
Stochastic Simulation: Lecture 1

Prof. Mike Giles

Oxford University Mathematical Institute

Monte Carlo methods

Given a probability space (Ω,F ,P) where

I Ω is the sample space of all possible outcomes

I F is the σ-algebra of events (subsets of Ω)

I P is the associated probabilities for these events

then to estimate E[P(ω)], where P is some scalar quantity of
interest, the simplest Monte Carlo estimate is

N−1
N∑

n=1

P(ω(n))

where the ω(n) ∈ Ω are i.i.d. samples from the appropriate
distribution.

Monte Carlo methods

Note that lots of different quantities can be expressed as an
expectation:

I mean: E[P(ω)]

I mean-variance combination:
E
[
1
2(P(ω1) + P(ω2)) + 1

2γ(P(ω1)− P(ω2))2
]

= E[P]+γV[P]

I probabilities: E[1Q>β] = P[Q > β]

Random Number Generation

Monte Carlo simulation usually starts with random number
generation, which often is split into 2 stages:

I generation of independent uniform (0, 1) random variables

I conversion into independent random variables from some
other distribution (e.g. Normal)

Generating “good” uniform random variables is technically
complex, so never write your own generator, always use a
well validated generator from a reputable source

I Matlab

I NAG

I Intel MKL

I AMD ACML

I not MS Excel, C rand function or Numerical Recipes

Uniform Random Variables

Pseudo-random number generators use a deterministic
(i.e. repeatable) algorithm to generate a sequence of (apparently)
random numbers on (0, 1) interval.

What defines a good generator?

I a long period – how long it takes before the sequence repeats
itself

232 is not enough – need at least 240

I various statistical tests to measure “randomness”

well validated software will have gone through these checks

Uniform Random Variables

Practical considerations:

I computational cost – RNG cost can be as large as rest of
Monte Carlo simulation

I trivially-parallel Monte Carlo simulation on a compute cluster
requires the ability to “skip-ahead” to an arbitrary starting
point in the sequence

first computer gets first 106 numbers
second computer gets second 106 numbers, etc

Uniform Random Variables

“Multiplicative congruential algorithms” based on

ni = (a× ni−1) mod m

I choice of integers a and m is crucial

I (0,1) random number given by ni/m

I typical period is 257, a bit smaller than m

I can skip-ahead 2k places at low cost by repeatedly squaring a,
mod m

Uniform Random Variables

For more details see

I Intel MKL information
software.intel.com/en-us/

mkl-developer-reference-c-random-number-generators

I NAG library information
www.nag.co.uk/numeric/CL/nagdoc cl08/pdf/G05/g05 conts.pdf

I Matlab information
www.mathworks.com/moler/random.pdf

I Wikipedia information
en.wikipedia.org/wiki/Random number generation

en.wikipedia.org/wiki/List of random number generators

en.wikipedia.org/wiki/Mersenne Twister

Normal Random Variables

Applications often require Normal random variables, N(µ, σ2),
with mean µ and variance σ2.

An N(0, 1) Normal random variable Z with mean 0, variance 1
has a probability density function (pdf)

φ(z) =
1√
2π

exp(−1
2z

2),

and cumulative distribution function (CDF)

Φ(z) = P[Z < z] =

∫ z

−∞
φ(s) ds.

Normal Random Variables

To generate N(0, 1) Normal random variables, we start with a
sequence of uniform random variables on (0, 1).

There are then 4 main ways of converting them into N(0, 1)
Normal variables:

I Box-Muller method

I Marsaglia’s polar method (ignored – doesn’t vectorise well)

I Marsaglia’s ziggurat method (ignored – doesn’t vectorise well)

I inverse CDF transformation

Normal Random Variables

The Box-Muller method takes y1, y2, two independent uniformly
distributed random variables on (0, 1) and defines

x1 =
√
−2 log(y1) cos(2πy2)

x2 =
√
−2 log(y1) sin(2πy2)

It can be proved that x1 and x2 are N(0, 1) random variables, and
independent.

A log, cos and sin operation per 2 Normals makes this a slightly
expensive method.

Normal Random Variables

The inverse CDF transformation method takes y , uniformly
distributed on (0, 1), and defines

x = Φ−1(y),

where Φ(x) is the Normal CDF defined earlier.

Φ−1(y) is approximated in software in a very similar way to the
implementation of cos, sin, log, so this is just as accurate as the
other methods.

It is also a more flexible approach because we’ll need Φ−1(y) later
for stratified sampling and quasi-Monte Carlo methods.

Normal Random Variables

-5 0 5

x

0

0.2

0.4

0.6

0.8

1

(x
)

0 0.5 1

x

-4

-3

-2

-1

0

1

2

3

4

-1
(x

)

Normal Random Variables

Some useful weblinks:

I home.online.no/ pjacklam/notes/invnorm/

code for Φ−1 function in many different languages

I lib.stat.cmu.edu/apstat/241/

single and double precision code in FORTRAN
(coming soon in next version of NAG libraries)

I en.wikipedia.org/wiki/Normal distribution

Wikipedia definition of Φ matches mine

I mathworld.wolfram.com/NormalDistribution.html

mathworld.wolfram.com/DistributionFunction.html

Good Mathworld items, but their definition of Φ is slightly
different; they call the cumulative distribution function D(x).

Normal Random Variables

The Normal CDF Φ(x) is related to the error function erf(x):

Φ(x) = 1
2 + 1

2erf(x/
√

2) =⇒ Φ−1(y) =
√

2 erf−1(2y−1)

so this is the function I often use in Matlab code:

function x = ncfinv(y)

x = sqrt(2)*erfinv(2*y-1);

However, the MATLAB Statistics toolbox also has a function

norminv(p)

norminv(p,mu,sigma).

Correlated Normal Random Variables

Sometimes we need a vector of Normally distributed variables with
a prescribed covariance matrix.

Suppose x is a vector of independent N(0, 1) variables, and define
a new vector y = L x .

Each element of y is Normally distributed, E[y] = LE[x] = 0, and

E[y yT] = E[L x xT LT] = LE[x xT] LT = L LT .

since E[x xT] = I because

I elements of x are independent =⇒ E[xi xj] = 0 for i 6= j

I elements of x have unit variance =⇒ E[x2i] = 1

Correlated Normal Random Variables

To get E[y yT] = Σ, we need to find L such that L LT = Σ

L is not uniquely defined. Simplest choice is to use a Cholesky
factorization in which L is lower-triangular. but alternatively,
if Σ has eigenvalues λi ≥ 0, and orthonormal eigenvectors ui , so
that

Σ ui = λi ui , =⇒ ΣU = U Λ

then
Σ = U ΛUT = L LT

where
L = U Λ1/2.

This is the PCA decomposition; it is no better than the Cholesky
decomposition for standard Monte Carlo simulation, but is often
better for quasi-Monte Carlo methods.

Expectation and Integration

If x is a random variable uniformly distributed on [0, 1] then the
expectation of a function f (x) is equal to its integral:

E[f (x)] =

∫ 1

0
f (x) dx .

The generalisation to a d-dimensional “cube” I d = [0, 1]d , is

E[f (x)] =

∫
I d
f (x) dx .

Thus finding expectations is directly connected to the problem of
numerical quadrature (integration), often in very large dimensions.

Expectation and Integration

Suppose we have a sequence xn of independent samples from the
uniform distribution.

An approximation to the expectation/integral is given by

f N = N−1
N∑

n=1

f (xn).

Two key features:

I Unbiased: E
[
f N

]
= E[f]

I Convergent: lim
N→∞

f N = E[f]

CLT

This MC estimate is unbiased, meaning that the average error is
zero

E[εN] = 0

where εN = f N − E[f].

In addition, the Central Limit Theorem proves that for large N the
error is asymptotically Normally distributed

εN(f) ∼ σN−1/2 Z

with Z a N(0, 1) random variable and σ2 the variance of f :

σ2 = V[f] ≡ E
[
(f − E[f])2

]
.

CLT

This means that

P
[∣∣∣N1/2σ−1εN

∣∣∣ < s
]
≈ 1− 2 Φ(−s),

where Φ(s) is the Normal CDF (cumulative distribution function).

Typically we use s = 3, corresponding to a 3-standard deviation
confidence interval, with 1− 2 Φ(−s) ≈ 0.997.

Hence, with probability 99.7%, we have∣∣∣N1/2σ−1εN

∣∣∣ < 3 =⇒ |εN | < 3σN−1/2

This bounds the accuracy, but we need an estimate for σ.

Empirical Variance

Given N samples, the empirical variance is

σ̃2 = N−1
N∑

n=1

(
f (n) − f N

)2
= f 2N − (f N)2

where

f N = N−1
N∑

n=1

f (n), f 2N = N−1
N∑

n=1

(
f (n)

)2

σ̃2 is a slightly biased estimator for σ2 – an unbiased estimator is

σ̂2 =
N

N−1
σ̃2 =

N

N−1

(
f 2N − (f N)2

)

Expectation and Integration

How does Monte Carlo integration compare to grid based methods
for d-dimensional integration?

MC error is proportional to N−1/2 independent of the dimension.

If the integrand is sufficiently smooth, trapezoidal integration with
M = N1/d points in each direction has

Error ∝ M−2 = N−2/d

This scales better than MC for d < 4, but worse for d > 4. i.e.
MC is better at handling high dimensional problems.

Application

As a simple example, the Black-Scholes model uses a geometric
Brownian motion model for a single asset:

ST = S0 exp
(
(r − 1

2σ
2)T + σWT

)
where WT is the value of the Brownian motion at time T , and has
a Normal distribution with mean 0, variance T ;

From this we will calculate an expected value

V = E
[
f (ST)

]
.

Application

We can put
WT =

√
T Y =

√
T Φ−1(U)

where Y is a N(0, 1) random variable, and U is uniformly
distributed on [0, 1].

Thus

V = E [f (ST)] =

∫ 1

0
f (ST) dU,

with

ST = S0 exp
(

(r − 1
2σ

2)T + σ
√
T Y

)
= S0 exp

(
(r − 1

2σ
2)T + σ

√
T Φ−1(U)

)

Application

For the European call option,

f (S) = exp(−rT) max(S−K , 0)

while for the European put option

f (S) = exp(−rT) max(K−S , 0)

where K is the strike price.

For numerical experiments we will consider a European call with
r =0.05, σ = 0.2, T =1, S0 =110, K =100.

The analytic value is known for comparison.

Application

0 0.2 0.4 0.6 0.8 1

U

0

20

40

60

80

100

120

140
Discounted payoff

Application

MC calculation with up to 106 paths; true value = 17.663

0 2 4 6 8 10

N 10 5

-1

-0.5

0

0.5

1
E

rr
o
r

MC error

lower bound

upper bound

Applications

The upper and lower bounds are given by

Mean± 3 σ̃√
N
,

so more than a 99.7% probability that the true value lies within
these bounds.

Applications

MATLAB code:

r=0.05; sig=0.2; T=1; S0=110; K=100;

N = 1:1000000;

U = rand(1,max(N)); % uniform random variable

Y = norminv(U); % inverts Normal cum. fn.

S = S0*exp((r-sig^2/2)*T + sig*sqrt(T)*Y);

F = exp(-r*T)*max(0,S-K);

sum1 = cumsum(F); % cumulative summation of

sum2 = cumsum(F.^2); % payoff and its square

val = sum1./N;

rms = sqrt(sum2./N - val.^2);

Applications

err = european_call(r,sig,T,S0,K,’value’) - val;

plot(N,err, ...

N,err-3*rms./sqrt(N), ...

N,err+3*rms./sqrt(N))

axis([0 length(N) -1 1])

xlabel(’N’); ylabel(’Error’)

legend(’MC error’,’lower bound’,’upper bound’)

Final Words

I Monte Carlo quadrature is straightforward and robust

I Confidence bounds can be obtained as part of the calculation

I Can calculate the number of samples N needed for chosen
accuracy

I Much more efficient than grid-based methods for high
dimensions

I Accuracy = O(N−1/2), CPU time = O(N)

=⇒ accuracy = O(CPU time−1/2)

=⇒ CPU time = O(accuracy−2)

