Problem Sheet 7

Please send any comments or corrections to martin@stats.ox.ac.uk.

1. Sketch the cumulative distribution function of the following distributions:
(a) the (discrete) uniform distribution on $\{1,2, \ldots, n\}$;
(b) the (continuous) uniform distribution on $[a, b]$;
(c) the exponential distribution with parameter 1 ;
(d) the normal distribution with mean 0 and variance 1.
2. For each case below, does there exist a constant c such that the given function is a probability density function? If so, find c and find the cumulative distribution function. (In each case, the given function is zero outside the interval $(0,1)$.)
(a) $f_{1}(x)=c x$ for $0<x<1$.
(b) $f_{2}(x)=c x^{-1}$ for $0<x<1$.
(c) $f_{3}(x)=c x^{-1 / 2}$ for $0<x<1$.
(d) $f_{4}(x)=c\left(4 x^{3}-x\right)$ for $0<x<1$.
3. Let U be a uniformly distributed random variable on $[0,1]$. Find
(a) $\mathbb{E}[U]$ and $\operatorname{var}(U)$
(b) $\mathbb{P}(U<a \mid U<b)$ for $0<a<b<1$.
4. Let X be exponentially distributed with parameter λ.
(a) Find $\mathbb{P}(X>x)$
(b) Find $\mathbb{P}(a \leq X \leq b)$ for $0<a<b$
(c) Show that $\mathbb{P}(X>a+x \mid X>a)=\mathbb{P}(X>x)$ for $a, x>0$. [This is the memoryless property of the exponential distribution (compare to Q3 on Problem Sheet 3).]
(d) Find $\mathbb{P}\left(\sin X>\frac{1}{2}\right)$
(e) Let $c>0$. What is the distribution of the random variable $c X$? [Try using part (a).]
(f) For $x \in \mathbb{R}$, let $\lceil x\rceil$ denote the ceiling of x; that is, the smallest integer greater than or equal to x. Show that the discrete random variable $\lceil X\rceil$ has a geometric distribution, and find its parameter. [Hint: write the event $\{\lceil X\rceil=k\}$ as $\{X \in I\}$ for some interval I.]
5. Blood plasma nicotine levels in smokers can be modelled by a normal random variable X with mean 315 and variance 131^{2}, the units being nanograms per millilitre.
(a) What is the probability that a randomly chosen smoker has nicotine levels lower than 300 ?
(b) What is the probability that a randomly chosen smoker has nicotine levels between 300 and 500?
(c) If 20 smokers are to be tested what is the probability that at most one has a nicotine level higher than 500 ?
[If $\Phi(x)$ is the cumulative distribution function of the standard normal distribution then $\Phi(-0.115)=0.454, \Phi(1.412)=0.921$.]
6. The radius of a circle is uniformly distributed on $[0, b]$. Find the cumulative distribution function, the probability density function, the expectation and the variance of the random variable representing the area of the circle.
7. Let X be a continuous random variable taking values in $[a, b]$ with c.d.f. F_{X} which is strictly increasing on $[a, b]$.
(a) Show that the random variable $F_{X}(X)$ has a uniform distribution on $[0,1]$.
(b) Let U be a uniform random variable on $[0,1]$. What is the distribution of the random variable $F_{X}^{-1}(U)$, where F_{X}^{-1} is the inverse of F_{X} ?
(c) Suppose that $U_{1}, U_{2}, \ldots, U_{n}$ are a set of computer-generated pseudo-random numbers (assumed to be drawn from a uniform distribution on $[0,1]$). How would you use them to simulate a random sample $X_{1}, X_{2}, \ldots, X_{n}$ from the distribution with density

$$
f(x)=\mu e^{-\mu x}, \quad x \geq 0 ?
$$

