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In the last lecture

Definition of Lebesgue spaces.
Holder's and Minkowski's inequalities

Completeness of Lebesgue spaces.

® 6 o o

Duals of Lebesgue spaces.
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This lecture

@ Duals of Lebesgue spaces (cont.).
@ [? as a Hilbert space.
@ Density of simple functions for Lebesgue spaces.

@ Separability of Lebesgue spaces.
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(L=(R))* # LY(R)

@ Recall that for a (real) normed vector space X, the dual of X,
denoted as X*, is the Banach space of bounded linear functional
T : X — R, equipped with the dual norm

[Tl = sup [ Tx][.

o (LP(E))* = LP'(E) for 1 < p < oo.

o Consider p = co. Let Ty € (L*(R))* given by Tyg = %fokgdx.
Then, for every g € L(R), (Txg) € (.

o Let L € (£°)* be such that

L((xx)) = kli_>n;o xy provided (x) is convergent.

Such L exists by the Hahn-Banach theorem.

o Define Tg = L((Tkg)) for all g € L*(R). It is easy to check
that T € (L*(R))*.
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(L=(R))* # LY(R)

@ We claim that there is no f € L}(R) such that

Tg = / fg dx for all g € L*(R).
R

@ Suppose by contradiction that such f exists. Fix some m > 0

and let g,(x) = sign(F(x))X(o.m)(x). Then, as lgi| < Y(o.m. we
have for k > m that | T, g1| < 7. It follows that

/ |fldx = Tgr = L((Tkg1)) = lim E:0_
0

k—oo k

As m is arbitrary, we thus have f =0 a.e. in (0, c0).
@ On the other hand, with g» = X(0,.c), We have Ty g, =1 and so

0 :/ fdx=Tg = L((Tkg2)) = lim 1 =1,
0 k—o0

which is absurd.
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Converse to Holder's inequality

Proposition (Converse to Holder's inequality)

Let E be measurable, and f be measurable on E. If 1 < p < oo and
;lJ + % =1, then

IFlley =sup { [ o g € L7(E) ey < 1
E

and fg is integrable on E }

v

Note: We do not presume that f € LP(E).
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Proof of Converse to Holder's inequality

@ Will only present the case 1 < p < co. The cases p =1 and
p = oo need some justification; see notes.

o Let
o= sup{/ fede: gl < Lfg e L'(E)} € [0.0].
E

By Holder's inequality, we have o < ||f]|.». So it suffices to
show a > || f]| -

o If ||f||.» = 0, we are done. Assume henceforth that [|f]|» > 0.
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Proof of Converse to Holder's inequality

@ Case 1: 0 < ||f||rr < 0.
In this case, we test the definition of « using

o) _ SO FLP
&0 M

* We have, as p’ = %,

1
/\go\p dx = |fH /\f|pdx—1
Jo 1l = s [[17P <o

* So by the definition of «,

1
a>/fgodx /|f\de—||fHLp.
E k3l

* Next,
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Proof of Converse to Holder's inequality

e Case 2: |[f]| = 0.
In this case, we need to show that o = oo.
* Consider a truncation of |f| given by
fu(x) = min(|f|(x), k) if x € E and |x| < k,
0 otherwise.
Note that we are truncating both in the domain and in the

range: fi(x) = min(|f[(x), K)xen{|x|<k} (X)-
~ It is clear that f, € LP(E). Also, by Lebesgue's monotone
convergence theorem,

ka\l’ipz/|fk|"dxa/ |F|P dx = co.
E E

In addition, by Case 1,

[ felle = sup{/Efkgdx gl <1,fkg € Ll(E)}.

Luc Nguyen (University of Oxford) C4.3 — Lecture 2 MT 2021 9/19



Proof of Converse to Holder's inequality

o Case 2: ||f||»r = o0...
* In fact, the proof in Case 1 shows that the function

fi|P—1L .
8k = H'f:‘”p_l > 0 satisfies || gk ,» = 1, fxgx € L*(E) and
Lp

\fllee = | fx gk dx.
E

* As |f| > f >0, It follows that, as

/rf\gkdxz/fkgkdx—nfkuwoo.
E E

* Letting gx(x) = sign(f(x))gk(x), we then have ||gk||,» = 1,
f&c € L1(E) and so

aZ/fgkdX:/ngdx—)oo.
E E

So av = 00, as desired.
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[%(E) as a Hilbert space

The space L?(E) is a (real) Hilbert space with inner product

<f,g>=/fg.
E
This means

e (Banach) L%(E) is a Banach space.
o (Inner product) The map (f,g) — (f,g) from L2(E) x L?(E)
into R satisfies
* (Linearity) (A + f2,8) = X1, g) + (f, g) for all
NER, fi,h,g € L*(E),
* (Symmetry) (f,g) = (g, f) for all f,g € L?(E),
* (Positivity) (f,f) = ||fH%2(E). Hence (f,f) > 0 for all
f € L?(E) and (f,f) =0 if and only if f = 0.
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Density results for LP via simple functions

We will show that the following sets are dense in LP:

@ Set of simple functions, for 1 < p < oc.

@ Set of ‘rational and dyadic’ simple functions, for 1 < p < oo.
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Density results for LP via simple functions

Simple function:

N

g aixa, Where o; is a constant and A; is measurable.
i=1

Let 1 < p < oo. The set of all p-integrable simple functions is dense
in LP(E).
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Density results for LP via simple functions

Proof:

@ Take f € LP(E). We need to construct a sequence (fy) of
p-integrable simple function such that ||, — f||,» — 0.

@ Using the splitting f = f* — f~, we may assume without loss of
generality that f is non-negative.

e Fact from Integration: If f is a non-negative measurable
function, then there exist non-negative simple functions f, such
that f, /' f a.e.

Furthermore, if p < oo, then
* |fi|P < |f|P and so f, € LP;
*x As |f — f|P < |f|P € L1, and so by Lebesgue dominated
convergence theorem, [ |fi — f|Pdx — 0. So fi — f in LP.
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Density results for LP via simple functions

@ When p = oo, the above proof doesn't work as seen. Let us take
the proof one step further by recalling how such a sequence f,
can be constructed.

* For each k, one partition the range [0, co] into
=[0,27%), S =27k 2 x 27K), ..,

22k 1 1 intervals:

S = (22 — 1) x 27K, 22K x 27%) and Jézkkﬂ [2%, OO]
« f is then defined by fi(x) = (£ — 1) x 27X if {f(x) € S} for

1<0<2%k 41,

34
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Density results for LP via simple functions

@ When p = c0...

* Aside from the fact that fy 7 f, this construction has the
property that, in the set {f(x) < 2}, i.e. outside of the set

{f(x) € S&). .}, it holds that
i — fl <27k

* Now as p = oo, f is essentially bounded, i.e. there is an M and
a set Z of zero measure such that f < M in R"\ Z. We then
redefine f on Z to be zero, i.e. we work with the representative
in the ‘equivalent class f' which is bounded everywhere by M.

* After this redefinition, we see that {f(x) € 2k+1} () for large
k, and so we have |f, — f| < 27k everywhere for all large k.
This means that fy — f in L*°.
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Density results for LP via simple functions

Let 1 < p < 0o. The set .# of all finite rational linear combinations
of characteristic functions of cubes belonging to a fixed class of
dyadic cubes is dense in LP(R").

(gl %2 (53

N 0o

F = {g = ZriXQ; where r; € Q, Q; € U‘KJ}

i—1 j=1
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Density results for LP via simple functions

Proof:

@ We know that the set of p-integrable simple functions is dense in
LP. We also know that Q is dense in R.

@ Thus we only need to show that yg € .Z.

@ By the construction of the Lebesgue measure, every open subset
U of R" can be written as a countable union of cubes in U%,
say U =U>;Q;. Then

N
ZXQ" — xu in LP, and so yy € .Z.
i=1
@ Now, for every measurable set E of finite measure, the outer

regularity of the Lebesgue measure implies that there exist open
Uk, Ui D E such that ’Uk \ E| — 0. Then

Xu, = Xe in LP, and so xg € Z.
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Application: Separability of LP

For1 < p < oo, the space LP(E) is separable, i.e. it has a countable
dense subset.

Proof:

@ When E = R”", the result follows from the previous theorem, as
F is countable.

o For general E, let Z be the set of restrictions to E of functions
in .%. Then .% is countable. We will now show that .% is dense
in LP(E).

* Take f € LP(E). Set f =0in R"\ E. Then f € LP(R") and so
there exist fy € .Z such that fy — f in LP(R").

* Let fk = fklg € ¥ Z. Then ka — fHLp(E < ||fx — fHLp — 0, so
we are done.
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