

C4.3 Functional Analytic Methods for PDEs Lecture 2

Luc Nguyen luc.nguyen@maths

University of Oxford

MT 2021

- Definition of Lebesgue spaces.
- Holder's and Minkowski's inequalities
- Completeness of Lebesgue spaces.
- Duals of Lebesgue spaces.

- Duals of Lebesgue spaces (cont.).
- L^2 as a Hilbert space.
- Density of simple functions for Lebesgue spaces.
- Separability of Lebesgue spaces.

$(L^{\infty}(\mathbb{R}))^* \neq L^1(\mathbb{R})$

Recall that for a (real) normed vector space X, the dual of X, denoted as X*, is the Banach space of bounded linear functional T : X → ℝ, equipped with the dual norm

$$\|T\|_* = \sup \|Tx\|.$$

•
$$(L^{p}(E))^{*} = L^{p'}(E)$$
 for $1 \le p < \infty$.

- Consider $p = \infty$. Let $T_k \in (L^{\infty}(\mathbb{R}))^*$ given by $T_k g = \frac{1}{k} \int_0^k g \, dx$. Then, for every $g \in L^{\infty}(\mathbb{R})$, $(T_k g) \in \ell^{\infty}$.
- Let $L \in (\ell^{\infty})^*$ be such that

$$L((x_k)) = \lim_{k \to \infty} x_k$$
 provided (x_k) is convergent.

Such *L* exists by the Hahn-Banach theorem.

• Define $Tg = L((T_kg))$ for all $g \in L^{\infty}(\mathbb{R})$. It is easy to check that $T \in (L^{\infty}(\mathbb{R}))^*$.

$(L^{\infty}(\mathbb{R}))^* \neq L^1(\mathbb{R})$

• We claim that there is no $f \in L^1(\mathbb{R})$ such that

$$Tg=\int_{\mathbb{R}}$$
 fg dx for all $g\in L^{\infty}(\mathbb{R}).$

• Suppose by contradiction that such f exists. Fix some m > 0and let $g_1(x) = sign(f(x))\chi_{(0,m)}(x)$. Then, as $|g_1| \le \chi_{(0,m)}$, we have for k > m that $|T_kg_1| \le \frac{m}{k}$. It follows that

$$\int_0^m |f| \, dx = Tg_1 = L((T_k g_1)) = \lim_{k \to \infty} \frac{m}{k} = 0.$$

As *m* is arbitrary, we thus have f = 0 a.e. in $(0, \infty)$.

• On the other hand, with $g_2=\chi_{(0,\infty)}$, we have ${\mathcal T}_k g_2=1$ and so

$$0 = \int_0^\infty f \, dx = Tg_2 = L((T_kg_2)) = \lim_{k \to \infty} 1 = 1,$$

which is absurd.

•

Proposition (Converse to Hölder's inequality)

Let E be measurable, and f be measurable on E. If $1\leq p\leq\infty$ and $\frac{1}{p}+\frac{1}{p'}=1,$ then

$$\|f\|_{L^{p}(E)} = \sup \left\{ \int_{E} fg \, dx : g \in L^{p'}(E), \|g\|_{L^{p'}(E)} \leq 1 \\$$
and fg is integrable on $E \right\}$

Note: We do not presume that $f \in L^{p}(E)$.

• Will only present the case 1 . The cases <math>p = 1 and $p = \infty$ need some justification; see notes.

Let

$$\alpha = \sup\left\{\int_{E} fg \ dx : \|g\|_{L^{p'}} \leq 1, fg \in L^{1}(E)\right\} \in [0,\infty].$$

By Hölder's inequality, we have $\alpha \leq ||f||_{L^p}$. So it suffices to show $\alpha \geq ||f||_{L^p}$.

• If $||f||_{L^p} = 0$, we are done. Assume henceforth that $||f||_{L^p} > 0$.

$$g_0(x) = rac{sign(f(x))|f(x)|^{p-1}}{\|f\|_{L^p}^{p-1}}.$$

* We have, as
$$p' = \frac{p}{p-1}$$
,

$$\int_{E} |g_{0}|^{p'} dx = \frac{1}{\|f\|_{L^{p}}^{p}} \int_{E} |f|^{p} dx = 1.$$

⋆ Next,

$$\int_{E} |f| |g_{0}| dx = \frac{1}{\|f\|_{L^{p}}^{p-1}} \int_{E} |f|^{p} dx < \infty.$$

 $\star\,$ So by the definition of α ,

$$\alpha \geq \int_{E} f g_{0} dx = \frac{1}{\|f\|_{L^{p}}^{p-1}} \int_{E} |f|^{p} dx = \|f\|_{L^{p}}.$$

• Case 2: $||f||_{L^p} = \infty$.

In this case, we need to show that $\alpha = \infty$.

 $\star\,$ Consider a truncation of |f| given by

$$f_k(x) = \left\{ egin{array}{ll} \min(|f|(x),k) & ext{if } x \in E ext{ and } |x| \leq k, \\ 0 & ext{otherwise.} \end{array}
ight.$$

Note that we are truncating both in the domain and in the range: $f_k(x) = \min(|f|(x), k)\chi_{E \cap \{|x| \le k\}}(x)$.

★ It is clear that $f_k \in L^p(E)$. Also, by Lebesgue's monotone convergence theorem,

$$\|f_k\|_{L^p}^p = \int_E |f_k|^p \, dx \to \int_E |f|^p \, dx = \infty.$$

In addition, by Case 1,

$$\|f_k\|_{L^p} = \sup \Big\{ \int_E f_k g \, dx : \|g\|_{L^{p'}} \le 1, f_k g \in L^1(E) \Big\}.$$

• Case 2:
$$||f||_{L^p} = \infty$$
...
* In fact, the proof in Case 1 shows that the function
 $g_k = \frac{|f_k|^{p-1}}{\|f_k\|_{L^p}^{p-1}} \ge 0$ satisfies $\|g_k\|_{L^{p'}} = 1$, $f_k g_k \in L^1(E)$ and
 $\|f_k\|_{L^p} = \int_E f_k g_k dx$.

 $\star~{\sf As}~|f|\geq f_k\geq {\sf 0},$ It follows that, as

$$\int_E |f|g_k \, dx \geq \int_E f_k \, g_k \, dx = \|f_k\|_{L^p} \to \infty.$$

* Letting $\tilde{g}_k(x) = sign(f(x))g_k(x)$, we then have $\|\tilde{g}_k\|_{L^{p'}} = 1$, $f\tilde{g}_k \in L^1(E)$ and so

$$\alpha \geq \int_E f \tilde{g}_k \, dx = \int_E |f| \, g_k \, dx \to \infty.$$

So $\alpha = \infty$, as desired.

$L^2(E)$ as a Hilbert space

Theorem

The space $L^2(E)$ is a (real) Hilbert space with inner product

$$\langle f,g
angle = \int_E fg.$$

This means

- (Banach) $L^2(E)$ is a Banach space.
- (Inner product) The map (f,g) → ⟨f,g⟩ from L²(E) × L²(E) into ℝ satisfies
 - * (Linearity) $\langle \lambda f_1 + f_2, g \rangle = \lambda \langle f_1, g \rangle + \langle f_2, g \rangle$ for all $\lambda \in \mathbb{R}, f_1, f_2, g \in L^2(E)$,
 - * (Symmetry) $\langle f,g \rangle = \langle g,f \rangle$ for all $f,g \in L^2(E)$,
 - * (Positivity) $\langle f, f \rangle = ||f||_{L^2(E)}^2$. Hence $\langle f, f \rangle \ge 0$ for all $f \in L^2(E)$ and $\langle f, f \rangle = 0$ if and only if f = 0.

We will show that the following sets are dense in L^p :

- Set of simple functions, for $1 \le p \le \infty$.
- Set of 'rational and dyadic' simple functions, for $1 \le p < \infty$.

Simple function:

$$\sum_{i=1}^{N} \alpha_i \chi_{A_i} \text{ where } \alpha_i \text{ is a constant and } A_i \text{ is measurable.}$$

Theorem

Let $1 \le p \le \infty$. The set of all p-integrable simple functions is dense in $L^p(E)$.

Proof:

- Take $f \in L^{p}(E)$. We need to construct a sequence (f_{k}) of *p*-integrable simple function such that $||f_{k} f||_{L^{p}} \to 0$.
- Using the splitting $f = f^+ f^-$, we may assume without loss of generality that f is non-negative.
- Fact from Integration: If f is a non-negative measurable function, then there exist non-negative simple functions fk such that fk ≯ f a.e.
 Furthermore, if p < ∞, then
 - * $|f_k|^p \leq |f|^p$ and so $f_k \in L^p$;
 - * As $|f_k f|^p \le |f|^p \in L^1$, and so by Lebesgue dominated convergence theorem, $\int_F |f_k f|^p dx \to 0$. So $f_k \to f$ in L^p .

- When $p = \infty$, the above proof doesn't work as seen. Let us take the proof one step further by recalling how such a sequence f_k can be constructed.
 - * For each k, one partition the range $[0, \infty]$ into $2^{2k} + 1$ intervals: $J_1^{(k)} = [0, 2^{-k}), \ J_2^{(k)} = [2^{-k}, 2 \times 2^{-k}), \dots,$ $J_{2^{2k}}^{(k)} = [(2^{2k} - 1) \times 2^{-k}, 2^{2k} \times 2^{-k}) \text{ and } J_{2^{2k}+1}^{(k)} = [2^k, \infty].$
 - * f_k is then defined by $f_k(x) = (\ell 1) \times 2^{-k}$ if $\{f(x) \in J_\ell^{(k)}\}$ for $1 \le \ell \le 2^{2k} + 1$.

- When $p = \infty$...
 - ★ Aside from the fact that $f_k \nearrow f$, this construction has the property that, in the set $\{f(x) < 2^k\}$, i.e. outside of the set $\{f(x) \in J_{2^{2k}+1}^{(k)}\}$, it holds that

$$|f_k-f|\leq 2^{-k}.$$

* Now as p = ∞, f is essentially bounded, i.e. there is an M and a set Z of zero measure such that f < M in ℝⁿ \ Z. We then redefine f on Z to be zero, i.e. we work with the representative in the 'equivalent class f' which is bounded everywhere by M.
* After this redefinition, we see that {f(x) ∈ J^(k)_{2^{2k}+1}} = Ø for large k, and so we have |f_k - f| ≤ 2^{-k} everywhere for all large k. This means that f_k → f in L[∞].

Theorem

Let $1 \le p < \infty$. The set \mathscr{F} of all finite rational linear combinations of characteristic functions of cubes belonging to a fixed class of dyadic cubes is dense in $L^p(\mathbb{R}^n)$.

Proof:

- We know that the set of *p*-integrable simple functions is dense in L^p . We also know that \mathbb{Q} is dense in \mathbb{R} .
- Thus we only need to show that $\chi_E \in \overline{\mathscr{F}}$.
- By the construction of the Lebesgue measure, every open subset U of ℝⁿ can be written as a countable union of cubes in ∪𝔅_i, say U = ∪_{i=1}[∞]Q_i. Then

$$\sum_{i=1}^{N} \chi_{Q_i} \to \chi_U \text{ in } L^p, \text{ and so } \chi_U \in \overline{\mathscr{F}}.$$

• Now, for every measurable set E of finite measure, the outer regularity of the Lebesgue measure implies that there exist open U_k , $U_k \supset E$ such that $|U_k \setminus E| \rightarrow 0$. Then

$$\chi_{U_k} \to \chi_E$$
 in L^p , and so $\chi_E \in \overline{\mathscr{F}}$.

Application: Separability of L^p

Theorem

For $1 \le p < \infty$, the space $L^p(E)$ is separable, i.e. it has a countable dense subset.

Proof:

- When $E = \mathbb{R}^n$, the result follows from the previous theorem, as \mathscr{F} is countable.
- For general E, let \$\tilde{\varsigma}\$ be the set of restrictions to E of functions in \$\varsigma\$. Then \$\tilde{\varsigma}\$ is countable. We will now show that \$\tilde{\varsigma}\$ is dense in \$L^p(E)\$.
 - * Take $f \in L^p(E)$. Set f = 0 in $\mathbb{R}^n \setminus E$. Then $f \in L^p(\mathbb{R}^n)$ and so there exist $f_k \in \mathscr{F}$ such that $f_k \to f$ in $L^p(\mathbb{R}^n)$.
 - * Let $\tilde{f}_k = f_k|_E \in \tilde{\mathscr{F}}$. Then $\|\tilde{f}_k f\|_{L^p(E)} \le \|f_k f\|_{L^p(E)} \to 0$, so we are done.