
Stochastic Simulation: Lecture 2

Prof. Mike Giles

Oxford University Mathematical Institute



Variance Reduction

Monte Carlo starts as a very simple method – the complexity
comes from trying to reduce the variance, to reduce the number of
samples that have to be simulated to achieve a given accuracy.

I antithetic variables

I control variates

I importance sampling

I stratified sampling

I Latin hypercube

I quasi-Monte Carlo (lecture 5)



Review of elementary results

If a, b are random variables, and λ, µ are constants, then

E[a + µ] = E[a] + µ

V[a + µ] = V[a]

E[λ a] = λ E[a]

V[λ a] = λ2V[a]

E[a + b] = E[a] + E[b]

V[a + b] = V[a] + 2 Cov[a, b] + V[b]

where

V[a] ≡ E
[

(a− E[a])2
]

= E
[
a2
]
− (E[a])2

Cov[a, b] ≡ E
[

(a− E[a]) (b − E[b])
]



Review of elementary results

If a, b are independent random variables then

E[f (a) g(b)] = E[f (a)] E[g(b)]

Hence, Cov[a, b] = 0 and therefore V[a + b] = V[a] + V[b]

Extending this to a set of N iid (independent identically
distributed) r.v.’s xn, we have

V

[
N∑

n=1

xn

]
=

N∑
n=1

V[xn] = N V[x ]

and so

V

[
N−1

N∑
n=1

xn

]
= N−1V[x ]



Antithetic variables

The simple estimator from the last lecture has the form

N−1
∑
i

f (W (i))

where W (i) is the value of the Brownian path WT at time T .

WT is Normally distributed so −WT is just as likely.



Antithetic variables

Antithetic estimator replaces f (W (i)) by

f
(i)

= 1
2

(
f (W (i)) + f (−W (i))

)
Clearly still unbiased since

E[f ] = 1
2

(
E[f (W )] + E[f (−W )]

)
= E[f (W )]

The variance is given by

V[f ] = 1
4

(
V[f (W )] + 2 Cov[f (W ), f (−W )] + V[f (−W )]

)
= 1

2

(
V[f (W )] + Cov[f (W ), f (−W )]

)



Antithetic variables

The variance is always reduced, but the cost is almost doubled, so
net benefit only if Cov[f (W ), f (−W )] < 0.

Two extremes:

I A linear payoff, f = a + bW , is integrated exactly since f =a
and Cov[f (W ), f (−W )] = −V[f ]

I A symmetric payoff f (W ) = f (−W ) is the worst case since
Cov[f (W ), f (−W )] = V[f ]

General assessment – usually not very helpful, but can be good in
particular cases where the payoff is nearly linear



Control Variates

Suppose we want to approximate E[f ] using a simple Monte Carlo
average f .

If there is another payoff g for which we know E[g ], can use
g − E[g ] to reduce error in f − E[f ].

How? By defining a new estimator

f̂ = f − λ (g−E[g ])

Again unbiased since E[f̂ ] = E[f ] = E[f ]



Control Variates

For a single sample,

V[f − λ (g−E[g ])] = V[f ]− 2λCov[f , g ] + λ2V[g ]

For an average of N samples,

V[f − λ (g−E[g ])] = N−1
(
V[f ]− 2λCov[f , g ] + λ2V[g ]

)

To minimise this, the optimum value for λ is

λ =
Cov[f , g ]

V[g ]



Control Variates

The resulting variance is

N−1 V[f ]

(
1− (Cov[f , g ])2

V[f ]V[g ]

)
= N−1 V[f ]

(
1− ρ2

)
where ρ is the correlation between f and g .

The challenge is to choose a good g which is well correlated with f
– the covariance, and hence the optimal λ, can be estimated from
the data.



Importance Sampling

Importance sampling involves a change of probability measure.
Instead of taking X from a distribution with p.d.f. p1(X ), we
instead take it from a different distribution with p.d.f. p2(X ).

E1[f (X )] =

∫
f (X ) p1(X ) dX

=

∫
f (X )

p1(X )

p2(X )
p2(X ) dX

= E2[f (X ) R(X )]

where R(X ) = p1(X )/p2(X ) is the Radon-Nikodym derivative.



Importance Sampling

We want the new variance V2[f (X ) R(X )] to be smaller than the
old variance V1[f (X )].

How do we achieve this? Ideal is to make f (X )R(X ) constant, so
its variance is zero.

More practically, make R(X ) small where f (X ) is large, and make
R(X ) large where f (X ) is small.

Small R(X ) ⇐⇒ large p2(X ) relative to p1(X ), so more random
samples in region where f (X ) is large.

Particularly important for rare event simulation where f (X ) is zero
almost everywhere.



Stratified Sampling

The key idea is to achieve a more regular sampling of the most
“important” dimension in the uncertainty.

Start by considering a one-dimensional problem:

I =

∫ 1

0
f (U) dU.

Instead of taking N samples, drawn from uniform distribution on
[0, 1], instead break the interval into M strata of equal width and
take L samples from each.



Stratified Sampling

Define Uij to be the value of i th sample from strata j ,

F j = L−1
∑
i

f (Uij) = average from strata j ,

F = M−1
∑
j

F j = overall average

and similarly let

µj = E[f (U) |U ∈ strata j ],

σ2j = V[f (U) |U ∈ strata j ],

µ = E[f ],

σ2 = V[f ].



Stratified Sampling

With stratified sampling,

E[F ] = M−1
∑
j

E[F j ] = M−1
∑
j

µj = µ

so it is unbiased.

The variance is

V[F ] = M−2
∑
j

V[F j ] = M−2L−1
∑
j

σ2j

= N−1M−1
∑
j

σ2j

where N = LM is the total number of samples.



Stratified Sampling

Without stratified sampling, V[F ] = N−1σ2 with

σ2 = E[f 2]− µ2

= M−1
∑
j

E[f (U)2 |U ∈ strata j ] − µ2

= M−1
∑
j

(µ2j + σ2j ) − µ2

= M−1
∑
j

(
(µj−µ)2 + σ2j

)
≥ M−1

∑
j

σ2j

Thus stratified sampling reduces the variance.



Stratified Sampling

How do we use this for MC simulations?

For a one-dimensional application:

I Break [0, 1] into M strata

I For each stratum, take L samples U with uniform probability
distribution

I Define X = Φ−1(U) and use this for WT

I Compute average within each stratum, and overall average.



Stratified Sampling

For a multivariate Normal application, one approach is to:

I Break [0, 1] into M strata

I For each stratum, take L samples U with uniform probability
distribution

I Define X1 = Φ−1(U)

I Simulate other elements of X using standard Normal random
number generation

I Multiply X by matrix C to get Y = CX with desired
covariance

I Compute average within each stratum, and overall average



Stratified Sampling

Alternatively, for a d-dimensional application, can split each
dimension of the [0, 1]d hypercube into M strata producing Md

sub-cubes.

One generalisation of stratified sampling is to generate L points in
each of these hypercubes

However, the total number of points is LMd which for large d
would force M to be very small in practice.

Instead, use a method called Latin Hypercube sampling



Latin Hypercube

Generate M points, dimension-by-dimension, using 1D stratified
sampling with 1 value per stratum, assigning them randomly to the
M points to give precisely one point in each stratum

u
u

u

u



Latin Hypercube

This gives one set of M points, with average

f = M−1
M∑

m=1

f (Um)

Since each of the points Um is uniformly distributed over the
hypercube,

E[f ] = E[f ]

The fact that the points are not independently generated does not
affect the expectation, only the (reduced) variance



Latin Hypercube

We now take L independently-generated set of points, each giving
an average f l .

Averaging these

L−1
L∑

l=1

f l

gives an unbiased estimate for E[f ], and the empirical variance for
f l gives a confidence interval in the usual way.



Latin Hypercube

Note: in the special case in which the function f (U) is a sum of
one-dimensional functions:

f (U) =
∑
i

fi (Ui )

where Ui is the i th component of U, then Latin Hypercube
sampling reduces to 1D stratified sampling in each dimension.

In this case, potential for very large variance reduction by using
large sample size M.

Much harder to analyse in general case.



Final comments

I Antithetic variables are usually of little benefit

I Control variates can be very effective

I Importance sampling can be very good in certain situations

I Stratified sampling is very effective in 1D, but not so clear
how to use it in multiple dimensions

I Latin Hypercube is one generalisation – very effective when
function can be decomposed into a sum of 1D functions

I Hard to predict which variance reduction approach will be
most effective

I Advice: when facing a new class of applications, try each one,
and don’t forget you can sometimes combine different
techniques (e.g. stratified sampling with antithetic variables,
or Latin Hypercube with importance sampling)


