Stochastic Simulation: Lecture 1

Prof. Mike Giles

Oxford University Mathematical Institute

Monte Carlo methods

Given a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ where

- Ω is the sample space of all possible outcomes
- \mathcal{F} is the σ-algebra of events (subsets of Ω)
- \mathbb{P} is the associated probabilities for these events then to estimate $\mathbb{E}[P(\omega)]$, where P is some scalar quantity of interest, the simplest Monte Carlo estimate is

$$
N^{-1} \sum_{n=1}^{N} P\left(\omega^{(n)}\right)
$$

where the $\omega^{(n)} \in \Omega$ are i.i.d. samples from the appropriate distribution.

Monte Carlo methods

Note that lots of different quantities can be expressed as an expectation:

- mean: $\mathbb{E}[P(\omega)]$
- mean-variance combination: $\mathbb{E}\left[\frac{1}{2}\left(P\left(\omega_{1}\right)+P\left(\omega_{2}\right)\right)+\frac{1}{2} \gamma\left(P\left(\omega_{1}\right)-P\left(\omega_{2}\right)\right)^{2}\right]=\mathbb{E}[P]+\gamma \mathbb{V}[P]$
- probabilities: $\mathbb{E}\left[\mathbf{1}_{Q>\beta}\right]=\mathbb{P}[Q>\beta]$

Random Number Generation

Monte Carlo simulation usually starts with random number generation, which often is split into 2 stages:

- generation of independent uniform $(0,1)$ random variables
- conversion into independent random variables from some other distribution (e.g. Normal)

Generating "good" uniform random variables is technically complex, so never write your own generator, always use a well validated generator from a reputable source

- Matlab
- NAG
- Intel MKL
- AMD ACML
- not MS Excel, C rand function or Numerical Recipes

Uniform Random Variables

Pseudo-random number generators use a deterministic (i.e. repeatable) algorithm to generate a sequence of (apparently) random numbers on $(0,1)$ interval.

What defines a good generator?

- a long period - how long it takes before the sequence repeats itself
2^{32} is not enough - need at least 2^{40}
- various statistical tests to measure "randomness" well validated software will have gone through these checks

Uniform Random Variables

Practical considerations:

- computational cost - RNG cost can be as large as rest of Monte Carlo simulation
- trivially-parallel Monte Carlo simulation on a compute cluster requires the ability to "skip-ahead" to an arbitrary starting point in the sequence
first computer gets first 10^{6} numbers
second computer gets second 10^{6} numbers, etc

Uniform Random Variables

"Multiplicative congruential algorithms" based on

$$
n_{i}=\left(a \times n_{i-1}\right) \quad \bmod m
$$

- choice of integers a and m is crucial
- $(0,1)$ random number given by n_{i} / m
- typical period is 2^{57}, a bit smaller than m
- can skip-ahead 2^{k} places at low cost by repeatedly squaring a, $\bmod m$

Uniform Random Variables

For more details see

- Intel MKL information

```
software.intel.com/en-us/
```

mkl-developer-reference-c-random-number-generators

- NAG library information
www.nag.co.uk/numeric/CL/nagdoc_cl08/pdf/G05/g05_conts.pdf
- Matlab information
www.mathworks.com/moler/random.pdf
- Wikipedia information
en.wikipedia.org/wiki/Random_number_generation
en.wikipedia.org/wiki/List_of_random_number_generators
en.wikipedia.org/wiki/Mersenne_Twister

Normal Random Variables

Applications often require Normal random variables, $N\left(\mu, \sigma^{2}\right)$, with mean μ and variance σ^{2}.

An $N(0,1)$ Normal random variable Z with mean 0 , variance 1 has a probability density function (pdf)

$$
\phi(z)=\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{1}{2} z^{2}\right)
$$

and cumulative distribution function (CDF)

$$
\Phi(z)=\mathbb{P}[Z<z]=\int_{-\infty}^{z} \phi(s) \mathrm{d} s .
$$

Normal Random Variables

To generate $N(0,1)$ Normal random variables, we start with a sequence of uniform random variables on (0,1).

There are then 4 main ways of converting them into $N(0,1)$ Normal variables:

- Box-Muller method
- Marsaglia's polar method (ignored - doesn't vectorise well)
- Marsaglia's ziggurat method (ignored - doesn't vectorise well)
- inverse CDF transformation

Normal Random Variables

The Box-Muller method takes y_{1}, y_{2}, two independent uniformly distributed random variables on $(0,1)$ and defines

$$
\begin{aligned}
& x_{1}=\sqrt{-2 \log \left(y_{1}\right)} \cos \left(2 \pi y_{2}\right) \\
& x_{2}=\sqrt{-2 \log \left(y_{1}\right)} \sin \left(2 \pi y_{2}\right)
\end{aligned}
$$

It can be proved that x_{1} and x_{2} are $N(0,1)$ random variables, and independent.

A log, cos and sin operation per 2 Normals makes this a slightly expensive method.

Normal Random Variables

The inverse CDF transformation method takes y, uniformly distributed on $(0,1)$, and defines

$$
x=\Phi^{-1}(y)
$$

where $\Phi(x)$ is the Normal CDF defined earlier.
$\Phi^{-1}(y)$ is approximated in software in a very similar way to the implementation of \cos , \sin , \log, so this is just as accurate as the other methods.

It is also a more flexible approach because we'll need $\Phi^{-1}(y)$ later for stratified sampling and quasi-Monte Carlo methods.

Normal Random Variables

Normal Random Variables

Some useful weblinks:

- home.online.no/ pjacklam/notes/invnorm/ code for Φ^{-1} function in many different languages
- lib.stat.cmu.edu/apstat/241/
single and double precision code in FORTRAN (coming soon in next version of NAG libraries)
- en.wikipedia.org/wiki/Normal_distribution Wikipedia definition of Φ matches mine
- mathworld.wolfram.com/NormalDistribution.html
mathworld.wolfram.com/DistributionFunction.html
Good Mathworld items, but their definition of Φ is slightly different; they call the cumulative distribution function $D(x)$.

Normal Random Variables

The Normal CDF $\Phi(x)$ is related to the error function $\operatorname{erf}(x)$:

$$
\Phi(x)=\frac{1}{2}+\frac{1}{2} \operatorname{erf}(x / \sqrt{2}) \quad \Longrightarrow \quad \Phi^{-1}(y)=\sqrt{2} \operatorname{erf}^{-1}(2 y-1)
$$

so this is the function I often use in Matlab code:
function $\mathrm{x}=\mathrm{ncfinv}(\mathrm{y})$
$\mathrm{x}=\operatorname{sqrt}(2) * \operatorname{erfinv}(2 * y-1)$;

However, the MATLAB Statistics toolbox also has a function

```
norminv(p)
norminv(p,mu,sigma).
```


Correlated Normal Random Variables

Sometimes we need a vector of Normally distributed variables with a prescribed covariance matrix.

Suppose x is a vector of independent $N(0,1)$ variables, and define a new vector $y=L x$.

Each element of y is Normally distributed, $\mathbb{E}[y]=L \mathbb{E}[x]=0$, and

$$
\mathbb{E}\left[y y^{T}\right]=\mathbb{E}\left[L x x^{T} L^{T}\right]=L \mathbb{E}\left[x x^{T}\right] L^{T}=L L^{T} .
$$

since $\mathbb{E}\left[x x^{T}\right]=/$ because

- elements of x are independent $\Longrightarrow \mathbb{E}\left[x_{i} x_{j}\right]=0$ for $i \neq j$
- elements of x have unit variance $\Longrightarrow \mathbb{E}\left[x_{i}^{2}\right]=1$

Correlated Normal Random Variables

To get $\mathbb{E}\left[y y^{\top}\right]=\Sigma$, we need to find L such that $L L^{T}=\Sigma$
L is not uniquely defined. Simplest choice is to use a Cholesky factorization in which L is lower-triangular. but alternatively, if Σ has eigenvalues $\lambda_{i} \geq 0$, and orthonormal eigenvectors u_{i}, so that

$$
\Sigma u_{i}=\lambda_{i} u_{i}, \quad \Longrightarrow \quad \Sigma U=U \Lambda
$$

then

$$
\Sigma=U \wedge U^{T}=L L^{T}
$$

where

$$
L=U \Lambda^{1 / 2}
$$

This is the PCA decomposition; it is no better than the Cholesky decomposition for standard Monte Carlo simulation, but is often better for quasi-Monte Carlo methods.

Expectation and Integration

If x is a random variable uniformly distributed on $[0,1]$ then the expectation of a function $f(x)$ is equal to its integral:

$$
\mathbb{E}[f(x)]=\int_{0}^{1} f(x) \mathrm{d} x
$$

The generalisation to a d-dimensional "cube" $I^{d}=[0,1]^{d}$, is

$$
\mathbb{E}[f(x)]=\int_{I^{d}} f(x) \mathrm{d} x
$$

Thus finding expectations is directly connected to the problem of numerical quadrature (integration), often in very large dimensions.

Expectation and Integration

Suppose we have a sequence x_{n} of independent samples from the uniform distribution.

An approximation to the expectation/integral is given by

$$
\bar{f}_{N}=N^{-1} \sum_{n=1}^{N} f\left(x_{n}\right)
$$

Two key features:

- Unbiased: $\quad \mathbb{E}\left[\bar{f}_{N}\right]=\mathbb{E}[f]$
- Convergent: $\lim _{N \rightarrow \infty} \bar{f}_{N}=\mathbb{E}[f]$

This MC estimate is unbiased, meaning that the average error is zero

$$
\mathbb{E}\left[\varepsilon_{N}\right]=0
$$

where $\varepsilon_{N}=\bar{f}_{N}-\mathbb{E}[f]$.

In addition, the Central Limit Theorem proves that for large N the error is asymptotically Normally distributed

$$
\varepsilon_{N}(f) \sim \sigma N^{-1 / 2} Z
$$

with Z a $N(0,1)$ random variable and σ^{2} the variance of f :

$$
\sigma^{2}=\mathbb{V}[f] \equiv \mathbb{E}\left[(f-\mathbb{E}[f])^{2}\right]
$$

This means that

$$
\mathbb{P}\left[\left|N^{1 / 2} \sigma^{-1} \varepsilon_{N}\right|<s\right] \approx 1-2 \Phi(-s)
$$

where $\Phi(s)$ is the Normal CDF (cumulative distribution function).
Typically we use $s=3$, corresponding to a 3-standard deviation confidence interval, with $1-2 \Phi(-s) \approx 0.997$.

Hence, with probability 99.7\%, we have

$$
\left|N^{1 / 2} \sigma^{-1} \varepsilon_{N}\right|<3 \Longrightarrow\left|\varepsilon_{N}\right|<3 \sigma N^{-1 / 2}
$$

This bounds the accuracy, but we need an estimate for σ.

Empirical Variance

Given N samples, the empirical variance is

$$
\tilde{\sigma}^{2}=N^{-1} \sum_{n=1}^{N}\left(f^{(n)}-\bar{f}_{N}\right)^{2}=\bar{f}^{2} N-\left(\bar{f}_{N}\right)^{2}
$$

where

$$
\bar{f}_{N}=N^{-1} \sum_{n=1}^{N} f^{(n)}, \quad \bar{f}^{2} N=N^{-1} \sum_{n=1}^{N}\left(f^{(n)}\right)^{2}
$$

$\widetilde{\sigma}^{2}$ is a slightly biased estimator for $\sigma^{2}-$ an unbiased estimator is

$$
\widehat{\sigma}^{2}=\frac{N}{N-1} \widetilde{\sigma}^{2}=\frac{N}{N-1}\left(\bar{f}^{2}{ }_{N}-\left(\bar{f}_{N}\right)^{2}\right)
$$

Expectation and Integration

How does Monte Carlo integration compare to grid based methods for d-dimensional integration?

MC error is proportional to $N^{-1 / 2}$ independent of the dimension.

If the integrand is sufficiently smooth, trapezoidal integration with $M=N^{1 / d}$ points in each direction has

$$
\text { Error } \propto M^{-2}=N^{-2 / d}
$$

This scales better than MC for $d<4$, but worse for $d>4$. i.e. MC is better at handling high dimensional problems.

Application

As a simple example, the Black-Scholes model uses a geometric Brownian motion model for a single asset:

$$
S_{T}=S_{0} \exp \left(\left(r-\frac{1}{2} \sigma^{2}\right) T+\sigma W_{T}\right)
$$

where W_{T} is the value of the Brownian motion at time T, and has a Normal distribution with mean 0 , variance T;

From this we will calculate an expected value

$$
V=\mathbb{E}\left[f\left(S_{T}\right)\right] .
$$

Application

We can put

$$
W_{T}=\sqrt{T} Y=\sqrt{T} \Phi^{-1}(U)
$$

where Y is a $N(0,1)$ random variable, and U is uniformly distributed on $[0,1]$.

Thus

$$
V=\mathbb{E}\left[f\left(S_{T}\right)\right]=\int_{0}^{1} f\left(S_{T}\right) \mathrm{d} U
$$

with

$$
\begin{aligned}
S_{T} & =S_{0} \exp \left(\left(r-\frac{1}{2} \sigma^{2}\right) T+\sigma \sqrt{T} Y\right) \\
& =S_{0} \exp \left(\left(r-\frac{1}{2} \sigma^{2}\right) T+\sigma \sqrt{T} \Phi^{-1}(U)\right)
\end{aligned}
$$

Application

For the European call option,

$$
f(S)=\exp (-r T) \max (S-K, 0)
$$

while for the European put option

$$
f(S)=\exp (-r T) \max (K-S, 0)
$$

where K is the strike price.

For numerical experiments we will consider a European call with $r=0.05, \quad \sigma=0.2, \quad T=1, \quad S_{0}=110, \quad K=100$.

The analytic value is known for comparison.

Application

Discounted payoff

Application

MC calculation with up to 10^{6} paths; true value $=17.663$

Applications

The upper and lower bounds are given by

$$
\text { Mean } \pm \frac{3 \widetilde{\sigma}}{\sqrt{N}}
$$

so more than a 99.7% probability that the true value lies within these bounds.

Applications

MATLAB code:

```
r=0.05; sig=0.2; T=1; S0=110; K=100;
N = 1:1000000;
U = rand(1,max(N)); % uniform random variable
Y = norminv(U); % inverts Normal cum. fn.
S = S0*exp((r-sig^2/2)*T + sig*sqrt(T)*Y);
F = exp(-r*T)*max (0,S-K);
sum1 = cumsum(F); % cumulative summation of
sum2 = cumsum(F.^2); % payoff and its square
val = sum1./N;
rms = sqrt(sum2./N - val. ^2);
```


Applications

```
err = european_call(r,sig,T,SO,K,'value') - val;
plot(N,err,
    N,err-3*rms./sqrt(N), ...
    N,err+3*rms./sqrt(N))
axis([0 length(N) -1 1])
xlabel('N'); ylabel('Error')
legend('MC error','lower bound','upper bound')
```


Final Words

- Monte Carlo quadrature is straightforward and robust
- Confidence bounds can be obtained as part of the calculation
- Can calculate the number of samples N needed for chosen accuracy
- Much more efficient than grid-based methods for high dimensions
- Accuracy $=O\left(N^{-1 / 2}\right)$, CPU time $=O(N)$
$\Longrightarrow \quad$ accuracy $=O\left(\mathrm{CPU}\right.$ time $\left.^{-1 / 2}\right)$
$\Longrightarrow \quad \mathrm{CPU}$ time $=O\left(\right.$ accuracy $\left.^{-2}\right)$

