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Quasi-Monte Carlo

As in lecture 3, quasi-Monte Carlo methods can offer much greater
accuracy for the same computational costs.

Same ingredients:
» Sobol or lattice rule quasi-uniform generators

» PCA to best use QMC inputs for multi-dimensional
applications

» randomised QMC to regain confidence interval

New ingredient:

» how best to use QMC inputs to generate Brownian increments



Quasi-Monte Carlo

Can express expectation as a multi-dimensional integral with
respect to unit Normal inputs

vV =E[(3)] = / 7(5) 6(2) 4z
where ¢(Z) is multi-dimensional unit Normal p.d.f.

Putting Z, = ®~1(U,) turns this into an integral over a
M-dimensional hypercube

V = B[F(S)] = / £(3) du



Quasi-Monte Carlo

This is then approximated as
N7 TF(S)
n
and each path calculation involves the computations

U—>Z—>AW—>§—>?

The key step here is the second, how best to convert the vector Z
into the vector AW. With standard Monte Carlo, as long as AW
has the correct distribution, how it is generated is irrelevant, but
with QMC it does matter.



Quasi-Monte Carlo

For a scalar Brownian motion W(t) with W(0)=0, defining
W, =W/(nh), each W, is Normally distributed and for j > k

E[W; W] = E[WE] + E[(W;— W) Wi] = t

since W;— W is independent of W.

Hence, the covariance matrix for W is 2 with elements

Q',"k = min(tj, tk)



Quasi-Monte Carlo

The task now is to find a matrix L such that

1 1
1

LLT =Q=~h .
1 2 M
1 2 M

We will consider 2 possibilities:
» Cholesky factorisation

» Brownian Bridge treatment



Cholesky factorisation

The Cholesky factorisation gives

—
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o
o

L=+h

= =
_= = .
_ =
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and hence
Wn:Z\thm — AW,=W,- W, 1=+Vh2Z,
m=1

i.e. standard MC approach



Brownian Bridge construction

The “Brownian bridge” construction uses the following bit of
theory:

If t1 < t < tp, then the distribution of W(t), conditional on the
values of W(t1) and W(t2), is

N (s W(n) + (s1-5)W(k), s(1—s)(t2—1r))

where s = (t—t1)/(ta—t1).



Brownian Bridge construction

Using this, if the number of timestep M is a power of 2 then
the final Brownian value is constructed using Zi:

Wy =VT Z4

Conditional on this, the midpoint value Wy, is Normally
distributed with mean %WM and variance T /4, and so can be
constructed as

WM/2 = %WM + v T/4 7>



Brownian Bridge construction

The quarter and three-quarters points can then be constructed as
Wi = 5Wup++/T/8 Z3
Wana = 5(Wipo+Wn)++/T/8 2

and the procedure continued recursively until all Brownian values
are defined.

(This assumes M is a power of 2 — if not, the implementation is
slightly more complex)



Numerical results

Usual European call test case based on geometric Brownian
motion:

> 128 timesteps so weak error is negligible
» comparison between

» QMC using Brownian Bridge
» QMC without Brownian Bridge
» standard MC

» QMC calculations use Sobol generator

» all calculations use 64 “sets” of points — for QMC calcs, each
has a different random offset

» plots show error and 3 s.d. error bound



QMC with Brownian Bridge

comparison to exact solution
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QMC without Brownian Bridge

comparison to exact solution
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Standard Monte Carlo

comparison to exact solution
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QMC with Brownian Bridge

Why is QMC with Brownian Bridge so good?

For Geometric Brownian Motion, the final value St depends only
only W+, not on the rest of the Brownian path, so the Brownian
Bridge construction reduces things to a 1-dimensional problem,
dependent only on the first component Z;.

QMC is extremely good for 1-dimensional problems, so the error is
roughly O(1/N).

For more general SDEs and almost all path-dependent option
functions it is still the case that this reduces the effective
dimensionality improving the effectiveness of QMC.



Multilevel Path Simulation

With SDEs, level £ corresponds to approximation using M¢
timesteps, giving approximate payoff Py at cost C, = O(M?).

Simplest estimator for E[ﬁg—ﬁg_l] for £>0is
N
A SICARCEY
n=1

using same driving Brownian path for both levels.



Multilevel Path Simulation
Due to O(h'/?) strong convergence,
E[(Xe.m — X7)?| = O(he) = E[(Xe7 — Xe—1.,7)%] = O(hy)
so for Lipschitz payoff functions P = f(X7), we have

V, = V[ﬁg—ﬁu} < E[(ﬁg—ﬁg,l)z}

IN

K*E [()?T,Z_)?T,E—l)z}

= O(hy)

Also, due to weak convergence,

E[P; — P] = O(hy).



Multilevel Path Simulation

In terms of the MLMC theorem, this means we have
O(I\/Ie) = v =log, M,

R O(h ) O(M™) = B =logy M,
E[P, - ] O(h) = O(M™") = a=log, M,

and therefore the overall cost to achieve ¢ RMS accuracy is
O(c72|log ]?).



Multilevel Path Simulation

The implementation is quite straightforward.

For each fine path timestep, we simulate the Brownian increment
AW, ~ N(0, h).

For a coarse timestep of size M h we simply sum the M
corresponding fine path increments to obtain the corresponding
coarse path Brownian increment AW, and use this.



MLMC SDE algorithm

Input: fine and coarse timesteps hf, h, final time T = N A€,
refinement factor M = h°/hf, initial states X = X=X

for n=1,N do
AWE =0
for m=1,M do
generate r.v. AW ~ N(0, hf)
AWE = AW + AW
X = X+ a(XF) hf + b(XT) AWS
end for
X¢ = X+ a(X) h¢ + b(X) AWE
end for

Py — Py = f(XF) — F(X°)



MLMC extra bits — discontinuous functions

If the terminal function 7(S) is discontinuous at K then,
heuristically,

> O(h'/?) difference between X’ and X¢
» O(h'/?) probability of X being within O(h'/?) of K
> — O(h'/?) probability of F(Xf) — £(X¢) = O(1)
> E[(P—Pr1)’] = O(h?)
> — a=log, M, B:%Iog2 M, v=log, M
> Overall complexity is O(s°/?)

This argument can be made rigorous — leads to

E[(P;—Py_1)?] = O(h*2~%) and overall complexity
O(¢75/279) for any § > 0.



MLMC extra bits — Milstein

Milstein discretisation gives O(h) strong convergence and hence
» O(h?) variance for Lipschitz f(St)
» O(h?) variance for function f(S) based on path average

» With careful treatment, O(h?|log h|?) variance for f(S) which
is Lipschitz function of St and path minimum or maximum

> With careful treatment, O(h3/2=%) variance for f which is
discontinuous function of St or path minimum or maximum

> In all cases, sufficient for O(e72) complexity



MLMC extra bits — adaptive time-stepping

Adaptive time-stepping perfectly within MLMC, again using the
same Brownian motion for coarse and fine paths.

AWE =0, AWT =0, t:=0, tF := hf, tc:= h°
while min(tf,t) < T do
generate r.v. AW ~ N(0, min(tf, t€) — t)
AWF = AWF + AW, AW := AW+ AW
t == min(tf, t°)
if tf =t then
X=X+ a(XF) hf + b(XT) AWF
calculate hf, AWF =0, tF .= tFf + hf
end if
if t< =t then R R
X€ := X + a(X) h¢ + b(X°) AWE®
calculate h¢, AW€ =0, t€ := t° + A
end if
end while



MLMC extra bits — other work

>
>
>
>
>

v

MLQMC for SDEs — G, Waterhouse (2009)

financial sensitivities (“Greeks") — Burgos (2011)
American options — Belomestny & Schoenmakers (2011)
jump-diffusion models — G, Xia (2012)

Lévy-driven processes — Dereich (2010), Marxen (2010),
Dereich & Heidenreich (2011), Kyprianou (2014)

multi-dim. Milstein without Lévy areas — G, Szpruch (2014)

> expected exit times — Higham et al (2013), G, Bernal (2018)

» adaptive timesteps — Hoel, von Schwerin, Szepessy, Tempone

(2012), G, Lester, Whittle (2014), Fang, G (2018, 2019)

> exponential Lévy processes — Xia (2017),

> reflected diffusions — Katsiolides et al (2018), G, Ramanan
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