
C5.1 Solid Mechanics

Sheet 0 — MT21

Background Material

This problem sheet is aimed to be a refresher for some of the key tools that will be used

throughout the course. Outline solutions will be published at the end of week 1.

Einstein’s Summation Convention

These exercises are designed to remind you of the Einstein summation convention and

to help you to become more fluent with it.

1. Verify the identity

εijkεimn = δjmδkn − δjnδkm (1)

(Convince yourself it is true, e.g. by direct calculation.)

2. Using (1) and the summation convention, prove that the vector triple product

a× (b× c) = b (a · c)− c (a · b) (2)

and that the vector quadruple product

(a× b) · (c× d) = (a · c)(b · d)− (a · d)(b · c).

Solution:

Using the summation convention, we may write:

[a× (b× c)]i = εijkaj(εklmblcm) = εijkεlmkajblcm

which can be simplified using (1) to

[a× (b× c)]i = (δilδjm − δimδjl)ajblcm = (ajcj)bi − (ajbj)ci = [b (a · c)− c (a · b)]i

as desired.

In a similar way we can write:

(a× b) · (c× d) = (εijkajbk)(εilmcldm) = (δjlδkm − δjmδkl)ajbkcldm,

which immediately gives the desired result.
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3. Using the summation convention, prove the vector calculus identity

curl curl v = grad div v − div grad v.

Justifying your answer, comment on whether this is the same as would be obtained by

substituting a = b = ∇ and c = v in (2).

Solution:

In the now familiar way, we have

[curl curl v]i = εijk∂j(εklm∂lvm)

where ∂j(·) = ∂(·)/∂xj. Using (1) we have:

[curl curl v]i = (δilδjm − δjlδim)∂j(∂lvm) = ∂j(∂ivj)− ∂j(∂jvi) = ∂i(∂jvj)− ∂j(∂jvi),

which is the i-th component of the required result.

(Note that here we have treated ∂j as an operator; in deriving (2) the elements are

scalars and so may be commuted as desired. However, care is needed before trying to

commute ∂j. Being careless on this point and simply substituting as suggested would

lead to a nonsensical identity.)

4. Calculate curl(a× b) using the summation convention and (1).

Solution:

We have that

[curl(a× b)]i = εijk∂j(εklmalbm) = (δilδjm − δimδjl)∂j(albm).

Using the product rule we therefore have:

[curl(a× b)]i = ∂j(aibj)− ∂j(ajbi) = ai(∂jbj) + bj∂jai − bi(∂jaj)− aj∂jbi,

which is the i-th component of

a(∇ · b)− b(∇ · a) + (b · ∇)a− (a · ∇)b.
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Linear Algebra

5. Use the Cayley–Hamilton Theorem to find functions a(n) and b(n) such that

An = a(n)A+ b(n)I

when

A =

(
1 2

0 3

)
and n is an integer. Hence show that

expA =

(
e e3 − e
0 e3

)
.

Solution:

The characteristic polynomial is

(1− λ)(3− λ) = 0 = λ2 − 4λ+ 3.

so from the Cayley–Hamilton Theorem we have

A2 = 4A− 3I.

A simple induction then gives

a(n) = 1
2
(3n − 1), b(n) = 3

2
(1− 3n−1).

Upon substituting these expressions into the definition of the matrix exponential we

find

exp(A) =
∞∑
n=0

An

n!
=

1

2

∞∑
n=0

1

n!
[3n(A− I) + 3I − A] =

1

2

[
e3(A− I) + e(3I − A)

]
,

which immediately gives the desired result.
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6. The Polar Decomposition Theorem states that an arbitrary invertible tensor A can

be expressed (uniquely) as:

A = QU = V Q

where Q is an orthogonal tensor and U and V are positive definite symmetric tensors.

Here you will give an informal proof of this Theorem, as follows:

(i) Show that the matrices AT A and AAT are symmetric and positive definite. [A

matrix B is positive definite if x · (Bx) > 0 for all x 6= 0.]

(ii) Denote the (unique) square root of AT A and AAT by U and V , respectively —

these exist by (i). Show that the matrices Q = AU−1 and R = V −1A are orthogonal.

[This proves existence.]

(iii) Show that the uniqueness of the Polar Decomposition is inherited from the unique-

ness of the square roots U and V .

(iv) Show that Q = R.

Solution:

(i) Symmetry is clear by direct calculation. For positive-definiteness, note that: x ·
(AT Ax) = xTAT Ax = (Ax)TAx = (Ax) · (Ax) = |Ax|2 > 0.

(ii) With these definitions, we have QT Q = (U−1)T AT AU−1 = (U−1)T U = I (by

symmetry of U and U−1) so that Q is orthogonal. Similarly for R.

(iii) If there were two different polar decompositions, A = Q1U1 = Q2U2, say, then we

would have ATA = U1Q
TQU1 = U2

1 = U2
2 . This is contrary to the assumption of the

uniqueness of the square root of AT A, and so uniqueness of the polar decomposition is

inherited from that of the square root.

(iv) Now, A = V R, and hence we have that

A = I(V R) = (RRT ) (V R) = R (RTV R) = RŨ

where Ũ = RTV R is clearly symmetric. However, U2 = ATA = ŨTRTRŨ = Ũ2. Then,

by the uniqueness of the square root, we have that U = Ũ , and we have shown that

A = RU . We then immediately have that R = Q.

Mathematical Institute, University of Oxford

Dominic Vella: dominic.vella@maths.ox.ac.uk

Page 4 of 5



C5.1 Solid Mechanics: Sheet 0 — MT21

Orthogonal Curvilinear Coordinates

7. Consider an orthogonal curvilinear coordinate system u(x) = (u, v, w), with (x, y, z) the

usual Cartesian coordinate system and unit vectors eu, ev, ew. Scale factors hu, hv, hw

are defined by

hi =

[(
∂x

∂ui

)2

+

(
∂y

∂ui

)2

+

(
∂z

∂ui

)2
]1/2

ui = u, v, w (no s.c.).

The gradient of a scalar field is then defined to be

gradf =
1

hu

∂f

∂u
eu +

1

hv

∂f

∂v
ev +

1

hw

∂f

∂u
ew

while the curl of a vector field is defined via the determinant

curlF =
1

huhvhw

∣∣∣∣∣∣∣
hueu hvev hwew
∂
∂u

∂
∂v

∂
∂w

huFu hvFv hwFw

∣∣∣∣∣∣∣ .
(i) Derive the expressions for curlF and gradf in spherical polar coordinates (x, y, z) =

(r sin θ cosφ, y = r sin θ sinφ, r cos θ).

(ii) In this coordinate system, find curlF when

F = (sinh r)θ sinφ er +
cosh r

r
sinφ er +

cosh r

r

θ

sin θ
cosφ eφ.

(iii) Is there a potential ϕ such that F = gradϕ? If so find it.

Solution:

(i) In spherical polars, (r, θ, φ), the scale factors are hr = 1, hθ = r, hφ = r sin θ. We

therefore have:

gradf =
∂f

∂r
er +

1

r

∂f

∂θ
+

1

r sin θ

∂f

∂φ

and

curlF =
1

r2 sin θ

∣∣∣∣∣∣∣
er reθ r sin θeφ
∂
∂r

∂
∂θ

∂
∂φ

Fr rFθ r sin θFφ

∣∣∣∣∣∣∣ .
(ii) curlF = 0.

(iii) Since curlF = 0 we have that F = ∇ϕ for some potential ϕ. By inspection of the

earlier expression for grad f , we see that ϕ = (cosh r)θ(sinφ).
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