Stochastic Simulation: Lecture 1

Prof. Mike Giles

Oxford University Mathematical Institute

Monte Carlo methods

Given a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ where

- $ightharpoonup \Omega$ is the sample space of all possible outcomes
- $ightharpoonup \mathcal{F}$ is the *σ*-algebra of events (subsets of Ω)
- $ightharpoonup \mathbb{P}$ is the associated probabilities for these events

then to estimate $\mathbb{E}[P(\omega)]$, where P is some scalar quantity of interest, the simplest Monte Carlo estimate is

$$N^{-1}\sum_{n=1}^{N}P(\omega^{(n)})$$

where the $\omega^{(n)} \in \Omega$ are i.i.d. samples from the appropriate distribution.

Monte Carlo methods

Note that lots of different quantities can be expressed as an expectation:

- ▶ mean: $\mathbb{E}[P(\omega)]$
- mean-variance combination:

$$\mathbb{E}\left[\frac{1}{2}(P(\omega_1) + P(\omega_2)) + \frac{1}{2}\gamma(P(\omega_1) - P(\omega_2))^2\right] = \mathbb{E}[P] + \gamma \mathbb{V}[P]$$

lacksquare probabilities: $\mathbb{E}[\mathbf{1}_{Q>eta}]=\mathbb{P}[Q>eta]$

Random Number Generation

Monte Carlo simulation usually starts with random number generation, which often is split into 2 stages:

- ightharpoonup generation of independent uniform (0,1) random variables
- conversion into independent random variables from some other distribution (e.g. Normal)

Generating "good" uniform random variables is technically complex, so **never** write your own generator, **always** use a well validated generator from a reputable source

- Matlab
- NAG
- Intel MKL
- AMD ACML
- not MS Excel, C rand function or Numerical Recipes

Pseudo-random number generators use a deterministic (i.e. repeatable) algorithm to generate a sequence of (apparently) random numbers on (0,1) interval.

What defines a good generator?

a long period – how long it takes before the sequence repeats itself

 2^{32} is not enough – need at least 2^{40}

various statistical tests to measure "randomness"
 well validated software will have gone through these checks

Practical considerations:

- computational cost RNG cost can be as large as rest of Monte Carlo simulation
- trivially-parallel Monte Carlo simulation on a compute cluster requires the ability to "skip-ahead" to an arbitrary starting point in the sequence
 - first computer gets first 10^6 numbers second computer gets second 10^6 numbers, etc

"Multiplicative congruential algorithms" based on

$$n_i = (a \times n_{i-1}) \mod m$$

- choice of integers a and m is crucial
- (0,1) random number given by n_i/m
- ▶ typical period is 2^{57} , a bit smaller than m
- can skip-ahead 2^k places at low cost by repeatedly squaring a, mod m

For more details see

Intel MKL information

```
software.intel.com/en-us/
mkl-developer-reference-c-random-number-generators
```

- ► NAG library information
 www.nag.co.uk/numeric/CL/nagdoc_c108/pdf/G05/g05_conts.pdf
- Matlab information www.mathworks.com/moler/random.pdf
- Wikipedia information en.wikipedia.org/wiki/Random_number_generation en.wikipedia.org/wiki/List_of_random_number_generators en.wikipedia.org/wiki/Mersenne_Twister

Applications often require Normal random variables, $N(\mu, \sigma^2)$, with mean μ and variance σ^2 .

An N(0,1) Normal random variable Z with mean 0, variance 1 has a probability density function (pdf)

$$\phi(z) = \frac{1}{\sqrt{2\pi}} \exp(-\frac{1}{2}z^2),$$

and cumulative distribution function (CDF)

$$\Phi(z) = \mathbb{P}[Z < z] = \int_{-\infty}^{z} \phi(s) \, \mathrm{d}s.$$

To generate N(0,1) Normal random variables, we start with a sequence of uniform random variables on (0,1).

There are then 4 main ways of converting them into N(0,1) Normal variables:

- Box-Muller method
- Marsaglia's polar method (ignored doesn't vectorise well)
- Marsaglia's ziggurat method (ignored doesn't vectorise well)
- inverse CDF transformation

The Box-Muller method takes y_1, y_2 , two independent uniformly distributed random variables on (0,1) and defines

$$x_1 = \sqrt{-2\log(y_1)} \cos(2\pi y_2)$$

 $x_2 = \sqrt{-2\log(y_1)} \sin(2\pi y_2)$

It can be proved that x_1 and x_2 are N(0,1) random variables, and independent.

A log, cos and sin operation per 2 Normals makes this a slightly expensive method.

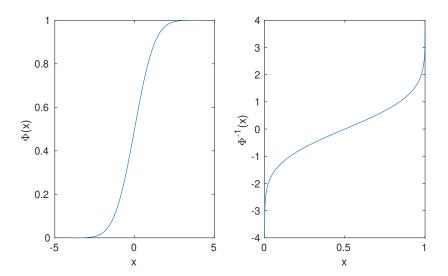
The inverse CDF transformation method takes y, uniformly distributed on (0,1), and defines

$$x=\Phi^{-1}(y),$$

where $\Phi(x)$ is the Normal CDF defined earlier.

 $\Phi^{-1}(y)$ is approximated in software in a very similar way to the implementation of cos, sin, log, so this is just as accurate as the other methods.

It is also a more flexible approach because we'll need $\Phi^{-1}(y)$ later for stratified sampling and quasi-Monte Carlo methods.



Some useful weblinks:

- home.online.no/ pjacklam/notes/invnorm/ code for Φ⁻¹ function in many different languages
- ▶ lib.stat.cmu.edu/apstat/241/ single and double precision code in FORTRAN (coming soon in next version of NAG libraries)
- en.wikipedia.org/wiki/Normal_distribution
 Wikipedia definition of Φ matches mine
- mathworld.wolfram.com/NormalDistribution.html
 mathworld.wolfram.com/DistributionFunction.html
 Good Mathworld items, but their definition of Φ is slightly different; they call the cumulative distribution function D(x).

The Normal CDF $\Phi(x)$ is related to the error function $\operatorname{erf}(x)$:

$$\Phi(x) = \frac{1}{2} + \frac{1}{2} \operatorname{erf}(x/\sqrt{2}) \implies \Phi^{-1}(y) = \sqrt{2} \operatorname{erf}^{-1}(2y-1)$$

so this is the function I often use in Matlab code:

```
function x = ncfinv(y)
x = sqrt(2)*erfinv(2*y-1);
```

However, the MATLAB Statistics toolbox also has a function norminv(p) norminv(p,mu,sigma).

Correlated Normal Random Variables

Sometimes we need a vector of Normally distributed variables with a prescribed covariance matrix.

Suppose x is a vector of independent N(0,1) variables, and define a new vector y = Lx.

Each element of y is Normally distributed, $\mathbb{E}[y] = L \mathbb{E}[x] = 0$, and

$$\mathbb{E}[y\,y^T] = \mathbb{E}[L\,x\,x^T\,L^T] = L\,\mathbb{E}[x\,x^T]\,L^T = L\,L^T.$$

since $\mathbb{E}[x x^T] = I$ because

- ▶ elements of x are independent $\Longrightarrow \mathbb{E}[x_i \, x_j] = 0$ for $i \neq j$
- elements of x have unit variance $\Longrightarrow \mathbb{E}[x_i^2] = 1$

Correlated Normal Random Variables

To get $\mathbb{E}[y \ y^T] = \Sigma$, we need to find L such that $L L^T = \Sigma$

L is not uniquely defined. Simplest choice is to use a Cholesky factorization in which L is lower-triangular. but alternatively, if Σ has eigenvalues $\lambda_i \geq 0$, and orthonormal eigenvectors u_i , so that

$$\Sigma u_i = \lambda_i u_i, \implies \Sigma U = U \Lambda$$

then

$$\Sigma = U \Lambda U^T = L L^T$$

where

$$L = U \Lambda^{1/2}$$
.

This is the PCA decomposition; it is no better than the Cholesky decomposition for standard Monte Carlo simulation, but is often better for quasi-Monte Carlo methods.

Expectation and Integration

If x is a random variable uniformly distributed on [0,1] then the expectation of a function f(x) is equal to its integral:

$$\mathbb{E}[f(x)] = \int_0^1 f(x) \, \mathrm{d}x.$$

The generalisation to a d-dimensional "cube" $I^d = [0,1]^d$, is

$$\mathbb{E}[f(x)] = \int_{I^d} f(x) \, \mathrm{d}x.$$

Thus finding expectations is directly connected to the problem of numerical quadrature (integration), often in very large dimensions.

Expectation and Integration

Suppose we have a sequence x_n of independent samples from the uniform distribution.

An approximation to the expectation/integral is given by

$$\overline{f}_N = N^{-1} \sum_{n=1}^N f(x_n).$$

Two key features:

▶ Unbiased:
$$\mathbb{E}\left[\overline{f}_{N}\right] = \mathbb{E}[f]$$

► Convergent:
$$\lim_{N\to\infty} \overline{f}_N = \mathbb{E}[f]$$

CLT

This MC estimate is unbiased, meaning that the average error is zero

$$\mathbb{E}[\varepsilon_N] = 0$$

where $\varepsilon_N = \overline{f}_N - \mathbb{E}[f]$.

In addition, the Central Limit Theorem proves that for large N the error is asymptotically Normally distributed

$$\varepsilon_N(f) \sim \sigma N^{-1/2} Z$$

with Z a N(0,1) random variable and σ^2 the variance of f:

$$\sigma^2 = \mathbb{V}[f] \equiv \mathbb{E}\left[(f - \mathbb{E}[f])^2 \right].$$

CLT

This means that

$$\mathbb{P}\left[\left|N^{1/2}\sigma^{-1}\varepsilon_N\right| < s
ight] \ pprox \ 1-2 \ \Phi(-s),$$

where $\Phi(s)$ is the Normal CDF (cumulative distribution function).

Typically we use s=3, corresponding to a 3-standard deviation confidence interval, with 1-2 $\Phi(-s)\approx 0.997$.

Hence, with probability 99.7%, we have

$$\left| N^{1/2} \sigma^{-1} \varepsilon_N \right| < 3 \implies |\varepsilon_N| < 3 \sigma N^{-1/2}$$

This bounds the accuracy, but we need an estimate for σ .

Empirical Variance

Given N samples, the empirical variance is

$$\widetilde{\sigma}^2 = N^{-1} \sum_{n=1}^N \left(f^{(n)} - \overline{f}_N \right)^2 = \overline{f^2}_N - (\overline{f}_N)^2$$

where

$$\overline{f}_N = N^{-1} \sum_{n=1}^N f^{(n)}, \qquad \overline{f^2}_N = N^{-1} \sum_{n=1}^N \left(f^{(n)} \right)^2$$

 $\widetilde{\sigma}^2$ is a slightly biased estimator for σ^2 – an unbiased estimator is

$$\widehat{\sigma}^2 = \frac{N}{N-1} \ \widetilde{\sigma}^2 = \frac{N}{N-1} \left(\overline{f^2}_N - (\overline{f}_N)^2 \right)$$

Expectation and Integration

How does Monte Carlo integration compare to grid based methods for *d*-dimensional integration?

MC error is proportional to $N^{-1/2}$ independent of the dimension.

If the integrand is sufficiently smooth, trapezoidal integration with $M={\it N}^{1/d}$ points in each direction has

Error
$$\propto M^{-2} = N^{-2/d}$$

This scales better than MC for d < 4, but worse for d > 4. i.e. MC is better at handling high dimensional problems.

As a simple example, the Black-Scholes model uses a geometric Brownian motion model for a single asset:

$$S_T = S_0 \exp\left(\left(r - \frac{1}{2}\sigma^2\right)T + \sigma W_T\right)$$

where W_T is the value of the Brownian motion at time T, and has a Normal distribution with mean 0, variance T;

From this we will calculate an expected value

$$V=\mathbb{E}\left[f(S_T)\right].$$

We can put

$$W_T = \sqrt{T} \ Y = \sqrt{T} \ \Phi^{-1}(U)$$

where Y is a N(0,1) random variable, and U is uniformly distributed on [0,1].

Thus

$$V = \mathbb{E}\left[f(S_T)\right] = \int_0^1 f(S_T) \, \mathrm{d}U,$$

with

$$S_T = S_0 \exp\left(\left(r - \frac{1}{2}\sigma^2\right)T + \sigma\sqrt{T}Y\right)$$
$$= S_0 \exp\left(\left(r - \frac{1}{2}\sigma^2\right)T + \sigma\sqrt{T}\Phi^{-1}(U)\right)$$

For the European call option,

$$f(S) = \exp(-rT) \max(S - K, 0)$$

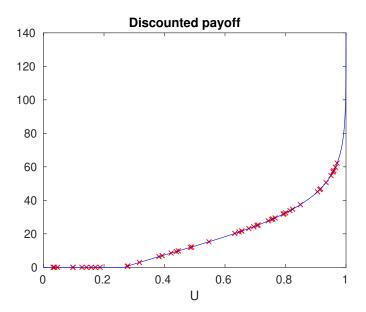
while for the European put option

$$f(S) = \exp(-rT) \max(K - S, 0)$$

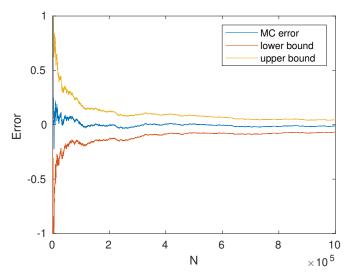
where K is the strike price.

For numerical experiments we will consider a European call with r = 0.05, $\sigma = 0.2$, T = 1, $S_0 = 110$, K = 100.

The analytic value is known for comparison.



MC calculation with up to 10^6 paths; true value = 17.663



The upper and lower bounds are given by

$$Mean \pm \frac{3 \ \widetilde{\sigma}}{\sqrt{N}},$$

so more than a 99.7% probability that the true value lies within these bounds.

MATLAB code:

Final Words

- ► Monte Carlo quadrature is straightforward and robust
- Confidence bounds can be obtained as part of the calculation
- Can calculate the number of samples N needed for chosen accuracy
- Much more efficient than grid-based methods for high dimensions
- Accuracy = $O(N^{-1/2})$, CPU time = O(N) \implies accuracy = $O(\text{CPU time}^{-1/2})$ \implies CPU time = $O(\text{accuracy}^{-2})$