u) = \omega \cap \operatorname{sing.supp}(u).$$

Proof: We always have $\operatorname{sing.supp}(\chi u) \subseteq \operatorname{sing.supp}(u)$, so ' \subseteq ' holds. If $x \notin \omega \cap \operatorname{sing.supp}(\chi u)$, say $x \in \omega \setminus \operatorname{sing.supp}(\chi u)$, then there exists $B = B_r(x) \subset \omega$ so χu is C^{∞} on B: $\chi u = f$ on B. But on $B \subset \omega$, $\chi = 1$, so we have for $\phi \in \mathscr{D}(\Omega)$ with $\operatorname{supp}(\phi) \subset B$,

$$\int_{B} f\phi \, \mathrm{d}y = \langle \chi u, \phi \rangle = \langle u, \chi \phi \rangle = \langle u, \phi \rangle$$

and so u is C^{∞} on B and $x \notin \operatorname{sing.supp}(u)$.

The singular support rule for convolution products: Let $u \in \mathscr{D}'(\mathbb{R}^n)$ and $v \in \mathscr{E}'(\mathbb{R}^n)$. Then

 $\operatorname{sing.supp}(u * v) \subseteq \operatorname{sing.supp}(u) + \operatorname{sing.supp}(v).$

Proof: We proceed in two steps. **Step 1.** Assume $u \in \mathscr{E}'(\mathbb{R}^n)$. Write $u_1 = u$, $u_2 = v$ and put $K_i := \operatorname{sing.supp}(u_i)$. Since $K_i \subseteq \operatorname{supp}(u_i)$ the set K_i is compact. For $\varepsilon > 0$ put $\psi_i = \rho_{\varepsilon} * \mathbf{1}_{B_{2\varepsilon}(K_i)}$ and note

$$\psi_i \in \mathscr{D}(\mathbb{R}^n), \operatorname{supp}(\psi_i) \subseteq \overline{B_{3\varepsilon}(K_i)} \text{ and } \psi_i = 1 \text{ near } K_i$$

Now by bilinearity of the convolution product:

$$u_1 * u_2 = (\psi_1 u_1) * (\psi_2 u_2) + (\psi_1 u_1) * ((1 - \psi_2) u_2) + ((1 - \psi_1) u_1) * (\psi_2 u_2) + ((1 - \psi_1) u_1) * ((1 - \psi_2) u_2)$$

Here $(1 - \psi_i)u_i \in C^{\infty}(\mathbb{R}^n)$ by Observation 1, so a result from a previous lecture implies that the last three terms are C^{∞} functions.

Proof of singular support rule continued...

Consequently, using the support rule,

$$\operatorname{sing.supp}(u_1 * u_2) = \operatorname{sing.supp}((\psi_1 u_1) * (\psi_2 u_2))$$
$$\subseteq \operatorname{supp}((\psi_1 u_1) * (\psi_2 u_2))$$
$$\subseteq \operatorname{supp}((\psi_1 u_1)) + \operatorname{supp}((\psi_2 u_2))$$
$$\subseteq \operatorname{supp}(\psi_1) + \operatorname{supp}(\psi_2)$$
$$\subseteq K_1 + K_2 + \overline{B_{6\varepsilon}(0)}$$

Because $K_1 + K_2$ is closed and $\varepsilon > 0$ is arbitrary the required inclusion follows in this case.

Step 2. General case. Note that it suffices to show that

 $B_1(x) \cap \operatorname{sing.supp}(u * v) \subseteq B_1(x) \cap (\operatorname{sing.supp}(u) + \operatorname{sing.supp}(v))$

holds for all $x \in \mathbb{R}^n$.

Proof of singular support rule continued...

Fix $x \in \mathbb{R}^n$. Take R > 1 + |x| and $B_R(0) \supset \operatorname{supp}(v)$. Put $\psi = \rho_R * \mathbf{1}_{B_{5R}(0)}$, where as usual $(\rho_{\varepsilon})_{\varepsilon > 0}$ is the standard mollifier on \mathbb{R}^n , and note that hereby

$$\psi \in \mathscr{D}(\mathbb{R}^n), \, \psi = 1 \, \text{ on } B_{4R}(0) \, \text{ and } \, \operatorname{supp}(\psi) \subseteq \overline{B_{6R}(0)}.$$

We also record that

$$\operatorname{supp}(\psi u) \subseteq \overline{B_{6R}(0)}$$
 and $\operatorname{supp}((1-\psi)u) \subseteq \mathbb{R}^n \setminus B_{4R}(0).$

using the latter in combination with the support rule yields

$$\begin{split} \mathrm{supp}igg(ig((1-\psi)uig)*vigg) &\subseteq & \mathrm{supp}ig((1-\psi)uig)+\mathrm{supp}(v) \ &\subseteq & \mathbb{R}^n\setminus B_{4R}(0)+B_R(0)\subseteq \mathbb{R}^n\setminus B_{3R}(0). \end{split}$$

Proof of singular support rule continued...

Because
$$B_1(x) \subset B_{2R}(0)$$
 it follows that
 $((1 - \psi)u) * v = 0$ on $B_1(x)$.
Since $\psi u, v \in \mathscr{E}'(\mathbb{R}^n)$ we get from Step 1 that
 $\operatorname{sing.supp}((\psi u) * v) \subseteq \operatorname{sing.supp}(\psi u) + \operatorname{sing.supp}(v)$
and hence, on $B_1(x), u * v = (\psi u) * v + ((1 - \psi)u) * v = (\psi u) * v$, so
 $B_1(x) \cap \operatorname{sing.supp}(u * v) = B_1(x) \cap \operatorname{sing.supp}((\psi u) * v)$
 $\subseteq B_1(x) \cap \left(\operatorname{sing.supp}(\psi u) + \operatorname{sing.supp}(v)\right)$
 $\subseteq B_1(x) \cap \left(\operatorname{sing.supp}(u) + \operatorname{sing.supp}(v)\right)$

where the last inclusion follows because

 $\operatorname{sing.supp}(\chi u) \subseteq \operatorname{sing.supp}(u)$

holds for any $\chi \in C^{\infty}(\Omega)$. This concludes the proof.

Linear partial differential operators with constant coefficients

Recall that a linear partial differential operator with constant coefficients, briefly a *differential operator*, can be written convenient in multi-index notation as $p(\partial)$, where $p(x) \in \mathbb{C}[x]$ is a polynomial in *n* indeterminates:

$$p(\partial) = \sum_{|lpha| \leq d} c_lpha \partial^lpha$$

When $c_{\alpha} \neq 0$ for some multi-index α of lenght d, then we say $p(\partial)$ has order d. If $c_{\alpha} = 0$ for all multi-indices α of length $|\alpha| < d$, so that p(x) is a homogeneous polynomial, then we say the differential operator $p(\partial)$ is homogeneous of order d. In general when $p(\partial)$ is a differential operator of order d, then

$$p_d(\partial) = \sum_{|lpha|=d} c_lpha \partial^lpha$$

is called its *principal part*. Note that the principal part $p_d(\partial)$ is homogeneous of order d.

Elliptic differential operators

Definition The differential operator $p(\partial)$ is called *elliptic* if the polynomial corresponding to its principal part, $p_d(x)$, satisfies

$$p_d(x) \neq 0$$
 for all $x \in \mathbb{R}^n \setminus \{0\}$.

Example The Laplace operator Δ corresponds to the polynomial $p_{\Delta}(x) = |x|^2 = x_1^2 + \ldots + x_n^2$ and this is an example (the main!) of an elliptic, homogeneous differential operator of order 2 on \mathbb{R}^n .

Example The Cauchy-Riemann operators $\partial/\partial \bar{z}$ and $\partial/\partial z$ correspond to the polynomials $p_{\bar{\partial}}(x, y) = x + iy$ and $p_{\partial}(x, y) = x - iy$, respectively, and so are examples (the main!) of elliptic, homogeneous differential operators of order 1 on \mathbb{R}^2 .

Recall that in \mathbb{R}^2 we can factorize:

$$\Delta = 4 \frac{\partial}{\partial \bar{z}} \frac{\partial}{\partial z}$$

and that to some extent this is responsible for the connections between holomorphic and harmonic functions.

Fundamental solution for differential operator $p(\partial)$: any distribution $E \in \mathscr{D}'(\mathbb{R}^n)$ satisfying

$$p(\partial)E = \delta_0.$$

Example Recall from a previous lecture (see Example 4.22 in lecture notes) that

$$G_0^n(x) = \begin{cases} -\frac{1}{(n-2)\omega_{n-1}} |x|^{2-n} & \text{if } n \neq 2, \\ \frac{1}{2\pi} \log |x| & \text{if } n = 2 \end{cases}$$

satisfies $\Delta G_0^n = \delta_0$. Note that sing.supp $(G_0^n) = \{0\}$.

Example We also established (see Example 4.23 in lecture notes) that

$$\frac{\partial}{\partial \bar{z}} \left(\frac{1}{\pi z} \right) = \delta_0 \text{ and } \frac{\partial}{\partial z} \left(\frac{1}{\pi \bar{z}} \right) = \delta_0.$$

Note that both these fundamental solutions also have singular supports $\{0\}$

Fundamental solutions continued...

The reason that such distributional solutions are called fundamental is because they allow us to solve the PDE

$$p(\partial)u = f \text{ in } \mathscr{D}'(\mathbb{R}^n) \tag{1}$$

when $f \in \mathscr{E}'(\mathbb{R}^n)$.

Indeed, using the differentiation rule for convolution we obtain two important identities.

First, for $f \in \mathscr{E}'(\mathbb{R}^n)$ we have that

$$p(\partial)(E * f) = (p(\partial)E) * f = \delta_0 * f = f$$
(2)

hence u = E * f is a solution to the PDE (1). Thus whenever the right-hand side has compact support we can in principle find a solution. Second, if $u \in \mathscr{E}'(\mathbb{R}^n)$ is a solution to the PDE (1), then

$$u = \delta_0 * u = (p(\partial)E) * u = E * (p(\partial)u) = E * f.$$
(3)

It is a *serious drawback* that (3) only holds when u is of compact support! For instance the solution found in (2) will in general not have compact support.

Applications to PDEs and elliptic regularity

Theorem Let $p(\partial)$ be a differential operator with a fundamental solution E for which $\operatorname{sing.supp}(E) = \{0\}$. Let Ω be a non-empty open subset of \mathbb{R}^n . Then for any $u \in \mathscr{D}(\Omega)$ we have

 $\operatorname{sing.supp}(u) = \operatorname{sing.supp}(p(\partial)u).$

Remark Note that the Laplacian Δ and the Cauchy-Riemann operators $\partial/\partial \bar{z}$, $\partial/\partial z$ satisfy the conditions of the theorem. It can be shown that any *elliptic* differential operator does as well, and that is why we refer to the theorem as an *elliptic regularity result*. But in fact, the theorem covers more than elliptic PDEs-the precise framework is that of *hypoelliptic PDE*. These are precisely the differential operators that admit a fundamental solution with singular support {0}. (The differential operator in the heat equation is an example of a non-elliptic but hypoelliptic operator.)

Proof of the elliptic regularity result:

On Problem sheet 3 you are asked to prove that

```
\operatorname{sing.supp}(p(\partial)u) \subseteq \operatorname{sing.supp}(u)
```

holds for any differential operator $p(\partial)$. We can therefore focus on the opposite inclusion.

Step 1. Assume that $u \in \mathscr{E}'(\mathbb{R}^n)$.

Then by the differentiation rule we have (see (3)) that $u = E * (p(\partial)u)$, hence by the rule for singular supports and the assumption about E,

$$\operatorname{sing.supp}(u) = \operatorname{sing.supp}(E * (\rho(\partial)u)) \subseteq \operatorname{sing.supp}(\rho(\partial)u),$$

as required.

Proof of the elliptic regularity result continued...

Step 2. General case.

Fix $\omega \in \Omega$ and take $\psi \in \mathscr{D}(\Omega)$ with $\psi = 1$ on ω . Then $\psi u \in \mathscr{E}'(\mathbb{R}^n)$ by the definition $\langle \psi u, \phi \rangle := \langle u, \psi \phi \rangle$, $\phi \in C^{\infty}(\mathbb{R}^n)$ (and the \mathscr{E}' bound follows from the boundedness property of u on $\operatorname{supp}(\psi)$). Now, using Observation 2 twice and Step 1 we get

$$\omega \cap \operatorname{sing.supp}(p(\partial)u) = \omega \cap \operatorname{sing.supp}(p(\partial)(\psi u))$$

= $\omega \cap \operatorname{sing.supp}(\psi u)$
= $\omega \cap \operatorname{sing.supp}(u)$

and the claim follows because $\omega \Subset \Omega$ was arbitrary.

Applications to PDEs: Weyl's lemma

Weyl's lemma (Hermann Weyl, 1940) Let Ω be a non-empty and open subset of \mathbb{R}^n and assume $u \in \mathscr{D}'(\Omega)$ satisfies $\Delta u = 0$ in $\mathscr{D}'(\Omega)$. Then $u \in C^{\infty}(\Omega)$ is harmonic in the usual sense.

Corollary Let Ω be a non-empty and open subset of \mathbb{C} . Assume $f \in \mathscr{D}'(\Omega)$ satisfies the Cauchy-Riemann equation

$$rac{\partial f}{\partial ar{z}} = 0 \ \ ext{in} \ \ \mathscr{D}'(\Omega).$$

Then $f \in C^{\infty}(\Omega)$ is holomorphic in the usual sense.

In fact, both results are immediate corollaries of the elliptic regularity theorem: the singular support of the right-hand side of the equation is obviously empty.