
B4.3 Distribution Theory MT20

Lecture 16: Subharmonic distributions

1. Review of subsolutions: the definitions
2. Subharmonic distributions are regular
3. A monotonicity property
4. Why they are called ‘subharmonic’

The material corresponds to pp. 68–71 in the lecture notes and should be
covered in Week 8.
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Subsolutions
Let p(∂) be a differential operator: recall that by this term we mean a
linear partial differential operator with constant coefficients

p(∂) =
∑
|α|≤d

cα∂
α (cα ∈ C)

If Ω is a non-empty open subset of Rn, then u ∈ D ′(Ω) is called a
subsolution of p(∂) provided p(∂)u ≥ 0 in D ′(Ω).

Example The subsolutions for the differential operator d
dx on D ′(a, b) are

the increasing functions.

The subsolutions of the Laplacian ∆ on Rn with n ≥ 2 are called
subharmonic. This lecture is about them. On probem sheet 4 you will be
asked to show that the subsolutions to d2

dx2 on D ′(R) are the convex
functions. The fundamental solution Gn

0 for ∆ is subharmonic since
∆Gn

0 = δ0 ≥ 0.
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Subharmonic distributions are regular: Let Ω be a non-empty and open
subset of Rn. Assume u ∈ D ′(Ω) and ∆u ≥ 0 in D ′(Ω). Then
u ∈ L1

loc(Ω).

Remark It can be shown that u ∈ W1,p
loc(Ω) for each p ∈ [1, n

n−1). Here
W1,p

loc(Ω) is the local W1,p Sobolev space: u ∈ D ′(Ω) is in W1,p
loc(Ω)

provided u|ω ∈ W1,p(ω) for each ω ⋐ Ω.

We shall prove the result for the case Ω = Rn by mollification. As usual(
ρε
)
ε>0 is the standard mollifier on Rn, and we note that ρε ∗ u is C∞(Rn)

and
∆(ρε ∗ u) = ρε ∗∆u ≥ 0 on Rn.
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A monotonicity property: Assume u ∈ D ′(Rn) is subharmonic: ∆u ≥ 0
in D ′(Rn).

Then for each x ∈ Rn the function

ε 7→
(
ρε ∗ u

)
(x) is increasing.

Note in particular that when u is harmonic, then ρε ∗ u = u holds for all
ε > 0.

Remark It can be shown that these properties in fact characterize
subharmonic/harmonic distributions.
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Proof of the monotonicity property: Fix x ∈ Rn. The function

ε 7→
(
ρε ∗ u

)
(x) = ⟨u, ρε(x − ·)⟩

is C∞ and
d
dε

⟨u, ρε(x − ·)⟩ = ⟨u, d
dε

ρε(x − ·)⟩

by the rule about differentiation behind the distribution sign (see Theorem
5.9 in lecture notes).
Here we calculate for each y ∈ Rn

d
dε

ρε(x − y) = −nε−n−1ρ

(
x − y

ε

)
− ε−n∇ρ

(
x − y

ε

)
· x − y

ε2 (1)

We know that ∆u ≥ 0, meaning that

⟨u,∆ϕ⟩ ≥ 0 for all ϕ ∈ D(Rn) with ϕ ≥ 0.

We would therefore like to express the function in (1) as a Laplacian of a
nonnegative test function! In order to accomplish that we must use that
the special mollifier kernel ρ is radial.
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Proof of the monotonicity property continued...
In order to simplify notation we introduce the function

K (x) = −nρ(x)−∇ρ(x) · x = −div
(
ρ(x)x

)
and note that

d
dε

ρε(x − y) =
1
ε
Kε(x − y).

So K (x) is the divergence of the vector field −ρ(x)x . Because ρ is radial,
this is in fact a gradient field and so we will be able to write K as a
Laplacian of a test function.
Recall that ρ(x) = θ(|x |2), where

θ(t) =

{
1
cn

e
1

t−1 if t < 1
0 if t ≥ 1.
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Proof of the monotonicity property continued...
Define

Θ(t) =
1
2

∫ ∞

t
θ(s) ds, t ∈ R.

Then Θ ∈ C∞(R), Θ(t) ≥ 0 for all t ∈ R, Θ(t) = 0 for t ≥ 1 and
Θ′(t) = −1

2θ(t). Since

−θ
(
|x |2

)
x = ∇xΘ

(
|x |2

)
we have K (x) = ∆xΘ

(
|x |2

)
.

Let us therefore define

Φ(x) = Θ
(
|x |2

)
, x ∈ Rn.

Then
Φ ∈ D(Rn), Φ ≥ 0, supp(Φ) = B1(0) and K = ∆Φ.
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Proof of the monotonicity property continued...

Collecting the above calculations we get

d
dε

ρε(x − y) =
1
ε
Kε(x − y) = ∆y

(
ε1−nΦ

(
x − y

ε

))
.

Here y 7→ ε1−nΦ
( x−y

ε

)
is a nonnegative test function supported in Bε(x),

hence
d
dε

⟨u, ρε(x − ·)⟩ =
⟨
u,∆

(
ε1−nΦ

(
x − ·
ε

))⟩
≥ 0

and the conclusion follows. □

Remark If ∆u = 0 the above proof gives ρε ∗ u = u for all ε > 0. In
particular it then follows that u ∈ C∞(Rn). This gives another proof of
Weyl’s lemma that is independent of fundamental solutions and the
singular support rule for convolutions.
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Proof of regularity of subharmonic distributions continued...

According to the monotonicity property we have for each x ∈ Rn,

u0(x) := inf
ε>0

(
ρε ∗ u

)
(x) = lim

ε↘0

(
ρε ∗ u

)
(x)

whereby u0 : Rn → R∪{−∞}. Clearly u0 is measurable as a pointwise limit
of measurable functions. Since also u0 ≤ ρ ∗ u ∈ L1

loc(Rn) we also have that
the positive part of u0, u+0 ∈ L1

loc(Rn). It therefore follows by Lebesgue’s
monotone convergence theorem that for each ϕ ∈ D(Rn) with ϕ ≥ 0,∫

Rn

(
ρε ∗ u

)
ϕ dx →

∫
Rn

u0ϕ dx as ε ↘ 0.

Here it is not excluded that the limit, and so the integral of u0ϕ, is −∞.
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Proof of regularity of subharmonic distributions continued...

But we also have ⟨ρε ∗ u, ϕ⟩ → ⟨u, ϕ⟩, so∫
Rn

u0ϕ dx = ⟨u, ϕ⟩ ∈ R

for all nonnegative test functions ϕ. It follows that u0 ∈ L1
loc(Rn), and so in

particular that N =
{
x ∈ Rn : u0(x) = −∞

}
is a null set.

Finally, since any test function can be written as a difference of
nonnegative test functions (exercise on sheet 1) it follows that u is a
regular distribution represented by u0. □
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Why they are called subharmonic [Not examinable]

Let u ∈ D ′(Rn) be a subharmonic distribution. Then u is a regular
distribution and the representative can be defined at every x ∈ Rn by

u(x) := inf
ε>0

(
ρε ∗ u

)
(x) = lim

ε↘0

(
ρε ∗ u

)
(x) (2)

whereby u : Rn → R ∪ {−∞}. It is not difficult to check that the pointwise
infimum of a family of continuous functions is upper semicontinuous: for
each t ∈ R the sublevel set {x ∈ Rn : u(x) < t} is open. This is
equivalent to the condition: if xj → x , then

lim sup
j→∞

u(xj) ≤ u(x)

Using this it is not difficult to prove that an upper semicontinuous function
is bounded above and attains its supremum over any compact set.
Note that the representative defined at (2) is upper semicontinuous.
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Why they are called subharmonic [Not examinable]

Comparison property: Let u : Rn → R ∪ {−∞} be an upper
semicontinuous subharmonic function. If ω ⋐ Rn and h ∈ C(ω) is harmonic
on ω, then u ≤ h on ∂ω implies that u ≤ h in ω too.

Remark It can be shown that this comparison property characterizes those
upper semicontinuous functions that are subharmonic.

Proof of comparison property: We proceed in two steps.
Step 1: Assume u ∈ C∞(Rn) is subharmonic.
Fix x0 ∈ ω and put d = max{|x − x0| : x ∈ ∂ω}. For ε > 0 we let
v(x) := u(x) + ε

(
|x − x0|2 − d2), x ∈ Rn. Note that v ≤ u ≤ h on ∂ω.

Take xε ∈ ω so (v − h)(xε) = maxx∈ω(v − h)(x). If (v − h)(xε) > 0, then
necessarily xε ∈ ω and so by the necessary conditions for a maximum we get

∇(v − h)(xε) = 0 and 0 ≥ ∆(v − h)(xε) = ∆u(xε) + 2nε > 0

a contradiction proving that maxx∈ω(v − h)(x) ≤ 0, hence v ≤ h in ω.
Since ε > 0 was arbitrary the claim follows in this case.
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Why they are called subharmonic [Not examinable]

Step 2: General case.

Fix τ > 0. Using upper semicontinuity we can show that for some δ0 > 0
we have for any δ ∈ (0, δ0]:

u(y) < h(y) + τ when y ∈ ω and dist(y , ∂ω) < δ. (3)

Then for ω′ := {x ∈ ω : dist(x , ∂ω) > δ/2} and ε < δ/2 we define

uε = ρε ∗ u.

Then uε ∈ C∞(Rn) is subharmonic.
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Why they are called subharmonic [Not examinable]

Claim: uε ≤ h + τ on ∂ω′.

Fix x ∈ ∂ω′. Since ε < δ/2 the inequality (3) holds for y ∈ Bε(x), so
multiplying (3) by ρε(x − y) and integrating over y ∈ Bε(x) we get

uε(x) <

∫
Bε(x)

ρε(x − y)h(y) dy + τ = h(x) + τ

Step 1 now yields uε ≤ h + τ on ω′, and so u ≤ uε < h + τ on ω′.
Here δ ∈ (0, δ0] was arbitrary, so we deduce that u ≤ h + τ on ω.
Finally, by arbitrariness of τ the conclusion follows. □
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