
B4.3 Distribution Theory MT20

Lecture 15: The singular support rule and applications to PDEs

1. Review of singular support
2. Two observations about the singular support
3. The singular support rule for convolution products
4. Fundamental solutions to PDEs
5. Applications to PDEs and elliptic regularity

The material corresponds to pp. 65–68 in the lecture notes and should be
covered in Week 8.
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Review of singular support

Let u ∈ D ′(Ω), where Ω is a non-empty and open subset of Rn.

Recall that u is said to be C∞ on the open subset O of Ω if there exists
f ∈ C∞(O) such that

⟨u, ϕ⟩ =
∫
O
f ϕ dx

holds for all ϕ ∈ D(Ω) with supp(ϕ) ⊂ O. If such f exists, then it is
uniquely determined according to the fundamental lemma of the calculus of
variations and the fact that it is C∞.

The singular support of u, sing.supp(u), was defined as follows:
x ∈ sing.supp(u) if there exists no open neighbourhood of x where u is
C∞. Thus x ∈ Ω \ sing.supp(u) if there exists rx > 0 so u is C∞ on
Ω ∩ Brx (x). Consequently, sing.supp(u) is relatively closed in Ω and we
also always have

sing.supp(u) ⊆ supp(u)
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Review of singular support

We asserted in an earlier lecture that u is C∞ on Ω \ sing.supp(u) and that
this is the largest open subset of Ω with this property. Let us convince
ourselves that it is so:

For each x ∈ Ω \ sing.supp(u) we find rx > 0 and fx ∈ C∞(Ω ∩ Brx (x)) so
(assume rx > 0 is so small that Brx (x) ⊂ Ω and write Bx := Brx (x))

⟨u, ϕ⟩ =
∫
Bx

fx(y)ϕ(y) dy

for all ϕ ∈ D(Ω) with supp(ϕ) ⊂ Bx . If Bx ∩ By ̸= ∅, then for ϕ ∈ D(Ω)
with supp(ϕ) ⊂ Bx ∩ By we have∫

Bx

fxϕ dz = ⟨u, ϕ⟩ =
∫
By

fyϕ dz .

It follows from the fundamental lemma of the calculus of variations that
fx = fy almost everywhere on Bx ∩ By , and by continuity equality holds
everywhere. We can therefore piece these functions together.
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Review of singular support

Define f : Ω \ sing.supp(u) → C by f (y) := fx(y) when y ∈ Bx . Then f is
a well-defined C∞ function. To see that u is represented by f on the open
set Ω \ sing.supp(u) we use a smooth partition of unity argument. Fix
ϕ ∈ D(Ω) with supp(ϕ) ⊂ Ω \ sing.supp(u). Because supp(ϕ) is compact
we can find finitely many balls Bx1 , . . . , Bxm covering the support:
supp(u) ⊂ Bx1 ∪ . . . ∪ Bxm . Next we use Theorem 2.13 from the lecture
notes. It yields ϕj ∈ D(Ω), 1 ≤ j ≤ m, so 0 ≤ ϕj ≤ 1, supp(ϕj) ⊂ Bxj ,

m∑
j=1

ϕj ≤ 1 in Ω and
m∑
j=1

ϕj = 1 on supp(ϕ).

Now

⟨u, ϕ⟩ =
m∑
j=1

⟨u, ϕϕj⟩ =
m∑
j=1

∫
Bxj

fxjϕϕj dx =

∫
Ω\sing.supp(u)

f ϕ dx

as required.
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Two observations about the singular support

Observation 1. If χ ∈ C∞(Ω) and χ = 0 near sing.supp(u), then
χu ∈ C∞(Ω).

It is important to note that in the statement we require that χ = 0 in a
neighbourhood of sing.supp(u). This is what near means. We return to
this in an example below.

Proof: The statement amounts to sing.supp(χu) = ∅. By assumption
there exists an open subset O of Ω such that sing.supp(u) ⊆ O and χ = 0
on O. If therefore x ∈ sing.supp(u), then x ∈ O and so for ϕ ∈ D(Ω) with
supp(ϕ) ⊂ O we have ⟨χu, ϕ⟩ = ⟨u, χϕ⟩ = ⟨u, 0⟩ = 0. □

Example Let u = δ′0 ∈ D ′(R) and χ(x) = x . Then sing.supp(u) = {0}
and χ = 0 on {0} (but not near {0}!). Here we have χu = −δ0 so in this
case sing.supp(χu) = {0}.
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Two observations about the singular support

Observation 2. Let ω be an open subset of Ω. If χ ∈ C∞(Ω) and χ = 1
on ω, then

ω ∩ sing.supp(χu) = ω ∩ sing.supp(u).

Proof: We always have sing.supp(χu) ⊆ sing.supp(u), so ‘⊆’ holds. If
x /∈ ω ∩ sing.supp(χu), say x ∈ ω \ sing.supp(χu), then there exists
B = Br (x) ⊂ ω so χu is C∞ on B : χu = f on B . But on B ⊂ ω, χ = 1,
so we have for ϕ ∈ D(Ω) with supp(ϕ) ⊂ B ,∫

B
f ϕ dy = ⟨χu, ϕ⟩ = ⟨u, χϕ⟩ = ⟨u, ϕ⟩

and so u is C∞ on B and x /∈ sing.supp(u). □
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The singular support rule for convolution products: Let u ∈ D ′(Rn)
and v ∈ E ′(Rn). Then

sing.supp(u ∗ v) ⊆ sing.supp(u) + sing.supp(v).

Proof: We proceed in two steps.
Step 1. Assume u ∈ E ′(Rn). Write u1 = u, u2 = v and put
Ki := sing.supp(ui ). Since Ki ⊆ supp(ui ) the set Ki is compact. For
ε > 0 put ψi = ρε ∗ 1B2ε(Ki ) and note

ψi ∈ D(Rn), supp(ψi ) ⊆ B3ε(Ki ) and ψi = 1 near Ki

Now by bilinearity of the convolution product:

u1 ∗ u2 = (ψ1u1) ∗ (ψ2u2) + (ψ1u1) ∗
(
(1 − ψ2)u2

)
+
(
(1 − ψ1)u1

)
∗ (ψ2u2) +

(
(1 − ψ1)u1

)
∗
(
(1 − ψ2)u2

)
Here (1 − ψi )ui ∈ C∞(Rn) by Observation 1, so a result from a previous
lecture implies that the last three terms are C∞ functions.
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Proof of singular support rule continued...

Consequently, using the support rule,

sing.supp(u1 ∗ u2) = sing.supp
(
(ψ1u1) ∗ (ψ2u2)

)
⊆ supp

(
(ψ1u1) ∗ (ψ2u2)

)
⊆ supp

(
(ψ1u1)

)
+ supp

(
(ψ2u2)

)
⊆ supp(ψ1) + supp(ψ2)

⊆ K1 + K2 + B6ε(0)

Because K1 + K2 is closed and ε > 0 is arbitrary the required inclusion
follows in this case.

Step 2. General case. Note that it suffices to show that

B1(x) ∩ sing.supp(u ∗ v) ⊆ B1(x) ∩
(
sing.supp(u) + sing.supp(v)

)
holds for all x ∈ Rn.
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Proof of singular support rule continued...

Fix x ∈ Rn. Take R > 1 + |x | and BR(0) ⊃ supp(v). Put
ψ = ρR ∗ 1B5R(0), where as usual

(
ρε
)
ε>0 is the standard mollifier on Rn,

and note that hereby

ψ ∈ D(Rn) , ψ = 1 on B4R(0) and supp(ψ) ⊆ B6R(0).

We also record that

supp(ψu) ⊆ B6R(0) and supp
(
(1 − ψ)u

)
⊆ Rn \ B4R(0).

using the latter in combination with the support rule yields

supp
((

(1 − ψ)u
)
∗ v

)
⊆ supp

(
(1 − ψ)u

)
+ supp(v)

⊆ Rn \ B4R(0) + BR(0) ⊆ Rn \ B3R(0).
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Proof of singular support rule continued...

Because B1(x) ⊂ B2R(0) it follows that(
(1 − ψ)u

)
∗ v = 0 on B1(x).

Since ψu, v ∈ E ′(Rn) we get from Step 1 that

sing.supp
(
(ψu) ∗ v

)
⊆ sing.supp(ψu) + sing.supp(v)

and hence, on B1(x), u ∗ v = (ψu) ∗ v +
(
(1 − ψ)u

)
∗ v = (ψu) ∗ v , so

B1(x) ∩ sing.supp(u ∗ v) = B1(x) ∩ sing.supp
(
(ψu) ∗ v

)
⊆ B1(x) ∩

(
sing.supp(ψu) + sing.supp(v)

)
⊆ B1(x) ∩

(
sing.supp(u) + sing.supp(v)

)
where the last inclusion follows because

sing.supp
(
χu

)
⊆ sing.supp(u)

holds for any χ ∈ C∞(Ω). This concludes the proof. □
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Linear partial differential operators with constant coefficients

Recall that a linear partial differential operator with constant coefficients,
briefly a differential operator, can be written convenient in multi-index
notation as p(∂), where p(x) ∈ C[x ] is a polynomial in n indeterminates:

p(∂) =
∑
|α|≤d

cα∂
α

When cα ̸= 0 for some multi-index α of lenght d , then we say p(∂) has
order d . If cα = 0 for all multi-indices α of length |α| < d , so that p(x) is
a homogeneous polynomial, then we say the differential operator p(∂) is
homogeneous of order d . In general when p(∂) is a differential operator of
order d , then

pd(∂) =
∑
|α|=d

cα∂
α

is called its principal part. Note that the principal part pd(∂) is
homogeneous of order d .
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Elliptic differential operators

Definition The differential operator p(∂) is called elliptic if the
polynomial corresponding to its principal part, pd(x), satisfies

pd(x) ̸= 0 for all x ∈ Rn \ {0}.

Example The Laplace operator ∆ corresponds to the polynomial
p∆(x) = |x |2 = x2

1 + . . . + x2
n and this is an example (the main!) of an

elliptic, homogeneous differential operator of order 2 on Rn.

Example The Cauchy-Riemann operators ∂/∂z̄ and ∂/∂z correspond to
the polynomials p∂̄(x , y) = x + iy and p∂(x , y) = x − iy , respectively, and
so are examples (the main!) of elliptic, homogeneous differential operators
of order 1 on R2.
Recall that in R2 we can factorize:

∆ = 4
∂

∂z̄

∂

∂z

and that to some extent this is responsible for the connections between
holomorphic and harmonic functions.
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Fundamental solution for differential operator p(∂): any distribution
E ∈ D ′(Rn) satisfying

p(∂)E = δ0.

Example Recall from a previous lecture (see Example 4.22 in lecture
notes) that

Gn
0 (x) =

{
− 1

(n−2)ωn−1
|x |2−n if n ̸= 2,

1
2π log |x | if n = 2

satisfies ∆Gn
0 = δ0. Note that sing.supp(Gn

0 ) = {0}.

Example We also established (see Example 4.23 in lecture notes) that

∂

∂z̄

(
1
πz

)
= δ0 and

∂

∂z

(
1
πz̄

)
= δ0.

Note that both these fundamental solutions also have singular supports {0}

Lecture 15 (B4.3) MT20 13 / 18



Fundamental solutions continued...
The reason that such distributional solutions are called fundamental is
because they allow us to solve the PDE

p(∂)u = f in D ′(Rn) (1)

when f ∈ E ′(Rn).
Indeed, using the differentiation rule for convolution we obtain two
important identities.
First, for f ∈ E ′(Rn) we have that

p(∂)
(
E ∗ f

)
=

(
p(∂)E

)
∗ f = δ0 ∗ f = f (2)

hence u = E ∗ f is a solution to the PDE (1). Thus whenever the
right-hand side has compact support we can in principle find a solution.
Second, if u ∈ E ′(Rn) is a solution to the PDE (1), then

u = δ0 ∗ u =
(
p(∂)E

)
∗ u = E ∗

(
p(∂)u

)
= E ∗ f . (3)

It is a serious drawback that (3) only holds when u is of compact support!
For instance the solution found in (2) will in general not have compact
support.

Lecture 15 (B4.3) MT20 14 / 18



Applications to PDEs and elliptic regularity

Theorem Let p(∂) be a differential operator with a fundamental solution
E for which sing.supp(E ) = {0}. Let Ω be a non-empty open subset of
Rn. Then for any u ∈ D(Ω) we have

sing.supp(u) = sing.supp
(
p(∂)u

)
.

Remark Note that the Laplacian ∆ and the Cauchy-Riemann operators
∂/∂z̄ , ∂/∂z satisfy the conditions of the theorem. It can be shown that
any elliptic differential operator does as well, and that is why we refer to
the theorem as an elliptic regularity result. But in fact, the theorem covers
more than elliptic PDEs–the precise framework is that of hypoelliptic PDE.
These are precisely the differential operators that admit a fundamental
solution with singular support {0}. (The differential operator in the heat
equation is an example of a non-elliptic but hypoelliptic operator.)
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Proof of the elliptic regularity result:
On Problem sheet 3 you are asked to prove that

sing.supp
(
p(∂)u

)
⊆ sing.supp(u)

holds for any differential operator p(∂). We can therefore focus on the
opposite inclusion.

Step 1. Assume that u ∈ E ′(Rn).

Then by the differentiation rule we have (see (3)) that u = E ∗
(
p(∂)u

)
,

hence by the rule for singular supports and the assumption about E ,

sing.supp(u) = sing.supp
(
E ∗

(
p(∂)u

))
⊆ sing.supp

(
p(∂)u

)
,

as required.
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Proof of the elliptic regularity result continued...

Step 2. General case.

Fix ω ⋐ Ω and take ψ ∈ D(Ω) with ψ = 1 on ω.
Then ψu ∈ E ′(Rn) by the definition ⟨ψu, ϕ⟩ := ⟨u, ψϕ⟩, ϕ ∈ C∞(Rn) (and
the E ′ bound follows from the boundedness property of u on supp(ψ)).
Now, using Observation 2 twice and Step 1 we get

ω ∩ sing.supp
(
p(∂)u

)
= ω ∩ sing.supp

(
p(∂)(ψu)

)
= ω ∩ sing.supp(ψu)
= ω ∩ sing.supp(u)

and the claim follows because ω ⋐ Ω was arbitrary. □
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Applications to PDEs: Weyl’s lemma

Weyl’s lemma (Hermann Weyl, 1940)
Let Ω be a non-empty and open subset of Rn and assume u ∈ D ′(Ω)
satisfies ∆u = 0 in D ′(Ω). Then u ∈ C∞(Ω) is harmonic in the usual
sense.

Corollary Let Ω be a non-empty and open subset of C. Assume
f ∈ D ′(Ω) satisfies the Cauchy-Riemann equation

∂f

∂z̄
= 0 in D ′(Ω).

Then f ∈ C∞(Ω) is holomorphic in the usual sense.

In fact, both results are immediate corollaries of the elliptic regularity
theorem: the singular support of the right-hand side of the equation is
obviously empty.
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