
Stochastic Simulation: Lecture 8

Prof. Mike Giles

Oxford University Mathematical Institute

Quasi-Monte Carlo

As in lecture 3, quasi-Monte Carlo methods can offer much greater
accuracy for the same computational costs.

Same ingredients:

I Sobol or lattice rule quasi-uniform generators

I PCA to best use QMC inputs for multi-dimensional
applications

I randomised QMC to regain confidence interval

New ingredient:

I how best to use QMC inputs to generate Brownian increments

Quasi-Monte Carlo

Can express expectation as a multi-dimensional integral with
respect to unit Normal inputs

V = E[f̂ (Ŝ)] =

∫
f̂ (Ŝ) φ(Z) dZ

where φ(Z) is multi-dimensional unit Normal p.d.f.

Putting Zn = Φ−1(Un) turns this into an integral over a
M-dimensional hypercube

V = E[f̂ (Ŝ)] =

∫
f̂ (Ŝ) dU

Quasi-Monte Carlo

This is then approximated as

N−1
∑
n

f̂ (Ŝ (n))

and each path calculation involves the computations

U → Z → ∆W → Ŝ → f̂

The key step here is the second, how best to convert the vector Z
into the vector ∆W . With standard Monte Carlo, as long as ∆W
has the correct distribution, how it is generated is irrelevant, but
with QMC it does matter.

Quasi-Monte Carlo

For a scalar Brownian motion W (t) with W (0)=0, defining
Wn =W (nh), each Wn is Normally distributed and for j ≥ k

E[Wj Wk] = E[W 2
k] + E[(Wj−Wk)Wk] = tk

since Wj−Wk is independent of Wk .

Hence, the covariance matrix for W is Ω with elements

Ωj ,k = min(tj , tk)

Quasi-Monte Carlo

The task now is to find a matrix L such that

L LT = Ω = h


1 1 . . . 1 1
1 2 . . . 2 2
.
1 2 . . . M−1 M−1
1 2 . . . M−1 M



We will consider 2 possibilities:

I Cholesky factorisation

I Brownian Bridge treatment

Cholesky factorisation

The Cholesky factorisation gives

L =
√
h


1 0 . . . 0 0
1 1 . . . 0 0
.
1 1 . . . 1 0
1 1 . . . 1 1


and hence

Wn =
n∑

m=1

√
h Zm =⇒ ∆Wn = Wn −Wn−1 =

√
h Zn

i.e. standard MC approach

Brownian Bridge construction

The “Brownian bridge” construction uses the following bit of
theory:

If t1 < t < t2, then the distribution of W (t), conditional on the
values of W (t1) and W (t2), is

N
(
s W (t1) + (s1−s)W (t2), s(1−s)(t2−t1)

)
where s = (t−t1)/(t2−t1).

Brownian Bridge construction

Using this, if the number of timestep M is a power of 2 then
the final Brownian value is constructed using Z1:

WM =
√
T Z1

Conditional on this, the midpoint value WM/2 is Normally

distributed with mean 1
2WM and variance T/4, and so can be

constructed as
WM/2 = 1

2WM +
√

T/4 Z2

Brownian Bridge construction

The quarter and three-quarters points can then be constructed as

WM/4 = 1
2WM/2 +

√
T/8 Z3

W3M/4 = 1
2(WM/2 + WM) +

√
T/8 Z4

and the procedure continued recursively until all Brownian values
are defined.

(This assumes M is a power of 2 – if not, the implementation is
slightly more complex)

Numerical results

Usual European call test case based on geometric Brownian
motion:

I 128 timesteps so weak error is negligible
I comparison between

I QMC using Brownian Bridge
I QMC without Brownian Bridge
I standard MC

I QMC calculations use Sobol generator

I all calculations use 64 “sets” of points – for QMC calcs, each
has a different random offset

I plots show error and 3 s.d. error bound

QMC with Brownian Bridge

10
0

10
1

10
2

10
3

N

10
-2

10
-1

10
0

10
1

E
rr

o
r

comparison to exact solution

 Error

 MC error bound

QMC without Brownian Bridge

10
0

10
1

10
2

10
3

N

10
-2

10
-1

10
0

10
1

E
rr

o
r

comparison to exact solution

 Error

 MC error bound

Standard Monte Carlo

10
0

10
1

10
2

10
3

N

10
-2

10
-1

10
0

10
1

E
rr

o
r

comparison to exact solution

 Error

 MC error bound

QMC with Brownian Bridge

Why is QMC with Brownian Bridge so good?

For Geometric Brownian Motion, the final value ST depends only
only WT , not on the rest of the Brownian path, so the Brownian
Bridge construction reduces things to a 1-dimensional problem,
dependent only on the first component Z1.

QMC is extremely good for 1-dimensional problems, so the error is
roughly O(1/N).

For more general SDEs and almost all path-dependent option
functions it is still the case that this reduces the effective
dimensionality improving the effectiveness of QMC.

Multilevel Path Simulation

With SDEs, level ` corresponds to approximation using M`

timesteps, giving approximate payoff P̂` at cost C` = O(M`).

Simplest estimator for E[P̂`−P̂`−1] for `>0 is

Ŷ` = N−1
`

N∑̀
n=1

(
P̂
(n)
` −P̂

(n)
`−1

)
using same driving Brownian path for both levels.

Multilevel Path Simulation

Due to O(h1/2) strong convergence,

E[(X̂`,T − XT)2] = O(h`) =⇒ E[(X̂`,T − X̂`−1,T)2] = O(h`)

so for Lipschitz payoff functions P ≡ f (XT), we have

V` ≡ V
[
P̂`−P̂`−1

]
≤ E

[
(P̂`−P̂`−1)2

]
≤ K 2 E

[
(X̂T ,`−X̂T ,`−1)2

]
= O(h`)

Also, due to weak convergence,

E[P̂` − P] = O(h`).

Multilevel Path Simulation

In terms of the MLMC theorem, this means we have

C` = O(M`) =⇒ γ = log2M,

V` = O(h`) = O(M−`) =⇒ β = log2M,

E[P̂` − P] = O(h`) = O(M−`) =⇒ α = log2M,

and therefore the overall cost to achieve ε RMS accuracy is
O(ε−2| log ε|2).

Multilevel Path Simulation

The implementation is quite straightforward.

For each fine path timestep, we simulate the Brownian increment
∆Wn ∼ N(0, h).

For a coarse timestep of size M h we simply sum the M
corresponding fine path increments to obtain the corresponding
coarse path Brownian increment ∆W , and use this.

MLMC SDE algorithm

Input: fine and coarse timesteps hf , hc , final time T = N hc ,
refinement factor M = hc/hf , initial states X̂ f = X̂ c =X

for n = 1,N do
∆W c := 0

for m = 1,M do
generate r.v. ∆W f ∼ N(0, hf)
∆W c := ∆W c + ∆W f

X̂ f := X̂ f + a(X̂ f) hf + b(X̂ f) ∆W f

end for

X̂ c := X̂ c + a(X̂ c) hc + b(X̂ c) ∆W c

end for

P̂` − P̂`−1 := f (X̂ f)− f (X̂ c)

MLMC extra bits – discontinuous functions

If the terminal function f (S) is discontinuous at K then,
heuristically,

I O(h1/2) difference between X̂ f and X̂ c

I O(h1/2) probability of X̂ f being within O(h1/2) of K

I =⇒ O(h1/2) probability of f (X̂ f)− f (X̂ c) = O(1)

I E[(P̂`−P̂`−1)2] = O(h1/2)

I =⇒ α=log2M, β= 1
2 log2M, γ=log2M

I Overall complexity is O(ε−5/2)

This argument can be made rigorous – leads to
E[(P̂`−P̂`−1)2] = O(h1/2−δ) and overall complexity
O(ε−5/2−δ) for any δ > 0.

MLMC extra bits – Milstein

Milstein discretisation gives O(h) strong convergence and hence

I O(h2) variance for Lipschitz f (ST)

I O(h2) variance for function f (S) based on path average

I With careful treatment, O(h2| log h|2) variance for f (S) which
is Lipschitz function of ST and path minimum or maximum

I With careful treatment, O(h3/2−δ) variance for f which is
discontinuous function of ST or path minimum or maximum

I In all cases, sufficient for O(ε−2) complexity

MLMC extra bits – adaptive time-stepping

Adaptive time-stepping perfectly within MLMC, again using the
same Brownian motion for coarse and fine paths.

∆W c := 0, ∆W f := 0, t := 0, t f := hf , tc := hc

while min(t f , tc) < T do
generate r.v. ∆W ∼ N(0,min(t f , tc)− t)
∆W f := ∆W f + ∆W , ∆W c := ∆W c + ∆W
t := min(t f , tc)
if t f = t then
X̂ f := X̂ f + a(X̂ f) hf + b(X̂ f) ∆W f

calculate hf , ∆W f := 0, t f := t f + hf

end if
if tc = t then
X̂ c := X̂ c + a(X̂ c) hc + b(X̂ c) ∆W c

calculate hc , ∆W c := 0, tc := tc + hc

end if
end while

MLMC extra bits – other work

I MLQMC for SDEs – G, Waterhouse (2009)

I financial sensitivities (“Greeks”) – Burgos (2011)

I American options – Belomestny & Schoenmakers (2011)

I jump-diffusion models – G, Xia (2012)

I Lévy-driven processes – Dereich (2010), Marxen (2010),
Dereich & Heidenreich (2011), Kyprianou (2014)

I multi-dim. Milstein without Lévy areas – G, Szpruch (2014)

I expected exit times – Higham et al (2013), G, Bernal (2018)

I adaptive timesteps – Hoel, von Schwerin, Szepessy, Tempone
(2012), G, Lester, Whittle (2014), Fang, G (2018, 2019)

I exponential Lévy processes – Xia (2017),

I reflected diffusions – Katsiolides et al (2018), G, Ramanan

Key references

P. Glasserman. “Monte Carlo Methods in Financial Engineering”.
Springer, 2003.

M.B. Giles. “Multilevel Monte Carlo path simulation” . Operations
Research, 56(3):607-617, 2008.

M.B. Giles. “Improved multilevel Monte Carlo convergence using
the Milstein scheme”. pp.343-358, in Monte Carlo and
Quasi-Monte Carlo Methods 2006, Springer, 2008.

At least 80 articles listed in
http://people.maths.ox.ac.uk/gilesm/mlmc community.html

