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Recent breakthroughs in deep learning applications:
Much of why we are interested in deep learning is its remarkable efficacy

Deep learning is now widespread in applications, showing
remarkable abilities to perform complex tasks.

I Computer vision; image classification, Imagenet challenges.

I Complex strategy games such as Go.

I AI for art with style transfer, sound generation from videos,
and text generation.

I Deep learning is now increasingly used in scientific
applications: gravitational lensing and weather prediction
(DGMR)

I AlphaFold for protein structure interaction prediction.

I And many many more applications: e.g. medical
diagnostics....
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ImageNet Large Scale Visual Recognition Challenge (ILSVRC)
Image classification, localization, and detection:

http://image-net.org

ImageNet was first presented in 2009 to help benchmark image
classification algorithms in the ILSVRC.
2010-14: Image classification; 1.2 million training labeled images
2011-14: Single object localisation; 524,000 training labeled bbox
2013-14: All object classification per scene; 456,000 training set
https://link.springer.com/article/10.1007/s11263-015-0816-y
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ImageNet Large Scale Visual Recognition Challenge
Image classification, localization, and detection: complex set of similar data

“The ILSVRC dataset contains many more fine-grained classes
compared to the standard PASCAL VOC benchmark; for example,
instead of the PASCAL “dog” category there are 120 different
breeds of dogs in ILSVRC2012-2014 classification and single-object
localization tasks.”
https://link.springer.com/article/10.1007/s11263-015-0816-y
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ImageNet Large Scale Visual Recognition Challenge
Image classification, localization, and detection

2013-14: All object classification per scene; 456,000 training set
https://arxiv.org/pdf/1409.0575.pdf
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ImageNet Large Scale Visual Recognition Challenge
Image classification, localization, and detection: “super-human performance.”

https://arxiv.org/pdf/1409.0575.pdf

2012 ILSVRC classification won using 7 layer CNN by Krizhevsky,
Sutskever, and Hinton; users in widespread use of ConvNets.
This success marked the start of DNNs widespread use.
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Deep learning for games
Improved with reinforcement learning.

https://storage.googleapis.com/deepmind-media/alphago/AlphaGoNaturePaper.pdf
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Deep learning style transfer: architecture
Deep learning allows easy combination architecture tasks.

More complex architectures can allow learning and transferring
characteristics of objects.
https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Gatys_Image_Style_Transfer_

CVPR_2016_paper.pdf
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Deep learning style transfer: examples
Applications such as these seem impossible without DL

Photos can be transitioned to paintings with prescribed styles
https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Gatys_Image_Style_Transfer_

CVPR_2016_paper.pdf
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Deep learning sound generation from video
DL is able to generate realistic synthetic data.

Expected sound characteristics can be learned from video with
sound and then generated and added to video lacking sound.
https://arxiv.org/pdf/1512.08512.pdf

https://www.youtube.com/watch?v=0FW99AQmMc8

Many similar examples exist, see e.g. DeepFakes and automatic
text generations. https://en.wikipedia.org/wiki/GPT-3
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DeepLens for detecting rare events
Some tasks are not scalable without machine learning.

For many science applications the quantity of data is beyond
human inspection, use DL: Large Synoptic Survey Telescope
https://academic.oup.com/mnras/article/473/3/3895/3930852

One approach to scale the visual inspection effort to the size of
these surveys is to use crowdsourcing. This is the idea behind the
Space Warps project (Marshall et al. 2015; More et al. 2015),
which crowdsourced the visual inspection of a sample of 430 000
images from the CHFTLS to a crowd of 37 000 citizen scientists,
yielding a new sample of gravitational lens candidates. The authors
further estimate that a similar crowdsourcing effort can be scaled
up to LSST sizes, where a considerable crowd of 106 volunteers
could visually inspect 106 LSST targets in a matter of weeks.
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AlphaFold
Predicting the 3D shape of proteins from its amino-acid sequence

DNNs are increasingly used in scientific applications that
historically required laborious lab work.
https://www.nature.com/articles/d41586-020-03348-4
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Deep Generative Model for Rainfall (DGMR)
Predicting accurate near term rainfall on a fine mesh

Machine learning is increasingly state-of-the-art for scientific
computing tasks.
https://www.nature.com/articles/s41586-021-03854-z
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Is your area of interest immune from deep learning?
Deep deep trouble: A case study by Michael Elad for image denoising:

Thousands of papers addressing this fundamental task [image denoising]
were written over the years. Researchers developed beautiful and deep
mathematical ideas with tools from partial differential equations, such as
anisotropic diffusion and total variation, energy minimization viewpoint,
adoption of a geometric interpretation of images as manifolds, use of the
Beltrami flow, and more.... We have hence gained vast knowledge in
image processing over the past three decades.

In 2012, Harold Burger, Christian Schuler, and Stefan Harmeling decided

to throw deep learning into this problem. The idea was conceptually

quite simple: take a huge set of clean images, add synthetic noise, and

then feed them to the learning process that aims to turn a noisy image

into its clean version. While the process was tedious, frustrating, and

lengthy — the end result was a network that performed better than any

known image denoising algorithm at that time.

https://sinews.siam.org/Details-Page/deep-deep-trouble
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Maths of why DNNs: DNNs as function approximators
Functions act as classifiers and other machine learning tasks

Classification of inputs x ∈ Rn to c classes denoted by {ei}ci=1, is
modelled by a function H(x) for which H(x) = ei for all x in class
i where ei (`) = 1 for i = ` and 0 otherwise.
Approximation Theory concerns the ability to approximate
functions from a given representation; see accompanying lectures.

Some of the most well studied examples include approximation of a
function f (x) over x ∈ [−1, 1] with some smoothness, say three
times differentiable, by polynomials of degree at most k or
trigonometric exponentials.

Here our focus is on the ability to approximate functions H(x ; θ)
given by a deep network architecture; for x ∈ Rn.
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Representational benefits of depth (Telgarsky 15’)
Two layer ReLU network: sawtooth basis function

Telegarsky (2015) considered a specific construction of a function
from a deep network which requires an shallow network to have
exponential width.
Let φ(x) = ReLU(x) = max(x , 0) and consider the two layer net:

h2(x) = 2φ(x)− 4φ(x − 1/2) =


0 x < 0

2x x ∈ [0, 1/2]
2− 2x x > 1/2

and h3(x) = φ(h2(x)) set to zero the negative portion for x > 1.
Here W (1) = (1 1)T , b(1) = (0 − 1/2)T , W (2) = (2 − 4), b(2) = 0.

https://arxiv.org/abs/1509.08101
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Representational benefits of depth (Telgarsky 15’)
Composition gives exponential growth in complexity

For φ(x) = max(x , 0) let f (x) = h3(x) = φ(2φ(x)− 4φ(x − 1/2))
and iterate this 2-layer network k times to obtain a 2k-layer
network f k(x) = f (f (· · · (f (x) · · · )) with the property that it is
piecewise linear with change in slope at xi = i2−k for
i = 0, 1, . . . , 2k and moreover takes on the values f k(xi ) = 0 for i
even and f k(xi ) = 1 for i odd.
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Representational benefits of depth (Telgarsky 15’)
Composition gives exponential growth in complexity: width vs. depth

In contrast, a two-layer network with the same φ(x) of the form

φ
(∑m

j=1 αjφ(wjx − bj)
)

requires m = 2k to exactly express f k(x).

The deep network can be thought of as having 6k parameters,
whereas the two-layer network requires 3 · 2k parameters;
exponentially more. https://arxiv.org/abs/1509.08101
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Representational benefits of depth (Telgarsky 15’)
Classification error rates

Define the function class F (φ;m, `) be the space of functions
composed of ` layer fully connected m width feed forward nets
with nonlinear activation function φ. Let
R(f ) := n−1

∑n
i=1 χ[f (xi ) 6= yi ] count the number of incorrect

labels of the data set {(xi , yi )}ni=1.

Theorem (Telgarsky 15’)

Consider positive integers k, `,m with m ≤ 2(k−3)/`−1, then there
exists a collection of n = 2k points {(xi , yi )}ni=1 with xi ∈ [0, 1] and
yi ∈ {0, 1} such that

min
f ∈F (φ;2,2k)

R(f ) = 0 and min
g∈F (φ;m,`)

R(g) ≥ 1

6
.

https://arxiv.org/abs/1509.08101
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