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Quasi-Monte Carlo

As in lecture 3, quasi-Monte Carlo methods can offer much greater
accuracy for the same computational costs.

Same ingredients:

I Sobol or lattice rule quasi-uniform generators

I PCA to best use QMC inputs for multi-dimensional
applications

I randomised QMC to regain confidence interval

New ingredient:

I how best to use QMC inputs to generate Brownian increments



Quasi-Monte Carlo

Can express expectation as a multi-dimensional integral with
respect to unit Normal inputs

V = E[f̂ (Ŝ)] =

∫
f̂ (Ŝ) φ(Z ) dZ

where φ(Z ) is multi-dimensional unit Normal p.d.f.

Putting Zn = Φ−1(Un) turns this into an integral over a
M-dimensional hypercube

V = E[f̂ (Ŝ)] =

∫
f̂ (Ŝ) dU



Quasi-Monte Carlo

This is then approximated as

N−1
∑
n

f̂ (Ŝ (n))

and each path calculation involves the computations

U → Z → ∆W → Ŝ → f̂

The key step here is the second, how best to convert the vector Z
into the vector ∆W . With standard Monte Carlo, as long as ∆W
has the correct distribution, how it is generated is irrelevant, but
with QMC it does matter.



Quasi-Monte Carlo

For a scalar Brownian motion W (t) with W (0)=0, defining
Wn =W (nh), each Wn is Normally distributed and for j ≥ k

E[Wj Wk ] = E[W 2
k ] + E[(Wj−Wk)Wk ] = tk

since Wj−Wk is independent of Wk .

Hence, the covariance matrix for W is Ω with elements

Ωj ,k = min(tj , tk)



Quasi-Monte Carlo

The task now is to find a matrix L such that

L LT = Ω = h


1 1 . . . 1 1
1 2 . . . 2 2
. . . . . . . . . . . . . . .
1 2 . . . M−1 M−1
1 2 . . . M−1 M



We will consider 2 possibilities:

I Cholesky factorisation

I Brownian Bridge treatment



Cholesky factorisation

The Cholesky factorisation gives

L =
√
h


1 0 . . . 0 0
1 1 . . . 0 0
. . . . . . . . . . . . . . .
1 1 . . . 1 0
1 1 . . . 1 1


and hence

Wn =
n∑

m=1

√
h Zm =⇒ ∆Wn = Wn −Wn−1 =

√
h Zn

i.e. standard MC approach



Brownian Bridge construction

The “Brownian bridge” construction uses the following bit of
theory:

If t1 < t < t2, then the distribution of W (t), conditional on the
values of W (t1) and W (t2), is

N
(
s W (t1) + (s1−s)W (t2), s(1−s)(t2−t1)

)
where s = (t−t1)/(t2−t1).



Brownian Bridge construction

Using this, if the number of timestep M is a power of 2 then
the final Brownian value is constructed using Z1:

WM =
√
T Z1

Conditional on this, the midpoint value WM/2 is Normally

distributed with mean 1
2WM and variance T/4, and so can be

constructed as
WM/2 = 1

2WM +
√

T/4 Z2



Brownian Bridge construction

The quarter and three-quarters points can then be constructed as

WM/4 = 1
2WM/2 +

√
T/8 Z3

W3M/4 = 1
2(WM/2 + WM) +

√
T/8 Z4

and the procedure continued recursively until all Brownian values
are defined.

(This assumes M is a power of 2 – if not, the implementation is
slightly more complex)



Numerical results

Usual European call test case based on geometric Brownian
motion:

I 128 timesteps so weak error is negligible
I comparison between

I QMC using Brownian Bridge
I QMC without Brownian Bridge
I standard MC

I QMC calculations use Sobol generator

I all calculations use 64 “sets” of points – for QMC calcs, each
has a different random offset

I plots show error and 3 s.d. error bound



QMC with Brownian Bridge

10
0

10
1

10
2

10
3

N

10
-2

10
-1

10
0

10
1

E
rr

o
r

comparison to exact solution

 Error

 MC error bound



QMC without Brownian Bridge
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Standard Monte Carlo
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QMC with Brownian Bridge

Why is QMC with Brownian Bridge so good?

For Geometric Brownian Motion, the final value ST depends only
only WT , not on the rest of the Brownian path, so the Brownian
Bridge construction reduces things to a 1-dimensional problem,
dependent only on the first component Z1.

QMC is extremely good for 1-dimensional problems, so the error is
roughly O(1/N).

For more general SDEs and almost all path-dependent option
functions it is still the case that this reduces the effective
dimensionality improving the effectiveness of QMC.



Multilevel Path Simulation

With SDEs, level ` corresponds to approximation using M`

timesteps, giving approximate payoff P̂` at cost C` = O(M`).

Simplest estimator for E[P̂`−P̂`−1] for `>0 is

Ŷ` = N−1
`

N∑̀
n=1

(
P̂
(n)
` −P̂

(n)
`−1

)
using same driving Brownian path for both levels.



Multilevel Path Simulation

Due to O(h1/2) strong convergence,

E[ (X̂`,T − XT )2] = O(h`) =⇒ E[(X̂`,T − X̂`−1,T )2] = O(h`)

so for Lipschitz payoff functions P ≡ f (XT ), we have

V` ≡ V
[
P̂`−P̂`−1

]
≤ E

[
(P̂`−P̂`−1)2

]
≤ K 2 E

[
(X̂T ,`−X̂T ,`−1)2

]
= O(h`)

Also, due to weak convergence,

E[P̂` − P] = O(h`).



Multilevel Path Simulation

In terms of the MLMC theorem, this means we have

C` = O(M`) =⇒ γ = log2M,

V` = O(h`) = O(M−`) =⇒ β = log2M,

E[P̂` − P] = O(h`) = O(M−`) =⇒ α = log2M,

and therefore the overall cost to achieve ε RMS accuracy is
O(ε−2| log ε|2).



Multilevel Path Simulation

The implementation is quite straightforward.

For each fine path timestep, we simulate the Brownian increment
∆Wn ∼ N(0, h).

For a coarse timestep of size M h we simply sum the M
corresponding fine path increments to obtain the corresponding
coarse path Brownian increment ∆W , and use this.



MLMC SDE algorithm

Input: fine and coarse timesteps hf , hc , final time T = N hc ,
refinement factor M = hc/hf , initial states X̂ f = X̂ c =X

for n = 1,N do
∆W c := 0

for m = 1,M do
generate r.v. ∆W f ∼ N(0, hf )
∆W c := ∆W c + ∆W f

X̂ f := X̂ f + a(X̂ f ) hf + b(X̂ f ) ∆W f

end for

X̂ c := X̂ c + a(X̂ c) hc + b(X̂ c) ∆W c

end for

P̂` − P̂`−1 := f (X̂ f )− f (X̂ c)



MLMC extra bits – discontinuous functions

If the terminal function f (S) is discontinuous at K then,
heuristically,

I O(h1/2) difference between X̂ f and X̂ c

I O(h1/2) probability of X̂ f being within O(h1/2) of K

I =⇒ O(h1/2) probability of f (X̂ f )− f (X̂ c) = O(1)

I E[ (P̂`−P̂`−1)2] = O(h1/2)

I =⇒ α=log2M, β= 1
2 log2M, γ=log2M

I Overall complexity is O(ε−5/2)

This argument can be made rigorous – leads to
E[ (P̂`−P̂`−1)2] = O(h1/2−δ) and overall complexity
O(ε−5/2−δ) for any δ > 0.



MLMC extra bits – Milstein

Milstein discretisation gives O(h) strong convergence and hence

I O(h2) variance for Lipschitz f (ST )

I O(h2) variance for function f (S) based on path average

I With careful treatment, O(h2| log h|2) variance for f (S) which
is Lipschitz function of ST and path minimum or maximum

I With careful treatment, O(h3/2−δ) variance for f which is
discontinuous function of ST or path minimum or maximum

I In all cases, sufficient for O(ε−2) complexity



MLMC extra bits – adaptive time-stepping

Adaptive time-stepping perfectly within MLMC, again using the
same Brownian motion for coarse and fine paths.

∆W c := 0, ∆W f := 0, t := 0, t f := hf , tc := hc

while min(t f , tc) < T do
generate r.v. ∆W ∼ N(0,min(t f , tc)− t)
∆W f := ∆W f + ∆W , ∆W c := ∆W c + ∆W
t := min(t f , tc)
if t f = t then
X̂ f := X̂ f + a(X̂ f ) hf + b(X̂ f ) ∆W f

calculate hf , ∆W f := 0, t f := t f + hf

end if
if tc = t then
X̂ c := X̂ c + a(X̂ c) hc + b(X̂ c) ∆W c

calculate hc , ∆W c := 0, tc := tc + hc

end if
end while



MLMC extra bits – other work

I MLQMC for SDEs – G, Waterhouse (2009)

I financial sensitivities (“Greeks”) – Burgos (2011)

I American options – Belomestny & Schoenmakers (2011)

I jump-diffusion models – G, Xia (2012)

I Lévy-driven processes – Dereich (2010), Marxen (2010),
Dereich & Heidenreich (2011), Kyprianou (2014)

I multi-dim. Milstein without Lévy areas – G, Szpruch (2014)

I expected exit times – Higham et al (2013), G, Bernal (2018)

I adaptive timesteps – Hoel, von Schwerin, Szepessy, Tempone
(2012), G, Lester, Whittle (2014), Fang, G (2018, 2019)

I exponential Lévy processes – Xia (2017),

I reflected diffusions – Katsiolides et al (2018), G, Ramanan
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