C6.1 Numerical Linear Algebra

- SVD and its properties, applications
- ▶ **Direct methods** for linear systems and least-squares problems
- Direct methods for eigenvalue problems
- ▶ Iterative (Krylov subspace) methods for linear systems
- ▶ **Iterative** (Krylov subspace) methods for eigenvalue problems
- Randomised algorithms for SVD and least-squares

References

- ► Trefethen-Bau (97): Numerical Linear Algebra
 - covers essentials, beautiful exposition
- ► Golub-Van Loan (12): Matrix Computations
 - classic, encyclopedic
- ► Horn and Johnson (12): Matrix Analysis (& topics (86))
 - excellent theoretical treatise, little numerical treatment
- ▶ J. Demmel (97): Applied Numerical Linear Algebra
 - impressive content, some niche
- N. J. Higham (02): Accuracy and Stability of Algorithms
 - bible for stability, conditioning
- ► H. C. Elman, D. J. Silvester, A. J. Wathen (14): Finite elements and fast iterative solvers
 - ▶ PDE applications of linear systems, preconditioning

What is numerical linear algebra?

The study of numerical algorithms for problems involving matrices Two main (only!?) problems:

1. Linear system

$$Ax = b$$

2. Eigenvalue problem

$$Ax = \lambda x$$

 λ : eigenvalue (eigval), x: eigenvector (eigvec)

What is numerical linear algebra?

The study of numerical algorithms for problems involving matrices Two main (only!?) problems:

1. Linear system

$$Ax = b$$

2. Eigenvalue problem

$$Ax = \lambda x$$

 λ : eigenvalue (eigval), x: eigenvector (eigvec)

3. SVD (singular value decomposition)

$$A = U\Sigma V^T$$

U, V: orthonormal/orthogonal, Σ diagonal

Why numerical linear algebra?

- Many (in fact most) problems in scientific computing (and even machine learning) boil down to a linear problem
 - Because that's often the only way to deal with the scale of problems we face today!
 (and in future)
 - For linear problems, so much is understood and reliable algorithms available
- ightharpoonup Ax = b: e.g. Newton's method for F(x) = 0, $F: \mathbb{R}^n \to \mathbb{R}^n$ nonlinear
 - 1. start with initial guess $x^{(0)} \in \mathbb{R}^n$
 - 2. find Jacobian matrix $J \in \mathbb{R}^{n \times n}$, $J_{ij} = \frac{\partial F_i(x)}{\partial x_i}|_{x=x^{(0)}}$
 - 3. update $x^{(1)} := x^{(0)} J^{-1}F(x^{(0)})$, repeat
- ► $Ax = \lambda x$: e.g. Principal component analysis (PCA), data compression, Schrödinger eqn., Google pagerank,
- Other sources: differential equations, optimisation, regression, data analysis, ...

Basic linear algebra review

For $A \in \mathbb{R}^{n \times n}$, (or $\mathbb{C}^{n \times n}$; hardly makes difference)

The following are equivalent (how many can you name?):

1. A is nonsingular.

Basic linear algebra review

For $A \in \mathbb{R}^{n \times n}$, (or $\mathbb{C}^{n \times n}$; hardly makes difference)

The following are equivalent (how many can you name?):

- 1. A is nonsingular.
- 2. A is invertible: A^{-1} exists.
- 3. The map $A: \mathbb{R}^n \to \mathbb{R}^n$ is a bijection.
- 4. all n eigenvalues of A are nonzero.
- 5. all n singular values of A are positive.
- 6. $\operatorname{rank}(A) = n$.
- 7. the rows of A are linearly independent.8. the columns of A are linearly independent.
- 9. Ax = b has a solution for every $b \in \mathbb{C}^n$.
- 10. A has no nonzero null vector. Neither does A^T .
- 11. A^*A is positive definite (not just semidefinite).
- 12. $\det(A) \neq 0$.
- 13. A^{-1} exists such that $A^{-1}A = AA^{-1} = I_n$.
- 14. ...

Structured matrices

For square matrices,

- Symmetric: $A = A^T$, i.e. $A_{ij} = A_{ji}$ (Hermitian: $A_{ij} = \bar{A}_{ji}$) has eigenvalue decomposition $A = V\Lambda V^T$, V orthogonal, $\Lambda = \text{diag}(\lambda_1, \dots, \lambda_n)$.
- ightharpoonup symmetric positive (semi)definite $A \succ (\succeq) 0$: symmetric and positive eigenvalues
- ▶ Orthogonal: $AA^T = A^TA = I$ (Unitary: $AA^* = A^*A = I$) → note $A^TA = I$ implies $AA^T = I$
- Skew-symmetric: $A_{ij}=-A_{ji}$ (skew-Hermitian: $A_{ij}=-ar{A_{ji}}$)
- Normal: $A^TA = AA^T$
- ightharpoonup Tridiagonal: $A_{ij}=0$ if |i-j|>1
- ▶ Triangular: $A_{ij} = 0$ if i > j

For (possibly nonsquare) matrices $A \in \mathbb{C}^{m \times n}$, $m \geq n$

- Hessenberg: $A_{ij} = 0$ if i > j + 1
- "orthonormal": $A^*A = I_n$.
- > sparse: most elements are zero

other structures: Hankel, Toeplitz, circulant, symplectic, ...

Vector norms

For vectors $x = [x_1, \dots, x_n]^T \in \mathbb{C}^n$

▶
$$p$$
-norm $||x||_p = (|x_1|^p + |x_2|^p + \dots + |x_n|^p)^{1/p}$

p-norm
$$||x||_p = (|x_1|^p + |x_2|^p + \cdots + |x_n|^p)^{1/p}$$

Euclidean norm=2-norm $||x||_2 = \sqrt{|x_1|^2 + |x_2|^2 + \cdots + |x_n|^2}$

▶ 1-norm
$$||x||_1 = |x_1| + |x_2| + \dots + |x_n|$$

Norm axioms

$$\|\alpha x\| = |\alpha| \|x\|$$
 for any $\alpha \in \mathbb{C}$

$$||x|| > 0 \text{ and } ||x|| = 0 \Leftrightarrow x = 0$$

 \triangleright ∞ -norm $||x||_{\infty} = \max_i |x_i|$

$$||x|| \ge 0$$
 and $||x|| = 0 \Leftrightarrow x = 0$
 $||x + y|| < ||x|| + ||y||$

Inequalities: For $x \in \mathbb{C}^n$.

$$\frac{1}{\sqrt{n}} \|x\|_1 \le \|x\|_2 \le \|x\|_1$$

$$\sum_{n=1}^{\infty} ||x||_1 \le ||x||_{\infty} \le ||x||_1$$

 $\|\cdot\|_2$ is unitarily invariant as $\|Ux\|_2 = \|x\|_2$ for any unitary U and any $x \in \mathbb{C}^n$.

Cauchy-Schwarz inequality

For any $x, y \in \mathbb{R}^n$,

$$|x^Ty| < ||x||_2 ||y||_2$$

Proof:

- For any scalar c, $||x cy||^2 = ||x||^2 2cx^Ty + c^2||y||^2$.
- ▶ This is minimised w.r.t. c at $c = \frac{x^T y}{\|y\|^2}$ with minimiser $\|x\|^2 \frac{(x^T y)^2}{\|y\|^2}$.
- Since the minimal value must be ≥ 0 , the CS inequality follows.

Matrix norms

For matrices $A \in \mathbb{C}^{m \times n}$,

- - ightharpoonup 2-norm=spectral norm (=operator norm) $\|A\|_2 = \sigma_{\max}(A)$ (largest singular value)
 - ▶ 1-norm $||A||_1 = \max_i \sum_{j=1}^m |A_{ji}|$

 - Frobenius norm $||A||_F = \sqrt{\sum_i \sum_j |A_{ij}|^2}$ (2-norm of vectorization)
- ightharpoonup trace norm=nuclear norm $\|A\|_* = \sum_{i=1}^{\min(m,n)} \sigma_i(A)$

Red: unitarily invariant norms ||A|| = ||UAV|| for any unitary (or orthogonal) U, V

Norm axioms hold for each. Inequalities: For $A \in \mathbb{C}^{m \times n}$, (exercise)

- $| \mathbf{L} | \mathbf{L}$
- $| \mathbf{L} | \mathbf{L}$
- $\|A\|_2 \le \|A\|_F \le \sqrt{\min(m,n)} \|A\|_2$

Subspaces and orthonormal matrices

Subspace S of \mathbb{R}^n : vectors of form $\sum_{i=1}^d c_i v_i$, $c_i \in \mathbb{R}$

- $\triangleright v_1, \ldots, v_d$ are **basis vectors**, linearly independent
- $\rightarrow x \in \mathcal{S} \Leftrightarrow \sum_{i=1}^{d} c_i v_i$
- ightharpoonup d is the *dimension* of ${\cal S}$

Representation: $S = \operatorname{span}(V)$ (i.e., $x \in S \Leftrightarrow x = Vc$), or just V; often convenient if V(=Q) is orthonormal

Subspaces and orthonormal matrices

Subspace S of \mathbb{R}^n : vectors of form $\sum_{i=1}^d c_i v_i$, $c_i \in \mathbb{R}$

- \triangleright v_1, \ldots, v_d are **basis vectors**, linearly independent
- $x \in \mathcal{S} \Leftrightarrow \sum_{i=1}^{d} c_i v_i$
- ightharpoonup d is the *dimension* of S

Representation: $S = \operatorname{span}(V)$ (i.e., $x \in S \Leftrightarrow x = Vc$), or just V; often convenient if V(=Q) is orthonormal

Lemma

$$\mathcal{S}_1 = \operatorname{span}(V_1)$$
 and $\mathcal{S}_2 = \operatorname{span}(V_2)$ where $V_1 \in \mathbb{R}^{n \times d_1}$ and $V_2 \in \mathbb{R}^{n \times d_2}$, with $d_1 + d_2 > n$. Then $\exists x \neq 0$ in $\mathcal{S}_1 \cap \mathcal{S}_2$, i.e., $x = V_1 c_1 = V_2 c_2$ for some vectors c_1, c_2 .

Proof: Let $M:=[V_1,V_2]$, of size $n\times (d_1+d_2)$. Since $d_1+d_2>n$ by assumption, M has a right null vector. Mc=0. Write $c=\begin{bmatrix}c_1\\-c_2\end{bmatrix}$.

Some useful results

- $(AB)^T = B^T A^T$
- ▶ If A, B invertible, $(AB)^{-1} = B^{-1}A^{-1}$
- ▶ If A, B square and AB = I, then BA = I
- Neumann series: if ||X|| < 1 in any norm,

$$(I-X)^{-1} = I + X + X^2 + X^3 + \cdots$$

- ► Trace $\operatorname{Trace}(A) = \sum_{i=1}^n A_{i,i}$ (sum of diagonals, $A \in \mathbb{R}^{m \times n}$). For any X, Y s.t. $\operatorname{Trace}(XY) = \operatorname{Trace}(YX)$. For $B \in \mathbb{R}^{m \times n}$, we have $\|B\|_F^2 = \sum_i \sum_i |B_{ij}|^2 = \operatorname{Trace}(B^TB)$.
- ▶ Triangular structure is invariant under addition, multiplication, and inversion
- ightharpoonup Symmetry is invariant under addition and inversion, but not multiplication; AB usually not symmetric even if A,B are

- ▶ Symmetric eigenvalue decomposition: $A = V\Lambda V^T$ for symmetric $A \in \mathbb{R}^{n \times n}$, where $V^T V = I_n$, $\Lambda = \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$.
- ▶ Singular Value Decomposition (SVD): $A = U\Sigma V^T$ for any $A \in \mathbb{R}^{m \times n}$, $m \ge n$. Here $U^TU = V^TV = I_n$, $\Sigma = \operatorname{diag}(\sigma_1, \ldots, \sigma_n)$, $\sigma_1 > \sigma_2 > \cdots > \sigma_n > 0$.

- Symmetric eigenvalue decomposition: $A = V\Lambda V^T$ for symmetric $A \in \mathbb{R}^{n \times n}$, where $V^TV = I_n$, $\Lambda = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$.
- ▶ Singular Value Decomposition (SVD): $A = U\Sigma V^T$ for any $A \in \mathbb{R}^{m \times n}$, $m \ge n$. Here $U^TU = V^TV = I_n$, $\Sigma = \operatorname{diag}(\sigma_1, \ldots, \sigma_n)$, $\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_n \ge 0$.

Terminologies:

- $\triangleright \sigma_i$: singular values of A.
- ightharpoonup rank(A): number of positive singular values.
- ightharpoonup The columns of U: the left singular vectors, columns of V: right singular vectors

- ▶ Symmetric eigenvalue decomposition: $A = V\Lambda V^T$ for symmetric $A \in \mathbb{R}^{n \times n}$, where $V^T V = I_n$, $\Lambda = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$.
- Singular Value Decomposition (SVD): $A = U\Sigma V^T$ for any $A \in \mathbb{R}^{m \times n}$, $m \geq n$. Here $U^TU = V^TV = I_n$, $\Sigma = \operatorname{diag}(\sigma_1, \ldots, \sigma_n)$, $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_n \geq 0$.

SVD proof: Take Gram matrix A^TA and its eigendecomposition $A^TA=V\Lambda V^T$. Λ is nonnegative, and $(AV)^T(AV)$ is diagonal, so $AV=U\Sigma$ for some orthonormal U. Right-multiply V^T .

- Symmetric eigenvalue decomposition: $A = V\Lambda V^T$ for symmetric $A \in \mathbb{R}^{n \times n}$, where $V^T V = I_n$, $\Lambda = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$.
- Singular Value Decomposition (SVD): $A = U\Sigma V^T$ for any $A \in \mathbb{R}^{m \times n}$, $m \ge n$. Here $U^TU = V^TV = I_n$, $\Sigma = \operatorname{diag}(\sigma_1, \ldots, \sigma_n)$, $\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_n \ge 0$.

SVD proof: Take Gram matrix A^TA and its eigendecomposition $A^TA = V\Lambda V^T$. Λ is nonnegative, and $(AV)^T(AV)$ is diagonal, so $AV = U\Sigma$ for some orthonormal U. Right-multiply V^T .

Full SVD:
$$A=U\begin{bmatrix} \Sigma \\ 0 \end{bmatrix}V^T$$
 where $U\in\mathbb{R}^{m\times m}$ orthogonal

Example: computation

Let
$$A = \begin{bmatrix} -1 & -2 \\ 2 & 1 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}$$
 . To compute the SVD,

1. Compute the Gram matrix
$$A^T A = \begin{bmatrix} 6 & 4 \\ 4 & 6 \end{bmatrix}$$
.

2.
$$\lambda(A^TA) = \{10, 2\}$$
 (e.g. via characteristic polynomial). The eigence matrix is

$$V=rac{1}{\sqrt{2}}egin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$$
 (e.g. via the null vectors of $A-\lambda I$). So $A^TA=V\Sigma^2V^T$ where $\Sigma=egin{bmatrix} \sqrt{10} & & & \\ & \sqrt{2} \end{bmatrix}$.

3. Let
$$U=AV\Sigma^{-1}=\begin{bmatrix} -3/\sqrt{20} & -1/2\\ 3/\sqrt{20} & -1/2\\ 1/\sqrt{20} & -1/2\\ 1/\sqrt{20} & 1/2 \end{bmatrix}$$
 , which is orthonormal. Thus $A=U\Sigma V^T$.

rank, column/row space, etc

From the SVD one gets

- rank r of $A \in \mathbb{R}^{m \times n}$: number of nonzero singular values $\sigma_i(A)$ (=# linearly indep. columns, rows)
 - We can always write $A = \sum_{i=1}^{\operatorname{rank}(A)} \sigma_i u_i v_i^T$.
- lacktriangle column space (linear subspace spanned by vectors Ax): span of $U=[u_1,\ldots,u_r]$
- ightharpoonup row space: row span of v_1^T,\ldots,v_r^T
- ightharpoonup null space: v_{r+1}, \ldots, v_n

SVD and eigenvalue decomposition

- ightharpoonup V eigvecs of A^TA
- ightharpoonup U eigvecs (for nonzero eigvals) of AA^T (up to sign)
- $ightharpoonup \sigma_i = \sqrt{\lambda_i(A^T A)}$
- ► Think of eigenvalues vs. SVD of symmetric matrices, unitary, skew-symmetric, normal matrices, triangular,...
- ▶ Jordan-Wieldant matrix $\begin{bmatrix} 0 & A \\ A^T & 0 \end{bmatrix}$: eigvals $\pm \sigma_i(A)$, and m-n copies of 0. Eigvec matrix is $\begin{bmatrix} U & U & U_{\perp} \\ V & -V & 0 \end{bmatrix}$, $A^TU_{\perp} = 0$

Uniqueness etc

- ightharpoonup U,V (clearly) not unique: ± 1 multiplication possible (but be careful—not arbitarily)
- lacktriangle When multiple singvals exist $\sigma_i = \sigma_{i+1}$, more degrees of freedom
- Extreme example: what is the SVD(s) of an orthogonal matrix?

Recap: spectral norm of matrix

$$||A||_2 = \max_x \frac{||Ax||_2}{||x||_2} = \max_{||x||_2=1} ||Ax||_2 = \sigma_1(A)$$

Proof: Use SVD

Recap: spectral norm of matrix

$$||A||_2 = \max_x \frac{||Ax||_2}{||x||_2} = \max_{||x||_2=1} ||Ax||_2 = \sigma_1(A)$$

Proof: Use SVD

$$\begin{split} \|Ax\|_2 &= \|U\Sigma V^Tx\|_2\\ &= \|\Sigma V^Tx\|_2 \quad \text{by unitary invariance}\\ &= \|\Sigma y\|_2 \quad \text{with } \|y\|_2 = 1\\ &= \sqrt{\sum_{i=1}^n \sigma_i^2 y_i^2}\\ &\leq \sqrt{\sum_{i=1}^n \sigma_1^2 y_i^2} = \sigma_1 \|y\|_2^2 = \sigma_1. \end{split}$$

Recap: spectral norm of matrix

$$||A||_2 = \max_x \frac{||Ax||_2}{||x||_2} = \max_{||x||_2=1} ||Ax||_2 = \sigma_1(A)$$

Proof: Use SVD

$$\begin{split} \|Ax\|_2 &= \|U\Sigma V^Tx\|_2\\ &= \|\Sigma V^Tx\|_2 \quad \text{by unitary invariance}\\ &= \|\Sigma y\|_2 \quad \text{with } \|y\|_2 = 1\\ &= \sqrt{\sum_{i=1}^n \sigma_i^2 y_i^2}\\ &\leq \sqrt{\sum_{i=1}^n \sigma_1^2 y_i^2} = \sigma_1 \|y\|_2^2 = \sigma_1. \end{split}$$

Frobenius norm:
$$||A||_F = \sqrt{\sum_i \sum_j |A_{ij}|^2} = \sqrt{\sum_{i=1}^n (\sigma_i(A))^2}$$
 (exercise)

Low-rank approximation of a matrix

Given $A \in \mathbb{R}^{m \times n}$, find A_r such that

Storage savings (data compression)

Optimal low-rank approximation by SVD

Truncated SVD: $A_r = U_r \Sigma_r V_r^T$, $\Sigma_r = \text{diag}(\sigma_1, \dots, \sigma_r)$

$$||A - A_r||_2 = \sigma_{r+1} = \min_{\substack{\mathsf{rank}(B) = r}} ||A - B||_2$$

$$A = \underbrace{\begin{bmatrix} * \\ * \\ \vdots \\ * \end{bmatrix}}_{[*]} \begin{bmatrix} * & * & \cdots & * \end{bmatrix} + \underbrace{\begin{bmatrix} * \\ * \\ \vdots \\ * \end{bmatrix}}_{[*]} \begin{bmatrix} * & * & \cdots & * \end{bmatrix} + \cdots + \underbrace{\begin{bmatrix} * \\ * \\ \vdots \\ * \end{bmatrix}}_{[*]} \begin{bmatrix} * & * & \cdots & * \end{bmatrix}}_{\sigma_n u_n v_n}$$

$$A_r = \underbrace{\begin{bmatrix} * \\ \vdots \\ * \end{bmatrix}}_{[*]} \begin{bmatrix} * & * & \cdots & * \end{bmatrix}}_{\sigma_n u_n v_n} + \cdots + \underbrace{\begin{bmatrix} * \\ \vdots \\ * \end{bmatrix}}_{[*]} \begin{bmatrix} * & * & \cdots & * \end{bmatrix}}_{\sigma_n u_n v_n}$$

Optimal low-rank approximation by SVD

Truncated SVD: $A_r = U_r \Sigma_r V_r^T$, $\Sigma_r = \text{diag}(\sigma_1, \dots, \sigma_r)$

$$||A - A_r||_2 = \sigma_{r+1} = \min_{\mathsf{rank}(B) = r} ||A - B||_2$$

▶ Good approximation if $\sigma_{r+1} \ll \sigma_1$:

$$A \hspace{1cm} pprox A_r = egin{bmatrix} U_r \ D_r \end{bmatrix} egin{bmatrix} \Sigma_r \end{bmatrix} egin{bmatrix} V_r^T \ D_r \end{bmatrix}$$

- Optimality holds for any unitarily invariant norm
- Prominent application: PCA
- Many matrices have explicit or hidden low-rank structure (nonexaminable)

Truncated SVD: $A_r = U_r \Sigma_r V_r^T$, $\Sigma_r = \text{diag}(\sigma_1, \dots, \sigma_r)$

$$||A - A_r||_2 = \sigma_{r+1} = \min_{\mathsf{rank}(B) = r} ||A - B||_2$$

Truncated SVD: $A_r = U_r \Sigma_r V_r^T$, $\Sigma_r = \operatorname{diag}(\sigma_1, \dots, \sigma_r)$

$$||A - A_r||_2 = \sigma_{r+1} = \min_{\mathsf{rank}(B) = r} ||A - B||_2$$

▶ Since $rank(B) \le r$, we can write $B = B_1 B_2^T$ where B_1, B_2 have r columns.

Truncated SVD: $A_r = U_r \Sigma_r V_r^T$, $\Sigma_r = \operatorname{diag}(\sigma_1, \dots, \sigma_r)$

$$||A - A_r||_2 = \sigma_{r+1} = \min_{\mathsf{rank}(B) = r} ||A - B||_2$$

- ▶ Since $rank(B) \le r$, we can write $B = B_1 B_2^T$ where B_1, B_2 have r columns.
- ▶ There exists orthonormal $W \in \mathbb{C}^{n \times (n-r)}$ s.t. BW = 0. Then

$$||A - B||_2 \ge ||(A - B)W||_2 = ||AW||_2 = ||U\Sigma(V^T W)||_2.$$

Truncated SVD: $A_r = U_r \Sigma_r V_r^T$, $\Sigma_r = \mathsf{diag}(\sigma_1, \dots, \sigma_r)$

$$||A - A_r||_2 = \sigma_{r+1} = \min_{\mathsf{rank}(B) = r} ||A - B||_2$$

- ▶ Since $rank(B) \le r$, we can write $B = B_1B_2^T$ where B_1, B_2 have r columns.
- ▶ There exists orthonormal $W \in \mathbb{C}^{n \times (n-r)}$ s.t. BW = 0. Then $\|A B\|_2 \ge \|(A B)W\|_2 = \|AW\|_2 = \|U\Sigma(V^TW)\|_2$.
- Now since W is (n-r)-dimensional, there is an intersection between W and $[v_1,\ldots,v_{r+1}]$, the (r+1)-dimensional subspace spanned by the leading r+1 left singular vectors $([W,v_1,\ldots,v_{r+1}]{x_1 \brack x_2}=0$ has a solution; then Wx_1 is such a vector).

Truncated SVD: $A_r = U_r \Sigma_r V_r^T$, $\Sigma_r = \operatorname{diag}(\sigma_1, \dots, \sigma_r)$

$$||A - A_r||_2 = \sigma_{r+1} = \min_{\mathsf{rank}(B) = r} ||A - B||_2$$

- ▶ Since $rank(B) \le r$, we can write $B = B_1B_2^T$ where B_1, B_2 have r columns.
- ► There exists orthonormal $W \in \mathbb{C}^{n \times (n-r)}$ s.t. BW = 0. Then $\|A B\|_2 \ge \|(A B)W\|_2 = \|AW\|_2 = \|U\Sigma(V^TW)\|_2$.
- Now since W is (n-r)-dimensional, there is an intersection between W and $[v_1,\ldots,v_{r+1}]$, the (r+1)-dimensional subspace spanned by the leading r+1 left singular vectors $([W,v_1,\ldots,v_{r+1}]\big[{x_1\atop x_2}\big]=0$ has a solution; then Wx_1 is such a vector).
- ▶ Then scale x_1, x_2 to have unit norm, and $\|U\Sigma V^TWx_1\|_2 = \|U_{r+1}\Sigma_{r+1}x_2\|_2$, Where U_{r+1}, Σ_{r+1} are leading r+1 parts of U, Σ . Then $\|U_{r+1}\Sigma_{r+1}y_1\|_2 \ge \sigma_{r+1}$ can be verified directly.

Low-rank approximation: image compression

grayscale image=matrix

original

rank 10

rank 1

rank 20

rank 5

rank 50

Courant-Fischer minmax theorem

*i*th largest eigval λ_i of symmetric/Hermitian A is (below $x \neq 0$)

$$\lambda_i(A) = \max_{\dim \mathcal{S} = i} \min_{x \in \mathcal{S}} \frac{x^T A x}{x^T x} \left(= \min_{\dim \mathcal{S} = n - i + 1} \max_{x \in \mathcal{S}} \frac{x^T A x}{x^T x} \right)$$

Analogously, for any rectangular $A \in \mathbb{C}^{m \times n} (m \geq n)$, we have

$$\sigma_i(A) = \max_{\dim S = i} \min_{x \in S} \frac{\|Ax\|_2}{\|x\|_2} \left(= \min_{\dim S = n - i + 1} \max_{x \in S} \frac{\|Ax\|_2}{\|x\|_2} \right).$$

- $\min_{x \in \mathcal{S}, \|x\|_2 = 1} \|Ax\|_2 = \min_{Q^T Q = I_i, \|y\|_2 = 1} \|AQy\|_2 = \sigma_{\min}(AQ) = \sigma_i(AQ),$ where span $(Q) = \mathcal{S}$.
- lackbox C-F says $\sigma_i(A)$ is maximum possible value over all subspaces ${\mathcal S}$ of dimension i.

Courant-Fischer minmax theorem

ith largest eigval λ_i of symmetric/Hermitian A is (below $x \neq 0$)

$$\lambda_i(A) = \max_{\dim \mathcal{S} = i} \min_{x \in \mathcal{S}} \frac{x^T A x}{x^T x} \left(= \min_{\dim \mathcal{S} = n - i + 1} \max_{x \in \mathcal{S}} \frac{x^T A x}{x^T x} \right) \tag{1}$$

Analogously, for any rectangular $A\in\mathbb{C}^{m\times n}(m\geq n),$ we have

$$\sigma_{i}(A) = \max_{\dim \mathcal{S} = i} \min_{x \in \mathcal{S}} \frac{\|Ax\|_{2}}{\|x\|_{2}} \left(= \min_{\dim \mathcal{S} = n - i + 1} \max_{x \in \mathcal{S}} \frac{\|Ax\|_{2}}{\|x\|_{2}} \right). \tag{2}$$

Proof for (2):

Courant-Fischer minmax theorem

*i*th largest eigval λ_i of symmetric/Hermitian A is (below $x \neq 0$)

$$\lambda_i(A) = \max_{\dim \mathcal{S} = i} \min_{x \in \mathcal{S}} \frac{x^T A x}{x^T x} \left(= \min_{\dim \mathcal{S} = n - i + 1} \max_{x \in \mathcal{S}} \frac{x^T A x}{x^T x} \right)$$
(1)

Analogously, for any rectangular $A \in \mathbb{C}^{m \times n} (m \geq n)$, we have

$$\sigma_{i}(A) = \max_{\dim \mathcal{S} = i} \min_{x \in \mathcal{S}} \frac{\|Ax\|_{2}}{\|x\|_{2}} \left(= \min_{\dim \mathcal{S} = n - i + 1} \max_{x \in \mathcal{S}} \frac{\|Ax\|_{2}}{\|x\|_{2}} \right). \tag{2}$$

Proof for (2):

1. Fix S and let $V_i = [v_i, \dots, v_n]$. We have $\dim(\mathcal{S}) + \dim(\operatorname{span}(V_i)) = i + (n - i + 1) = n + 1$, so $\exists \operatorname{intersection} w \in S \cap V_i$, $\|w\|_2 = 1$.

Courant-Fischer minmax theorem

*i*th largest eigval λ_i of symmetric/Hermitian A is (below $x \neq 0$)

$$\lambda_i(A) = \max_{\dim \mathcal{S} = i} \min_{x \in \mathcal{S}} \frac{x^T A x}{x^T x} \left(= \min_{\dim \mathcal{S} = n - i + 1} \max_{x \in \mathcal{S}} \frac{x^T A x}{x^T x} \right) \tag{1}$$

Analogously, for any rectangular $A \in \mathbb{C}^{m \times n} (m \ge n)$, we have

$$\sigma_{i}(A) = \max_{\dim \mathcal{S} = i} \min_{x \in \mathcal{S}} \frac{\|Ax\|_{2}}{\|x\|_{2}} \left(= \min_{\dim \mathcal{S} = n - i + 1} \max_{x \in \mathcal{S}} \frac{\|Ax\|_{2}}{\|x\|_{2}} \right). \tag{2}$$

Proof for (2):

- 1. Fix S and let $V_i = [v_i, \dots, v_n]$. We have $\dim(\mathcal{S}) + \dim(\operatorname{span}(V_i)) = i + (n i + 1) = n + 1$, so $\exists \operatorname{intersection} w \in S \cap V_i$, $\|w\|_2 = 1$.
- 2. For this w, $||Aw||_2 = ||\operatorname{diag}(\sigma_i, \dots, \sigma_n)(V_i^T w)||_2 \le \sigma_i$; thus $\sigma_i(A) \ge \min_{x \in \mathcal{S}} \frac{||Ax||_2}{||x||_2}$.

Courant-Fischer minmax theorem

ith largest eigval λ_i of symmetric/Hermitian A is (below $x \neq 0$)

$$\lambda_i(A) = \max_{\dim \mathcal{S} = i} \min_{x \in \mathcal{S}} \frac{x^T A x}{x^T x} \left(= \min_{\dim \mathcal{S} = n - i + 1} \max_{x \in \mathcal{S}} \frac{x^T A x}{x^T x} \right)$$
(1)

Analogously, for any rectangular $A \in \mathbb{C}^{m \times n} (m \geq n)$, we have

$$\sigma_{i}(A) = \max_{\dim \mathcal{S} = i} \min_{x \in \mathcal{S}} \frac{\|Ax\|_{2}}{\|x\|_{2}} \left(= \min_{\dim \mathcal{S} = n - i + 1} \max_{x \in \mathcal{S}} \frac{\|Ax\|_{2}}{\|x\|_{2}} \right). \tag{2}$$

Proof for (2):

- 1. Fix S and let $V_i = [v_i, \dots, v_n]$. We have $\dim(\mathcal{S}) + \dim(\operatorname{span}(V_i)) = i + (n i + 1) = n + 1$, so $\exists \operatorname{intersection} \ w \in S \cap V_i$, $\|w\|_2 = 1$.
- 2. For this w, $||Aw||_2 = ||\operatorname{diag}(\sigma_i, \dots, \sigma_n)(V_i^T w)||_2 \le \sigma_i$; thus $\sigma_i(A) \ge \min_{x \in \mathcal{S}} \frac{||Ax||_2}{||x||_a}$.
- 3. For the reverse inequality, take $S = [v_1, \ldots, v_i]$, for which $w = v_i$.

Weyl's inequality

ith largest eigval λ_i of symmetric/Hermitian A is (below $x \neq 0$)

$$\lambda_i(A) = \max_{\dim \mathcal{S} = i} \min_{x \in \mathcal{S}} \frac{x^T A x}{x^T x} \left(= \min_{\dim \mathcal{S} = n - i + 1} \max_{x \in \mathcal{S}} \frac{x^T A x}{x^T x} \right)$$

Analogously, for any rectangular $A \in \mathbb{C}^{m \times n} (m \ge n)$, we have

$$\sigma_i(A) = \max_{\dim \mathcal{S} = i} \min_{x \in \mathcal{S}} \frac{\|Ax\|_2}{\|x\|_2} \ \left(= \min_{\dim \mathcal{S} = n - i + 1} \max_{x \in \mathcal{S}} \frac{\|Ax\|_2}{\|x\|_2} \right).$$

Corollary: Weyl's inequality (Proof: exercise)

- - for singular values
 - $\sigma_i(A+E) \in \sigma_i(A) + [-\|E\|_2, \|E\|_2]$ ▶ Special case: $||A||_2 - ||E||_2 < ||A + E||_2 < ||A||_2 + ||E||_2$
 - for symmetric eigenvalues $\lambda_i(A+E) \in \lambda_i(A) + [-\|E\|_2, \|E\|_2]$

Singular and symmetric eiguals are insensitive to perturbation (well conditioned). Nonsymmetric eigvals are different!

Eigenvalues of nonsymmetric matrices are sensitive

Consider eigenvalues of a Jordan block and its perturbation

$$J = \begin{bmatrix} 1 & 1 & & & & \\ & 1 & \ddots & & \\ & & \ddots & 1 \\ & & & 1 \end{bmatrix} \in \mathbb{R}^{n \times n}, \quad J + E = \begin{bmatrix} 1 & 1 & & & \\ & 1 & \ddots & & \\ & & \ddots & 1 \\ \epsilon & & & 1 \end{bmatrix}$$

$$\lambda(J) = 1$$
 (n copies), but $|\lambda(J+E) - 1| \approx \epsilon^{1/n}$

 $\begin{array}{c} \text{Proof (sketch): LHS} = \max_{\dim \mathcal{S}=i} \min_{x \in \mathcal{S}, \|x\|_2 = 1} \left\| \begin{bmatrix} A_1 \\ A_2 \end{bmatrix} x \right\| \text{ , and for any } x, \end{array}$

$$\left\| \begin{bmatrix} A_1 \\ A_2 \end{bmatrix} x \right\| \ge \max(\|A_1 x\|_2, \|A_2 x\|_2).$$

Proof (sketch): LHS
$$= \max_{\dim \mathcal{S}=i} \min_{x \in \mathcal{S}, \|x\|_2 = 1} \left\| \begin{bmatrix} A_1 \\ A_2 \end{bmatrix} x \right\|$$
 , and for any x ,

$$\left\| \left\| \frac{A_1}{A_2} \right\| x \right\| \ge \max(\|A_1 x\|_2, \|A_2 x\|_2).$$

$$\left\| \begin{vmatrix} A_1 \\ A_2 \end{vmatrix} x \right\|_{\mathcal{A}} \ge \max(\|A_1 x\|_2, \|A_2 x\|_2).$$

Proof (sketch): LHS $= \max_{\dim \mathcal{S}=i} \min_{x \in \mathcal{S}, \|x\|_2 = 1} \left\| \begin{bmatrix} A_1 \\ A_2 \end{bmatrix} x \right\|_2$, and for any x,

$$\left\| \begin{bmatrix} A_1 \\ A_2 \end{bmatrix} x \right\|_2 \ge \max(\|A_1 x\|_2, \|A_2 x\|_2).$$

$$\sigma_i(\begin{bmatrix} A_1 & A_2 \end{bmatrix}) \ge \max(\sigma_i(A_1), \sigma_i(A_2))$$

Proof: LHS = $\max_{\dim \mathcal{S}=i} \min_{\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \in \mathcal{S}, \left\| \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \right\|_2 = 1} \left\| \begin{bmatrix} A_1 & A_2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \right\|_2$, while $\sigma_i(A_1) =$

$$\max_{\dim \mathcal{S}=i, \mathsf{range}(\mathcal{S}) \in \mathsf{range}(\begin{bmatrix} I_n \\ 0 \end{bmatrix})} \min_{\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \in \mathcal{S}, \left\| \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \right\|_2 = 1} \left\| \begin{bmatrix} A_1 & A_2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \right\|_2.$$

Since the latter maximises over a smaller S, the former is at least as big.

Matrix decompositions

- \triangleright SVD $A = U\Sigma V^T$
- ▶ Eigenvalue decomposition $A = X\Lambda X^{-1}$
 - Normal: X unitary $X^*X = I$
 - ightharpoonup Symmetric: X unitary and Λ real

▶ Jordan decomposition:
$$A = XJX^{-1}$$
, $J = \operatorname{diag}(\begin{bmatrix} \lambda_i & 1 & & & \\ & \lambda_i & \ddots & \\ & & \ddots & 1 \\ & & & \ddots & 1 \\ & & & & \ddots & 1 \\ & & & & & & \\ \end{bmatrix})$

- **Schur** decomposition $A = QTQ^*$: Q orthogonal, T upper triangular
- $ightharpoonup \operatorname{QR}$: Q orthonormal, U upper triangular
- ightharpoonup LU: L lower triangular, U upper triangular

Red: Orthogonal decompositions, stable computation available

Solving Ax = b via LU decomposition

If A = LU is available

solving Ax = b can be done as follows:

- 1. Solve Ly = b for y,
- 2. solve Ux = y for x.

Each is a **triangular** system, which is easy to solve via forward (or backward) substitution for Ly = b (Ux = y).

LU decomposition

Let $A \in \mathbb{R}^{n \times n}$. Suppose we can decompose (or factorise)

L: lower triangular, U: upper triangular. How to find L, U?

LU decomposition

Let $A \in \mathbb{R}^{n \times n}$. Suppose we can decompose (or factorise)

L: lower triangular, U: upper triangular. How to find L, U?

LU decomposition cont'd

First step:

algorithm:

LU decomposition cont'd 2

(note: nonzero structure crucial in final equality)

Solving Ax = b via LU

$$A = LU \in \mathbb{R}^{n \times n}$$

L: lower triangular, U: upper triangular

- ► Cost $\frac{2}{3}n^3$ flops (floating-point operations)
- ightharpoonup For Ax = b,
 - first solve Ly = b, then Ux = y. Then b = Ly = LUx = Ax.
 - lacktriangular triangular solve is always backward stable: e.g. $(L+\Delta L)\hat{y}=b$ (see Higham's book)
- Pivoting crucial for numerical stability: PA=LU, where P: permutation matrix. Then stability means $\hat{L}\hat{U}=PA+\Delta A$
 - Even with pivoting, unstable examples exist, but still always stable in practice and used everywhere!
- ▶ Special case where $A \succ 0$ positive definite: $A = R^T R$, Cholesky factorization, ALWAYS stable, $\frac{1}{3}n^3$ flops

LU decomposition with pivots

Trouble if $a=A_{11}=0!$ e.g. no LU for $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ solution: pivot, permute rows s.t.

largest entry of first (active) column is at top. $\Rightarrow PA = LU$, P: permutation matrix

- ightharpoonup PA = LU exists for any nonsingular A (exercise)
- ▶ for Ax = b, solve $LUx = P^Tb$
- ightharpoonup the nonzero structure of L_i, U_i is preserved under P
- ightharpoonup cost still $\frac{2}{3}n^3 + O(n^2)$

Cholesky factorisation for $A \succ 0$

If $A \succ 0$ (symmetric positive definite (S)PD $\Leftrightarrow \lambda_i(A) > 0$), two simplifications:

- We can take $U_i = L_i^T =: R_i$ by symmetry $\Rightarrow \frac{1}{3}n^3$ flops
- No pivot needed

Notes:

- ightharpoonup diag(R) no longer 1's
- lacksquare A can be written as $A=R^TR$ for some $R\in\mathbb{R}^{n\times n}$ iff $A\succeq 0$ $(\lambda_i(A)\geq 0)$
- Indefinite case: when $A=A^*$ but A not PD, $\exists \ A=LDL^*$ where D diagonal (when $A\in\mathbb{R}^{n\times n}$, D can have 2×2 diagonal blocks), L has 1's on diagonal

QR factorisation

For any $A \in \mathbb{C}^{m \times n}$, \exists factorisation

 $Q \in \mathbb{R}^{m \times n}$: orthonormal, $R \in \mathbb{R}^{n \times n}$: upper triangular

- Many algorithms available: Gram-Schmidt, Householder, CholeskyQR, ...
- various applications: least-squares, orthogonalisation, computing SVD, manifold retraction...
- lacktriangle With Householder, pivoting A=QRP not needed for numerical stability
 - but pivoting gives rank-revealing QR (nonexaminable)

QR via Gram-Schmidt

Gram-Schmidt: Given $A=[a_1,a_2,\ldots,a_n]\in\mathbb{R}^{m\times n}$ (assume full rank rank(A)=n), find orthonormal $[q_1,\ldots,q_n]$ s.t. $\operatorname{span}(q_1,\ldots,q_n)=\operatorname{span}(a_1,\ldots,a_n)$

G-S process: $q_1 = \frac{a_1}{\|a_1\|}$, then $\tilde{q}_2 = a_2 - q_1 q_1^T a_2$, $q_2 = \frac{\tilde{q}_2}{\|\tilde{q}_2\|}$, repeat for $j = 3, \ldots, n$: $\tilde{q}_j = a_j - \sum_{i=1}^{j-1} q_i q_i^T a_j$, $q_j = \frac{\tilde{q}_j}{\|\tilde{q}_j\|}$.

QR via Gram-Schmidt

Gram-Schmidt: Given $A=[a_1,a_2,\ldots,a_n]\in\mathbb{R}^{m\times n}$ (assume full rank rank(A)=n), find orthonormal $[q_1,\ldots,q_n]$ s.t. $\operatorname{span}(q_1,\ldots,q_n)=\operatorname{span}(a_1,\ldots,a_n)$

G-S process:
$$q_1 = \frac{a_1}{\|a_1\|}$$
, then $\tilde{q}_2 = a_2 - q_1 q_1^T a_2$, $q_2 = \frac{\tilde{q}_2}{\|\tilde{q}_2\|}$, repeat for $j = 3, \ldots, n$: $\tilde{q}_j = a_j - \sum_{i=1}^{j-1} q_i q_i^T a_j$, $q_j = \frac{\tilde{q}_j}{\|\tilde{q}_i\|}$.

This gives QR! Let $r_{ij} = q_i^T a_j$ $(i \neq j)$ and $r_{jj} = \|a_j - \sum_{i=1}^{j-1} r_{ij} q_i\|$,

$$q_{1} = \frac{a_{1}}{r_{11}}$$

$$q_{2} = \frac{a_{2} - r_{12}q_{1}}{r_{22}} \Leftrightarrow a_{1} = r_{11}q_{1}$$

$$q_{2} = \frac{a_{j} - \sum_{i=1}^{j-1} r_{ij}q_{i}}{r_{2i}} \Leftrightarrow a_{j} = r_{1j}q_{1} + r_{2j}q_{2} + \dots + r_{jj}q_{j}$$

$$A = Q$$

$$R$$

But this isn't the recommended way to do QR; numerically unstable

Householder reflectors

$$H = I - 2vv^T, \qquad \|v\| = 1$$

- ► H orthogonal and symmetric: $H^TH = H^2 = I$, eigvals $1 \ (n-1 \text{ copies})$ and $-1 \ (1 \text{ copy})$
- For any given $u, w \in \mathbb{R}^n$ s.t. $\|u\| = \|w\| \text{ and } u \neq v,$ $H = I 2vv^T \text{ with }$ $v = \frac{w-u}{\|w-u\|} \text{ gives } Hu = w$ $(\Leftrightarrow u = Hw, \text{ thus 'reflector'})$
- $\qquad \qquad \mathbf{We'II} \text{ use this mostly for } \\ w = [*,0,0,\dots,0]^T$

Householder reflectors

$$H = I - 2vv^T, \qquad \|v\| = 1$$

- ▶ H orthogonal and symmetric: $H^TH = H^2 = I$, eigvals $1 \ (n-1 \text{ copies})$ and $-1 \ (1 \text{ copy})$
- For any given $u, w \in \mathbb{R}^n$ s.t. $\|u\| = \|w\| \text{ and } u \neq v,$ $H = I 2vv^T \text{ with }$ $v = \frac{w-u}{\|w-u\|} \text{ gives } Hu = w$ $(\Leftrightarrow u = Hw, \text{ thus 'reflector'})$
- We'll use this mostly for $w = [*, 0, 0, \dots, 0]^T$

Householder reflectors

$$H = I - 2vv^T, \qquad \|v\| = 1$$

- ▶ H orthogonal and symmetric: $H^TH = H^2 = I$, eigvals $1 \ (n-1 \text{ copies})$ and $-1 \ (1 \text{ copy})$
- For any given $u, w \in \mathbb{R}^n$ s.t. $\|u\| = \|w\| \text{ and } u \neq v,$ $H = I 2vv^T \text{ with }$ $v = \frac{w-u}{\|w-u\|} \text{ gives } Hu = w$ $(\Leftrightarrow u = Hw, \text{ thus 'reflector'})$
- We'll use this mostly for $w = [*, 0, 0, \dots, 0]^T$

Householder reflectors for QR

Householder reflectors:

$$H = I - 2vv^T$$
, $v = \frac{x - ||x||_2 e}{||x - ||x||_2 e||_2}$, $e = [1, 0, \dots, 0]^T$

satisfies
$$Hx = [||x||, 0, ..., 0]^T$$

Householder reflectors for QR

Householder reflectors:

$$H = I - 2vv^T$$
, $v = \frac{x - ||x||_2 e}{||x - ||x||_2 e||_2}$, $e = [1, 0, \dots, 0]^T$

satisfies
$$Hx = [||x||, 0, ..., 0]^T$$

satisfies
$$Hx=[\|x\|,0,\dots,0]^T$$
 \Rightarrow To do QR, find H_1 s.t. $H_1a_1=\begin{bmatrix}\|a_1\|_2\\0\\\vdots\\0\end{bmatrix}$,

repeat to get $H_n \cdots H_2 H_1 A = R$ upper triangular, then $A = (H_1 \cdots H_{n-1} H_n)R = QR$

Householder QR factorisation, diagram

Apply sequence of Householder reflectors

Note
$$v_k = [\underbrace{0, 0, \dots, 0}_{k-1}, *, *, \dots, *]^T$$

$$A = \begin{bmatrix} 0.302 & -0.629 & 2.178 & 0.164 \\ 0.400 & -1.204 & 1.138 & 0.748 \\ -0.930 & -0.254 & -2.497 & -0.273 \\ -0.177 & -1.429 & 0.441 & 1.576 \\ -2.132 & -0.021 & -1.398 & -0.481 \\ 1.145 & -0.561 & -0.255 & 0.328 \end{bmatrix}$$

$$H_1 A = \begin{bmatrix} 2.647 & -0.295 & 2.284 & 0.652 \\ 0 & -1.261 & 1.120 & 0.665 \\ 0 & -0.121 & -2.455 & -0.080 \\ 0 & -1.403 & 0.449 & 1.613 \\ 0 & 0.283 & -1.301 & -0.038 \\ 0 & -0.724 & -0.307 & 0.090 \end{bmatrix}$$

$$H_2H_1A = \begin{bmatrix} 2.647 & -0.295 & 2.284 & 0.652 \\ 0 & 2.044 & -0.925 & -1.550 \\ 0 & 0 & -2.530 & -0.161 \\ 0 & 0 & -0.419 & 0.673 \\ 0 & 0 & -1.126 & 0.152 \\ 0 & 0 & -0.755 & -0.395 \end{bmatrix}$$

$$H_3H_2H_1A = \begin{bmatrix} 2.647 & -0.295 & 2.284 & 0.652 \\ 0 & 2.044 & -0.925 & -1.550 \\ 0 & 0 & 2.901 & 0.087 \\ 0 & 0 & 0 & 0.692 \\ 0 & 0 & 0 & 0.203 \\ 0 & 0 & 0 & -0.361 \end{bmatrix}$$

$$H_4H_3H_2H_1A = \begin{bmatrix} 2.647 & -0.295 & 2.284 & 0.652 \\ 0 & 2.044 & -0.925 & -1.550 \\ 0 & 0 & 2.901 & 0.087 \\ 0 & 0 & 0 & 0.806 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} R \\ 0 \end{bmatrix}$$

Householder QR factorisation

$$\Leftrightarrow A = (H_1^T \cdots H_{n-1}^T H_n^T) \begin{bmatrix} R \\ 0 \end{bmatrix} =: Q_F \begin{bmatrix} R \\ 0 \end{bmatrix} \text{ (full QR; } Q_F \text{ is square orthogonal)}$$

Writing $Q_F = [Q \ Q_{\perp}]$ where $Q \in \mathbb{R}^{m \times n}$ orthonormal, A = QR ('thin' QR or just QR)

Properties

- ightharpoonup Cost $\frac{4}{3}n^3$ flops with Householder-QR (twice that of LU)
- Unconditionally backward stable: $\hat{Q}\hat{R} = A + \Delta A$, $\|\hat{Q}^T\hat{Q} I\|_2 = \epsilon$ (next lec)
- ▶ Constructive proof for A = QR existence
- ▶ To solve Ax = b, solve $Rx = Q^Tb$ via triangle solve.
 - ightarrow Excellent method, but twice slower than LU (so rarely used)

Givens rotation

$$G = \begin{vmatrix} c & s \\ -s & c \end{vmatrix}, \quad c^2 + s^2 = 1$$

Designed to 'zero' one element at a time. E.g. QR for upper Hessenberg matrix

- $\Leftrightarrow A = G_1^T G_2^T G_3^T G_4^T R$ is the QR factorisation.
 - ► G acts locally on two rows (two columns if right-multiplied)
 - ► Non-neighboring rows/cols allowed

Least-squares problem

Given $A \in \mathbb{R}^{m \times n}, m \geq n$ and $b \in \mathbb{R}^m$, find $x \in \mathbb{R}^n$ s.t.

- ► More data than degrees of freedom
- ightharpoonup 'Overdetermined' linear system; Ax = b usually impossible
- ▶ Thus minimise ||Ax b||; usually $||Ax b||_2$ but sometimes e.g. $||Ax b||_1$ of interest (we focus on $||Ax b||_2$)
- Assume full rank rank(A) = n; this makes solution unique

Least-squares problem via QR

$$\min_{x} ||Ax - b||_2, \qquad A \in \mathbb{R}^{m \times n}, m \ge n$$

Least-squares problem via QR

$$\min_{x} ||Ax - b||_2, \qquad A \in \mathbb{R}^{m \times n}, m \ge n$$

Let $A = [Q \ Q_{\perp}][\begin{smallmatrix} R \\ 0 \end{smallmatrix}] = Q_F[\begin{smallmatrix} R \\ 0 \end{smallmatrix}]$ be 'full' QR factorization. Then

$$||Ax - b||_2 = ||Q_F^T(Ax - b)||_2 = \left\| \begin{bmatrix} R \\ 0 \end{bmatrix} x - \begin{bmatrix} Q^T b \\ Q_\perp^T b \end{bmatrix} \right\|_2$$

so $x=R^{-1}Q^Tb$ is the solution. This also gives algorithm:

Least-squares problem via QR

$$\min_{x} ||Ax - b||_2, \qquad A \in \mathbb{R}^{m \times n}, m \ge n$$

Let $A = [Q \ Q_{\perp}][\begin{smallmatrix} R \\ 0 \end{smallmatrix}] = Q_F[\begin{smallmatrix} R \\ 0 \end{smallmatrix}]$ be 'full' QR factorization. Then

$$||Ax - b||_2 = ||Q_F^T(Ax - b)||_2 = \left\| \begin{bmatrix} R \\ 0 \end{bmatrix} x - \begin{bmatrix} Q^T b \\ Q_\perp^T b \end{bmatrix} \right\|_2$$

so $x = R^{-1}Q^Tb$ is the solution. This also gives algorithm:

- 1. Compute **thin** QR factorization A = QR
- 2. Solve linear system $Rx = Q^T b$.

Least-squares problem via QR

$$\min_{x} ||Ax - b||_2, \qquad A \in \mathbb{R}^{m \times n}, m \ge n$$

Let $A = [Q \ Q_{\perp}] \begin{bmatrix} R \\ 0 \end{bmatrix} = Q_F \begin{bmatrix} R \\ 0 \end{bmatrix}$ be 'full' QR factorization. Then

$$||Ax - b||_2 = ||Q_F^T(Ax - b)||_2 = \left\| \begin{bmatrix} R \\ 0 \end{bmatrix} x - \begin{bmatrix} Q^T b \\ Q_\perp^T b \end{bmatrix} \right\|_2$$

so $x = R^{-1}Q^Tb$ is the solution. This also gives algorithm:

- 1. Compute **thin** QR factorization A = QR
- 2. Solve linear system $Rx = Q^T b$.
- ▶ This is backward stable: computed \hat{x} solution for $\min_x \|(A + \Delta A)x + (b + \Delta b)\|_2$ (see Higham's book Ch.20)
- ▶ Unlike square system Ax = b, one really needs QR: LU won't do the job

Normal equation: Cholesky-based least-squares solver

$$\min_{x} ||Ax - b||_2, \qquad A \in \mathbb{R}^{m \times n}, m \ge n$$

 $x = R^{-1}Q^Tb$ is the solution $\Leftrightarrow x$ solution for $n \times n$ normal equation

$$(A^T A)x = A^T b$$

- ▶ $A^TA \succeq 0$ (always) and $A^TA \succ 0$ if rank(A) = n; then PD linear system; use Cholesky to solve.
- ► Fast! but NOT backward stable; $\kappa_2(A^TA) = (\kappa_2(A))^2$ where $\kappa_2(A) = \frac{\sigma_{\max}(A)}{\sigma_{\min}(A)}$ condition number (next lecture)

Application: regression/function approximation

Given function $f:[-1,1]\to\mathbb{R}$,

Consider approximating via polynomial $f(x) \approx p(x) = \sum_{i=0} c_i x^i$.

Very common technique: Regression

- 1. Sample f at points $\{z_i\}_{i=1}^m$, and
- 2. Find coefficients c defined by Vandermonde system $Ac \approx f$,

$$\begin{bmatrix} 1 & z_1 & \cdots & z_1^n \\ 1 & z_2 & \cdots & z_2^n \\ \vdots & \vdots & & \vdots \\ 1 & z_m & \cdots & z_m^n \end{bmatrix} \begin{bmatrix} c_0 \\ \vdots \\ c_n \end{bmatrix} \approx \begin{bmatrix} f(z_1) \\ f(z_2) \\ \vdots \\ f(z_m) \end{bmatrix}.$$

Numerous applications, e.g. in statistics, numerical analysis, approximation theory, data analysis!

Question: Can a computed result trusted?

e.g. is Ax = b always solved correctly via the LU algorithm?

Question: Can a computed result trusted?

e.g. is Ax = b always solved correctly via the LU algorithm?

$$A=U\Sigma V^T$$
, where $U=rac{1}{\sqrt{2}}egin{bmatrix}1&1&1\1&-1\end{bmatrix}$, $\Sigma=egin{bmatrix}1&1&0^{-15}\1&1&0^{-15}\end{bmatrix}$, $V=I$, and let $b=Aegin{bmatrix}1\1&1\end{bmatrix}$ (i.e., $x=egin{bmatrix}1\1&1\end{bmatrix}$).

Question: Can a computed result trusted?

 $b = A \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ (i.e., $x = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$).

e.g. is Ax = b always solved correctly via the LU algorithm?

The situation is complicated. For example, let
$$A=U\Sigma V^T \text{, where } U=\frac{1}{\sqrt{2}}\begin{bmatrix}1&1\\1&-1\end{bmatrix}\text{, } \Sigma=\begin{bmatrix}1&\\10^{-15}\end{bmatrix}\text{, } V=I\text{, and let }$$

In MATLAB,
$$x = A \setminus b$$
 outputs $\begin{bmatrix} 1.0000 \\ 0.94206 \end{bmatrix}$

Question: Can a computed result trusted?

e.g. is Ax = b always solved correctly via the LU algorithm?

▶ The situation is complicated. For example, let

$$b=A\begin{bmatrix}1\\1\end{bmatrix}$$
 (i.e., $x=\begin{bmatrix}1\\1\end{bmatrix}$).
In MATLAB, $\mathbf{x}=\mathbf{A}\setminus\mathbf{b}$ outputs $\begin{bmatrix}1.0000\\0.94206\end{bmatrix}$

- Did something go wrong?
 NO—this is a ramification of ill-conditioning, not instability
- ► In fact, $\|Ax b\|_2 (= \|A\hat{x} b\|_2) \approx 10^{-16}$

(After this section, make sure you can explain what happened above!)

Floating-point arithmetic

- Computers store number in base 2 with finite/fixed memory (bits)
- ▶ Irrational numbers are stored inexactly, e.g. $1/3 \approx 0.333...$
- ► Calculations are rounded to nearest floating-point number (rounding error)
- ▶ Thus the accuracy of the final error is nontrivial

Two examples with MATLAB

- $((sqrt(2))^2 2) * 1e15 = 0.4441$ (should be 0..)
- $ightharpoonup \sum_{n=1}^{\infty} \frac{1}{n} \approx 30$ (should be ∞ ..)

An important (but not main) part of numerical analysis/NLA is to study the effect of rounding errors

Best reference: Higham's book (2002)

Conditioning and stability

- Conditioning is the sensitivity of a problem (e.g. of finding y=f(x) given x) to perturbation in inputs, i.e., how large $\kappa:=\sup_{\delta x}\|f(x+\delta x)-f(x)\|/\|\delta x\|$ is in the limit $\delta x\to 0$.
 - (this is absolute condition number; equally important is relative condition number $\kappa_r:=\lim_{\|\delta x\|_2\to 0}\sup_{\delta x}\frac{\|f(x+\delta x)-f(x)\|}{\|f(x)\|}\Big/\frac{\|\delta x\|}{\|x\|}\ \big)$
- ▶ (Backward) Stability is a property of an algorithm, which describes if the computed solution \hat{y} is a 'good' solution, in that it is an exact solution of a nearby input, that is, $\hat{y} = f(x + \Delta x)$ for a small Δx .

Conditioning and stability

- Conditioning is the sensitivity of a problem (e.g. of finding y=f(x) given x) to perturbation in inputs, i.e., how large $\kappa:=\sup_{\delta x}\|f(x+\delta x)-f(x)\|/\|\delta x\|$ is in the limit $\delta x\to 0$. (this is absolute condition number; equally important is relative condition number $\kappa_r:=\lim_{\|\delta x\|_2\to 0}\sup_{\delta x}\frac{\|f(x+\delta x)-f(x)\|}{\|f(x)\|}/\frac{\|\delta x\|}{\|x\|}\;\big)$
- ▶ (Backward) Stability is a property of an algorithm, which describes if the computed solution \hat{y} is a 'good' solution, in that it is an exact solution of a nearby input, that is, $\hat{y} = f(x + \Delta x)$ for a small Δx .

If problem is ill-conditioned $\kappa \gg 1$, then blame the problem not the algorithm

Notation/convention: \hat{x} denotes a computed approximation to x (e.g. of $x=A^{-1}b$) ϵ denotes a small term O(u), on the order of unit roundoff/working precision; so we write e.g. u, 10u, (m+n)u, mnu all as ϵ

Consequently (in this lecture/discussion) norm choice does not matter today

Numerical stability: backward stability

For computational task Y = f(X) and computed approximant \hat{Y} ,

- leally, error $\|Y \hat{Y}\|/\|Y\| = \epsilon$: seldom true
- (u: unit roundoff, $pprox 10^{-16}$ in standard double precision)
- ▶ Good alg. has Backward stability $\hat{Y} = f(X + \Delta X)$, $\frac{\|\Delta X\|}{\|X\|} = \epsilon$ "exact solution of slightly wrong input"

Numerical stability: backward stability

For computational task Y = f(X) and computed approximant \hat{Y} ,

- ldeally, error $||Y \hat{Y}|| / ||Y|| = \epsilon$: seldom true (u: unit roundoff, $\approx 10^{-16}$ in standard double precision)
- ▶ Good alg. has Backward stability $\hat{Y} = f(X + \Delta X)$, $\frac{\|\Delta X\|}{\|X\|} = \epsilon$ "exact solution of slightly wrong input"
- ▶ Justification: Input (matrix) is usually inexact anyway! $f(X + \Delta X)$ is just as good at f(X) at approximating $f(X_*)$ where $\|\Delta X\| = O(\|X X_*\|)$ We shall 'settle with' such solution, though it may not mean $\hat{Y} Y$ is small
- Forward stability $\|Y-\hat{Y}\|/\|Y\|=O(\kappa(f)u)$ "error is as small as backward stable alg." (sometimes used to mean small error; we follow Higham's book [2002])

Backward stable+well conditioned=accurate solution Suppose

 $lackbox{Y} = f(X)$ computed backward stably i.e., $\hat{Y} = f(X + \Delta X)$, $\|\Delta X\| = \epsilon$.

Then with conditioning $\kappa = \lim_{\|\delta x\|_2 \to 0} \sup_{\delta x} \frac{\|f(X) - f(X + \Delta X)\|}{\|\Delta X\|}$,

$$\|\hat{Y} - Y\| \lesssim \kappa \epsilon$$

(relative version possible)

Backward stable+well conditioned=accurate solution Suppose

ightharpoonup Y = f(X) computed backward stably i.e., $\hat{Y} = f(X + \Delta X), \|\Delta X\| = \epsilon.$

Then with conditioning $\kappa = \lim_{\|\delta x\|_2 \to 0} \sup_{\delta x} \frac{\|f(X) - f(X + \Delta X)\|}{\|\Delta X\|}$,

$$\|\hat{Y} - Y\| \lesssim \kappa \epsilon$$

(relative version possible) 'proof':

$$\|\hat{Y} - Y\| = \|f(X + \Delta X) - f(X)\| \lesssim \kappa \|\Delta X\| \|f(X)\| = \kappa \epsilon$$

Backward stable+well conditioned=accurate solution Suppose

ightharpoonup Y = f(X) computed backward stably i.e., $\hat{Y} = f(X + \Delta X)$, $||\Delta X|| = \epsilon$.

Then with conditioning $\kappa = \lim_{\|\delta x\|_2 \to 0} \sup_{\delta x} \frac{\|f(X) - f(X + \Delta X)\|}{\|\Delta X\|}$,

$$\|\hat{Y} - Y\| \le \kappa \epsilon$$

(relative version possible) 'proof':

$$\|\hat{Y} - Y\| = \|f(X + \Delta X) - f(X)\| \lesssim \kappa \|\Delta X\| \|f(X)\| = \kappa \epsilon$$

If well-conditioned $\kappa = O(1)$, good accuracy! Important examples:

- ▶ Well-conditioned linear system Ax = b, $\kappa_2(A) \approx 1$
- ► Eigenvalues of symmetric matrices (via Weyl's bound
- $\lambda_i(A+E) \in \lambda_i(A) + [-\|E\|_2, \|E\|_2]$)

 Singular values of any matrix $\sigma_i(A+E) \in \sigma_i(A) + [-\|E\|_2, \|E\|_2]$
- Note: eigvecs/singvecs can be highly ill-conditioned

Matrix condition number

$$\kappa_2(A) = \frac{\sigma_{\max}(A)}{\sigma_{\min}(A)} (\geq 1)$$

e.g. for linear systems. (when A is $m \times n(m > n)$, $\kappa_2(A) = \frac{\sigma_1(A)}{\sigma_n(A)}$) A backward stable soln for Ax = b, s.t. $(A + \Delta A)\hat{x} = b$ satisfies, assuming backward stability $\|\Delta A\| < \epsilon \|A\|$ and $\kappa_2(A) \ll \epsilon^{-1}$ (so $\|A^{-1}\Delta A\| \ll 1$).

$$\frac{\|\hat{x} - x\|}{\|x\|} \lesssim \epsilon \kappa_2(A)$$

Matrix condition number

$$\kappa_2(A) = \frac{\sigma_{\max}(A)}{\sigma_{\min}(A)} (\geq 1)$$

e.g. for linear systems. (when A is $m \times n(m > n)$, $\kappa_2(A) = \frac{\sigma_1(A)}{\sigma_n(A)}$) A backward stable soln for Ax = b, s.t. $(A + \Delta A)\hat{x} = b$ satisfies, assuming backward stability $\|\Delta A\| < \epsilon \|A\|$ and $\kappa_2(A) \ll \epsilon^{-1}$ (so $\|A^{-1}\Delta A\| \ll 1$).

$$\frac{\|\hat{x} - x\|}{\|x\|} \lesssim \epsilon \kappa_2(A)$$

'proof': By Neumann series

$$(A + \Delta A)^{-1} = (A(I + A^{-1}\Delta A))^{-1} = (I - A^{-1}\Delta A + O(\|A^{-1}\Delta A\|^{2}))A^{-1}$$

So
$$\hat{x} = (A + \Delta A)^{-1}b = A^{-1}b - A^{-1}\Delta AA^{-1}b + O(\|A^{-1}\Delta A\|^2) = x - A^{-1}\Delta Ax + O(\|A^{-1}\Delta A\|^2)$$
. Hence

$$||x - \hat{x}|| \lesssim ||A^{-1}\Delta Ax|| \le ||A^{-1}|| ||\Delta A|| ||x|| \le \epsilon ||A|| ||A^{-1}|| ||x|| = \epsilon \kappa_2(A) ||x||$$

Backward stability of triangular systems

Recall Ax = b via Ly = b, Ux = y (triangular systems).

The computed solution \hat{x} for a (upper/lower) triangular linear system Rx=b solved via back/forward substitution is backward stable, i.e., it satisfies

$$(R + \Delta R)\hat{x} = b,$$
 $\|\Delta R\| = O(\epsilon \|R\|).$

Proof: Trefethen-Bau or Higham (nonexaminable but interesting)

- backward error can be bounded componentwise
- ▶ this means $\|\hat{x} x\|/\|x\| \le \epsilon \kappa_2(R)$
 - (unavoidably) poor worst-case (and attainable) bound when ill-conditioned
 - often better with triangular systems

(In)stability of Ax = b via LU with pivots

Fact (proof nonexaminable): Computed $\hat{L}\hat{U}$ satisfies $\frac{\|\hat{L}\hat{U}-A\|}{\|\hat{L}\|\|\hat{U}\|} = \epsilon$

(note: not
$$\frac{\|\hat{L}\hat{U}-A\|}{\|A\|}=\epsilon$$
)

▶ If
$$\|L\|\|U\| = O(\|A\|)$$
, then $(L + \Delta L)(U + \Delta U)\hat{x} = b$

If
$$||L|| ||U|| = O(||A||)$$
, then $(L + \Delta L)(U + \Delta U)\hat{x} = U$
 $\Rightarrow \hat{x}$ backward stable solution (exercise)

(In)stability of Ax = b via LU with pivots

Fact (proof nonexaminable): Computed $\hat{L}\hat{U}$ satisfies $\frac{\|\hat{L}\hat{U}-A\|}{\|T\|\|T\|}=\epsilon$

(note: not
$$\frac{\|\hat{L}\hat{U}-A\|}{\|A\|}=\epsilon$$
)

If
$$||L|||U|| = O(||A||)$$
, then $(L + \Delta L)(U + \Delta U)\hat{x} = b$

$$\Rightarrow \hat{x} \text{ backward stable solution (exercise)}$$

Question: Does $LU = A + \Delta A$ or $LU = PA + \Delta A$ with $\|\Delta A\| = \epsilon \|A\|$ hold?

Without pivot (P = I): $||L|||U|| \gg ||A||$ unboundedly (e.g. $\begin{bmatrix} \epsilon & 1 \\ 1 & 1 \end{bmatrix}$) unstable

(In)stability of Ax = b via LU with pivots

Fact (proof nonexaminable): Computed $\hat{L}\hat{U}$ satisfies $\frac{\|\hat{L}\hat{U}-A\|}{\|L\|\|U\|}=\epsilon$

(note: not
$$rac{\|\hat{L}\hat{U}-A\|}{\|A\|}=\epsilon$$
)

▶ If
$$||L|||U|| = O(||A||)$$
, then $(L + \Delta L)(U + \Delta U)\hat{x} = b$
⇒ \hat{x} backward stable solution (exercise)

Question: Does $LU = A + \Delta A$ or $LU = PA + \Delta A$ with $||\Delta A|| = \epsilon ||A||$ hold?

Without pivot (P=I): $\|L\|\|U\|\gg \|A\|$ unboundedly (e.g. $\left[\begin{smallmatrix}\epsilon & 1 \\ 1 & 1\end{smallmatrix}\right]$) unstable

With pivots:

- ▶ Worst-case: $\|L\|\|U\| \gg \|A\|$ grows exponentially with n, unstable
- ▶ growth governed by that of $||L|||U||/||A|| \Rightarrow ||U||/||A||$
- In practice (average case): perfectly stable
 Hence this is how Ax = b is solved, despite alternatives with guaranteed stability exist (but slower; e.g., via SVD, or QR (next))

Resolution/explanation: among biggest open problems in numerical linear algebra!

Examples of stability and instability

Forthcoming examples: nonexaminable

Stability of Cholesky for $A \succ 0$

Cholesky $A = R^T R$ for $A \succ 0$

- succeeds without pivot (active matrix is always positive definite)
- ightharpoonup R never contains entries $> \sqrt{\|A\|_2}$

(exercise: show
$$||R_1||_2 \leq \sqrt{||A||_2}$$
)

 \Rightarrow backward stable! Hence positive definite linear system Ax=b stable via Cholesky

(In)stability of Gram-Schmidt

- ► Gram-Schmidt is subtle
 - ▶ plain (classical) version: $\|\hat{Q}^T\hat{Q} I\| \le \epsilon(\kappa_2(A))^2$
 - lacktriangle modified Gram-Schmidt (orthogonalise 'one vector at a time'): $\|\hat{Q}^T\hat{Q}-I\|\leq \epsilon\kappa_2(A)$
 - ▶ Gram-Schmidt twice (G-S again on computed \hat{Q}): $\|\hat{Q}^T\hat{Q} I\| \leq \epsilon$

Matrix multiplication is not backward stable

Shock! It is not always true that fl(AB) equal to $(A + \Delta A)(B + \Delta B)$ for small $\Delta A, \Delta B$

- ▶ Vec-vec mult. backward stable: $fl(y^Tx) = (y + \Delta y)(x + \Delta x)$; in fact $fl(y^Tx) = (y + \Delta y)x$.
- ▶ Hence mat-vec also backward stable: $fl(Ax) = (A + \Delta A)x$.
- Still mat-mat is not backward stable.

Matrix multiplication is not backward stable

Shock! It is not always true that fl(AB) equal to $(A+\Delta A)(B+\Delta B)$ for small $\Delta A, \Delta B$

- ▶ Vec-vec mult. backward stable: $fl(y^Tx) = (y + \Delta y)(x + \Delta x)$; in fact $fl(y^Tx) = (y + \Delta y)x$.
- ▶ Hence mat-vec also backward stable: $fl(Ax) = (A + \Delta A)x$.
- Still mat-mat is not backward stable.

$$AB = \begin{bmatrix} A & B \end{bmatrix}$$
 $fl(AB) = AB + \epsilon = \begin{bmatrix} \tilde{A} & \tilde{B} \end{bmatrix}$?

with $\tilde{A}=A+\epsilon\|A\|$, $\tilde{B}=B+\epsilon\|B\|$? No—e.g., fl(AB) is usually not low rank

Matrix multiplication is not backward stable

Shock! It is not always true that fl(AB) equal to $(A+\Delta A)(B+\Delta B)$ for small $\Delta A, \Delta B$

- ▶ Vec-vec mult. backward stable: $fl(y^Tx) = (y + \Delta y)(x + \Delta x)$; in fact $fl(y^Tx) = (y + \Delta y)x$.
- ▶ Hence mat-vec also backward stable: $fl(Ax) = (A + \Delta A)x$.
- ► Still mat-mat is not backward stable.

What is true:
$$||fl(AB) - AB|| \le \epsilon ||A|| ||B||$$
, so $||fl(AB) - AB|| / ||AB|| \le \epsilon \min(\kappa_2(A), \kappa_2(B))$.

▶ Great when A or B orthogonal (or square well-conditioned): say if A=Q orthogonal,

$$||fl(QB) - QB|| \le \epsilon ||B||,$$

so
$$fl(QB) = QB + \epsilon \|B\|$$
, hence $fl(QB) = Q(B + \Delta B)$ where $\Delta B = Q^T \epsilon \|B\|$

orthogonal multiplication is backward stable

Stability of Householder QR

With Householder QR, the computed \hat{Q},\hat{R} satisfy

$$\|\hat{Q}^T \hat{Q} - I\| = O(\epsilon), \quad \|A - \hat{Q}\hat{R}\| = O(\epsilon \|A\|),$$

and (of course) R upper triangular.

Rough proof

- ▶ Each reflector orthogonal, so satisfies $fl(H_iA) = H_iA + \epsilon_i ||A||$
- ► Hence $(\hat{R} =) fl(H_n \cdots H_1 A) = H_n \cdots H_1 A + \epsilon ||A||$
- $f(H_n \cdots H_1) =: \hat{Q}^T = H_n \cdots H_1 + \epsilon.$
- Thus $\hat{Q}\hat{R} = A + \epsilon ||A||$

Stability of Householder QR

With Householder QR, the computed \hat{Q},\hat{R} satisfy

$$\|\hat{Q}^T\hat{Q} - I\| = O(\epsilon), \quad \|A - \hat{Q}\hat{R}\| = O(\epsilon \|A\|),$$

and (of course) R upper triangular.

Rough proof

- ▶ Each reflector orthogonal, so satisfies $fl(H_iA) = H_iA + \epsilon_i ||A||$
- ▶ Hence $(\hat{R} =) fl(H_n \cdots H_1 A) = H_n \cdots H_1 A + \epsilon ||A||$
- $fl(H_n \cdots H_1) =: \hat{Q}^T = H_n \cdots H_1 + \epsilon,$
- ► Thus $\hat{Q}\hat{R} = A + \epsilon ||A||$

Notes:

- ▶ This doesn't mean $\|\hat{Q} Q\|, \|\hat{R} R\|$ are small at all! Indeed Q, R are as ill-conditioned as A
- ightharpoonup Ax = b via QR, least-squares stable

Orthogonal Linear Algebra

With orthogonal matrices Q,

$$\frac{\|fl(QA) - QA\|}{\|QA\|} \le \epsilon, \qquad \frac{\|fl(AQ) - AQ\|}{\|AQ\|} \le$$

Orthogonal Linear Algebra

With orthogonal matrices Q,

$$\frac{\|fl(QA) - QA\|}{\|QA\|} \le \epsilon, \qquad \frac{\|fl(AQ) - AQ\|}{\|AQ\|} \le \epsilon$$

whereas in general,
$$||fl(AB) - AB|| \le \epsilon ||A|| ||B||$$
, so $||fl(AB) - AB|| / ||AB|| \le \epsilon \min(\kappa_2(A), \kappa_2(B))$

Orthogonal Linear Algebra

With orthogonal matrices Q,

$$\frac{\|fl(QA) - QA\|}{\|QA\|} \le \epsilon, \qquad \frac{\|fl(AQ) - AQ\|}{\|AQ\|} \le \epsilon$$

whereas in general, $\|fl(AB) - AB\| \le \epsilon \|A\| \|B\|$, so $\|fl(AB) - AB\| / \|AB\| \le \epsilon \min(\kappa_2(A), \kappa_2(B))$

Hence algorithms involving ill-conditioned matrices are unstable (e.g. eigenvalue decomposition of non-normal matrices, Jordan form, etc), whereas those based on orthogonal matrices are stable, e.g.

- ► Householder QR factorisation
- **QR** algorithm for $Ax = \lambda x$
- ▶ **Golub-Kahan** algorithm for $A = U\Sigma V^T$
- **QZ** algorithm for $Ax = \lambda Bx$

We next turn to the algorithms in boldface

Key points on stability

- Definition: (backward) stability vs. conditioning
- ► Orthogonal linear algebra is backward stable
- ▶ Significance of $\kappa_2(A) = ||A||_2 ||A^{-1}||$
- ► Stable operations: triangular systems, Cholesky,...

Eigenvalue problem $Ax = \lambda x$

First of all, $Ax = \lambda x$ no explicit solution (neither λ nor x); huge difference from Ax = b for which $x = A^{-1}b$

- ▶ Eigenvalues are roots of characteristic polynomial
- ightharpoonup For any polynomial p, \exists (infinitely many) matrices whose eigenstance are roots of p

Eigenvalue problem $Ax = \lambda x$

First of all, $Ax = \lambda x$ no explicit solution (neither λ nor x); huge difference from Ax = b for which $x = A^{-1}b$

- ▶ Eigenvalues are roots of characteristic polynomial
- ightharpoonup For any polynomial p, \exists (infinitely many) matrices whose eigenstance are roots of p
- Let $p(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0$, $a_i \in \mathbb{C}$. Then $p(\lambda) = 0 \Leftrightarrow \lambda$ eigenvalue of

$$C = \begin{bmatrix} -a_{n-1} & -a_{n-2} & \dots & -a_1 & -a_0 \\ 1 & & & & & \\ & & 1 & & & & \\ & & & \ddots & & \\ & & & 1 & 0 \end{bmatrix} \in \mathbb{C}^{n \times n}$$

Eigenvalue problem $Ax = \lambda x$

First of all, $Ax = \lambda x$ no explicit solution (neither λ nor x); huge difference from Ax = b for which $x = A^{-1}b$

- ▶ Eigenvalues are roots of characteristic polynomial
- lacktriangle For any polynomial p, \exists (infinitely many) matrices whose eigvals are roots of p
- ► So no finite-step algorithm exists for $Ax = \lambda x$

Eigenvalue algorithms are necessarily iterative and approximate

- ightharpoonup Same for SVD, as $\sigma_i(A) = \sqrt{\lambda_i(A^TA)}$
- ▶ But this doesn't mean they're inaccurate!

Usual goal: compute the Schur decomposition $A=UTU^{\ast}$: U unitary, T upper triangular

- For normal matrices $A^*A = AA^*$, automatically diagonalised (T diagonal)
- For nonnormal A, if diagonalisation $A=X\Lambda X^{-1}$ really necessary, done via Sylvester equations but nonorthogonal/unstable (nonexaminable)

Schur decomposition

Let $A\in\mathbb{C}^{n\times n}$ (square arbitrary matrix). Then \exists unitary $U\in\mathbb{C}^{n\times n}$ s.t.

$$A = UTU^*$$

with T upper triangular.

- ightharpoonup eig(A) = eig(T) = diag(T)
- ightharpoonup T diagonal iff A normal $A^*A = AA^*$

Proof:

Schur decomposition

Let $A \in \mathbb{C}^{n \times n}$ (square arbitrary matrix). Then \exists unitary $U \in \mathbb{C}^{n \times n}$ s.t.

$$A = UTU^*$$

with T upper triangular.

- ightharpoonup eig(A) = eig(T) = diag(T)
- ightharpoonup T diagonal iff A normal $A^*A = AA^*$

Proof: Let $Av = \lambda_1 v$ and find $U_1 = [v_1, V_{\perp}]$ unitary. Then

 $(n-1)\times (n-1)$ part to get $U_{n-1}^*U_{n-2}^*\dots U_1^*AU_1U_2\dots U_{n-1}=T$.

Recap: Matrix decompositions

- ightharpoonup SVD $A = U\Sigma V^T$
- ▶ Eigenvalue decomposition $A = X\Lambda X^{-1}$
 - Normal: X unitary $X^*X = I$
 - ightharpoonup Symmetric: X unitary and Λ real
- ▶ Jordan decomposition: $A = XJX^{-1}$, $J = \operatorname{diag}(\begin{bmatrix} \lambda_i & 1 & & & \\ & \lambda_i & \ddots & & \\ & & \ddots & 1 & \\ & & & \lambda_i \end{bmatrix})$
- **Schur decomposition** $A = QTQ^*$: Q orthogonal, T upper triangular
- ightharpoonup QR: Q orthonormal, U upper triangular
- ightharpoonup LU: L lower triangular, U upper triangular

Red: Orthogonal decompositions, stable computation available

Recap: Matrix decompositions

- ightharpoonup SVD $A = U\Sigma V^T$
- ▶ Eigenvalue decomposition $A = X\Lambda X^{-1}$
 - Normal: X unitary $X^*X = I$
 - ightharpoonup Symmetric: X unitary and Λ real
- ▶ Jordan decomposition: $A = XJX^{-1}$, $J = \operatorname{diag}(\begin{bmatrix} \lambda_i & 1 & & & & \\ & \lambda_i & & \ddots & & \\ & & \ddots & & 1 & \\ & & & & \lambda_i \end{bmatrix})$
- ▶ Schur decomposition $A = QTQ^*$: Q orthogonal, T upper triangular
- $ightharpoonup \operatorname{QR}$: Q orthonormal, U upper triangular
- ightharpoonup LU: L lower triangular, U upper triangular
- \blacktriangleright QZ for $Ax=\lambda Bx$: (genearlised eigenvalue problem) Q,Z orthogonal s.t. QAZ,QBZ are both upper triangular

Red: Orthogonal decompositions, stable computation available

Power method for $Ax = \lambda x$

 $x \in \mathbb{R}^n :=$ random vector, x = Ax, $x = \frac{x}{\|x\|}$, $\hat{\lambda} = x^T Ax$, repeat

Power method for $Ax = \lambda x$

- $x \in \mathbb{R}^n$:=random vector, x = Ax, $x = \frac{x}{\|x\|}$, $\hat{\lambda} = x^T Ax$, repeat
 - Convergence analysis: suppose A is diagonalisable (generic assumption). We can write $x_0 = \sum_{i=1}^n c_i v_i$, $Av_i = \lambda_i v_i$ with $|\lambda_1| > |\lambda_2| > \cdots$. Then after k iterations,

$$x = C \sum_{i=1}^{n} \left(\frac{\lambda_i}{\lambda_1}\right)^k c_i v_i \to C c_1 v_1$$
 as $k \to \infty$

- ► Converges geometrically $(\lambda, x) \to (\lambda_1, x_1)$ with linear rate $\frac{|\lambda_2|}{|\lambda_1|}$
- $lackbox{ What does this imply about } A^k = QR \text{ as } k o \infty? \text{ First vector of } Q o v_1$

Power method for $Ax = \lambda x$

- $x \in \mathbb{R}^n$:=random vector, x = Ax, $x = \frac{x}{\|x\|}$, $\hat{\lambda} = x^T Ax$, repeat
 - Convergence analysis: suppose A is diagonalisable (generic assumption). We can write $x_0 = \sum_{i=1}^n c_i v_i$, $Av_i = \lambda_i v_i$ with $|\lambda_1| > |\lambda_2| > \cdots$. Then after k iterations,

$$x = C \sum_{i=1}^{n} \left(\frac{\lambda_i}{\lambda_1}\right)^k c_i v_i \to C c_1 v_1$$
 as $k \to \infty$

- ► Converges geometrically $(\lambda, x) \to (\lambda_1, x_1)$ with linear rate $\frac{|\lambda_2|}{|\lambda_1|}$
- ▶ What does this imply about $A^k = QR$ as $k \to \infty$? First vector of $Q \to v_1$

Notes:

- lacktriangle Google pagerank & Markov chain linked to power method
- As we'll see, power method is basis for refined algs (QR algorithm, Krylov methods (Lanczos, Arnoldi,...))

Why compute eigenvalues? Google PageRank

'Importance' of websites via dominant eigenvector of column-stochastic matrix

$$A = \alpha P + (1 - \alpha) \begin{bmatrix} 1 & \cdots & 1 \\ \vdots & \ddots & \vdots \\ 1 & \cdots & 1 \end{bmatrix}$$

 $P \colon \operatorname{adjacency\ matrix},\ \alpha \in (0,1)$

image from wikipedia

Google does (did) a few steps of Power method: with initial guess x_0 , $k=0,1,\ldots$

- 1. $x_{k+1} = Ax_k$
- 2. $x_{k+1} = x_{k+1} / ||x_{k+1}||_2$, $k \leftarrow k+1$, repeat.
- $ightharpoonup x_k
 ightarrow \mathsf{PageRank}$ vector $v_1: Av_1 = \lambda_1 v_1$

Inverse power method

Inverse (shift-and-invert) power method: $x := (A - \mu I)^{-1}x$, $x = x/\|x\|$

► Converges with improved **linear rate** $\frac{|\lambda_{\sigma(2)} - \mu|}{|\lambda_{\sigma(1)} - \mu|}$ to eigval closest to μ (σ : permutation)

Inverse power method

Inverse (shift-and-invert) power method: $x := (A - \mu I)^{-1}x$, $x = x/\|x\|$

- Converges with improved **linear rate** $\frac{|\lambda_{\sigma(2)}-\mu|}{|\lambda_{\sigma(1)}-\mu|}$ to eigval closest to μ (σ : permutation)
- $m{\mu}$ can change adaptively with the iterations. The choice $\mu:=x^TAx$ gives Rayleigh quotient iteration, with **quadratic** convergence $\|Ax^{(k+1)} \lambda^{(k+1)}x^{(k+1)}\| = O(\|Ax^{(k)} \lambda^{(k)}x^{(k)}\|^2)$ (cubic if A symmetric)

Solving an eigenvalue problem

Given $A \in \mathbb{R}^{n \times n}$ or $\mathbb{C}^{n \times n}$,

$$Ax = \lambda x$$

Goal: find all eigenvalues (and eigenvectors) of a matrix

▶ Look for Schur form $A = UTU^*$

We'll describe an algorithm called the $\overline{\sf QR}$ algorithm that is used universally, e.g. by MATLAB's eig. It

- lacktriangle finds all eigenvalues (approximately but reliably) in $O(n^3)$ flops,
- is backward stable.

Sister problem: Given $A \in \mathbb{R}^{m \times n}$ or $\mathbb{C}^{m \times n}$, compute SVD $A = U \Sigma V^*$

- ightharpoonup 'ok' algorithm: eig (A^TA) to find V, then normalise AV
- ▶ there's a better algorithm: Golub-Kahan bidiagonalisation

QR algorithm for eigenproblems

Set $A_1 = A$, and

$$A_1 = Q_1 R_1, \quad A_2 = R_1 Q_1, \quad A_2 = Q_2 R_2, \quad A_3 = R_2 Q_2, \quad \dots$$

- $ightharpoonup A_k$ are all similar: $A_{k+1} = Q_k^T A_k Q_k$
- lacktriangle We shall 'show' that $A o {f triangular}$ (diagonal if A normal)
- ▶ Basically: $QR(\text{factorise}) \rightarrow RQ(\text{swap}) \rightarrow QR \rightarrow RQ \rightarrow \cdots$

QR algorithm for eigenproblems

Set $A_1 = A$, and

$$A_1 = Q_1 R_1, \quad A_2 = R_1 Q_1, \quad A_2 = Q_2 R_2, \quad A_3 = R_2 Q_2, \quad \dots$$

- $ightharpoonup A_k$ are all similar: $A_{k+1} = Q_k^T A_k Q_k$
- lacktriangle We shall 'show' that $A o \mathbf{triangular}$ (diagonal if A normal)
- ▶ Basically: $QR(\mathsf{factorise}) \rightarrow RQ(\mathsf{swap}) \rightarrow QR \rightarrow RQ \rightarrow \cdots$
- ► Fundamental work by Francis (61,62) and Kublanovskaya (63)
- Truly Magical algorithm!
 - backward stable, as based on orthogonal transforms
 - ▶ always converges (with shifts), but global proof unavailable(!)
 - uses 'shifted inverse power method' (rational functions) without inversions

QR algorithm and power method

QR algorithm: $A_k = Q_k R_k$, $A_{k+1} = R_k Q_k$, repeat. Claims: for $k \ge 1$,

$$A^k = (Q_1 \cdots Q_k)(R_k \cdots R_1) =: Q^{(k)}R^{(k)}, \qquad A_{k+1} = (Q^{(k)})^T A Q^{(k)}.$$

Proof: recall $A_{k+1} = Q_k^T A_k Q_k$, repeat.

Proof by induction: k = 1 trivial.

Suppose $A^{k-1} = Q^{(k-1)}R^{(k-1)}$. We have

$$A_k = (Q^{(k-1)})^T A Q^{(k-1)} = Q_k R_k.$$

Then $AQ^{(k-1)} = Q^{(k-1)}Q_kR_k$, and so

$$A^{k} = AQ^{(k-1)}R^{(k-1)} = Q^{(k-1)}Q_{k}R_{k}R^{(k-1)} = Q^{(k)}R^{(k)}\square$$

QR algorithm and power method

QR algorithm: $A_k = Q_k R_k$, $A_{k+1} = R_k Q_k$, repeat.

$$A^k = (Q_1 \cdots Q_k)(R_k \cdots R_1) =: Q^{(k)}R^{(k)}, \qquad A_{k+1} = (Q^{(k)})^T A Q^{(k)}.$$

QR factorisation of A^k : 'dominated by leading eigenvector' x_1 , where $Ax_1 = \lambda_1 x_1$ (recall power method)

In particular, consider $A^k[1,0,\ldots,0]^T=A^ke_n$:

- $A^k e_n = R^{(k)}(1,1)Q^{(k)}(:,1)$, parallel to 1st column of $Q^{(k)}$
- ▶ By power method, this implies $Q^{(k)}(:,1) \rightarrow x_1$
- lacksquare Hence by $A_{k+1}=(Q^{(k)})^TAQ^{(k)}$, $A_k(:,1)
 ightarrow [\lambda_1,0,\dots,0]^T$

Progress! But there is much better news

QR algorithm and inverse power method

QR algorithm: $A_k = Q_k R_k$, $A_{k+1} = R_k Q_k$, repeat.

$$A^k = (Q_1 \cdots Q_k)(R_k \cdots R_1) =: Q^{(k)}R^{(k)}, \qquad A_{k+1} = (Q^{(k)})^T A Q^{(k)}.$$

Now take inverse: $A^{-k} = (R^{(k)})^{-1} (Q^{(k)})^T$, transpose: $(A^{-k})^T = Q^{(k)} (R^{(k)})^{-T}$

- \Rightarrow QR factorization of matrix $(A^{-k})^T$ with eigens $r(\lambda_i) = \frac{\lambda_i^{-k}}{\lambda_i}$
- ⇒ Connection also with (unshifted) inverse power method

 NB no matrix inverse performed
 - This means final column of $Q^{(k)}$ converges to minimum left eigenvector x_n with factor $\frac{|\lambda_n|}{|\lambda_n|}$, hence $A_k(n,:) \to [0,\ldots,0,\lambda_n]$
 - lackbox (Very) fast convergence if $|\lambda_n| \ll |\lambda_{n-1}|$
 - ► Can we force this situation? Yes by shifts

QR algorithm with shifts and shifted inverse power method

- 1. $A_k s_k I = Q_k R_k$ (QR factorization)
- 2. $A_{k+1} = R_k Q_k + s_k I$, $k \leftarrow k+1$, repeat.

QR algorithm with shifts and shifted inverse power method

- 1. $A_k s_k I = Q_k R_k$ (QR factorization)
- 2. $A_{k+1} = R_k Q_k + s_k I$, $k \leftarrow k+1$, repeat.

$$\prod_{i=1}^{k} (A - s_i I) = Q^{(k)} R^{(k)} \left(= (Q_1 \cdots Q_k) (R_k \cdots R_1) \right)$$

Proof: Suppose true for k-1. Then QR alg. computes

$$(Q^{(k-1)})^T(A-s_kI)Q^{(k-1)}=Q_kR_k$$
, so $(A-s_kI)Q^{(k-1)}=Q^{(k-1)}Q_kR_k$, hence

$$\prod_{i=1}^{k} (A - s_i I) = (A - s_k I) Q^{(k-1)} R^{(k-1)} = Q^{(k-1)} Q_k R_k R^{(k-1)} = Q^{(k)} R^{(k)}.$$

Inverse transpose: $\prod_{i=1}^{k} (A - s_i I)^{-T} = Q^{(k)}(R^{(k)})^{-T}$

- ▶ QR factorization of matrix with eigvals $r(\lambda_j) = \prod_{i=1}^k \frac{1}{\lambda_j s_i}$
- ldeally, choose $s_k \approx \lambda_n$
- Connection with shifted inverse power method, hence rational approximation

QR algorithm preprocessing

We've seen the QR iterations drives colored entries to 0 (esp. red ones)

- ▶ Hence $A_{n,n} \to \lambda_n$, so choosing $s_k = A_{n,n}$ is sensible
- ▶ This reduces #QR iterations to O(n) (empirical but reliable estimate)
- ▶ But each iteration is $O(n^3)$ for QR, overall $O(n^4)$
- lacktriangle We next discuss a preprocessing technique to reduce to $O(n^3)$

QR algorithm preprocessing: Hessenberg reduction

To improve cost of QR factorisation, first reduce via orthogonal Householder transformations

Hessenberg reduction continued

- lacktriangle QR iterations preserve structure: if $A_1=QR$ Hessenberg, then so is $A_2=RQ$
- lacktriangle using Givens rotations, each QR iter is $O(n^2)$ (not $O(n^3)$)
- overall shifted QR algorithm cost is $O(n^3)$, $\approx 25n^3$ flops
- ▶ Remaining task (done by shifted QR): drive subdiagonal * to 0
- **b** bottom-right $* \rightarrow \lambda_n$, can be used for shift s_k

Deflation

Once bottom-right $|*| < \epsilon$,

and continue with shifted QR on $(n-1) \times (n-1)$ block, repeat

QR algorithm in action

QR algorithm: other improvements/simplifications

- ▶ Double-shift strategy for $A \in \mathbb{R}^{n \times n}$
 - $ightharpoonup (A-sI)(A-\bar{s}I)=QR$ using only real arithmetic if A real
- Aggressive early deflation

[Braman-Byers-Mathias 2002]

- Examine lower-right (say 100×100) block instead of (n, n-1) element
- ightharpoonup dramatic speedup (pprox imes 10)
- ▶ Balancing $A \leftarrow DAD^{-1}$, D: diagonal
 - reduce $||DAD^{-1}||$: better-conditioned eigenvalues
- For nonsymmetric A, global convergence is NOT established
 - of course it always converges in practice.. another big open problem in numerical linear algebra

QR algorithm for symmetric A

lacktriangle Initial reduction to Hessenberg form ightarrow tridiagonal

- lacktriangle QR steps for tridiagonal: O(n) instead of $O(n^2)$ per step
- Powerful alternatives available for tridiagonal eigenproblem (divide-conquer [Gu-Eisenstat 95], HODLR [Kressner-Susnjara 19],...)
- ▶ Cost: $\frac{4}{3}n^3$ flops for eigvals, $\approx 10n^3$ for eigvecs (store Givens rotations)

Golub-Kahan for SVD

Apply Householder reflectors from left and right (different ones) to bidiagonalize

$$A \to B = H_{L,n} \cdots H_{L,1} A H_{R,1} H_{R,2} \cdots H_{R,n-2}$$

- Once bidiagonalized,
 - ightharpoonup Mathematically, do QR alg on B^TB (symmetric tridiagonal)
 - ► More elegant: divide-and-conquer [Gu-Eisenstat 1995] or dqds algorithm [Fernando-Parlett 1994]; nonexaminable
- ▶ Cost: $\approx 4mn^2$ flops for singvals Σ , $\approx 20mn^2$ flops for singvecs U,V

QZ algorithm for generalised eigenvalue problems

Generalised eigenvalue problem

$$Ax = \lambda Bx, \quad A, B \in \mathbb{C}^{n \times n}$$

- ightharpoonup A, B given, find eigenvalues λ and eigenvector x
- ightharpoonup n eigenvalues, roots of $\det(A \lambda B)$
- ▶ Important case: A, B symmetric, B positive definite: λ all real

QZ algorithm: look for unitary Q, Z s.t. QAZ, QBZ both upper triangular

- ightharpoonup then diag(QAZ)/diag(QBZ) are eigenvalues
- \triangleright Algorithm: first reduce A, B to Hessenberg-triangular form
- ▶ then implicitly do QR to $B^{-1}A$ (without inverting B)
- ightharpoonup Cost: $\approx 50n^3$
- See [Golub-Van Loan] for details

Tractable eigenvalue problems

- Standard eigenvalue problems $Ax = \lambda x$
 - \triangleright symmetric $(4/3n^3$ flops for eigvals, $+9n^3$ for eigvecs)
 - ▶ nonsymmetric ($10n^3$ flops for eigvals, $+15n^3$ for eigvecs)
- ► SVD $A = U\Sigma V^T$ for $A \in \mathbb{C}^{m \times n}$: $(\frac{8}{3}mn^2 \text{ flops for singvals, } +20mn^2 \text{ for singvecs})$
- Generalized eigenvalue problems $Ax = \lambda Bx$, $A, B \in \mathbb{C}^{n \times n}$
- Polynomial eigenvalue problems, e.g. (degree k=2) $P(\lambda)x = (\lambda^2 A + \lambda B + C)x = 0$, $A, B, C \in \mathbb{C}^{n \times n} :\approx 20(nk)^3$
- Nonlinear problems, e.g. $N(\lambda)x = (A\exp(\lambda) + B)x = 0$ often solved via approximating by polynomial $N(\lambda) \approx P(\lambda)$ more difficult: $A(x)x = \lambda x$: eigenvector nonlinearity

Further speedup when structure present (e.g. sparse, low-rank)

Iterative methods

We've covered direct methods (LU for Ax = b, QR for $\min \|Ax - b\|_2$, QRalg for $Ax = \lambda x$). These are

- ► Incredibly reliable, backward stable
- ▶ Works like magic if $n \lesssim 10000$
- But not if n larger!

A 'big' matrix problem is one for which direct methods aren't feasible. Historically,

- ▶ 1950: $n \ge 20$
 - ▶ 1965: $n \ge 200$
 - ▶ 1980: $n \ge 2000$
 - ▶ 1995: $n \ge 20000$
 - ightharpoonup 2010: $n \ge 100000$
 - ▶ 2020: $n \ge 1000000$ ($n \ge 50000$ on a standard desktop)

was considered 'very large'. For such problems, we need to turn to alternative algorithms: we'll cover **iterative** and **randomised** methods.

Direct vs. iterative methods

Idea of iterative methods:

- gradually refine solution iteratively
- \triangleright each iteration should be (a lot) cheaper than direct methods, usually $O(n^2)$ or less
- can be (but not always) much faster than direct methods
- tends to be (slightly) less robust, nontrivial/problem-dependent analysis
- \triangleright often, after $O(n^3)$ work it still gets the exact solution (ignoring roundoff errors)

image from [Trefethen-Bau]

We'll focus on Krylov subspace methods.

Basic idea of Krylov: polynomial approximation

In Krylov subspace methods, we look for an (approximate) solution \hat{x} (for Ax = b or $Ax = \lambda x$) of the form (after kth iteration)

$$\hat{x} = p_{k-1}(A)v ,$$

where p_{k-1} is a polynomial of degree k-1, and $v \in \mathbb{R}^n$ arbitrary (usually v=b for linsys, for eigenproblems v usually random)

Natural questions:

- Why would this be a good idea?
 - Clearly, 'easy' to compute
 - One example: recall power method $\hat{x} = A^{k-1}v = p_{k-1}(A)v$ Krylov finds a "better/optimal" polynomial $p_{k-1}(A)$
 - Nrylov finds a petter/optimal polynomial p_{k-1} We'll see more cases where Krylov is powerful
- ► How to turn into an algorithm?
 - Arnoldi (next), Lanczos

Orthonormal basis for $\mathcal{K}_k(A,b)$

Find approximate solution $\hat{x} = p_{k-1}(A)b$, i.e. in Krylov subspace

$$\mathcal{K}_k(A,b) := \mathsf{span}([b,Ab,A^2b,\ldots,A^{k-1}b])$$

First step: form an orthonormal basis Q, s.t. solution can be written as x=Qy

- Naive idea: Form matrix $[b, Ab, A^2b, \dots, A^{k-1}b]$, then QR
 - $lackbox{ } [b,Ab,A^2b,\ldots,A^{k-1}b]$ is usually terribly conditioned! Dominated by leading eigvec
 - $lackbox{ }Q$ is therefore extremely ill-conditioned, inaccurately computed

Orthonormal basis for $\mathcal{K}_k(A,b)$

Find approximate solution $\hat{x} = p_{k-1}(A)b$, i.e. in Krylov subspace

$$\mathcal{K}_k(A,b) := \mathsf{span}([b,Ab,A^2b,\ldots,A^{k-1}b])$$

First step: form an orthonormal basis Q, s.t. solution can be written as x=Qy

- Naive idea: Form matrix $[b, Ab, A^2b, \dots, A^{k-1}b]$, then QR
 - $lackbox{ } [b,Ab,A^2b,\ldots,A^{k-1}b]$ is usually terribly conditioned! Dominated by leading eigence
 - $lackbox{ }Q$ is therefore extremely ill-conditioned, inaccurately computed
- ► Much better solution: Arnoldi process
 - lacktriangle Multiply A once at a time to the latest orthonormal vector q_i
 - lacktriangle Then orthogonalise Aq_i against previous q_j 's $(j=1,\ldots,i-1)$ (as in Gram-Schmidt)

Arnoldi iteration

```
Set q_1=b/\|b\|_2 For k=1,2,\ldots, set v=Aq_k for j=1,2,\ldots,k h_{jk}=q_j^Tv,\ v=v-h_{jk}q_j\ \% \ \text{orthogonalise against}\ q_j\ \text{via modified G-S} end for h_{k+1,k}=\|v\|_2,\ q_{k+1}=v/h_{k+1,k}
```

End for

▶ After
$$k$$
 steps, $AQ_k = Q_{k+1}\tilde{H}_k = Q_kH_k + q_{k+1}[0, \dots, 0, h_{k+1,k}]$, with $Q_k = [q_1, q_2, \dots, q_k], Q_{k+1} = [Q_k, q_{k+1}], \text{ span}(Q_k) = \text{span}([b, Ab, \dots, A^{k-1}b])$

► Cost k A-multiplications $+O(k^2)$ inner products $(O(nk^2))$

Lanczos iteration

When A symmetric, Arnoldi simplifies to

$$AQ_k = Q_k T_k + q_{k+1}[0, \dots, 0, t_{k+1,k}],$$

where T_k is symmetric tridiagonal (proof: just note $H_k = Q_k^T A Q_k$ in Arnoldi)

- ▶ 3-term recurrence $t_{k+1,k}q_{k+1} = (A t_{k,k})q_k t_{k-1,k}q_{k-1}$; orthogonalisation necessary only against last two vecs q_k, q_{k-1}
- ▶ Significant speedup over Arnoldi; cost k A-mult.+O(k) inner products (O(nk))
- In floating-point arithmetic, sometimes computed Q_k lose orthogonality and reorthogonalisation necessary (nonexaminable)

The Lanczos algorithm for symmetric eigenproblem

Rayleigh-Ritz: given symmetric A and orthonormal Q, find approximate eigenpairs

- 1. Compute Q^TAQ
- 2. Eigenvalue decomposition $Q^TAQ = V\hat{\Lambda}V^T$
- 3. Approximate eigenvalues diag $(\hat{\Lambda})$ (Ritz values) and eigenvectors QV (Ritz vectors)

This is a projection method (similar alg. available for SVD)

Lanczos algorithm=Lanczos iteration+Rayleigh-Ritz

- In this case $Q = Q_k$, so simply $Q_k^T A Q_k = T_k$ (tridiagonal eigenproblem)
- Very good convergence to extremal eigenpairs
 - ► Recall from Courant-Fisher $\lambda_{\max}(A) = \max_{x} \frac{x^T A x}{x^T x}$
 - $\qquad \qquad \text{Hence } \lambda_{\max}(A) \geq \underbrace{\max_{x \in \mathcal{K}_k(A,b)} \frac{x^T A x}{x^T x}}_{\text{Lanczos output}} \geq \underbrace{\frac{v^T A v}{v^T v}}_{\text{power method}}, \quad v = A^{k-1} b$
 - ▶ Same for λ_{\min} , similar for e.g. λ_2

Experiments with Lanczos

Symmetric $A \in \mathbb{R}^{n \times n}$, n = 100, Lanczos/power method with random initial vector b

Convergence to dominant eigenvalue

Convergence of all eigenvalues

GMRES for Ax = b

Idea (very simple!): minimise residual in Krylov subspace:

[Saad-Schulz 86]

$$x_k = \operatorname{argmin}_{x \in \mathcal{K}_k(A,b)} ||Ax - b||_2$$

GMRES for Ax = b

Idea (very simple!): minimise residual in Krylov subspace:

[Saad-Schulz 86]

$$x_k = \operatorname{argmin}_{x \in \mathcal{K}_k(A,b)} ||Ax - b||_2$$

Algorithm: Given $AQ_k = Q_{k+1}\tilde{H}_k$ and writing $x_k = Q_k y$, rewrite as

$$\min_{y} \|AQ_{k}y - b\|_{2} = \min_{y} \|Q_{k+1}\tilde{H}_{k}y - b\|_{2}
= \min_{y} \left\| \begin{bmatrix} \tilde{H}_{k} \\ 0 \end{bmatrix} y - \begin{bmatrix} Q_{k}^{T} \\ Q_{k,\perp}^{T} \end{bmatrix} b \right\|_{2}
= \min_{y} \left\| \begin{bmatrix} \tilde{H}_{k} \\ 0 \end{bmatrix} y - \|b\|_{2}e_{1} \right\|_{2}, \quad e_{1} = [1, 0, \dots, 0]^{T} \in \mathbb{R}^{n}$$

(where $[Q_k, Q_{k,\perp}]$ orthogonal; same trick as in least-squares)

- Minimised when $\|\tilde{H}_k y \tilde{Q}_k^T b\| \to \min$; Hessenberg least-squares problem
- Solve via QR (k Givens rotations)+triangular solve, $O(k^2)$ in addition to Arnoldi

GMRES convergence: polynomial approximation

Recall that $x_k \in \mathcal{K}_k(A, b) \Rightarrow x_k = p_{k-1}(A)b$. Hence GMRES solution is

$$\min_{x_k \in \mathcal{K}_k(A,b)} ||Ax_k - b||_2 = \min_{p_{k-1} \in \mathcal{P}_{k-1}} ||Ap_{k-1}(A)b - b||_2$$

$$= \min_{\tilde{p} \in \mathcal{P}_k, \tilde{p}(0) = 0} ||(\tilde{p}(A) - I)b||_2$$

$$= \min_{p \in \mathcal{P}_k, p(0) = 1} ||p(A)b||_2$$

If A diagonalizable $A = X\Lambda X^{-1}$,

$$||p(A)||_2 = ||Xp(\Lambda)X^{-1}||_2 \le ||X||_2 ||X^{-1}||_2 ||p(\Lambda)||_2$$
$$= \kappa_2(X) \max_{z \in \lambda(A)} |p(z)|$$

Interpretation: find polynomial s.t. p(0) = 1 and $|p(\lambda_i)|$ small for all i

GMRES example

G: Gaussian random matrix ($G_{ij} \sim N(0,1)$, i.i.d.) G/\sqrt{n} : eigvals in unit disk

$$A = 2I + G/\sqrt{n},$$

$$p(z) = 2^{-k} (z - 2)^k$$

$$(z - 2)^{k}$$

GMRES iterations

Restarted GMRES

For k iterations, GMRES costs k matrix multiplications+ $O(nk^2)$ for orthogonalization \rightarrow Arnoldi eventually becomes expensive.

Practical solution: restart by solving 'iterative refinement':

- 1. Stop GMRES after $k_{
 m max}$ (prescribed) steps to get approx. solution \hat{x}_1
- 2. Solve $A\tilde{x} = b A\hat{x}_1$ via GMRES
- 3. Obtain solution $\hat{x}_1 + \tilde{x}$

Sometimes multiple restarts needed

When does GMRES converge fast?

Recall GMRES solution satisfies (assuming A diagonalisable+nonsingular)

$$\min_{x_k \in \mathcal{K}_k(A,b)} \|Ax_k - b\|_2 = \min_{p \in \mathcal{P}_k, p(0) = 1} \|p(A)b\|_2 \le \kappa_2(X) \max_{z \in \lambda(A)} |p(z)| \|b\|_2.$$

 $\max_{z \in \lambda(A)} |p(z)|$ is small when

- $ightharpoonup \lambda(A)$ are clustered away from 0
 - a good p can be found quite easily
 - e.g. example 2 slides ago
- ▶ When $\lambda(A)$ takes $k(\ll n)$ distinct values
 - ► Then convergence in *k* GMRES iterations (why?)

Preconditioning for GMRES

We've seen that GMRES is great if spectrum clustered away from 0. If not true with

$$Ax = b$$

then precondition: find $M \in \mathbb{R}^{n \times n}$ and solve

$$MAx = Mb$$

Desiderata of M:

- lacktriangleq M simple enough s.t. applying M to vector is easy (note that each GMRES iteration requires MA-multiplication), and one of
 - 1. MA has clustered eigenvalues away from 0
 - 2. MA has a small number of distinct eigenvalues
 - 3. MA is well-conditioned $\kappa_2(MA)=O(1)$; then solve normal equation $(MA)^TMAx=(MA)^TMb$

Preconditioners: examples

- ▶ ILU (Incomplete LU) preconditioner: $A \approx LU, M = (LU)^{-1} = U^{-1}L^{-1}, L, U$ 'as sparse as $A' \Rightarrow MA \approx I$ (hopefully; 'cluster away from 0')
- For $\tilde{A} = \begin{bmatrix} A & B \\ C & 0 \end{bmatrix}$, set $M = \begin{bmatrix} A^{-1} \\ (CA^{-1}B)^{-1} \end{bmatrix}$. Then if M nonsingular, $M\tilde{A}$ has eigvals $\in \{1, \frac{1}{2}(1 \pm \sqrt{5})\} \Rightarrow$ 3-step convergence [Murphy-Golub-Wathen 2000]
- ► Multigrid-based, operator preconditioning, ...

Finding effective preconditioners is never-ending research topic Prof. Andy Wathen is our Oxford expert!

Arnoldi for nonsymmetric eigenvalue problems

Arnoldi for eigenvalue problems: Arnoldi iteration+Rayleigh-Ritz (just like Lanczos alg)

- 1. Compute Q^TAQ
- 2. Eigenvalue decomposition $Q^T A Q = X \hat{\Lambda} X^{-1}$
- 3. Approximate eigenvalues $\mathrm{diag}(\hat{\Lambda})$ (Ritz values) and eigenvectors QX (Ritz vectors)

As in Lanczos, $Q = Q_k = \mathcal{K}_k(A, b)$, so simply $Q_k^T A Q_k = H_k$ (Hessenberg eigenproblem, ideal for QRalg)

Which eigenvalues are found by Arnoldi?

- ▶ Krylov subspace is invariant under shift: $\mathcal{K}_k(A,b) = \mathcal{K}_k(A-sI,b)$
- ▶ Thus any eigenvector that power method applied to A sI converges to should be contained in $\mathcal{K}_k(A,b)$
- ▶ To find other (e.g. interior) eigvals, shift-invert Arnoldi: $Q = \mathcal{K}_k((A sI)^{-1}, b)$

CG: Conjugate Gradient method for Ax = b, $A \succ 0$

When A symmetric, Lanczos gives $AQ_k = Q_kT_k + q_{k+1}[0,\dots,0,1]$, T_k : tridiagonal

CG: when $A \succ 0$ PD, solve $Q_k^T(AQ_ky - b) = T_ky - Q_k^Tb = 0$, and $x = Q_ky$

 \rightarrow "Galerkin orthogonality": residual Ax-b orthogonal to Q_k

CG: Conjugate Gradient method for Ax = b, $A \succ 0$

When A symmetric, Lanczos gives $AQ_k = Q_k T_k + q_{k+1}[0, \dots, 0, 1]$, T_k : tridiagonal

CG: when $A \succ 0$ PD, solve $Q_k^T(AQ_ky - b) = T_ky - Q_k^Tb = 0$, and $x = Q_ky$

- \rightarrow "Galerkin orthogonality": residual Ax-b orthogonal to Q_k
 - $ightharpoonup T_k y = Q_k^T b$ is tridiagonal linear system, O(k) operations to solve
 - \blacktriangleright three-term recurrence reduces cost to O(k) A-multiplications
 - ightharpoonup minimises A-norm of error $x_k = \operatorname{argmin}_{x \in Q_k} ||x x_*||_A (Ax_* = b)$:

$$(x - x_*)^T A(x - x_*) = (Q_k y - x_*)^T A(Q_k y - x_*)$$

= $y^T (Q_k^T A Q_k) y - 2b^T Q_k y + b^T x_*,$

minimiser is $y = (Q_k^T A Q_k)^{-1} Q_k^T b$, so $Q_k^T (A Q_k y - b) = 0$

- Note $||x||_A = \sqrt{x^T A x}$ defines a norm (exercise)
- More generally, for inner-product norm $||z||_M = \sqrt{\langle z, z \rangle_M}$, $\min_{x=Qy} ||x_* x||_M$ attained when $\langle q_i, x_* x \rangle_M = 0$, $\forall q_i$ (cf. Part A NA)

CG algorithm for Ax = b, $A \succ 0$

Set $x_0 = 0$, $r_0 = -b$, $p_0 = r_0$ and do for k = 1, 2, 3, ...

$$\begin{split} &\alpha_k = \langle r_k, r_k \rangle / \langle p_k, A p_k \rangle \\ &x_{k+1} = x_k + \alpha_k p_k \\ &r_{k+1} = r_k - \alpha_k A p_k \\ &\beta_k = \langle r_{k+1}, r_{k+1} \rangle / \langle r_k, r_k \rangle \\ &p_{k+1} = r_{k+1} + \beta_k p_k \end{split}$$

where $r_k = Ax_k - b$ (residual) and p_k (search direction).

One can show among others (exercise/sheet)

$$\mathcal{K}_k(A,b) = \operatorname{span}(r_0,r_1,\ldots,r_{k-1}) = \operatorname{span}(x_1,x_2,\ldots,x_k)$$
 (also equal to $\operatorname{span}(p_0,p_1,\ldots,p_{k-1})$)

$$r_i^T r_k = 0, j = 0, 1, 2, \dots, k-1$$

Thus x_k is kth CG solution, satisfying orthogonality $Q_k^T(Ax_k - b) = 0$

CG convergence

Let $e_k := x_* - x_k$. We have $e_0 = x_*$ ($x_0 = 0$), and

$$\begin{split} \frac{\|e_k\|_A}{\|e_0\|_A} &= \min_{x \in \mathcal{K}_k(A,b)} \|x_k - x_*\|_A / \|x_*\|_A \\ &= \min_{p_{k-1} \in \mathcal{P}_{k-1}} \|p_{k-1}(A)b - A^{-1}b\|_A / \|e_0\|_A \\ &= \min_{p_{k-1} \in \mathcal{P}_{k-1}} \|(p_{k-1}(A)A - I)e_0\|_A / \|e_0\|_A \\ &= \min_{p \in \mathcal{P}_k, p(0) = 1} \|p(A)e_0\|_A / \|e_0\|_A \\ &= \min_{p \in \mathcal{P}_k, p(0) = 1} \|V \begin{bmatrix} p(\lambda_1) & & & \\ & \ddots & & \\ & & p(\lambda_n) \end{bmatrix} V^T e_0 \|_A / \|e_0\|_A \end{split}$$

Now $(\text{blue})^2 = \sum_i \lambda_i p(\lambda_i)^2 (V^T e_0)_i^2 \le \max_j p(\lambda_j)^2 \sum_i \lambda_i (V^T e_0)_i^2 = \max_j p(\lambda_j)^2 \|e_0\|_A^2$

CG convergence cont'd

We've shown

$$\frac{\|e_k\|_A}{\|e_0\|_A} \le \min_{p \in \mathcal{P}_k, p(0) = 1} \max_j |p(\lambda_j)| \le \min_{p \in \mathcal{P}_k, p(0) = 1} \max_{x \in [\lambda_{\min}(A), \lambda_{\max}(A)]} |p(x)|$$

Now

$$\min_{p \in \mathcal{P}_k, p(0) = 1} \max_{x \in [\lambda_{\min}(A), \lambda_{\max}(A)]} |p(x)| \le 2 \left(\frac{\sqrt{\kappa_2(A)} - 1}{\sqrt{\kappa_2(A)} + 1} \right)^k$$

- ▶ note $\kappa_2(A) = \frac{\sigma_{\max}(A)}{\sigma_{\min}(A)} = \frac{\lambda_{\max}(A)}{\lambda_{\min}(A)} (=: \frac{b}{a})$
- lacktriangle above bound obtained by Chebyshev polynomials on $[\lambda_{\min}(A), \lambda_{\max}(A)]$

Chebyshev polynomials

For
$$z = \exp(i\theta)$$
, $x = \frac{1}{2}(z + z^{-1}) = \cos \theta \in [-1, 1]$, $\theta = \arcsin(x)$, $T_k(x) = \frac{1}{2}(z^k + z^{-k}) = \cos(k\theta)$. $T_k(x)$ is a polynomial in x :

$$\frac{1}{2}(z+z^{-1})(z^k+z^{-k}) = \frac{1}{2}(z^{k+1}+z^{-(k+1)}) + \frac{1}{2}(z^{k-1}+z^{-(k-1)}) \Leftrightarrow \underbrace{2xT_k(x) = T_{k+1}(x) + T_{k-1}(x)}_{}$$

3-term recurrence; $2\cos\theta\cos(k\theta) = \cos((k+1)\theta) + \cos((k-1)\theta)$

Chebyshev polynomials

For
$$z = \exp(i\theta)$$
, $x = \frac{1}{2}(z + z^{-1}) = \cos\theta \in [-1, 1]$, $\theta = \arcsin(x)$, $T_k(x) = \frac{1}{2}(z^k + z^{-k}) = \cos(k\theta)$. $T_k(x)$ is a polynomial in x :

$$\frac{1}{2}(z+z^{-1})(z^k+z^{-k}) = \frac{1}{2}(z^{k+1}+z^{-(k+1)}) + \frac{1}{2}(z^{k-1}+z^{-(k-1)}) \Leftrightarrow \underbrace{2xT_k(x) = T_{k+1}(x) + T_{k-1}(x)}_{2}$$

3-term recurrence; $2\cos\theta\cos(k\theta) = \cos((k+1)\theta) + \cos((k-1)\theta)$

Chebyshev polynomials

For
$$z = \exp(i\theta)$$
, $x = \frac{1}{2}(z + z^{-1}) = \cos \theta \in [-1, 1]$, $\theta = \arcsin(x)$, $T_k(x) = \frac{1}{2}(z^k + z^{-k}) = \cos(k\theta)$. $T_k(x)$ is a polynomial in x :

$$\frac{1}{2}(z+z^{-1})(z^k+z^{-k}) = \frac{1}{2}(z^{k+1}+z^{-(k+1)}) + \frac{1}{2}(z^{k-1}+z^{-(k-1)}) \Leftrightarrow \underbrace{2xT_k(x) = T_{k+1}(x) + T_{k-1}(x)}_{}$$

3-term recurrence; $2\cos\theta\cos(k\theta) = \cos((k+1)\theta) + \cos((k-1)\theta)$

Chebyshev polynomials cont'd

For
$$z = \exp(i\theta)$$
, $x = \frac{1}{2}(z + z^{-1}) = \cos \theta \in [-1, 1]$, $\theta = \arcsin(x)$, $T_k(x) = \frac{1}{2}(z^k + z^{-k}) = \cos(k\theta)$.

- ▶ Inside [-1,1], $|T_k(x)| < 1$
- Outside [-1,1], $|T_k(x)|\gg 1$ grows rapidly with |x|,k (fastest growth among \mathcal{P}_k)

Shift+scale s.t. $p(x) = c_k T_k(\frac{2x-b-a}{b-a})$ where $c_k = 1/T_k(\frac{-(b+a)}{b-a})$ so p(0) = 1. Then

- $|p(x)| \le 1/|T_k(\frac{-(b+a)}{b-a})| = 1/|T_k(\frac{b+a}{b-a})|$ on $x \in [a,b]$
- $T_k(z) = \tfrac{1}{2}(z^k + z^{-k}) \text{ with } \tfrac{1}{2}(z + z^{-1}) = \tfrac{b+a}{b-a} \Rightarrow z = \tfrac{\sqrt{b/a}+1}{\sqrt{b/a}-1} = \tfrac{\sqrt{\kappa_2(A)+1}}{\sqrt{\kappa_2(A)}-1}, \text{ so } \\ |p(x)| \leq 1/T_k(\tfrac{b+a}{b-a}) \leq 2\left(\tfrac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}\right)^k$

For much more about T_k , see C6.3 Approximation of Functions

MINRES: symmetric (indefinite) version of GMRES

Recall GMRES

$$x = \operatorname{argmin}_{x \in \mathcal{K}_b(A,b)} ||Ax - b||_2$$

Algorithm: Given $AQ_k = Q_{k+1}\tilde{H}_k$ and writing $x = Q_ky$, rewrite as

$$\min_{y} \|AQ_{k}y - b\|_{2} = \min_{y} \|Q_{k+1}\tilde{H}_{k}y - b\|_{2}
= \min_{y} \left\| \begin{bmatrix} \tilde{H}_{k} \\ 0 \end{bmatrix} y - \begin{bmatrix} Q_{k}^{T} \\ Q_{k,\perp}^{T} \end{bmatrix} b \right\|_{2}
= \min_{y} \left\| \begin{bmatrix} \tilde{H}_{k} \\ 0 \end{bmatrix} y - \|b\|_{2}e_{1} \right\|_{2}, \quad e_{1} = [1, 0, \dots, 0]^{T} \in \mathbb{R}^{n}$$

(where $[Q_k,Q_{k,\perp}]$ orthogonal; same trick as in least-squares)

- lacktriangle Minimised when $\|\tilde{T}_k y \tilde{Q}_k^T b\| o \min$; Hessenberg least-squares problem
- Solve via QR (k Givens rotations)+triangular solve, $O(k^2)$ in addition to Arnoldi

MINRES: symmetric (indefinite) version of GMRES

MINRES (minimum-residual method) for $A = A^T$ (but not necessarily $A \succ 0$)

$$x = \operatorname{argmin}_{x \in \mathcal{K}_k(A,b)} ||Ax - b||_2$$

Algorithm: Given $AQ_k = Q_{k+1}\tilde{T}_k$ and writing $x = Q_ky$, rewrite as

$$\min_{y} \|AQ_{k}y - b\|_{2} = \min_{y} \|Q_{k+1}\tilde{T}_{k}y - b\|_{2}
= \min_{y} \left\| \begin{bmatrix} \tilde{T}_{k} \\ 0 \end{bmatrix} y - \begin{bmatrix} Q_{k}^{T} \\ Q_{k,\perp}^{T} \end{bmatrix} b \right\|_{2}
= \min_{y} \left\| \begin{bmatrix} \tilde{T}_{k} \\ 0 \end{bmatrix} y - \|b\|_{2}e_{1} \right\|_{2}, \quad e_{1} = [1, 0, \dots, 0]^{T} \in \mathbb{R}^{n}$$

(where $[Q_k,Q_{k,\perp}]$ orthogonal; same trick as in least-squares)

- lacktriangle Minimised when $\|\tilde{T}_k y \tilde{Q}_k^T b\| o \min$; tridiagonal least-squares problem
- ▶ Solve via QR (k Givens rotations)+tridiagonal solve, O(k) in addition to Lanczos

MINRES convergence

As in GMRES,

$$\min_{x \in \mathcal{K}_k(A,b)} ||Ax - b||_2 = \min_{p_{k-1} \in \mathcal{P}_{k-1}} ||Ap_{k-1}(A)b - b||_2 = \min_{\tilde{p} \in \mathcal{P}_k, \tilde{p}(0) = 0} ||(\tilde{p}(A) - I)b||_2$$

$$= \min_{p \in \mathcal{P}_k, p(0) = 1} ||p(A)b||_2$$

Since $A=A^T$, A is diagonalisable $A=Q\Lambda Q^T$ with Q orthogonal, so

$$||p(A)||_2 = ||Qp(\Lambda)Q^T||_2 \le ||Q||_2 ||Q^T||_2 ||p(\Lambda)||_2$$
$$= \max_{z \in \lambda(A)} |p(z)|$$

Interpretation: (again) find polynomial s.t. p(0)=1 and $|p(\lambda_i)|$ small

MINRES convergence cont'd

$$\frac{\|Ax - b\|_2}{\|b\|_2} \le \min_{p \in \mathcal{P}_k, \frac{p(0)}{p(0)} = 1} \max |p(\lambda_i)|$$

One can prove (nonexaminable)

$$\min_{p \in \mathcal{P}_k, \mathbf{p}(0)=1} \max |p(\lambda_i)| \le 2 \left(\frac{\kappa_2(A) - 1}{\kappa_2(A) + 1}\right)^{k/2}$$

- obtained by Chebyshev+Möbius change of variables [Greenbaum's book 97]
- lacktriangle minimisation needed on positive **and** negative sides, hence slower convergence when A indefinite

CG and MINRES, optimal polynomials

- ► CG employs Chebyshev polynomials
- ► MINRES is more complicated+slower convergence

Preconditioned CG/MINRES

$$Ax = b, \quad A \succ 0$$

Find preconditioner M s.t. " $M^TM \approx A^{-1}$ " and solve

$$M^T A M y = M^T b, \quad M y = x$$

As before, desiderata of M:

- $ightharpoonup M^TAM$ simple to apply
- $ightharpoonup M^TAM$ has clustered eigenvalues

Note that reducing $\kappa_2(M^TAM)$ directly implies rapid convergence

lacktriangle Possible to implement with just M^TM (no need to find M)

Randomised algorithms in NLA

So far, all algorithms have been deterministic (always same output)

- ▶ Direct methods (LU for Ax = b, QRalg for $Ax = \lambda x$ or $A = U\Sigma V^T$):
 - ► Incredibly reliable, backward stable
 - Works like magic if $n \le 10000$
 - ▶ But not beyond; cubic complexity $O(n^3)$ or $O(mn^2)$
- ► Iterative methods (GMRES, CG, Arnoldi, Lanczos)
 - Very fast when it works (nice spectrum etc)
 - Otherwise, not so much; need for preconditioning

Randomised algorithms in NLA

So far, all algorithms have been deterministic (always same output)

- ▶ Direct methods (LU for Ax = b, QRalg for $Ax = \lambda x$ or $A = U\Sigma V^T$):
 - ► Incredibly reliable, backward stable
 - Works like magic if $n \le 10000$
 - ▶ But not beyond; cubic complexity $O(n^3)$ or $O(mn^2)$
- ► Iterative methods (GMRES, CG, Arnoldi, Lanczos)
 - Very fast when it works (nice spectrum etc)
 - Otherwise, not so much; need for preconditioning
- Randomised algorithms
 - Output differs at every run
 - ldeally succeed with enormous probability, e.g. $1 \exp(-cn)$
 - ► Often by far the fastest&only feasible approach
 - ▶ Not for all problems—active field of research

We'll cover two NLA topics where randomisation very successful: **low-rank** approximation (randomised SVD), and overdetermined least-squares problems

Gaussian $G \in \mathbb{R}^{m \times n}$: Takes iid (independent identically distributed) entries drawn from the standard normal (Gaussian) distribution $G_{ij} \sim N(0,1)$.

Key properties of Gaussian matrices:

Gaussian $G \in \mathbb{R}^{m \times n}$: Takes iid (independent identically distributed) entries drawn from the standard normal (Gaussian) distribution $G_{ij} \sim N(0,1)$.

Key properties of Gaussian matrices:

▶ Orthogonal invariance: If G Gaussian, Q_1GQ_2 is also Gaussian for any fixed Q (independent of G).

Gaussian $G \in \mathbb{R}^{m \times n}$: Takes iid (independent identically distributed) entries drawn from the standard normal (Gaussian) distribution $G_{ij} \sim N(0,1)$.

Key properties of Gaussian matrices:

- ▶ Orthogonal invariance: If G Gaussian, Q_1GQ_2 is also Gaussian for any fixed Q (independent of G).
 - 1. Linear combination of Gaussian random variables is Gaussian.
 - 2. The distribution of a Gaussian r.v. is determined by its mean and variance.
 - 3. $\mathbb{E}[(Qg_i)] = Q\mathbb{E}[g_i] = 0$ (g_i : ith column of G), and $\mathbb{E}[(Qg_i)^T(Qg_i)] = Q\mathbb{E}[g_i^Tg_i]Q^T = I$, so each Qg_i is multivariate Gaussian with the same distribution as g_i . Independence of Qg_i, Qg_j is immediate.

Gaussian $G \in \mathbb{R}^{m \times n}$: Takes iid (independent identically distributed) entries drawn from the standard normal (Gaussian) distribution $G_{ij} \sim N(0,1)$.

Key properties of Gaussian matrices:

- ▶ Orthogonal invariance: If G Gaussian, Q_1GQ_2 is also Gaussian for any fixed Q (independent of G).
 - 1. Linear combination of Gaussian random variables is Gaussian.
 - 2. The distribution of a Gaussian r.v. is determined by its mean and variance.
 - 3. $\mathbb{E}[(Qg_i)] = Q\mathbb{E}[g_i] = 0$ (g_i : ith column of G), and $\mathbb{E}[(Qg_i)^T(Qg_i)] = Q\mathbb{E}[g_i^Tg_i]Q^T = I$, so each Qg_i is multivariate Gaussian with the same distribution as g_i . Independence of Qg_i, Qg_j is immediate.
- Marchenko-Pastur rule: "Rectangular random matrices are well conditioned"

Tool from RMT: Rectangular random matrices are well conditioned

Singvals of random matrix $X \in \mathbb{R}^{m \times n}$ $(m \ge n)$ with iid X_{ij} (mean 0, variance 1) follow Marchenko-Pastur (M-P) distribution (proof nonexaminable)

density
$$\sim \frac{1}{x}\sqrt{((1+\sqrt{\frac{m}{n}})-x)(x-(1-\sqrt{\frac{m}{n}}))}$$
, support $[\sqrt{m}-\sqrt{n},\sqrt{m}+\sqrt{n}]$

$$\sigma_{\max}(X) pprox \sqrt{m} + \sqrt{n}, \ \sigma_{\min}(X) pprox \sqrt{m} - \sqrt{n}, \ \text{hence} \ \kappa_2(X) pprox rac{1 + \sqrt{m/n}}{1 - \sqrt{m/n}} = O(1),$$

Key fact in many breakthroughs in computational maths!

- Randomised SVD, Blendenpik (randomised least-squares)
- (nonexaminable:) Compressed sensing (RIP) [Donoho 06, Candes-Tao 06], Matrix concentration inequalities [Tropp 11], Function approx. by least-squares [Cohen-Davenport-Leviatan 13]

'Fast' (but fragile) alg for $\min_x ||Ax - b||_2$

$$\min_{x} ||Ax - b||_2, \qquad A \in \mathbb{R}^{m \times n}, \ m \gg n$$

Consider 'row-subselection' algorithm: select s(>n) rows A_1, b_1 , and solve $\hat{x} := \operatorname{argmin}_x \|A_1 x - b_1\|_2$

- lacktriangle \hat{x} exact solution if $Ax_* = b$ (consistent LS) and A_1 full rank
- If $Ax_* \neq b$, \hat{x} can be terrible: e.g. $A = \begin{bmatrix} A_1 \\ A_2 \\ \vdots \\ A_L \end{bmatrix}$, $b = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_L \end{bmatrix}$ where $A_1 = \epsilon I_n (\epsilon \ll 1)$,

and
$$A_i=I_n$$
 for $i\geq 2$, and $b_i=b_j$ if $i,j\geq 2$. Then $x_*\approx b_2$, but $\hat{x}=\operatorname*{argmin}_x\|A_1x-b_1\|_2$ has $\hat{x}=\frac{1}{5}b_1$.

'Fast' (but fragile) alg for $\min_x ||Ax - b||_2$

$$\min_{x} ||Ax - b||_{2}, \qquad A \in \mathbb{R}^{m \times n}, \ m \gg n$$

Consider 'row-subselection' algorithm: select s(>n) rows A_1,b_1 , and solve

$$\hat{x} := \operatorname{argmin}_x \|A_1 x - b_1\|_2$$

$$\hat{x}$$
 exact solution if $Ax_* = b$ (consistent LS) and A_1 full rank

If
$$Ax_* \neq b$$
, \hat{x} can be terrible: e.g. $A = \begin{bmatrix} A_1 \\ A_2 \\ \vdots \\ A_k \end{bmatrix}$, $b = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_k \end{bmatrix}$ where $A_1 = \epsilon I_n(\epsilon \ll 1)$, and $A_i = I_n$ for $i \geq 2$, and $b_i = b_j$ if $i, j \geq 2$. Then $x_* \approx b_2$, but $\hat{x} = \operatornamewithlimits{argmin}_x \|A_1x - b_1\|_2$ has $\hat{x} = \frac{1}{\epsilon}b_1$.

How to avoid such choices? Randomisation

Sketch and solve for $\min_{x} ||Ax - b||_2$

A simple randomised algorithm for $\min_x ||Ax - b||_2$; sketch and solve; draw Gaussian $G \in \mathbb{R}^{s \times m}$ (s > n) and

minimize
$$||G(Ax - b)||_2$$
.

Suppose
$$G \in \mathbb{C}^{\tilde{r} \times n} (n < \tilde{r} \ll m)$$
 Gaussian and let $[A \ b] = QR \in \mathbb{C}^{m \times (n+1)}$.

Note is
$$s \times n$$
 Gaussian (by orth. invariance); so

$$\sigma_i(GQ) \in [\sqrt{s} - \sqrt{n+1}, \sqrt{s} + \sqrt{n+1}]$$

$$\|G(Av - b)\|_{2} = \|G[A, b] \begin{bmatrix} v \\ -1 \end{bmatrix} \|_{2} \le (\sqrt{s} + \sqrt{n+1}) \|R \begin{bmatrix} v \\ -1 \end{bmatrix} \|_{2} = (\sqrt{s} + \sqrt{n+1}) \|Av - b\|_{2},$$

 $\forall v$, and similarly $||G(Av-b)||_2 > (\sqrt{s} - \sqrt{n+1})||Av-b||_2$

Since by definition
$$||G(A\hat{x} - b)||_2 \le ||G(Ax - b)||_2$$
, it follows that

$$||A\hat{x} - b||_2 \le \frac{1}{\sqrt{s - \sqrt{n + 1}}} ||G(Ax - b)||_2 \le \frac{\sqrt{s} + \sqrt{n + 1}}{\sqrt{s - \sqrt{n + 1}}} ||Ax - b||_2.$$

If
$$s=4(n+1)$$
, we have $\frac{\sqrt{s}+\sqrt{n+1}}{\sqrt{s}-\sqrt{n+1}}=3$, so $\|Ax_*-b\|_2=10^{-10}\Rightarrow \|A\hat{x}-b\|_2<3\cdot 10^{-10}$

Randomised least-squares: Blendenpik

$$\min_x \|Ax - b\|_2, \qquad \boxed{A} \in \mathbb{R}^{m imes n}, \ m \gg n$$

- ▶ Traditional method: normal eqn $x = (A^TA)^{-1}A^Tb$ or $A = QR, x = R^{-1}(Q^Tb)$, both $O(mn^2)$ cost
- lacktriangle Randomised: generate random $G\in\mathbb{R}^{4n imes m}$, and lacktriangle A=lacktriangle A=lacktriangle A

(QR factorisation), then solve $\min_y \|(A\hat{R}^{-1})y - b\|_2$'s normal eqn via Krylov

- $lackbox{O}(mn\log m + n^3)$ cost using fast FFT-type transforms for G
- ightharpoonup Successful because $A\hat{R}^{-1}$ is well-conditioned

Explaining Blendenpik via Marchenko-Pastur

Claim:
$$A\hat{R}^{-1}$$
 is well-conditioned with

Show this for $G \in \mathbb{R}^{4n \times m}$ Gaussian:

Proof: Let
$$A = QR$$
. Then $GA = (GQ)R =: \tilde{G}R$

- ullet is 4n imes n rectangular Gaussian, hence well-cond
- ▶ Thus $\tilde{G}R = (\tilde{Q}\tilde{R})R = \tilde{Q}(\tilde{R}R) = \tilde{Q}\hat{R}$, so $\hat{R}^{-1} = R^{-1}\tilde{R}^{-1}$
- ▶ Hence $A\hat{R}^{-1}=Q\tilde{R}^{-1}$, $\kappa_2(A\hat{R}^{-1})=\kappa_2(\tilde{R}^{-1})=O(1)$

Blendenpik: solving $\min_x ||Ax - b||_2$ using \hat{R}

We have $\kappa_2(A\hat{R}^{-1}) =: \kappa_2(B) = O(1);$

defining $\hat{R}x = y$, $\min_{x} \|Ax - b\|_2 = \min_{y} \|(A\hat{R}^{-1})y - b\|_2 = \min_{y} \|By - b\|_2$

ightharpoonup B well-conditioned \Rightarrow in normal equation

$$B^T B y = B^T b \tag{1}$$

B well-conditioned $\kappa_2(B) = O(1)$;

- ▶ solve (1) via CG (or a tailor-made method LSQR; nonexaminable)
 - lacktriangle exponential convergence, O(1) iterations! (or $O(\log \frac{1}{\epsilon})$ iterations for ϵ accuracy)
 - each iteration requires $w \leftarrow Bw$, consisting of $w \leftarrow \hat{R}^{-1}w$ ($n \times n$ triangular solve) and $w \leftarrow Aw$ ($m \times n$ mat-vec multiplication); O(mn) cost overall

Blendenpik experiments

CG for $A^TAx = A^Tb$ vs. Blendenpik $(AR^{-1})^T(AR^{-1})x = (AR^{-1})^Tb$, m=10000, n=100

In practice, Blendenpik gets $\approx \times 5$ speedup over classical (Householder-QR based) method when $m\gg n$

SVD: the most important matrix decomposition

- Symmetric eigenvalue decomposition: $A = V\Lambda V^T$ for symmetric $A \in \mathbb{R}^{n \times n}$, where $V^T V = I_n$, $\Lambda = \text{diag}(\lambda_1, \dots, \lambda_n)$.
- ▶ Singular Value Decomposition (SVD): $A = U\Sigma V^T$ for any $A \in \mathbb{R}^{m \times n}$, $m \ge n$. Here $U^TU = V^TV = I_n$, $\Sigma = \operatorname{diag}(\sigma_1, \ldots, \sigma_n)$, $\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_n \ge 0$.

SVD proof: Take Gram matrix A^TA and its eigendecomposition $A^TA = V\Lambda V^T$. Λ is nonnegative, and $(AV)^T(AV)$ is diagonal, so $AV = U\Sigma$ for some orthonormal U. Right-multiply V^T .

SVD useful for

- Finding column space, row space, null space, rank, ...
- ► Matrix analysis, polar decomposition, ...
- ► Low-rank approximation

(Most) important result in Numerical Linear Algebra

Given $A \in \mathbb{R}^{m \times n}$ $(m \ge n)$, find low-rank (rank r) approximation

 $lackbox{ Optimal solution } A_r = U_r \Sigma_r V_r^T ext{ via truncated SVD}$

$$U_r = U(:, 1:r), \Sigma_r = \Sigma(1:r, 1:r), V_r = V(:, 1:r),$$
 giving

$$||A - A_r|| = ||\mathsf{diag}(\sigma_{r+1}, \dots, \sigma_n)||$$

in any unitarily invariant norm [Horn-Johnson 1985]

lacktriangle But that costs $O(mn^2)$ (bidiagonalisation+QR); look for cheaper approximation

Randomised SVD by HMT

[Halko-Martinsson-Tropp, SIAM Review 2011]

- 1. Form a random (Gaussian) matrix $X \in \mathbb{R}^{n \times r}$, usually $r \ll n$.
- 2. Compute AX.
- 3. QR factorisation AX = QR.

4.
$$A$$
 $pprox Q$ Q^TA $(=(QU_0)\Sigma_0V_0^T)$ is rank- r approximation.

- ightharpoonup O(mnr) cost for dense A
- Near-optimal approximation guarantee: for any $\hat{r} < r$,

$$\mathbb{E}||A - \hat{A}||_F \le \left(1 + \frac{r}{r - \hat{r} - 1}\right) ||A - A_{\hat{r}}||_F$$

where $A_{\hat{r}}$ is the rank \hat{r} -truncated SVD (expectation w.r.t. random matrix X)

Goal: understand this, or at least why $\mathbb{E}\|A - \hat{A}\| = O(1)\|A - A_{\hat{r}}\|$

Pseudoinverse and projectors

Given $M \in \mathbb{R}^{m \times n}$ with economical SVD $M = U_r \Sigma_r V_r^T$ $(U_r \in \mathbb{R}^{m \times r}, \Sigma_r \in \mathbb{R}^{r \times r}, V_r \in \mathbb{R}^{n \times r} \text{ where } r = \operatorname{rank}(M) \text{ so that } \Sigma_r \succ 0)$, the pseudoinverse M^\dagger is

$$M^{\dagger} = V_r \Sigma_r^{-1} U_r^T \in \mathbb{R}^{n \times m}$$

- ▶ satisfies $MM^{\dagger}M = M$, $M^{\dagger}MM^{\dagger} = M^{\dagger}$, $MM^{\dagger} = (MM^{\dagger})^T$, $M^{\dagger}M = (M^{\dagger}M)^T$ (which are often taken to be the definition—above is much simpler IMO)
- ▶ $M^{\dagger}=M^{-1}$ if M nonsingular, $M^{\dagger}M=I_n(MM^{\dagger}=I_m)$ if $m\geq n(m\geq n)$ and M full rank

A square matrix $P \in \mathbb{R}^{n \times n}$ is called a **projector** if $P^2 = P$

- ightharpoonup P diagonalisable and all eigenvalues 1 or 0
- Arr $\|P\|_2 \ge 1$ and $\|P\|_2 = 1$ iff $P = P^T$; in this case P is called orthogonal projector
- ► I-P is another projector, and unless P=0 or P=I, $||I-P||_2=||P||_2$: Schur form $QPQ^*=\begin{bmatrix}I&B\\0&0\end{bmatrix}$, $Q(I-P)Q^*=\begin{bmatrix}0&-B\\0&I\end{bmatrix}$; see [Szyld 2006]

HMT approximant: analysis (down from 70 pages!)

$$\hat{A} = QQ^TA \text{, where } AX = QR. \quad \text{Goal: } \|A - \hat{A}\| = \|(I_m - QQ^T)A\| = O(\|A - A_{\hat{r}}\|).$$

1. $QQ^TAX = AX$ (QQ^T is **orthogonal projector** onto $\mathrm{span}(AX)$). Hence $(I_m - QQ^T)AX = 0$, so $A - \hat{A} = (I_m - QQ^T)A(I_n - XM^T)$ for any $M \in \mathbb{R}^{n \times r}$.

HMT approximant: analysis (down from 70 pages!)

- $\hat{A} = QQ^T A$, where AX = QR. Goal: $||A \hat{A}|| = ||(I_m QQ^T)A|| = O(||A A_{\hat{r}}||)$.
 - 1. $QQ^TAX = AX$ (QQ^T is **orthogonal projector** onto span(AX)). Hence $(I_m QQ^T)AX = 0$, so $A \hat{A} = (I_m QQ^T)A(I_n XM^T)$ for any $M \in \mathbb{R}^{n \times r}$.
 - 2. Set $M^T=(V^TX)^\dagger V^T$ where $V=[v_1,\ldots,v_{\hat{r}}]\in\mathbb{R}^{n imes\hat{r}}$ top sing vecs of A ($\hat{r}\leq r$).

HMT approximant: analysis (down from 70 pages!) $\hat{A} = QQ^T A$, where AX = QR. Goal: $||A - \hat{A}|| = ||(I_m - QQ^T)A|| = O(||A - A_{\hat{r}}||)$.

- 1. $QQ^TAX = AX$ (QQ^T is **orthogonal projector** onto span(AX)). Hence $(I_m - QQ^T)AX = 0$, so $A - \hat{A} = (I_m - QQ^T)A(I_n - XM^T)$ for any $M \in \mathbb{R}^{n \times r}$.
- 2. Set $M^T = (V^T X)^{\dagger} V^T$ where $V = [v_1, \dots, v_{\hat{r}}] \in \mathbb{R}^{n \times \hat{r}}$ top sing vecs of A ($\hat{r} \leq r$).
- 3. $VV^T(I-XM^T) = VV^T(I-X(V^TX)^{\dagger}V^T) = 0$ if V^TX full row-rank (generic assumption), so $A - \hat{A} = (I_m - QQ^T)A(I - VV^T)(I_n - XM^T)$.

HMT approximant: analysis (down from 70 pages!)

$$\hat{A} = QQ^T A$$
, where $AX = QR$. Goal: $||A - \hat{A}|| = ||(I_m - QQ^T)A|| = O(||A - A_{\hat{r}}||)$.

- 1. $QQ^TAX = AX$ (QQ^T is **orthogonal projector** onto span(AX)). Hence $(I_m QQ^T)AX = 0$, so $A \hat{A} = (I_m QQ^T)A(I_n XM^T)$ for any $M \in \mathbb{R}^{n \times r}$.
- 2. Set $M^T = (V^T X)^{\dagger} V^T$ where $V = [v_1, \dots, v_{\hat{r}}] \in \mathbb{R}^{n \times \hat{r}}$ top sing vecs of A ($\hat{r} \leq r$).
- 3. $VV^T(I-XM^T) = VV^T(I-X(V^TX)^{\dagger}V^T) = 0$ if V^TX full row-rank (generic assumption), so $A \hat{A} = (I_m QQ^T)A(I-VV^T)(I_n XM^T)$.
- 4. Taking norms, $||A \hat{A}||_2 = ||(I_m QQ^T)A(I VV^T)(I_n XM^T)||_2 = ||(I_m QQ^T)U_2\Sigma_2V_2^T(I_n XM^T)||_2$ where $[V, V_2]$ is orthogonal, so

$$||A - \hat{A}||_2 \le ||\Sigma_2||_2 ||(I_n - XM^T)||_2 = \underbrace{||\Sigma_2||_2}_{\text{optimal rank-}\hat{r}} ||XM^T||_2$$

To see why $||XM^T||_2 = O(1)$ (with high probability), we need random matrix theory

$$||XM^T||_2 = O(1)$$

Recall we've shown for $M^T = (V^T X)^{\dagger} V^T \ X \in \mathbb{R}^{n \times r}$

$$\|A - \hat{A}\|_2 \leq \|\Sigma_2\|_2 \|(I_n - XM^T)\|_2 = \underbrace{\|\Sigma_2\|_2}_{\text{optimal rank-}\hat{r}} \|XM^T\|_2$$

Now $||XM^T||_2 = ||X(V^TX)^{\dagger}V^T||_2 = ||X(V^TX)^{\dagger}||_2 \le ||X||_2 ||(V^TX)^{\dagger}||_2$. Assume X is random Gaussian $X_{ij} \sim \mathcal{N}(0,1)$. Then

- ▶ V^TX is a Gaussian matrix (orthogonal×Gaussian=Gaussian (in distribution); exercise), hence $\|(V^TX)^{\dagger}\| = 1/\sigma_{\min}(V^TX) \le 1/(\sqrt{r} \sqrt{\hat{r}})$ by M-P
- $\|X\|_2 \lesssim \sqrt{m} + \sqrt{r}$ by M-P

Together we get $||XM^T||_2 \lesssim \frac{\sqrt{m} + \sqrt{r}}{\sqrt{r} - \sqrt{\hat{r}}} = "O(1)"$

lacktriangle When X non-Gaussian random matrix, perform similarly, harder to analyze

Precise analysis for HMT (nonexaminable)

Theorem (Reproduces HMT 2011 Thm.10.5)

If
$$X$$
 Gaussian, for any $\hat{r} < r$, $\mathbb{E} \|E_{\mathrm{HMT}}\|_F \le \sqrt{\mathbb{E} \|E_{\mathrm{HMT}}\|_F^2} = \sqrt{1 + \frac{r}{r - \hat{r} - 1}} \|A - A_{\hat{r}}\|_F$.

PROOF. First ineq: Cauchy-Schwarz. $\|E_{\mathrm{HMT}}\|_F^2$ is

$$||A(I - VV^T)(I - \mathcal{P}_{X,V})||_F^2 = ||A(I - VV^T)||_F^2 + ||A(I - VV^T)\mathcal{P}_{X,V}||_F^2$$

= $||\Sigma_2||_F^2 + ||\Sigma_2\mathcal{P}_{X,V}||_F^2 = ||\Sigma_2||_F^2 + ||\Sigma_2(V_\perp^T X)(V^T X)^{\dagger}V^T||_F^2$.

Now if X is Gaussian then $V_\perp^T X \in \mathbb{R}^{(n-\hat{r}) \times r}$ and $V^T X \in \mathbb{R}^{\hat{r} \times r}$ are independent Gaussian. Hence by [HMT Prop. 10.1] $\mathbb{E} \|\Sigma_2(V_\perp^T X)(V^T X)^\dagger\|_F^2 = \frac{r}{r-\hat{r}-1} \|\Sigma_2\|_F^2$, so

$$\mathbb{E}||E_{\text{HMT}}||_F^2 = \left(1 + \frac{r}{r - \hat{r} - 1}\right) ||\Sigma_2||_F^2.$$

$$X \in \mathbb{R}^{n \times r}$$
 as before; set $Y \in \mathbb{R}^{n \times (r+\ell)}$, and

[N. arXiv 2020]

$$\hat{A} = \left| (AX(Y^T AX)^{\dagger} Y^T) A \right| = \mathcal{P}_{AX,Y} A$$

Then $A - \hat{A} = (I - \mathcal{P}_{AX,Y})A = (I - \mathcal{P}_{AX,Y})A(I - XM^T)$; choose M s.t. $XM^T = X(V^TX)^\dagger V^T = \mathcal{P}_{X,V}$. Then $\mathcal{P}_{AX,Y}, \mathcal{P}_{X,V}$ projections, and

$$||A - \hat{A}|| = ||(I - \mathcal{P}_{AX,Y})A(I - \mathcal{P}_{X,V})||$$

$$\leq ||(I - \mathcal{P}_{AX,Y})A(I - VV^{T})(I - \mathcal{P}_{X,V})||$$

$$\leq ||A(I - VV^{T})(I - \mathcal{P}_{X,V})|| + ||\mathcal{P}_{AX,Y}A(I - VV^{T})(I - \mathcal{P}_{X,V})||.$$

- Note $||A(I VV^T)(I \mathcal{P}_{X|V})||$ exact same as HMT error
- \triangleright Extra term $\|\mathcal{P}_{AX,Y}\|_2 = O(1)$ as before if c > 1 in $Y \in \mathbb{R}^{m \times cr}$
- ▶ Overall, about $(1 + \|\mathcal{P}_{AX,Y}\|_2) \approx (1 + \frac{\sqrt{n} + \sqrt{r+\ell}}{\sqrt{r+\ell} \sqrt{r}})$ times bigger expected error than HMT, still near-optimal and much faster $O(mn\log n + r^3)$

Experiments: dense matrix

Dense $30,000 \times 30,000$ matrix w/ geometrically decaying σ_i

 $HMT:\ Halko-Martinsson-Tropp\ 11,\ GN:\ generalized\ Nyström\ ,\ SVD:\ full\ svd$

- lacktriangle Randomised algorithms are very competitive until $r \approx n$
- error $||A \hat{A}_r|| = O(||A A_r||)$, as theory predicts

MATLAB codes

```
Setup:
n = 1000: % size
A = gallery('randsvd', n, 1e100); % geometrically decaying singvals
r = 200: \% rank
    Then
                                             Generalized Nyström:
         HMT.
  X = randn(n,r):
                                      X = randn(n,r); Y = randn(n,1.5*r);
  AX = A*X:
                                      AX = A*X; YA = Y'*A; YAX = YA*X;
  [Q,R] = qr(AX,0); % QR fact.
                                      [Q,R] = qr(YAX,0); % stable p-inv
  At = Q*(Q'*A);
                                      At = (AX/R)*(Q'*YA):
  norm(At-A,'fro')/norm(A,'fro')
                                      norm(At-A.'fro')/norm(A.'fro')
  ans = 1.2832e-15
                                      ans = 2.8138e-15
```

Important (N)LA topics not treated

tensors	[Kolda-Bader 2009]
► FFT (values↔coefficients map for polynomia	als) [e.g. Golub and Van Loan 2012]
sparse direct solvers	[Duff, Erisman, Reid 2017]
multigrid	[e.g. Elman-Silvester-Wathen 2014]
functions of matrices	[Higham 2008]
generalised, polynomial eigenvalue problems	[Guttel-Tisseur 2017]
perturbation theory (Davis-Kahan etc)	[Stewart-Sun 1990]
compressed sensing	[Foucart-Rauhut 2013]
model order reduction	[Benner-Gugercin-Willcox 2015]
communication-avoiding algorithms	[e.g. Ballard-Demmel-Holtz-Schwartz 2011]

C6.1 Numerical Linear Algebra, summary

1st half

- ► SVD and its properties (Courant-Fisher etc), applications (low-rank)
- ▶ Direct methods (LU) for linear systems and least-squares problems (QR)
- Stability of algorithms

2nd half

- Direct method (QR algorithm) for eigenvalue problems, SVD
- Krylov subspace methods for linear systems (GMRES, CG) and eigenvalue problems (Arnoldi, Lanczos)
- Randomised algorithms for SVD and least-squares

Where does this course lead to?

Courses with significant intersection

- ► C6.3 Approximation of Functions (Prof. Nick Trefethen, MT): Chebyshev polynomials/approximation theory
- C7.7 Random Matrix Theory (Prof. Jon Keating): for theoretical underpinnings of Randomised NLA
- ➤ C6.4 Finite Element Method for PDEs (Prof. Patrick Farrell): NLA arising in solutions of PDEs
- ▶ C6.2 Continuous Optimisation (Prof. Cora Cartis): NLA in optimisation problems and many more: differential equations, data science, optimisation, machine learning,... NLA is everywhere in computational maths

Thank you for your interest in NLA!