Lechue $12 a$
Shallow ice apposximation

Glacion A ice theeth from Thouge accumulaten A conpachon of snew at high altimde/latilucle and Ney melt at low altimide /lahtinde. They mare by (i) sliding ar their baxe, and (ii) viscous creep (due to he migahen of denorahius in the copptine stuctire) - we descrice thu manematally ar a shear-thinning fuid.

Shallow ice approination

Mass consenshur (a for a Aver): $\frac{\partial H}{\partial t}+\frac{\partial q}{\partial x}=a$

Fore balance: $0=-\sum_{\partial x}^{\partial p} \Delta x \Delta z+\frac{\partial \tau}{\partial z} \Delta z \Delta x+\rho g \sin \theta \Delta x \Delta z$

$$
0=-\frac{\partial p}{\partial z} \Delta z \Delta x-p g \operatorname{cu} \partial \Delta x \Delta z \text {. }
$$

$$
\begin{align*}
\Rightarrow \quad 0 & =-\frac{\partial p}{\partial x}+\frac{\partial \tau}{\partial z}+\rho g \sin \theta \tag{1}\\
0 & =-\frac{\partial p}{\partial z}-\rho g \operatorname{cu} \theta \tag{2}
\end{align*}
$$

+ bandey condihim: at $z=S, \tau=0$ (zervomear shmen) \& $p=0$ (armoppheri)
(2) $\Rightarrow p=\operatorname{pgcad}(s-z)$
(1) $\Rightarrow \tau=\left(p g \sin \theta-p g \operatorname{cu} \theta \frac{\partial s}{\partial x}\right)(s-z)$

We hare reglected vechial sheer oreuses A Longiuadand strenes, due th the fow being 'shallow', and wive reglected accelentins due the fow bang 'slow' (see oulne sors)

Lechure 12 b

The final ingreduents are (i) a 'coushmetret has' ar 'How law' to describe the rhedrgy
For ice, thü ì Glen's law $\frac{1}{2} \frac{\partial u}{\partial z}=A \tau^{n}$
(3) Where $n \hat{i}^{3}, A=10^{-24} \mathrm{~Pa}^{-3} \mathrm{~s}^{-1}$ (fron experrents)
Iis reaitity A defuch an teropeshare, hat wet ignart that. We could unte as $\tau=1 \frac{\partial u}{\partial z}$ wher $\eta=\frac{1}{2 A} \tau^{n-1}$ is the effecher uisonty. Far a Newhnian fuid, $n=1$
and (ii) a 'sliding law' or a 'frichim law' - ice at the bed is urually meling and wher frocikater shding, descrued by

$$
u_{b}=C \tau_{b}^{n}
$$

(4) whet $\tau_{b}=\left.\tau\right|_{z=b}=\left(\rho g \sin \theta-\rho g \cos \theta \frac{\partial s}{\partial x}\right) H$
it The baral shear itrens.
(C may deynd an tempeahere, rughress, and subglaciul water prearre, but we treat it as conshust here $]$
laserting ous exprecuin for τ into (3), and integate subject th (4) (ie. $u=u_{b}$ at $z=b$)

$$
\Rightarrow u=2 A(p g)^{\wedge}\left(\sin \theta-\operatorname{cu} \theta \frac{\partial s}{\partial x}\right)^{\wedge}\left[\frac{(s-b)^{n+1}-(s-z)^{\lambda+1}}{n+1}\right]+C(\lg)^{n}\left(\sin \theta-\left(u \theta \frac{\partial s}{\partial x}\right)^{\mu}(s-b)^{\mu}\right.
$$

$$
(H=s-b)
$$

Hence the ice thux quig goven by

$$
q=\int_{b}^{s} u d z=\frac{\left.2 A(\rho g \sin \theta)^{\wedge}\left(1-\operatorname{cov} \theta \frac{\partial s}{\partial x}\right)^{\wedge} H^{n+2}+C(\rho g \sin \theta)^{\mu}\left(1-\operatorname{cov} \theta \frac{\partial s}{\partial x}\right) H^{m+1}\right) .}{}
$$

(thui assums $\frac{\partial s}{\partial x}<\sin \theta$, oherwse we need ta be mare coreful winh sigus),

We can now combine our expreserian for q with consenshan of mass $\frac{\partial H}{\partial t}+\frac{\partial q}{\partial x}=a$.
eq. For a glacier on a uniform sloping bed $(b=0$, so $s=H)$ and win no sliding $(C=0)$, we fud

$$
\frac{\partial H}{\partial t}+\frac{\partial}{\partial x}\left[\frac{2 A \operatorname{cgs} \sin \theta)^{\wedge}}{n+2}\left(1-\cot \theta \frac{\partial H}{\partial x}\right)^{\wedge} H^{n+2}\right]=a
$$

Thus is a nonlinear diffusion equates for the ice tacturen H.

Lecture 13a
Mourtain glaciers

$$
\frac{\partial H}{\partial t}+\frac{\partial}{\partial x}\left[\frac{2 A(\operatorname{cog} \sin \theta)^{\wedge}}{n+2}\left(1-\cot \theta \frac{\partial H}{\partial x}\right)^{\wedge} H^{n+2}\right]=a
$$

Non-dimensimaliex: given length scale $[x]$, and an accumulation scale $[a]$, we chase

$$
\begin{aligned}
& {[H]^{n+2}=\frac{[x][a]}{2 A(\operatorname{casin} \theta)^{\wedge}}, \quad[t]=\frac{[H]}{[a]} } \\
\Rightarrow & \frac{\partial H}{\partial t}+\frac{\partial}{\partial x}\left[\frac{H^{n+2}}{1+2}\left(1-\mu \frac{\partial H}{\partial x}\right)^{\wedge}\right]=a \quad \text { where } \mu=\frac{\cot \theta[H]}{[x]}
\end{aligned}
$$

Typical runes: $\Lambda=3, A=10^{-24} \mathrm{~Pa}^{-3} \mathrm{~s}^{-1}, \rho=916 \mathrm{~kg} \mathrm{~m}{ }^{-3}, g=9.8 \mathrm{~ms}{ }^{-2}, \sin \theta=0.1$

$$
[x]=10 \mathrm{~km}[a]=1 \mathrm{~m} / \mathrm{y} \Rightarrow[H] \approx 200 \mathrm{~m}, \quad[t] \approx 200 \mathrm{y}, \mu \approx 0.2
$$

Approximate $\mu \ll 1$. Rex $\frac{\partial H}{\partial t}+H^{n+1} \frac{\partial H}{\partial x}=a(x)$
Solve with $H=0$ at $x=0$, the head of ne glacier.
The glacier ends at the terminus $x=x_{\mu}(t)$ - a free banday.
For the lady shiite, $\frac{\partial}{\partial x}\left[\frac{H^{n+2}}{1+2}\right]=a(x)$ win $H=0$ at $x=0$

$$
\Rightarrow H_{0}=\left[(n+2) \int_{0}^{x} a(\hat{x}) d \hat{x}\right]^{\frac{1}{n+2}}
$$

The terminus pashm x_{n} ѝ determined fran what n ie ice Aux (and hence H) go to zero. ie. whet $\int_{0}^{x_{\mu}} a(\hat{x}) d \hat{x}=0$.
eg. if $a=a_{0}-x$, hen $H_{0}=\left[(n+2) x\left(a_{0}-\frac{1}{2} x\right)\right]^{\frac{1}{n+2}}$ win $x_{\mu}=2 a_{0}$

For a gran initial condihm $H=H_{i}(x)$ at $t=0$. We solve using cheractensinis,

$$
\dot{t}=1, \quad \dot{x}=H^{n+1}, \quad \dot{H}=a(x)
$$

with, at $t=0, x=\sigma, H=H_{i}(\sigma)$
and at $t=\tau, x=0, H=0$
Nob nat along each cheractermc $\frac{d H}{J_{x}}=\frac{\dot{H}}{\dot{x}}=\frac{a}{H^{\Lambda+1}} \Rightarrow H^{\Lambda+1} \frac{d H}{d x}=a$
For the characterises stalling free $x=0$, we have $\frac{H^{n+2}}{n+2}=\int_{0}^{x} a(\hat{x}) d \hat{x}$ ic $H=H_{0}(x)$, in e
the chanacterina are $\dot{x}=H_{0}^{1+1} \Rightarrow t=\int_{0}^{x} \frac{d \hat{x}}{H_{0}(\hat{x})^{n+1}+\tau}$
For the chancterines shaving froe $t=0$, we have $\frac{H_{n+2}^{n+2}}{n+1}=\int_{\sigma}^{x} a(\hat{x}) d \hat{x}+\frac{H_{i}(\sigma)^{n+2}}{n+2}$
The dranctexishe hare $\dot{x}=H(x, \sigma)^{n+1} \Rightarrow t=\int_{\sigma}^{x} \frac{d \hat{x}}{H(\hat{x}, \sigma)^{n+1}} \leftarrow$ detemimis $\sigma(x, t)$

Lechre 13 b

\leftarrow starting wist too large a glacier
\longleftarrow staving with to small a glacier

If H i close to the theady shite $H_{0}(x)$, is is easier \hbar linearsi the model. Write $H=H_{0}(x)+H_{1}(x, t)$, and suppox $H_{1} \ll H_{0} \quad\left(\right.$ in $\left.\frac{\partial H}{\partial t}+\frac{\partial}{\partial x}\left(\frac{H^{\wedge+2}}{a+2}\right)=a\right)$

$$
\Rightarrow \frac{\partial H_{1}}{\partial t}+\frac{\partial}{\partial x}\left[H_{0}^{n+1} H_{1}\right]=0
$$

[ade thu is adt a couthat coetheert equahin, since $H_{0}=H_{0}(x)$] mulhply iy $H_{0}^{\Lambda+1} \Rightarrow \frac{\partial}{\partial t}\left(H_{0}^{\Lambda+1} H_{1}\right)+\underbrace{H_{0}^{\Lambda+1} \frac{\partial}{\partial k}}_{\partial}\left(H_{0}^{\Lambda+1} H_{1}\right)=0$
ic. $\frac{\partial}{\partial f}\left(H_{0}^{A H} H_{1}\right)+\frac{\partial}{\partial S}\left(H_{0}^{A 11} H_{1}\right)=0$

$$
\frac{\partial}{\partial \xi} \text { if } \xi=\int_{0}^{x} \frac{d \hat{x}}{H_{0}(\hat{x})^{n+1}}
$$

which har rouhine $H_{1}=\frac{\phi(\xi-t)}{H_{0}^{+1+}}$ wher ϕ i dekenined fun iached cendinins.
 terminus.

An altemive velaod - apprypnute for small wore length perhbahans - is th apparsimatie An chorackenh2 equahiuss $\quad \dot{t}=1 \quad \dot{x}=H^{n+1} \quad \dot{H}=a$

$$
\approx H_{0}^{n+1} \quad \dot{H}_{0}=a \& \dot{H}_{1}=0
$$

Thu u equinbent ts solving the PDE $\frac{\partial H_{1}}{\partial t}+H_{0}^{n+1} \frac{\partial H_{1}}{\partial x}=0$ (compered h before, we're misnhg a tem $H_{1} \frac{\partial}{\partial x}\left(H_{0}^{1+1}\right)$ - ok t do thu if H_{c} baces an Shat wavelengtis).
Thu har soluhme $H_{1}=\varnothing(\xi-t)$ wher ξ u defied as before.
Thu rethod con be uned to connder the Dught waual gruth / shinhkage of a glacker (see problen sheet)

Lecture ILa
Ice Sheets

Mass censembun $\frac{\partial H}{\partial t}+\frac{\partial q}{\partial x}=a$
(we condor $x>0$, where we armure $\frac{\partial s}{\partial x}<0$)

Free balance: $0=-\frac{\partial p}{b x}+\frac{\partial \tau}{\partial z}$

$$
\Rightarrow \quad \tau=-\rho g \frac{\partial s}{\partial x}(s-z)
$$

$$
0=-\frac{\partial p}{\partial z}-\rho g \Rightarrow p=\rho g(s-z)
$$

$\left.\begin{array}{ll}\text { Flu lw: } & \frac{\partial u}{\partial z}=2 A \tau^{\wedge} \\ \text { Sliding lar: } & u_{b}=C \tau_{b}^{m}=\left(\frac{\tau_{b}}{c}\right)^{m}\end{array}\right\}$

$$
\begin{aligned}
& \Rightarrow u=\frac{2 A(p g)^{\wedge}}{\mu+1}\left(-\frac{\partial s}{\partial x}\right)^{\wedge}\left((s-b)^{n+1}-(s-z)^{\wedge+1}\right]+\left(\frac{\rho g}{c}\right)^{\mu}\left(-\frac{\partial s}{\partial x}\right)^{\mu}(s-b)^{\mu} \\
& q=\int_{b}^{s} u d z=\frac{2 A\left((g)^{\wedge}\right.}{a+2}\left(-\frac{\partial s}{\partial x}\right)^{\wedge} H^{n+2}+\left(\frac{p g}{c}\right)^{\mu}\left(-\frac{\partial s}{\partial x}\right)^{\mu} H^{\mu+1}
\end{aligned}
$$

Bounday conditions: $q=0$ at $x=0$ (symmetry) and $q=H=0$ at $x=x_{\mu}$.

Suppon the ked os Rat $(b=0)$ and nohmen i dominated ky Shding, Aner

$$
q=\left(\frac{\rho g}{c}\right)^{\mu}\left(-\frac{\partial H}{\partial x}\right)^{\mu} H^{\mu+1} \quad \Rightarrow \quad q^{1 / \mu}=-\frac{\rho g}{c} H^{1+1 / \mu} \frac{\partial H}{\partial x}
$$

For a oleady shate, whe gren $a(x)$, we have $q=\int_{0}^{x} a(\hat{x}) d \hat{x}$, and x_{m} in determined frum the conshoint $\int_{0}^{x_{m}} a(\hat{x}) d \hat{x}=0$. Den (-) becomer

$$
\begin{aligned}
& \frac{\rho g}{c} H^{1 t^{\prime} / n} \frac{\partial H}{\bar{x}}=-\left(\int_{0}^{x} a(\hat{x}) d \hat{x}\right)^{1 / \mu} \text { and we have } H=0 \text { at } x=x_{m} . \\
\Rightarrow & \frac{p g}{c} \frac{\mu}{2 m+1} H^{\frac{2 \mu+1}{m}}=\int_{x}^{x_{\mu}}\left(\int_{0}^{x^{\prime}} a(\hat{x}) d \hat{x}\right)^{1 / m} d x^{\prime} \\
\Rightarrow & \left.H=\frac{2 \mu+1}{m} \frac{c}{\rho g} \int_{x}^{x_{m}}\left(\int_{0}^{x^{\prime}} a(\hat{x}) d \hat{x}\right)^{1 / m} d x^{\prime}\right]^{\frac{\mu}{2 m+1}}
\end{aligned}
$$

Note that integnhing the mans conseruhm equahise aver the ice obeet give a global man consernhin equathin,

$$
\left.0=\int_{0}^{x_{m}} \frac{\partial q}{\partial x} d x=\int_{0}^{x_{m}} a-\frac{\partial H}{\partial t} d x=\int_{0}^{x_{m}} a d x-\frac{\partial}{\partial t}\left(\int_{0}^{x_{m}} H d x\right) \Rightarrow \frac{\partial}{\partial t} \int_{0}^{x_{m}} H d x\right)=\int_{0}^{x_{m}} a d x
$$

If ì helpful \hbar mate te 'plashi' appssiuation $n \rightarrow \infty$. (*) in tha can becones
$c=-\rho g H \frac{\partial H}{\partial x}$ and we lnow $H=0$ at $x=x_{m}$.

$$
\begin{equation*}
\Rightarrow c\left(x-x_{m}\right)=-\frac{1}{2} p g H^{2} \Rightarrow \underbrace{H=\underbrace{\left(\frac{2 c}{p y}\right)^{1 / 2}\left(x_{m}-x\right)^{1 / 2}} \text {. }}_{H_{0}^{1 / 2}} \tag{2}
\end{equation*}
$$

Lechre 14 b

Melt-elevnhin feedback We expect a \hbar depend on x (lahlude) and H lelesahin).
We tube $a=a_{0}-\mu x+\lambda H$
(note Nee id an equihbnum altitude $H=\frac{-a_{0}+\mu x}{\lambda}$ ar which $a=0$, and abare which $a>0$)
Using (2) for the ice thelkeen, we have

$$
\int_{0}^{x_{m}} H d x=\frac{2}{3} H_{0}^{1 / 2} x_{m}^{3 / 2} \quad \int_{0}^{x_{m}} a d x=a_{0} x_{m}-\frac{1}{2} \mu x_{m}^{2}+\frac{2}{3} \lambda H_{0}^{1 / 2} x_{m}^{3 / 2} .
$$

Rex man consenhmu (1) $\Rightarrow H_{0}^{1 / 2} x_{m}^{1 / 2} \dot{x}_{m}=a_{0} x_{m}-\frac{1}{2} \mu x_{m}{ }^{2}+\frac{2}{3} \lambda H_{0}^{1 / 2} x_{m}^{3 / 2}$

$$
\Rightarrow \dot{x}_{m}=\frac{x_{m}^{1 / 2}}{H_{0}^{1 / 2}}\left[a_{0}-\frac{1}{2} \mu x_{m}+\frac{2}{3} \lambda H_{0}^{1 / 2} x_{m}^{1 / 2}\right]
$$

$$
\underbrace{\dot{x}_{m}=\underbrace{\frac{x_{m}^{1 / 2}}{H_{0}^{1 / 2}}\left[a_{0}-\frac{1}{2} \mu x_{m}+\frac{2}{3} \lambda H_{0}^{1 / 2} x_{m}^{1 / 2}\right]}} \quad \underbrace{=0 \text { ar } x_{m}^{1 / 2}=\frac{2}{3} \frac{\lambda}{\mu} \mu_{0}^{1 / 2} \pm\left(\left(\frac{2}{3} \frac{\lambda}{\mu} \mu_{0}^{1 / 2}\right)^{2}+\frac{2 a_{0}}{\mu}\right)^{1 / 2}}
$$

We con carstuck a bifurahiar diagnur of steady-state ice-sheet size

Rere is the pombility of hysteresis as the climate (ie a_{0}) changes.

The moded aho shas the hinescale ar whoch the ice sheet endres $t_{n} \frac{H_{0}^{1 / 2} x_{m}^{1 / 2}}{a_{0}}$ haking $x_{m}=500 \mathrm{~km}, H_{0} \approx 20 \mathrm{~m}, a_{0} \sim 1 \mu\left(y \Rightarrow t \sim \frac{\left(10^{7} \mu^{2}\right)^{1 / 2}}{1 \mathrm{~m} / \mathrm{y}} \hat{\imath} 3000 \mathrm{y}\right.$.

Lechre I Ja
Marine ice sheet

For a land-teminating ice Reet, $q=H=0$ at $x=x_{\text {m }}$ so steady shitu hare $\int_{0}^{x_{m}} a d x=0$.

For Anturnici, $a>0$ clmart eveguhere, and ice is lart by frasing into the oeeen, and calving iceberys.
lee oher becomer afout at $x=x_{m}$, wher $\rho g H=-\rho w g b$
(Arhineder). x_{n} is called the 'grandily line'.

A theay for the cee Thelf (see arline noles), suggeth it is apprnate to apply $q=B H^{\alpha}$ at $x=x_{m}$. for $\sin x$ courtinth $\beta, \alpha>0$

The model for a marie ice Theet becomer $\quad \frac{\partial H}{\partial t}+\frac{\partial q}{\partial x}=a$
win $\quad q=0$ at $x=0$
and $\quad q=B H^{\alpha}$ ar $x=x_{m}$

$$
H=\max \left(0,-\frac{\rho_{w}}{\rho} b\right) \text { ar } x=x_{m}
$$

For a theady state,

$$
\int_{0}^{x_{m}} a d x=\int_{0}^{x_{m}} \frac{\partial q}{\partial x} d x=B_{\max }\left(0, \frac{-\rho_{w} b}{\alpha}\right)^{\alpha}
$$

whech deteruines the oteady Sinte porinm of the gounding line x_{m}.
[We cauld un the plarti shding appraimation, $-\operatorname{PgH}\left(\frac{\partial H}{\partial x}+\frac{\partial b}{\partial x}\right)=c$ th fad $H(x)$]
eg. $a=a_{0}>0$ ì coushir. We reed $a_{0} x_{m}=B \max \left(0,-\frac{\rho_{w}}{p} b\left(x_{m}\right)\right)^{\alpha}$

If bedpoch is ron-mandmuic, thre may be mulhple shecody seluhom for x_{m}, and Re poribility of hysterens al a_{0} changes. If Bready shates disapper, Neee can be Rpid retreat to a aomer sheady sthte (it is beliered Thu map happeen \hbar Wer Anshrchzà).

Lecture 15 b

Isostacy

The Earns mate is relahvely 'Paid', so the court sinks under The weight of the ice. A simple model os true the ia 'fain' on the math, wing Arnimeder principle.
If tee bed u at $z=b_{0}(x)$ in the absence of ice, then we reed $\rho g H=\rho_{n} g\left(b_{0}-b\right)$, and here $b(x, t)=b_{0}(x)-f_{\rho_{m}} H(x, t)$
The ice surpmee in then $s=b_{0}+\left(1-\rho_{\rho_{m}}\right) H \quad\left(\rho_{\rho_{m}}=\frac{1}{3}\right)$

Greenland ice sheet

- with the ice singed array
- with 'isostatic coypursation'

Antioch ice sheet

- much of the ice ii gonaded on bed well below sea level.

Sea level
Glchally-avenged sea level change can be calculated by dividing the plume of whir that melt fri the ice sheets ($P_{P_{W}} 00.9$ time e the mene of ice) by the forface area of the ocean $A_{0} \approx 362 \times 10^{6} \mathrm{~km}^{2}$.
eg. Greenland han $2.9 \times 10^{6} \mathrm{~km}^{3}$ ice $\Rightarrow 7 \mathrm{~m}$ of sea level equivalent.
Anturnia han $26.5 \times 10^{6} \mathrm{~km}^{3}$ ice $\Rightarrow 67 \mathrm{~m}$, but cull volume above farahin count r, so thu in 58 m .

Lechre 16a
Sea ice

Sea ice fanms wen the oeear costs and freezes fren the supace dennusds.
Salinity of oeen whiker complizater the phypur of sea ile funuahai, so for simplecity will consider freezing freth wiker.

The simpleir moded on the stefon proslen

Sefm prolem

Waker inchally at is freesing kempurhere $T=T_{m}(=O C)$
is sugpeced th a codd sumace kempurese $T=T_{s}<T_{\mu}$.
A layer of ice gron demenarses frue Re suphe, wrh
Dicheren $H(t)$.
In Neice, tespeenter $T(z, t)$ suburper the hear equation

$$
p c \frac{\partial T}{\partial t}=k \frac{k T^{2} T}{\sqrt[z]{ } t^{2}} \quad \text { wh } \quad T=T_{s} \text { at } z=0, T=T_{\text {m }} \text { ar } z=-H
$$

We who have $\frac{d H}{d t}=-M$, whe muts meir ate (neghnve for freesing).
At he ice-wnkes intefue, the Seffuc Condhin detemines M,

$$
\begin{aligned}
p L_{M} & =F_{t}-F_{-} \\
& =0-\left.\left(-k \frac{\partial T}{\partial z}\right)\right|_{z=-1}
\end{aligned}
$$

$$
\Rightarrow \frac{p L \frac{d H}{d t}=-\left.k \frac{\partial T}{\partial_{z}}\right|_{z=-H}}{A H(0)=0}
$$

Nor-dinersimatin: $T=T_{m}+[T] \hat{T}, \quad z=[z] \hat{z}, \quad H=[z] \hat{H}, \quad t=[t] \hat{t}, \quad t$ chax

$$
[\tau]=T_{m}-T_{s}, \quad[k]=\frac{\rho L[z]^{2}}{k[T]} .
$$

\Rightarrow (druping hath) $\frac{1}{S} \frac{\partial T}{\partial t}=\frac{\partial^{2} T}{\partial z^{2}}$, with $T=-1$ ar $z=0$, and $T=0$ at $z=-H(t)$

$$
k \quad \frac{d H}{d t}=-\left.\frac{\partial T}{\partial z}\right|_{z=-H} \text { wn } H(0)=0 \text {. }
$$

Here $S=\frac{L}{c[T]}$ in the Sefun namber. For wher, $\frac{L}{c}=165 K$, and $[T]=10 \mathrm{~K}$, so expeer $S \gg 1$
If we thiee $S \rightarrow \infty$, the tempratie T a quasi-steady, and u gien by $T=-1-\frac{Z}{H}$, and He shefun condition becoves $\frac{d H}{d t}=\frac{1}{H}$ with $H(0)=0 \Rightarrow H=\sqrt{2 t}$
[Note, the full parsem (fro O(i) 5) han a similanty sclution (see caline noles)]

Lechue 16 b

A beiter model for sea ice fumahmin han modifed bourdey condihenn, and allas fur melling as well an freesing.
 radeatre pures (cf. lechre 1)

$$
\begin{aligned}
& \frac{d s}{d t}=-m_{s} \\
& \frac{d b}{d t}=m_{b}
\end{aligned}
$$

$$
\Rightarrow \frac{d H}{d t}=-M_{S}-m_{b}
$$

$$
\hat{\imath} \hat{i} \hat{u}
$$

water
At $z=b$, the Refun condinum says $\quad \rho L_{m_{b}}=F_{0}-\left.\left(-k \frac{\partial T}{\partial z}\right)\right|_{z=b} \quad$ (2) $\quad T=T_{m}$
At $z=s$, einer $T \leqslant T m$, and $(1-a) Q-\sigma T^{4}=\left.k \frac{\partial T}{\partial z}\right|_{z=s . \quad A M_{s}=0, ~} ^{\text {. }}$. $\quad A$
or $T=T_{M}$, and $(1-a) Q-\sigma T^{4}-\left.k \frac{\partial T}{\partial z}\right|_{z=5}=p L M_{S} \geqslant 0$
\uparrow (3) $\hat{\imath}$

Non-dinerniualier, waling $T=T_{\mu}+[T] \hat{T}$, nm e $\sigma T^{4}=\sigma T_{m}^{4}\left(1+\frac{[T]}{T_{m}} \hat{T}^{4} \approx \sigma_{m}^{4}+4 \sigma T_{m}^{3}[T] \hat{T}\right.$
Chase (1) $\left[m_{s}\right]=\left[m_{s}\right]=\frac{[z]}{[t]}$
(2) $[k]=\frac{p L[z]^{2}}{k[T]}$.
(3) $[z]=\frac{k}{4 \sigma T_{m}^{3}}$

Also define $S=\frac{L}{c[T]}, \quad \hat{F}_{0}=\frac{F_{0}[z]}{k[T]}, \quad \hat{Q}=\frac{(1-a) Q-\sigma T_{n}^{4}}{4 \sigma T_{m}^{3}[T]}$
$\Rightarrow \quad \frac{1}{s} \frac{\partial T}{\partial t}=\frac{\partial^{2} T}{\partial z^{2}}$ fo $b<z<s$, win.
at $z=b, \quad\left\{\begin{array}{l}T=0 \\ \mu_{b}=\hat{F}_{0}+\frac{\partial T}{\partial z}\end{array}\right.$, and at $z=s\left\{\begin{array}{l}T \leqslant 0, \hat{Q}-T=\frac{\partial T}{\partial z}, \mu_{s}=0 \\ T=0, \hat{Q}-T-\frac{\partial T}{\partial z}=\mu_{S} \geqslant 0\end{array}\right.$
Note \hat{Q} con very in tine, typically <0 during witter and 20 during sumer (see prolum sher).

