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BO1 History of Mathematics
Lecture II

Analytic geometry and the beginnings of calculus
Part 1: Early notation

MT 2021 Week 1
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Summary

Part 1

É Brief overview of the 17th century

É A cautionary tale

Part 2

É Development of notation

Part 3

É Use of algebra in geometry

É The beginnings of calculus
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The 17th century

The main mathematical innovations of the 17th century:

É symbolic notation

É analytic (algebraic) geometry

É calculus

É infinite series [to be treated in later lectures]

É mathematics of the physical world [to be treated in later
lectures]
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Symbolic notation

Symbolic notation makes mathematics easier

É to read

É to write

É to communicate (though perhaps not orally)

É to think about

— and thus stimulates mathematical
advances?

É BUT it took a long time to develop

É why did it develop when it did?
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The communication of mathematics
Initially entirely verbal — but usually using a set form of words

Scribal abbreviations often used

É e.g., Diophantus (3rd-century Egypt) used ϛ as an
abbreviation for an unknown quantity

É e.g., Bhāskara II (12th-century India) used the initial letters of
yāvattāvat (unknown) and rūpa (unit) as shorthand:
‘yā 2 rū 1’ denoted ‘2x + 1’

But these were not symbols that could be manipulated
algebraically

Arrangement of signs on the page could carry information

É e.g., tiān yuán shù (13th-century China):

Algebraic symbolism of the form that we use came later
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A cautionary tale: Levi Ben Gerson and sums of integers

Levi Ben Gerson (Gersonides), Ma’aseh Hoshev (The Work of the
Calculator), 1321 [picture is of a version printed in Venice in 1716]
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A cautionary tale: Levi Ben Gerson and sums of integers
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A cautionary tale: Levi Ben Gerson and sums of integers

Book I, Proposition 26:
If we add all consecutive numbers from one to any given
number and the given number is even, then the addition
equals the product of half the number of numbers that are
added up times the number that follows the given even
number.

Book I, Proposition 27:
If we add all consecutive numbers from one to any given
number and the given number is odd, then the addition
equals the product of the number at half way times the
last number that is added.

(Translations from Hebrew by Leo Corry.)
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A cautionary tale: Levi Ben Gerson and sums of integers

Converting these into modern notation, we get:

Book I, Proposition 26:

If n is an even number, then 1 + 2 + 3 + · · ·+ n = n
2

(n + 1).

Book I, Proposition 27:

If n is an odd number, then 1 + 2 + 3 + · · ·+ n = n+1
2

n.

The formulae are clearly the same, so why are these treated as
separate propositions? The answer lies in the proofs, which, like
the results themselves, are entirely verbal.
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A cautionary tale: Levi Ben Gerson and sums of integers

Converting these into modern notation, we get:

Book I, Proposition 26:

If n is an even number, then 1 + 2 + 3 + · · ·+ n = n
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(n + 1).

Book I, Proposition 27:

If n is an odd number, then 1 + 2 + 3 + · · ·+ n = n+1
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The formulae are clearly the same, so why are these treated as
separate propositions?

The answer lies in the proofs, which, like
the results themselves, are entirely verbal.
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Converting these into modern notation, we get:
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(n + 1).
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A cautionary tale: Levi Ben Gerson and sums of integers

A fundamental problem here lies in the difficulty of expressing the
notion of ‘any given number’ (our ‘n’).

A commonly adopted solution was to outline the proof for a
specific example, on the understanding that the reader should then
be able to adapt the method to any other instance.

Ben Gerson’s proof of Proposition 26 takes this approach, and is
based on the idea of forming pairs of numbers with equal sums.*

*You might have heard a story about the young Gauss doing the same

thing.
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Ben Gerson’s proof of Proposition 26 takes this approach, and is
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A fundamental problem here lies in the difficulty of expressing the
notion of ‘any given number’ (our ‘n’).

A commonly adopted solution was to outline the proof for a
specific example, on the understanding that the reader should then
be able to adapt the method to any other instance.

Ben Gerson’s proof of Proposition 26 takes this approach, and is
based on the idea of forming pairs of numbers with equal sums.*

*You might have heard a story about the young Gauss doing the same

thing.
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A cautionary tale: Levi Ben Gerson and sums of integers

Proof of Proposition 26:

Take the example of 6.

If we add 1 and 6, we get 7 (‘the number
that follows the given even number’). Notice that 2 is obtained
from 1 by adding 1, and that 5 is obtained from 6 by subtracting
1, so 2 added to 5 is the same as 1 added to 6, namely 7. The only
remaining pair is 3 and 4, which also add to give 7. The number of
pairs is half the given even number, hence the total sum is half the
number of numbers that are added up times the number that
follows the given even number.

This proof is clearly not valid when the given number is odd, since
Ben Gerson would have been required to halve it — but he was
working only with (positive) integers
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A cautionary tale: Levi Ben Gerson and sums of integers

Proposition 27 therefore needs a separate proof, which similarly
does not apply when the given number is even (see Leo Corry, A
brief history of numbers, OUP, 2015, p. 119)

As Corry notes:
For Gersonides, the two cases were really different, and
there was no way he could realize that the two situations
. . . were one and the same as they are for us.

Moral: take care when converting historical mathematics into
modern terms!
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