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A case study of a text from 1614

Napier's invention of logarithms:

» what did 17th-century mathematics look like?

» how can we begin to read historical texts?



Napier's definition of a logarithm (of a sine)

The Logarithme therefore of any sine is a number very
neerely expressing the line, which increased equally in the
meane time, whiles the line of the whole sine decreased
proportionally into that sine, both motions being equal-

timed, and the beginning equally swift.



Napier's definition of a logarithm (of a sine)

The Logarithme therefore of any sine is a number very
neerely expressing the line, which increased equally in the
meane time, whiles the line of the whole sine decreased
proportionally into that sine, both motions being equal-

timed, and the beginning equally swift.



Context, content, significance



Context, content, significance

Context: who? when? where? why?



Context, content, significance

Context: who? when? where? why?

Content: what is it about? how is it written?



Context, content, significance

Context: who? when? where? why?

Content: what is it about? how is it written?

Significance: why did it matter?



Context, content, significance

Context: who? when? where? why?
Content: what is it about? how is it written?
Significance: why did it matter?

Historical Significance: what new insight does this text offer us?



Context — who?

John Napier (1550-1617), Merchiston,
Scotland

Scottish landowner with interests in:
> mining
P calculating aids
» astrology/astronomy
» The Revelation of St John

See Oxford Dictionary of National Biography:
http://www.oxforddnb.com /view/article /19758


http://www.oxforddnb.com/view/article/19758

Context — why?

From Napier's preface to the translation of 1616:

Seeing there is nothing (right well-beloved Students of
the Mathematics) that is so troublesome to mathemati-
cal practice, nor that doth more molest and hinder cal-
culators, than the multiplications, divisions, square and
cubical extractions of great numbers, which besides the
tedious expense of time are for the most part subject to
many slippery errors, | began therefore to consider in my
mind by what certain and ready art | might remove those
hindrances. .. | thought good heretofore to set forth in
Latine for the publique use of Mathematicians.



Context — why?

Inspired by the 16th-century technique of prosthaphaeresis:
the use of trigonometric identities such as
1
cosxcosy = [cos(x + y) + cos(x — y)]
sinxsiny = % [cos(x — y) — cos(x + y)]

to convert multiplication into addition.



Context — in what form, and in which language?

Original Latin text of 1614:
Mirifici logarithmorum canonis descriptio
translated into English by Edward Wright in 1616 as
A description of the admirable table of logarithms

Scanned text available via SOLO


http://solo.bodleian.ox.ac.uk/permalink/f/n28kah/oxfaleph016409236
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Inventor:
John Napier (1550-1617)
Translator:
Edward Wright (?71558-1615)
(interests: navigation, charts
and tables)
Additional material:
Henry Briggs (1561-1630)
Gresham Professor of Geometry,
later Savilian Professor of
Geometry at Oxford
(interests: navigation)
Printer:
Nicholas Okes
Readers:
Thomas Hulcher,

Thomas Panner



Napier's logarithms: content

Recall:

The Logarithme therefore of any sine is a number very
neerely expressing the line, which increased equally in the
meane time, whiles the line of the whole sine decreased
proportionally into that sine, both motions being equal-

timed, and the beginning equally swift.
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Napier's logarithms (1614)
In modern terms (i.e., not Napier's):
if y =107 (1 — 10_7)X, then Naplog y = x
Naplog 107 = 0, Naplog 0 is infinite, Naplog 1 = 161,180, 956

p X
107

Naplog< q) = Naplog p 4+ Naplog g

Naplog (p x g) = Naplogp + Naplog g — Naplog1

;. (107
Note that Naplogx = 10"In | —

X

No notion of base, although Naplog ‘nearly’ has base % — see:
Robin Wilson, Euler's Pioneering Equation, OUP, 2019, p. 101
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Modifications by Napier and Briggs (1617)

Definition revised to remove the need to subtract Naplog1
‘Briggsian’ logarithms have base 10 and Log1 = 0, so that

Log(p x q) = Logp + Logq

Briggs produced Logarithmorum chilias prima ( The first thousand
logarithms) in 1617, followed by his Arithmetica logarithmica in
1624, which contained logarithms of 1 to 20,000 and 90,000 to
100,000, all to 14 decimal places (calculated by hand); the gap in
the table was filled by Adriaan Vlacq in 1628



Napier's logarithms

One last time:

The Logarithme therefore of any sine is a number very
neerely expressing the line, which increased equally in the
meane time, whiles the line of the whole sine decreased
proportionally into that sine, both motions being equal-

timed, and the beginning equally swift.
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Significance

Napier's logarithms:

» caught on very quickly

- i
» a calculating aid (until the 1980s)

» logarithms rapidly came to have other interpretations
(as you know, and as we shall see)
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Significance as a historical source

» Roles of translation in mathematics
» Concept of authorship in the 16th century
» Use of diagrams in mathematical texts

» Importance of informal/social communication, alongside
published texts



