BO1 History of Mathematics
 Lecture I
 Introduction
 Part 3: Napier's invention of logarithms

MT 2021 Week 1

A case study of a text from 1614

Napier's invention of logarithms:

- what did 17th-century mathematics look like?
- how can we begin to read historical texts?

Napier's definition of a logarithm (of a sine)

The Logarithme therefore of any sine is a number very neerely expressing the line, which increased equally in the meane time, whiles the line of the whole sine decreased proportionally into that sine, both motions being equaltimed, and the beginning equally swift.

Napier's definition of a logarithm (of a sine)

The Logarithme therefore of any sine is a number very neerely expressing the line, which increased equally in the meane time, whiles the line of the whole sine decreased proportionally into that sine, both motions being equaltimed, and the beginning equally swift.
?

Context, content, significance

Context, content, significance

Context:
who? when? where? why?

Context, content, significance

Context:

 who? when? where? why?Content:
what is it about? how is it written?

Context, content, significance

Context:

who? when? where? why?

Content:
what is it about? how is it written?

Significance:
why did it matter?

Context, content, significance

Context:

who? when? where? why?

Content:
what is it about? how is it written?

Significance:
why did it matter?

Historical Significance: what new insight does this text offer us?

Context — who?

John Napier (1550-1617), Merchiston, Scotland

Scottish landowner with interests in:

- mining
- calculating aids
- astrology/astronomy
- The Revelation of St John

See Oxford Dictionary of National Biography: http://www.oxforddnb.com/view/article/19758

Context — why?

From Napier's preface to the translation of 1616:
Seeing there is nothing (right well-beloved Students of the Mathematics) that is so troublesome to mathematical practice, nor that doth more molest and hinder calculators, than the multiplications, divisions, square and cubical extractions of great numbers, which besides the tedious expense of time are for the most part subject to many slippery errors, I began therefore to consider in my mind by what certain and ready art I might remove those hindrances... I thought good heretofore to set forth in Latine for the publique use of Mathematicians.

Context — why?

Inspired by the 16th-century technique of prosthaphaeresis:
the use of trigonometric identities such as

$$
\begin{aligned}
\cos x \cos y & =\frac{1}{2}[\cos (x+y)+\cos (x-y)] \\
\sin x \sin y & =\frac{1}{2}[\cos (x-y)-\cos (x+y)]
\end{aligned}
$$

to convert multiplication into addition.

Context - in what form, and in which language?

Original Latin text of 1614:
Mirifici logarithmorum canonis descriptio
translated into English by Edward Wright in 1616 as
A description of the admirable table of logarithms
Scanned text available via SOLO

Napier's 1616 title-page decoded

```
I Jhmer A forluc
DESCRIPTION
OF THE ADMIRABLE
    TABLE OE LOGA-
RITHMES:
WITH

\section*{A DECLARATION OF}
```

TheMostPlentifvi, Easy, and fpeedy vete thereof in bocthkindes of Trigonometrie, as alfo in all
Mathomatticall callemataions.
INVENTED AND PVBLI-
sued In Latin By That Honorable L. Touk Nipata, B2-

```

``` Englifh by the late learned and
famods Mathematician Edivurit|trighit. With an Addition of an Inffrumentall Table to funde the part proportionall, inuomed by
```



``` of the catek by Henay Dric:
```



```
benge in Londow.
- Al perrufed and approued by the Author, E pubIIfied fince chơteach of the Trandzor.
```



## Napier's 1616 title-page decoded



Inventor:
John Napier (1550-1617)
Translator:
Edward Wright (?1558-1615)
(interests: navigation, charts
and tables)
Additional material:
Henry Briggs (1561-1630)
Gresham Professor of Geometry,
later Savilian Professor of
Geometry at Oxford
(interests: navigation)
Printer:
Nicholas Okes
Readers:
Thomas Hulcher,
Thomas Panner

## Napier's logarithms: content

Recall:
The Logarithme therefore of any sine is a number very neerely expressing the line, which increased equally in the meane time, whiles the line of the whole sine decreased proportionally into that sine, both motions being equaltimed, and the beginning equally swift.

## Napier's logarithms

4 Thefirf Booke. Chap.x peare by the 19 Prof. 5. and II. Prop. 7, Euclid.

Surd quantities, or vacxplicable by number, are Said to be defined, or expreffed by numbers very meere, soben they are defined or exprefed by great numbers which differ not fo much as one while: from the true value of the Surd quantisics.

As for example. Let the femidiameter, or whole fine be the rational number! 10000000 the fine of 45 degrees fhall be the fquare root of $50,000,000,000,000$, which is furd, or irrationall and inexplicable by any number, $\&$ is included between the limits of 9071067 the leffe, and 7071068 the greater: therfore, it differeth not an vnite from either of thefe. Therefore that furd fine of 45 degrees, is faid to be defined and expreffed very neere, when it is expreffed by the whole numbers, 7071067, or 707 1068, not regarding the fraAtions. For in great numbers there arifeth no fenfible error, by neglecting the fragments, or parts of an vnite.
Equall-timed motions are thofe which are made 'togetber, and in the fame time.
As in the figures following, admit that B be moued from A to $C$, in the fame time, wherin $b$ is moued from $a$ to $c$ the right lines $A C$ \& - 6 , fhall be fayd to be defcribed with an e-quall-timed motion.

Seeing that there may bee a flower and a swifter motion giuen then any motion, it fall neceffdrily follow, tbat thercimay bea motion given of equall/ wiffnef'e to any motion (wbich wee define zo be neillber /wiffer nor flower.)

The Logarithme the fote of any fine is a number verynecrely exprefsing the line, whbich increes-

Chap.2: The firft Booke.
fed equally in the meane time, whiles the line of the whole fine de creafed propertionally into that fine, botb motions being equal-timed, and the beginning equally spift.


As for example.Let the 2 figures going afore bec here repeated, and let Bbee moued alwayes, and cuery where with equall, or the fame fiviftneffe wherewith $b$ beganne to bee moued in the beginning, when it was in $a_{0}$. Then in the firt moment let $B$ proceed from: A to C , and in the fame time let $b$ moue proportionally from $a$ to $c$, the number defining or expreffing A C chal be the Logarithme of the line, or fine $c \mathbf{Z}$. Then in the fecond momentlet $B$ bee moued forward from $C$ to D. And in the fame moment or time les $b$ bd moued: proportionally from $c$ to $d$, the number definining $A D$, fhall bee the Loge. vithme of thic fine'd $Z$. So in the third moment let $B$ go forward equally from $D$ ro $E$, and in the fame moment let $b$ be moued forward proportionally fromd to $e$, the number expreffing A E the Logarithme of the fine eZ. Alfo in the fourth moment, let B pro-

$$
\text { B } 3 \text { ceed }
$$

Napier's logarithms


Napier's logarithms


## Napier's logarithms

## Logarithms



## Numbers



## Napier's logarithms



Sine of angle at centre varies between 0 and $\pm 1$ as the labelled radius sweeps around the circle

## Napier's logarithms



Sine of angle at centre varies between 0 and $\pm 1$ as the labelled radius sweeps around the circle


Sine of angle at centre varies between 0 and $\pm 10,000,000$ as the labelled radius sweeps around the circle

## Napier's logarithms

## Logarithms



## Numbers



## Napier's logarithms (1614)

In modern terms (i.e., not Napier's):

$$
\text { if } y=10^{7}\left(1-10^{-7}\right)^{x} \text {, then Nap log } y=x
$$

## Napier's logarithms (1614)

In modern terms (i.e., not Napier's):

$$
\text { if } y=10^{7}\left(1-10^{-7}\right)^{x} \text {, then Nap log } y=x
$$

Naplog $10^{7}=0$,

## Napier's logarithms (1614)

In modern terms (i.e., not Napier's):

$$
\text { if } y=10^{7}\left(1-10^{-7}\right)^{x} \text {, then Nap log } y=x
$$

Naplog $10^{7}=0$, Naplog 0 is infinite,

## Napier's logarithms (1614)

In modern terms (i.e., not Napier's):

$$
\text { if } y=10^{7}\left(1-10^{-7}\right)^{x}, \text { then Nap log } y=x
$$

Nap log $10^{7}=0$, Nap log 0 is infinite, Naplog $1=161,180,956$

## Napier's logarithms (1614)

In modern terms (i.e., not Napier's):

$$
\text { if } y=10^{7}\left(1-10^{-7}\right)^{x}, \text { then Nap log } y=x
$$

Nap log $10^{7}=0$, Nap log 0 is infinite, Nap log $1=161,180,956$
Naplog $\left(\frac{p \times q}{10^{7}}\right)=$ Naplog $p+$ Nap log $q$

## Napier's logarithms (1614)

In modern terms (i.e., not Napier's):

$$
\text { if } y=10^{7}\left(1-10^{-7}\right)^{x} \text {, then Nap log } y=x
$$

Nap log $10^{7}=0$, Nap log 0 is infinite, Naplog $1=161,180,956$
Nap log $\left(\frac{p \times q}{10^{7}}\right)=$ Naplog $p+$ Nap log $q$
Nap log $(p \times q)=$ Nap $\log p+\operatorname{Nap} \log q-$ Naplog 1

## Napier's logarithms (1614)

In modern terms (i.e., not Napier's):

$$
\text { if } y=10^{7}\left(1-10^{-7}\right)^{x} \text {, then Nap log } y=x
$$

Nap log $10^{7}=0$, Nap log 0 is infinite, Naplog $1=161,180,956$
Nap log $\left(\frac{p \times q}{10^{7}}\right)=$ Naplog $p+$ Nap log $q$
Nap log $(p \times q)=$ Nap $\log p+\operatorname{Nap} \log q-N a p \log 1$
Note that $N a p \log x=10^{7} \ln \left(\frac{10^{7}}{x}\right)$

## Napier's logarithms (1614)

In modern terms (i.e., not Napier's):

$$
\text { if } y=10^{7}\left(1-10^{-7}\right)^{x} \text {, then Nap log } y=x
$$

Nap log $10^{7}=0$, Nap log 0 is infinite, Naplog $1=161,180,956$
Naplog $\left(\frac{p \times q}{10^{7}}\right)=$ Nap log $p+$ Nap $\log q$
Nap log $(p \times q)=$ Nap $\log p+$ Nap log $q-$ Nap $\log 1$
Note that $N a p \log x=10^{7} \ln \left(\frac{10^{7}}{x}\right)$
No notion of base, although Naplog 'nearly' has base $\frac{1}{e}$ - see: Robin Wilson, Euler's Pioneering Equation, OUP, 2019, p. 101

## Modifications by Napier and Briggs (1617)

Definition revised to remove the need to subtract Naplog 1

## Modifications by Napier and Briggs (1617)

Definition revised to remove the need to subtract Naplog 1
'Briggsian' logarithms have base 10 and $\log 1=0$, so that

$$
\log (p \times q)=\log p+\log q
$$

## Modifications by Napier and Briggs (1617)

Definition revised to remove the need to subtract Naplog 1
'Briggsian' logarithms have base 10 and $\log 1=0$, so that

$$
\log (p \times q)=\log p+\log q
$$

Briggs produced Logarithmorum chilias prima (The first thousand logarithms) in 1617, followed by his Arithmetica logarithmica in 1624, which contained logarithms of 1 to 20,000 and 90,000 to 100,000, all to 14 decimal places (calculated by hand); the gap in the table was filled by Adriaan Vlacq in 1628

## Napier's logarithms

One last time:
The Logarithme therefore of any sine is a number very neerely expressing the line, which increased equally in the meane time, whiles the line of the whole sine decreased proportionally into that sine, both motions being equaltimed, and the beginning equally swift.

## Significance

Napier's logarithms:

- caught on very quickly

$\frac{10050}{9}$


## Significance as a historical source

## Significance as a historical source

- Roles of translation in mathematics


## Significance as a historical source

- Roles of translation in mathematics
- Concept of authorship in the 16th century


## Significance as a historical source

- Roles of translation in mathematics
- Concept of authorship in the 16th century
- Use of diagrams in mathematical texts


## Significance as a historical source

- Roles of translation in mathematics
- Concept of authorship in the 16th century
- Use of diagrams in mathematical texts
- Importance of informal/social communication, alongside published texts

