C5.1 Solid Mechanics
 Sheet 0 - MT21

 Background Material

 Background Material}

This problem sheet is aimed to be a refresher for some of the key tools that will be used throughout the course. Outline solutions will be published at the end of week 1.

Einstein's Summation Convention

These exercises are designed to remind you of the Einstein summation convention and to help you to become more fluent with it.

1. Verify the identity

$$
\begin{equation*}
\epsilon_{i j k} \epsilon_{i m n}=\delta_{j m} \delta_{k n}-\delta_{j n} \delta_{k m} \tag{1}
\end{equation*}
$$

(Convince yourself it is true, e.g. by direct calculation.)
2. Using (1) and the summation convention, prove that the vector triple product

$$
\begin{equation*}
\mathbf{a} \times(\mathbf{b} \times \mathbf{c})=\mathbf{b}(\mathbf{a} \cdot \mathbf{c})-\mathbf{c}(\mathbf{a} \cdot \mathbf{b}) \tag{2}
\end{equation*}
$$

and that the vector quadruple product

$$
(\mathbf{a} \times \mathbf{b}) \cdot(\mathbf{c} \times \mathbf{d})=(\mathbf{a} \cdot \mathbf{c})(\mathbf{b} \cdot \mathbf{d})-(\mathbf{a} \cdot \mathbf{d})(\mathbf{b} \cdot \mathbf{c}) .
$$

Solution:

Using the summation convention, we may write:

$$
[\mathbf{a} \times(\mathbf{b} \times \mathbf{c})]_{i}=\epsilon_{i j k} a_{j}\left(\epsilon_{k l m} b_{l} c_{m}\right)=\epsilon_{i j k} \epsilon_{l m k} a_{j} b_{l} c_{m}
$$

which can be simplified using (1) to

$$
[\mathbf{a} \times(\mathbf{b} \times \mathbf{c})]_{i}=\left(\delta_{i l} \delta_{j m}-\delta_{i m} \delta_{j l}\right) a_{j} b_{l} c_{m}=\left(a_{j} c_{j}\right) b_{i}-\left(a_{j} b_{j}\right) c_{i}=[\mathbf{b}(\mathbf{a} \cdot \mathbf{c})-\mathbf{c}(\mathbf{a} \cdot \mathbf{b})]_{i}
$$

as desired.
In a similar way we can write:

$$
(\mathbf{a} \times \mathbf{b}) \cdot(\mathbf{c} \times \mathbf{d})=\left(\epsilon_{i j k} a_{j} b_{k}\right)\left(\epsilon_{i l m} c_{l} d_{m}\right)=\left(\delta_{j l} \delta_{k m}-\delta_{j m} \delta_{k l}\right) a_{j} b_{k} c_{l} d_{m},
$$

which immediately gives the desired result.
3. Using the summation convention, prove the vector calculus identity

$$
\text { curl curl } \mathbf{v}=\operatorname{grad} \operatorname{div} \mathbf{v}-\operatorname{div} \operatorname{grad} \mathbf{v} .
$$

Justifying your answer, comment on whether this is the same as would be obtained by substituting $\mathbf{a}=\mathbf{b}=\nabla$ and $\mathbf{c}=\mathbf{v}$ in (2).

Solution:

In the now familiar way, we have

$$
[\text { curl curl } \mathbf{v}]_{i}=\epsilon_{i j k} \partial_{j}\left(\epsilon_{k l m} \partial_{l} v_{m}\right)
$$

where $\partial_{j}(\cdot)=\partial(\cdot) / \partial x_{j}$. Using (1) we have:

$$
[\text { curl curl } \mathbf{v}]_{i}=\left(\delta_{i l} \delta_{j m}-\delta_{j l} \delta_{i m}\right) \partial_{j}\left(\partial_{l} v_{m}\right)=\partial_{j}\left(\partial_{i} v_{j}\right)-\partial_{j}\left(\partial_{j} v_{i}\right)=\partial_{i}\left(\partial_{j} v_{j}\right)-\partial_{j}\left(\partial_{j} v_{i}\right),
$$

which is the i-th component of the required result.
(Note that here we have treated ∂_{j} as an operator; in deriving (2) the elements are scalars and so may be commuted as desired. However, care is needed before trying to commute ∂_{j}. Being careless on this point and simply substituting as suggested would lead to a nonsensical identity.)
4. Calculate curl $(\mathbf{a} \times \mathbf{b})$ using the summation convention and (1).

Solution:

We have that

$$
[\operatorname{curl}(\mathbf{a} \times \mathbf{b})]_{i}=\epsilon_{i j k} \partial_{j}\left(\epsilon_{k l m} a_{l} b_{m}\right)=\left(\delta_{i l} \delta_{j m}-\delta_{i m} \delta_{j l}\right) \partial_{j}\left(a_{l} b_{m}\right) .
$$

Using the product rule we therefore have:

$$
[\operatorname{curl}(\mathbf{a} \times \mathbf{b})]_{i}=\partial_{j}\left(a_{i} b_{j}\right)-\partial_{j}\left(a_{j} b_{i}\right)=a_{i}\left(\partial_{j} b_{j}\right)+b_{j} \partial_{j} a_{i}-b_{i}\left(\partial_{j} a_{j}\right)-a_{j} \partial_{j} b_{i},
$$

which is the i-th component of

$$
\mathbf{a}(\nabla \cdot \mathbf{b})-\mathbf{b}(\nabla \cdot \mathbf{a})+(\mathbf{b} \cdot \nabla) \mathbf{a}-(\mathbf{a} \cdot \nabla) \mathbf{b} .
$$

Linear Algebra

5. Use the Cayley-Hamilton Theorem to find functions $a(n)$ and $b(n)$ such that

$$
A^{n}=a(n) A+b(n) I
$$

when

$$
A=\left(\begin{array}{ll}
1 & 2 \\
0 & 3
\end{array}\right)
$$

and n is an integer. Hence show that

$$
\exp A=\left(\begin{array}{cc}
e & e^{3}-e \\
0 & e^{3}
\end{array}\right)
$$

Solution:

The characteristic polynomial is

$$
(1-\lambda)(3-\lambda)=0=\lambda^{2}-4 \lambda+3 .
$$

so from the Cayley-Hamilton Theorem we have

$$
A^{2}=4 A-3 I .
$$

A simple induction then gives

$$
a(n)=\frac{1}{2}\left(3^{n}-1\right), \quad b(n)=\frac{3}{2}\left(1-3^{n-1}\right) .
$$

Upon substituting these expressions into the definition of the matrix exponential we find

$$
\exp (A)=\sum_{n=0}^{\infty} \frac{A^{n}}{n!}=\frac{1}{2} \sum_{n=0}^{\infty} \frac{1}{n!}\left[3^{n}(A-I)+3 I-A\right]=\frac{1}{2}\left[e^{3}(A-I)+e(3 I-A)\right]
$$

which immediately gives the desired result.
6. The Polar Decomposition Theorem states that an arbitrary invertible tensor A can be expressed (uniquely) as:

$$
A=Q U=V Q
$$

where Q is an orthogonal tensor and U and V are positive definite symmetric tensors. Here you will give an informal proof of this Theorem, as follows:
(i) Show that the matrices $A^{T} A$ and $A A^{T}$ are symmetric and positive definite. $[A$ matrix B is positive definite if $\mathbf{x} \cdot(B \mathbf{x})>0$ for all $\mathbf{x} \neq \mathbf{0}$.]
(ii) Denote the (unique) square root of $A^{T} A$ and $A A^{T}$ by U and V, respectively these exist by (i). Show that the matrices $Q=A U^{-1}$ and $R=V^{-1} A$ are orthogonal. [This proves existence.]
(iii) Show that the uniqueness of the Polar Decomposition is inherited from the uniqueness of the square roots U and V.
(iv) Show that $Q=R$.

Solution:

(i) Symmetry is clear by direct calculation. For positive-definiteness, note that: \mathbf{x}. $\left(A^{T} A \mathbf{x}\right)=\mathbf{x}^{T} A^{T} A \mathbf{x}=(A \mathbf{x})^{T} A \mathbf{x}=(A \mathbf{x}) \cdot(A \mathbf{x})=|A \mathbf{x}|^{2}>0$.
(ii) With these definitions, we have $Q^{T} Q=\left(U^{-1}\right)^{T} A^{T} A U^{-1}=\left(U^{-1}\right)^{T} U=I$ (by symmetry of U and U^{-1}) so that Q is orthogonal. Similarly for R.
(iii) If there were two different polar decompositions, $A=Q_{1} U_{1}=Q_{2} U_{2}$, say, then we would have $A^{T} A=U_{1} Q^{T} Q U_{1}=U_{1}^{2}=U_{2}^{2}$. This is contrary to the assumption of the uniqueness of the square root of $A^{T} A$, and so uniqueness of the polar decomposition is inherited from that of the square root.
(iv) Now, $A=V R$, and hence we have that

$$
A=I(V R)=\left(R R^{T}\right)(V R)=R\left(R^{T} V R\right)=R \tilde{U}
$$

where $\tilde{U}=R^{T} V R$ is clearly symmetric. However, $U^{2}=A^{T} A=\tilde{U}^{T} R^{T} R \tilde{U}=\tilde{U}^{2}$. Then, by the uniqueness of the square root, we have that $U=\tilde{U}$, and we have shown that $A=R U$. We then immediately have that $R=Q$.

Orthogonal Curvilinear Coordinates

7. Consider an orthogonal curvilinear coordinate system $\mathbf{u}(\mathbf{x})=(u, v, w)$, with (x, y, z) the usual Cartesian coordinate system and unit vectors $\mathbf{e}_{u}, \mathbf{e}_{v}, \mathbf{e}_{w}$. Scale factors h_{u}, h_{v}, h_{w} are defined by

$$
h_{i}=\left[\left(\frac{\partial x}{\partial u_{i}}\right)^{2}+\left(\frac{\partial y}{\partial u_{i}}\right)^{2}+\left(\frac{\partial z}{\partial u_{i}}\right)^{2}\right]^{1 / 2} \quad u_{i}=u, v, w \quad \text { (no s.c.). }
$$

The gradient of a scalar field is then defined to be

$$
\operatorname{grad} f=\frac{1}{h_{u}} \frac{\partial f}{\partial u} \mathbf{e}_{u}+\frac{1}{h_{v}} \frac{\partial f}{\partial v} \mathbf{e}_{v}+\frac{1}{h_{w}} \frac{\partial f}{\partial u} \mathbf{e}_{w}
$$

while the curl of a vector field is defined via the determinant

$$
\operatorname{curl} \mathbf{F}=\frac{1}{h_{u} h_{v} h_{w}}\left|\begin{array}{ccc}
h_{u} \mathbf{e}_{u} & h_{v} \mathbf{e}_{v} & h_{w} \mathbf{e}_{w} \\
\frac{\partial}{\partial u} & \frac{\partial}{\partial v} & \frac{\partial}{\partial w} \\
h_{u} F_{u} & h_{v} F_{v} & h_{w} F_{w}
\end{array}\right| .
$$

(i) Derive the expressions for curl \mathbf{F} and $\operatorname{grad} f$ in spherical polar coordinates $(x, y, z)=$ $(r \sin \theta \cos \phi, y=r \sin \theta \sin \phi, r \cos \theta)$.
(ii) In this coordinate system, find $\operatorname{curl} \mathbf{F}$ when

$$
\mathbf{F}=(\sinh r) \theta \sin \phi \mathbf{e}_{r}+\frac{\cosh r}{r} \sin \phi \mathbf{e}_{r}+\frac{\cosh r}{r} \frac{\theta}{\sin \theta} \cos \phi \mathbf{e}_{\phi} .
$$

(iii) Is there a potential φ such that $\mathbf{F}=\operatorname{grad} \varphi$? If so find it.

Solution:

(i) In spherical polars, (r, θ, ϕ), the scale factors are $h_{r}=1, h_{\theta}=r, h_{\phi}=r \sin \theta$. We therefore have:

$$
\operatorname{grad} f=\frac{\partial f}{\partial r} \mathbf{e}_{r}+\frac{1}{r} \frac{\partial f}{\partial \theta}+\frac{1}{r \sin \theta} \frac{\partial f}{\partial \phi}
$$

and

$$
\operatorname{curl} \mathbf{F}=\frac{1}{r^{2} \sin \theta}\left|\begin{array}{ccc}
\mathbf{e}_{r} & r \mathbf{e}_{\theta} & r \sin \theta \mathbf{e}_{\phi} \\
\frac{\partial}{\partial r} & \frac{\partial}{\partial \theta} & \frac{\partial}{\partial \phi} \\
F_{r} & r F_{\theta} & r \sin \theta F_{\phi}
\end{array}\right| .
$$

(ii) $\operatorname{curl} \mathbf{F}=0$.
(iii) Since curl $\mathbf{F}=0$ we have that $\mathbf{F}=\nabla \varphi$ for some potential φ. By inspection of the earlier expression for $\operatorname{grad} f$, we see that $\varphi=(\cosh r) \theta(\sin \phi)$.

