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In the last lecture

Definition of Lebesgue spaces.

Holder’s and Minkowski’s inequalities

Completeness of Lebesgue spaces.

Duals of Lebesgue spaces.
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This lecture

Duals of Lebesgue spaces (cont.).

L2 as a Hilbert space.

Density of simple functions for Lebesgue spaces.

Separability of Lebesgue spaces.
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(L∞(R))∗ 6= L1(R)
Recall that for a (real) normed vector space X , the dual of X ,
denoted as X ∗, is the Banach space of bounded linear functional
T : X → R, equipped with the dual norm

‖T‖∗ = sup ‖Tx‖.

(Lp(E ))∗ = Lp
′
(E ) for 1 ≤ p <∞.

Consider p =∞. Let Tk ∈ (L∞(R))∗ given by Tkg = 1
k

∫ k

0
g dx .

Then, for every g ∈ L∞(R), (Tkg) ∈ `∞.

Let L ∈ (`∞)∗ be such that

L((xk)) = lim
k→∞

xk provided (xk) is convergent.

Such L exists by the Hahn-Banach theorem.

Define Tg = L((Tkg)) for all g ∈ L∞(R). It is easy to check
that T ∈ (L∞(R))∗.
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(L∞(R))∗ 6= L1(R)
We claim that there is no f ∈ L1(R) such that

Tg =

∫
R
fg dx for all g ∈ L∞(R).

Suppose by contradiction that such f exists. Fix some m > 0
and let g1(x) = sign(f (x))χ(0,m)(x). Then, as |g1| ≤ χ(0,m), we
have for k > m that |Tkg1| ≤ m

k
. It follows that∫ m

0

|f | dx = Tg1 = L((Tkg1)) = lim
k→∞

m

k
= 0.

As m is arbitrary, we thus have f = 0 a.e. in (0,∞).
On the other hand, with g2 = χ(0,∞), we have Tkg2 = 1 and so

0 =

∫ ∞
0

f dx = Tg2 = L((Tkg2)) = lim
k→∞

1 = 1,

which is absurd.
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Converse to Hölder’s inequality

Proposition (Converse to Hölder’s inequality)

Let E be measurable, and f be measurable on E . If 1 ≤ p ≤ ∞ and
1
p

+ 1
p′

= 1, then

‖f ‖Lp(E) = sup
{∫

E

fg dx : g ∈ Lp
′
(E ), ‖g‖Lp′ (E) ≤ 1

and fg is integrable on E
}
.

Note: We do not presume that f ∈ Lp(E ).

Luc Nguyen (University of Oxford) C4.3 – Lecture 2 MT 2021 6 / 19



Proof of Converse to Hölder’s inequality

Will only present the case 1 < p <∞. The cases p = 1 and
p =∞ need some justification; see notes.

Let

α = sup
{∫

E

fg dx : ‖g‖Lp′ ≤ 1, fg ∈ L1(E )
}
∈ [0,∞].

By Hölder’s inequality, we have α ≤ ‖f ‖Lp . So it suffices to
show α ≥ ‖f ‖Lp .

If ‖f ‖Lp = 0, we are done. Assume henceforth that ‖f ‖Lp > 0.

Luc Nguyen (University of Oxford) C4.3 – Lecture 2 MT 2021 7 / 19



Proof of Converse to Hölder’s inequality

Case 1: 0 < ‖f ‖Lp <∞.
In this case, we test the definition of α using

g0(x) =
sign(f (x))|f (x)|p−1

‖f ‖p−1Lp

.

? We have, as p′ = p
p−1 ,∫

E
|g0|p

′
dx =

1

‖f ‖pLp

∫
E
|f |p dx = 1.

? Next, ∫
E
|f | |g0| dx =

1

‖f ‖p−1Lp

∫
E
|f |p dx <∞.

? So by the definition of α,

α ≥
∫
E
f g0 dx =

1

‖f ‖p−1Lp

∫
E
|f |p dx = ‖f ‖Lp .

Luc Nguyen (University of Oxford) C4.3 – Lecture 2 MT 2021 8 / 19



Proof of Converse to Hölder’s inequality

Case 2: ‖f ‖Lp =∞.
In this case, we need to show that α =∞.

? Consider a truncation of |f | given by

fk(x) =

{
min(|f |(x), k) if x ∈ E and |x | ≤ k ,
0 otherwise.

Note that we are truncating both in the domain and in the
range: fk(x) = min(|f |(x), k)χE∩{|x |≤k}(x).

? It is clear that fk ∈ Lp(E ). Also, by Lebesgue’s monotone
convergence theorem,

‖fk‖pLp =

∫
E
|fk |p dx →

∫
E
|f |p dx =∞.

In addition, by Case 1,

‖fk‖Lp = sup
{∫

E
fk g dx : ‖g‖Lp′ ≤ 1, fkg ∈ L1(E )

}
.
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Proof of Converse to Hölder’s inequality

Case 2: ‖f ‖Lp =∞...

? In fact, the proof in Case 1 shows that the function

gk = |fk |p−1

‖fk‖p−1
Lp
≥ 0 satisfies ‖gk‖Lp′ = 1, fkgk ∈ L1(E ) and

‖fk‖Lp =

∫
E
fk gk dx .

? As |f | ≥ fk ≥ 0, It follows that, as∫
E
|f |gk dx ≥

∫
E
fk gk dx = ‖fk‖Lp →∞.

? Letting g̃k(x) = sign(f (x))gk(x), we then have ‖g̃k‖Lp′ = 1,
f g̃k ∈ L1(E ) and so

α ≥
∫
E
f g̃k dx =

∫
E
|f | gk dx →∞.

So α =∞, as desired.
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L2(E ) as a Hilbert space

Theorem
The space L2(E ) is a (real) Hilbert space with inner product

〈f , g〉 =

∫
E

fg .

This means

(Banach) L2(E ) is a Banach space.

(Inner product) The map (f , g) 7→ 〈f , g〉 from L2(E )× L2(E )
into R satisfies
? (Linearity) 〈λf1 + f2, g〉 = λ〈f1, g〉+ 〈f2, g〉 for all
λ ∈ R, f1, f2, g ∈ L2(E ),

? (Symmetry) 〈f , g〉 = 〈g , f 〉 for all f , g ∈ L2(E ),
? (Positivity) 〈f , f 〉 = ‖f ‖2L2(E). Hence 〈f , f 〉 ≥ 0 for all

f ∈ L2(E ) and 〈f , f 〉 = 0 if and only if f = 0.
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Density results for Lp via simple functions

We will show that the following sets are dense in Lp:

Set of simple functions, for 1 ≤ p ≤ ∞.

Set of ‘rational and dyadic’ simple functions, for 1 ≤ p <∞.
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Density results for Lp via simple functions

Simple function:

N∑
i=1

αiχAi
where αi is a constant and Ai is measurable.

Theorem

Let 1 ≤ p ≤ ∞. The set of all p-integrable simple functions is dense
in Lp(E ).
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Density results for Lp via simple functions

Proof:

Take f ∈ Lp(E ). We need to construct a sequence (fk) of
p-integrable simple function such that ‖fk − f ‖Lp → 0.

Using the splitting f = f + − f −, we may assume without loss of
generality that f is non-negative.

Fact from Integration: If f is a non-negative measurable
function, then there exist non-negative simple functions fk such
that fk ↗ f a.e.
Furthermore, if p <∞, then

? |fk |p ≤ |f |p and so fk ∈ Lp;
? As |fk − f |p ≤ |f |p ∈ L1, and so by Lebesgue dominated

convergence theorem,
∫
E |fk − f |p dx → 0. So fk → f in Lp.
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Density results for Lp via simple functions

When p =∞, the above proof doesn’t work as seen. Let us take
the proof one step further by recalling how such a sequence fk
can be constructed.
? For each k, one partition the range [0,∞] into 22k + 1 intervals:

J
(k)
1 = [0, 2−k), J

(k)
2 = [2−k , 2× 2−k), . . . ,

J
(k)

22k
= [(22k − 1)× 2−k , 22k × 2−k) and J

(k)

22k+1
= [2k ,∞].

? fk is then defined by fk(x) = (`− 1)× 2−k if {f (x) ∈ J
(k)
` } for

1 ≤ ` ≤ 22k + 1.

1

2

3
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Density results for Lp via simple functions

When p =∞...

? Aside from the fact that fk ↗ f , this construction has the
property that, in the set {f (x) < 2k}, i.e. outside of the set

{f (x) ∈ J
(k)

22k+1
}, it holds that

|fk − f | ≤ 2−k .

? Now as p =∞, f is essentially bounded, i.e. there is an M and
a set Z of zero measure such that f < M in Rn \ Z . We then
redefine f on Z to be zero, i.e. we work with the representative
in the ‘equivalent class f ’ which is bounded everywhere by M.

? After this redefinition, we see that {f (x) ∈ J
(k)

22k+1
} = ∅ for large

k , and so we have |fk − f | ≤ 2−k everywhere for all large k.
This means that fk → f in L∞.
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Density results for Lp via simple functions

Theorem

Let 1 ≤ p <∞. The set F of all finite rational linear combinations
of characteristic functions of cubes belonging to a fixed class of
dyadic cubes is dense in Lp(Rn).

C1 C2 C3

F =
{
g =

N∑
i=1

riχQi
where ri ∈ Q,Qi ∈

∞⋃
j=1

Cj

}
.
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Density results for Lp via simple functions

Proof:

We know that the set of p-integrable simple functions is dense in
Lp. We also know that Q is dense in R.
Thus we only need to show that χE ∈ F .
By the construction of the Lebesgue measure, every open subset
U of Rn can be written as a countable union of cubes in ∪Ci ,
say U = ∪∞i=1Qi . Then

N∑
i=1

χQi
→ χU in Lp, and so χU ∈ F .

Now, for every measurable set E of finite measure, the outer
regularity of the Lebesgue measure implies that there exist open
Uk , Uk ⊃ E such that |Uk \ E | → 0. Then

χUk
→ χE in Lp, and so χE ∈ F .
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Application: Separability of Lp

Theorem

For 1 ≤ p <∞, the space Lp(E ) is separable, i.e. it has a countable
dense subset.

Proof:

When E = Rn, the result follows from the previous theorem, as
F is countable.

For general E , let F̃ be the set of restrictions to E of functions
in F . Then F̃ is countable. We will now show that F̃ is dense
in Lp(E ).

? Take f ∈ Lp(E ). Set f = 0 in Rn \ E . Then f ∈ Lp(Rn) and so
there exist fk ∈ F such that fk → f in Lp(Rn).

? Let f̃k = fk |E ∈ F̃ . Then ‖f̃k − f ‖Lp(E) ≤ ‖fk − f ‖Lp(E) → 0, so
we are done.
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