
Stochastic Simulation: Lecture 4

Prof. Mike Giles

Oxford University Mathematical Institute

IPA

The third approach is called pathwise sensitivities in finance,
or IPA (infinitesimal perturbation analysis) in other settings.

We start by expressing the expectation as an integral w.r.t. the
random inputs. If these are uncorrelated Normals, then

V (θ) ≡ E [f (θ,Z)] =

∫
f (θ;Z) pZ (Z) dZ

where pZ (Z) is the joint Normal probability distribution, and
differentiate this to get

∂V

∂θ
=

∫
∂f

∂θ
pZ dZ = E

[
∂f

∂θ

]
with ∂f /∂θ being evaluated at fixed Z .

Note: this needs f (θ,Z) to be differentiable w.r.t. θ but can prove
it’s OK provided f (θ,Z) is continuous and piecewise differentiable

IPA

This leads to the estimator

1

N

N∑
i=1

∂f (i)

∂θ

which is the derivative of the usual price estimator

1

N

N∑
i=1

f (i)

Can give incorrect estimates when f (θ,Z) is discontinuous.

e.g. for indicator function f = 1Z>θ, ∂f /∂θ = 0 so estimated
derivative is zero – clearly wrong.

IPA

Extension to second derivatives is straightforward

∂2V

∂θ2
=

∫
∂2f

∂θ2
pZ dZ

with ∂2f /∂θ2 also being evaluated at fixed Z .

However, this requires f (θ,Z) to have a continuous first derivative
– a problem in practice in many finance applications

IPA

In a simple finance case with a single underlying asset we have

S(T) = S(0) exp
(
(r− 1

2σ)T + σZ
)

so
log S(T) = log S(0) + (r− 1

2σ
2)T + σZ

and hence

1

S(T)

∂S(T)

∂θ
=

1

S(0)

∂S(0)

∂θ
+

(
∂r

∂θ
− σ∂σ

∂θ

)
T +

∂σ

∂θ
Z

and then
∂f

∂θ
=

∂f

∂S(T)

∂S(T)

∂θ

IPA

Extension to multivariate case is straightforward

Sk(T) = Sk(0) exp

(
(r− 1

2σ
2
k)T +

∑
l

LklZl

)
so

log Sk(T) = log Sk(0) + (r− 1
2σ

2
k)T +

∑
l

LklZl

and hence

1

Sk(T)

∂Sk(T)

∂θ
=

1

Sk(0)

∂Sk(0)

∂θ
+

(
∂r

∂θ
− σk

∂σk
∂θ

)
T +

∑
l

∂Lkl
∂θ

Zl

IPA

To handle output functions which do not have the necessary
continuity/smoothness one can modify the payoff

In finance it is common to use a piecewise linear approximation
which is fine for first order sensitivities.

-

6

S
K

�
�
�
�
�
�
��

�
�
�
�
�
�
��

�
�
�
�
�
�
��

�
�
�
�
�
�
��

�
�
�
�
�
�
��

IPA

The standard call option definition can be smoothed by integrating
the smoothed Heaviside function

Hε(S−K) = Φ

(
S−K
ε

)
with ε� K , to get

f (S) = (S−K) Φ

(
S−K
ε

)
+

ε√
2π

exp

(
− (S−K)2

2 ε2

)

This will allow the calculation of first and second order derivatives

IPA

I IPA is usually the best approach (simplest, lowest variance
and least cost) when it is applicable – needs continuous
output function for first derivatives

I function smoothing can be used to make IPA applicable to
discontinuous functions and for second derivatives

I alternatively, combine IPA with finite differences for second
derivatives

I another benefit of LRM and IPA is that you can compute
almost everything in single precision – at least twice as fast on
CPUs and GPUs
(Warning: use double precision when averaging!)

I extra benefit of IPA is very efficient adjoint implementation
when many different first order sensitivities are needed

A question!

Given matrices A,B,C is (AB)C equivalent to A (B C)?

Answer 1: yes, in theory, and also in practice if A,B,C are square

Answer 2: no, in practice, if A,B,C have dimensions 1×104,
104×104, 104×104.

(
· · · · ·

)

· · · · ·
· · · · ·
· · · · ·
· · · · ·
· · · · ·

· · · · ·
· · · · ·
· · · · ·
· · · · ·
· · · · ·

Generic black-box problem

An input vector u0 leads to a scalar output uN :

u0 - - - - �
��������

�- - - - uN

Each black-box could be a mathematical step,
or a computer code, or even a single computer instruction

Assumption: each step is differentiable

Generic black-box problem
Let u̇n represent the derivative of un with respect to one particular
element of input u0. Differentiating black-box processes gives

u̇n+1 = Dn u̇n, Dn ≡
∂un+1

∂un
and hence

u̇N = DN−1 DN−2 . . . D1 D0 u̇0

I standard “forward mode” approach multiplies matrices from
right to left

I each element of u0 requires its own sensitivity calculation;
cost proportional to number of inputs

Adjoint “reverse mode” approach effectively multiplies from left to
right by evaluating the transpose from right to left(

DN−1 DN−2 . . . D1 D0

)T
= DT

0 DT
1 . . . DT

N−2 DT
N−1

Generic black-box problem

Let un be the derivative of output uN with respect to un.

un ≡
(
∂uN
∂un

)T

=

(
∂uN
∂un+1

∂un+1

∂un

)T

= DT
n un+1

and hence

u0 = DT
0 DT

1 . . . DT
N−2 DT

N−1 uN

and uN = 1.

I u0 gives sensitivity of uN to all elements of un at a fixed cost,
not proportional to the size of u0.

I a different output would require a separate adjoint calculation;
cost proportional to number of outputs

Generic black-box problem

This is all the same mathematics as back-propagation in machine
learning!

It looks easy (?) – what’s the catch?

I need to do original nonlinear calculation to get/store Dn

before doing adjoint reverse pass – storage requirements can
be significant

I when approximating ODEs, SDEs and PDEs, derivative may
not be as accurate as original approximation

I need care in treating black-boxes which involve a fixed point
iteration

I practical implementation can be tedious if hand-coded – use
automatic differentiation tools

A warning

Suppose our analytic problem with input x has solution

u = x

and our discrete approximation with step size h is

uh = x + h2 sin(x/h)

then uh − u = O(h2) but u′h − u′ = O(h)

I have actually seen problems like this in real applications

Automatic differentiation

We now consider a single black-box component, which is actually
the outcome of a computer program.

A computer instruction creates an additional new value:

un+1 = fn(un) ≡

(
un

fn(un)

)
,

A computer program is the composition of N such steps:

uN = fN−1 ◦ fN−2 ◦ . . . ◦ f1 ◦ f0(u0).

Automatic differentiation

In forward mode, differentiation gives

u̇n+1 = Dn u̇n, Dn ≡

(
In

∂fn/∂un

)
,

and hence
u̇N = DN−1 DN−2 . . . D1 D0 u̇0.

Automatic differentiation

In reverse mode, we have

un =
(
Dn

)T
un+1.

and hence

u0 = (D0)T (D1)T . . . (DN−2)T (DN−1)T uN .

Note: need to go forward through original calculation to
compute/store the Dn, then go in reverse to compute un

Automatic differentiation

At the level of a single instruction

c = f (a, b)

the forward mode is ȧ

ḃ
ċ

n+1

=

 1 0
0 1
∂f
∂a

∂f
∂b

(ȧ

ḃ

)
n

and so the reverse mode is(
a

b

)
n

=

(
1 0 ∂f

∂a

0 1 ∂f
∂b

) a

b
c

n+1

Automatic differentiation

This gives a prescriptive algorithm for reverse mode differentiation.

Key result is that the cost of the reverse mode is at worst a factor
4 greater than the cost of the original calculation, regardless of
how many sensitivities are being computed!

Manual implementation of the forward/reverse mode algorithms is
possible but tedious.

Fortunately, automated tools have been developed, following one
of two approaches:

I operator overloading (ADOL-C, FADBAD++, ado)

I source code transformation (Tapenade, TAF/TAC++,
ADIFOR)

Operator overloading

I define new datatype and associated arithmetic operators

I very natural for forward mode, but also works for reverse mode

x +

(
y
ẏ

)
=

(
x + y
ẏ

) (
x
ẋ

)
+

(
y
ẏ

)
=

(
x + y
ẋ + ẏ

)

x ∗
(

y
ẏ

)
=

(
x ∗ y
x ∗ ẏ

) (
x
ẋ

)
∗
(

y
ẏ

)
=

(
x ∗ y

ẋ ∗ y + x ∗ ẏ

)

x/

(
y
ẏ

)
=

(
x/y

−(x/y2) ∗ ẏ

) (
x
ẋ

)
/

(
y
ẏ

)
=

(
x/y

ẋ/y − (x/y2) ∗ ẏ

)

Source code transformation

I programmer supplies code which takes u as input and
produces v = f (u) as output

I in forward mode, AD tool generates new code which takes u
and u̇ as input, and produces v and v̇ as output

v̇ =

(
∂f

∂u

)
u̇

I in reverse mode, AD tool generates new code which takes u
and v as input, and produces v and u as output

u =

(
∂f

∂u

)T

v

Numerical differentiation

Suppose we have MATLAB code to compute f (x) (with x and
f (x) both scalar) and we want to compute the derivative f ′(x).

What can we do? Performing a Taylor series expansion,

f (x+∆x) ≈ f (x) + ∆x f ′(x) + 1
2∆x2 f ′′(x) + 1

6∆x3 f ′′′(x)

=⇒ f (x+∆x)− f (x)

∆x
≈ f ′(x) + 1

2∆x f ′′(x),

f (x+∆x)− f (x−∆x)

2∆x
≈ f ′(x) + 1

6∆x2 f ′′′(x),

f (x+∆x)− 2f (x) + f (x−∆x)

∆x2
≈ f ′′(x) + 1

24∆x2 f ′′′′(x).

Numerical differentiation

These are finite difference approximations, and they are the basis
for the finite difference method for approximating PDEs.

In Monte Carlo methods, we use similar ideas (often referred to as
“bumping”) for computing sensitivities (the “Greeks” in finance)

The problem with taking ∆x � 1 is inaccuracy due to finite
precision arithmetic, in which there is a relative rounding error
of size 2−S where S is the size of the mantissa.

Numerical differentiation

Error in computing f (x+∆x)− f (x) is roughly of size 2−S f (x),
so error in computing one-sided difference estimate for f ′(x) is of
order

2−S f (x)

2∆x

while the finite difference error is O(∆x).

To balance errors, want

2−S

∆x
∼ ∆x =⇒ ∆x ∼ 2−S/2.

In single precision, this means taking ∆x ∼ 10−3, and getting an
error which is roughly of size 10−3. This is not great, and making
∆x smaller or bigger will make things worse.

This is why many people use double precision when doing
“bumping” for sensitivity analysis.

Complex Variable Trick

This is a very useful “trick”, which I learned about from this
very short article:

“Using Complex Variables to Estimate Derivatives of Real
Functions”, William Squire and George Trapp, SIAM Re-
view, 40(1):110-112, 1998.

which now has 465 citations.

Complex Variable Trick

Suppose f (z) is a complex analytic function, and f (x) is real when
x is real.

Then

f (x+i ∆x) ≈ f (x) + i ∆x f ′(x)− 1
2∆x2 f ′′(x)− i 1

6∆x3 f ′′′(x)

and hence

Imf (x + i ∆x)

∆x
≈ f ′(x)− 1

6∆x2 f ′′′(x)

Now, we can take ∆x � 1, and there is no problem due to finite
precision arithmetic.

I typically use ∆x = 10−10 !

Complex Variable Trick

There are just a few catches, because f (z) must be analytic:

I need analytic extensions for min(x , y), max(x , y) and |x |
I need analytic extensions to certain functions, e.g. MATLAB’s

normcdf

I in MATLAB, must be aware that A′ is the Hermitian of A
(complex conjugate transpose), so use A.′ for the simple
transpose.

Using this, can very simply “differentiate” almost any MATLAB or
C/C++ code for a real function f (x).

