B01.1 History of Mathematics Course Context Session

QVESTIO VIII.

PRopostiva quadratum dinidere induos quadratos. Imperatum fot vt 16. dinidatur in duos quadratos. Ponatur primus 1 Q.Oportetigitur 16 - 1 Q.xquales effe quadrato. Fingo quadratum a numeris quotquot libuerit, cum defectu tot vnitarum quod continet latus ipfrus 16. efto $2_{2} \mathrm{~N}$. -4 . ipfe igitur quadratus crit $4 \mathrm{Q}+16 .-16 \mathrm{~N}$. hxc aquabuntur vnitatibus $16-1$ Q. Communis adriciatur vtrimque defcaus, $\&$ a fimilibus auferantur fimilia, fient 5 Q. æquales 16 N. \& fit IN. $\stackrel{4}{4}$ Eritigitur alter quadratorum $\frac{2!}{1 .}$. alter vero $\frac{\text { ma }}{14}$ \& veriufque fumma eft tin fcu 16. \& vterque quadratus eft.

T
 dís retpaj wrous. हT

 Sh move तé μ^{i} स \quad bucé.

 eizossmquentav,

OBSERVATIO DOMINI PETRI DE FERMAT.

C
YVbum antem in duos csbos, ant quadratoquadratum in duos quadratoquadratos © gencraliter nullam in infinitum vitra quadratum poteffatem in duos eingdem nominis fas of diuidere cuins rei domonjfrationem mirabilem fanc detexi. Hanc marginis exigaitas non saperes.

Dr. Brigitte Stenhouse
15 October 2021

When do we meet mathematicians?

Cauchy's Theorem

Kovaleskaya's Theorem

Liouville's Theorem
 Weierstrass M-Test

Fermat's Last Theorem
Noether's Theorem
Lagrange's Theorem
Fermat's Little Theorem
Stokes-Cartan Theorem
Rolle's Theorem
Gauss's Theorem
Green's Theorem
Taylor Series

Ostrogradsky's Theorem
Hardy-Ramanujan Theorem

Outline of talk

- Reading historical mathematics
- A theorem in disguise
- Who gets a theorem named after them?
- Benefits of studying history of maths (for maths students)

SECTION IX.

Solution de quelques Problêmes qui dépendent des Méthodes précédentes.
Pkoposition 1 .
Problême.
163. S OIT une ligne courbe AMD ($\mathrm{AP}=\mathrm{x}, \mathrm{PM}=\mathrm{y}, \mathrm{Fic.130}$. $\mathrm{AB}=\mathrm{a}$) telle que la valeur de l'appliquée y foit exprimée par une fration, dont le numératecur of le dénominatcur de-
 P tombe fur le point donne B. on demande quelle doit atre alors la valeur de l'appliquíc BD.
Soient entenduës deux lignes courbes $A N B, C O B$, qui ayent pour axe commun la ligne $A B, \&$ qui foient tellies que l'appliquée $P N$ exprime le numérateur, \& l'appliquée $P O$ le dénominatcur de la fraction générale qui convient à toutes les $P M$: de forte que $P M=\frac{-\frac{A R x}{P N}}{P U}$. Il eft clair que ces deux courbes fe rencontreront au point B;
clair que ces deux courbes fe rencontreront au point B_{j} puifque par la fuppofition $P N$ \& $P O$ deviennent chacune zero lorique le point P tombe en B. Cela pofe, fi lion imagine unc appliquée $b d$ infiniment proche de $B D, \&$ qui rencontre les lignes courbes $A N B, C O B$ aux points $f, g ;$ Yon aura $b d=\frac{A B k b f}{b_{s}}$, laquclle ${ }^{\text {ne }}$ différe pas de $B D . *$ Art.zi Il n'cft donc queftion que de trouver le rapport de bg à $b f$. Or il eft vifible que la coupée $A P$ devenant $A B$, les appliquées $P N, P O$ deviennent nulles; $\& 4$ que $A P$ devenant $A b$, elles deviennent $b f, b g$. D'où il fuit que ces appliquées, elles-mêmes $b f, b g$, font la différence des appliquées en $B \& b$ par rapport aux courbes $A N B, C O B ; \&$ partant que fil lon prend la différence du numératcur, \& \& qu'on la divile par la différence du dénominateur , aprés

T

Guess the theorem...

Let $A M D$ be a curved line $(A P=x, P M=y, A B=a)$ such that the value of the ordinate y is expressed by a fraction, whose numerator and denominator each become zero when $x=a$, that is to say when the point P coincides with the given point B. We ask what should be the value of the ordinate $B D$.
Let there be two curved lines $A N B, C O B$, which have the axis $A B$ in common, \& which are such that the ordinate $P N$ expresses the numerator, \& the ordinate $P O$ the denominator of the general fraction which agrees with $P M$: such that $P M=\frac{A B \times P N}{P O}$. It is clear that these two curves meet each other at the point B; as by the assumption $P N \& P O$ each become zero when the the point P coincides with B. That being said, if we imagine an ordinate $b d$ infinitely close to $B D, \&$ which meets the curved lines $A N B, C O B$, at the points f, g; we will have $b d=\frac{A B \times b f}{b g}$, which does not differ from $B D$.

Guess the theorem...

It only remains to find the relationship between $b g$ and $b f$. It is clear that the line $A P$ becomes $A B$, the ordinates $P N, P O$ become zero; \& that $A P$ becomes $A b$. From where it follows that these ordinates, themselves $b f, b g$, are the difference of the ordinates in $B \& b$ with respect to the curves $A N B, C O B ; \&$ thus if we take the difference of the numerator, \& divide it by the difference of the denominator, after making $x=a=A b$ or $A B$, we will have the desired value of the ordinate $b d$ or $B D$.

Example 1

164. Let $y=\frac{\sqrt{2 a^{3} x-x^{4}}-a \sqrt[3]{a a x}}{a-\sqrt[4]{a x^{3}}}$. It is clear that when $x=a$, the numerator and the denominator of the fraction will each become equal to zero. It is why we take the difference $\frac{a^{3} d x-2 x^{3} d x}{\sqrt{2 a^{3} x-x^{4}}}-\frac{a a d x}{3 \sqrt[3]{a x x}}$ of the numerator, \& we divide it by the difference $-\frac{3 a d x}{4 \sqrt[4]{a^{3} x}}$ of the denominator, setting $x=a$, that is to say we divide $-\frac{4}{3} a d x$ by $-\frac{3}{4} d x$; this gives $\frac{16}{9}$ a for the sought after value of BD.
(Analyse des Infiniment Petits..., 1696. Page 145-6. Translation my own).
EXEMPLEI.
 que $x=a$, le numérateur $\&$ le dénominatcur de la fraation deviennent égaux chacun à zero. C'eft-pourquoy l'on prendra la différence $\frac{a^{3} d x-2 x^{3} d x}{\sqrt{2 x^{3} x-x^{4}}}-\frac{a d x}{3^{\sqrt[3]{A x x}}}$ du numératcur, $\& x$ on la divifera par la différence $--_{4}^{3 a d x}$ du dénominateur, aprés avoir fair $x=a$, c'elt-à-dire qu'on divifera $-\frac{4}{3} a d x$ par $-\frac{3}{4} d x$; ce qui donne $\frac{16}{9}$ a pour la valeur cherchée de $B D$.

L'Hôpital's Rule

What was missing?

Theorem (L'Hôpital's Rule)

Suppose f, g are continuous on ($a-\delta, a+\delta$) (for some $\delta>0$) and differentiable on $(a-\delta, a+\delta) \backslash\{a\}$, and $f(a)=g(a)=0$ then

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

provided that the limit on the right-hand side exists.

L'Hôpital's Rule

What was missing?

Theorem (L'Hôpital's Rule)

Suppose f, g are continuous on ($a-\delta, a+\delta$) (for some $\delta>0$) and differentiable on $(a-\delta, a+\delta) \backslash\{a\}$, and $f(a)=g(a)=0$ then

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

provided that the limit on the right-hand side exists.

- L'Hôpital was looking at curves, not functions

L'Hôpital's Rule

What was missing?

Theorem (L'Hôpital's Rule)
Suppose f, g are continuous on ($a-\delta, a+\delta$) (for some $\delta>0$) and differentiable on $(a-\delta, a+\delta) \backslash\{a\}$, and $f(a)=g(a)=0$ then

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

provided that the limit on the right-hand side exists.

- L'Hôpital was looking at curves, not functions
- Not all functions are differentiable. What conditions do we need?

L'Hôpital's Rule

What was missing?

Theorem (L'Hôpital's Rule)
Suppose f, g are continuous on ($a-\delta, a+\delta$) (for some $\delta>0$) and differentiable on $(a-\delta, a+\delta) \backslash\{a\}$, and $f(a)=g(a)=0$ then

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

provided that the limit on the right-hand side exists.

- L'Hôpital was looking at curves, not functions
- Not all functions are differentiable. What conditions do we need?
- What is a limit? Are there different types of convergence? What conditions do we need?

L'Hôpital's Rule

What was missing?

Theorem (L'Hôpital's Rule)
Suppose f, g are continuous on ($a-\delta, a+\delta$) (for some $\delta>0$) and differentiable on $(a-\delta, a+\delta) \backslash\{a\}$, and $f(a)=g(a)=0$ then

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

provided that the limit on the right-hand side exists.

- L'Hôpital was looking at curves, not functions
- Not all functions are differentiable. What conditions do we need?
- What is a limit? Are there different types of convergence? What conditions do we need?
- Where did this notation come from?

A theorem belonging to L'Hôpital?

A N A LY S E

D E S

INFINIMENT PETITS,

Pour lintelligence des lignes courbes.

$$
\text { V. } 9^{89}
$$

A P A R I S,
DE LIMPRIMERIE ROYALE.
M. DC. X C V I.

V
6966
R.94253

PREFACE.

finiti, je n'ay eu garde de priver le public d'un fi bel Ouvrage qui doic tenfermer tout co quill y a de plus curicux pour la Méthode inverfé des Tangentes, pour les Réctifications des courbes, pour la Quadrature des efpaces queelles renferment, pour celle des furfaces des corps qu'elles decrivent, pour la dimenfion de ces corps, pour la découverre des centres de gravité, occe. Je ne rends même ceci public, que parce qu'il m'en a prié par fes lettres, \&ce que jc le crois néceffaire pour préparer les efprits à comprendre tout ce quón pourra découvrir dans la fuite fur ces matiéres.

Au refte je reconnois devoir beaucoup aux lumieres de Ma^{n} Bernoulli, fur tout à celles du jeune prefentement Profeffeur à Groninguc. Je me fuis fervi fans façon de leurs decouvertes \&e de celles de M. Leibnis. C'eft-pourquoy je confens quils en revendiquent tout ec quil leur plaira, me contentant de ce quils voudront bien me laiffer.

C'eft encore une juftice dûc̈ au fçavant M. Newton, \& que M. Leibuis luy a renstarumit disis so duë * luy-même : Quill avoit auffi trouvé shemf ros+ quelque chofe de femblable au Calcul diffé-

A theorem belonging to L'Hôpital?

Guillaume-François-Antoine Marquis de l'Hôpital, Marquis de Sainte-Mesme, Comte d'Entremont and Seigneur d'Ouques-la-Chaise (1661-1704)

Johann Bernoulli (1667-1748)

A theorem belonging to L'Hôpital?

I will be happy to give you a retainer of 300 pounds, beginning with the first of January of this year. ... I promise shortly to increase this retainer, which I know is very modest, as soon as my affairs are somewhat straightened out. ... I am not so unreasonable as to demand in return all of your time, but I will ask you to give me at intervals some hours of your time to work on what I request and also to communicate to me your discoveries, at the same time asking you not to disclose any of them to others. I ask you even not to send here to Mr Varignon or to others any copies of the writings you have left with me; if they are published, I will not be at all pleased. Answer me regarding all this ...

L'Hôpital to Bernoulli, 17 March 1694

A theorem belonging to L'Hôpital?

I will be happy to give you a retainer of 300 pounds, beginning with the first of January of this year. ... I promise shortly to increase this retainer, which I know is very modest, as soon as my affairs are somewhat straightened out. ... I am not so unreasonable as to demand in return all of your time, but I will ask you to give me at intervals some hours of your time to work on what I request and also to communicate to me your discoveries, at the same time asking you not to disclose any of them to others. I ask you even not to send here to Mr Varignon or to others any copies of the writings you have left with me; if they are published, I will not be at all pleased. Answer me regarding all this ...

L'Hôpital to Bernoulli, 17 March 1694
You have only to let me know your definite wishes, if I am to publish nothing more in my life, for I will follow them precisely and nothing more by me will be seen.

Bernoulli to L'Hôpital, 1695

Context，content，significance

Context, content, significance

Context: who? when? where? why?

Context, content, significance

Context: who? when? where? why?

Content:
what is it about? how is it written?

Context, content, significance

Context: who? when? where? why?

Content:
what is it about? how is it written?

Significance: why did it matter?

Context, content, significance

Context: who? when? where? why?

Content:

Significance:
why did it matter?

Historical Significance: what new insight does this text offer us?

Unity in Mathematics?

Behind this diversity you describe, is mathematics all one?
That's the point. Take, for example, the so-called Pythagorean theorem. In the distant past, it could be seen as a statement that expressed a relationship between the lengths of the sides of a right-angled triangle, understood as geometric objects, and it could also be seen as a procedure that, from two numbers that expressed the lengths of two sides, allowed us to produce the third. Today, we move from one of these ways of seeing to the other in a very flexible way, so flexible that we no longer see the different statements that have been synthesized under the name of "Pythagorean theorem"... What did it take, what circulation of ideas, what transformations of ways of seeing the triangle, for these different statements to become points of view between which one could easily move? So my answer to the question: "Is mathematics all one?" is yes and no. Because in fact, what for us today is one and the same thing could have been understood in different ways in the past; and it could also appear tomorrow as the same thing as something that today seems to us to have no relation. It has been a long work in history for those things to be made, and the history of this work is just as interesting as the history of the introduction of a new concept or of the achievement of a new theorem.

Interview with Prof. Karine Chemla:
https://www.insmi.cnrs.fr/en/cnrsinfo/8ecm-interview-karine-chemla

In Summary...

Using History of Mathematics to broaden ideas of what constitutes valuable mathematical practice, can enable you to:

- Develop 'Mathematical Resilience'.

In Summary...

Using History of Mathematics to broaden ideas of what constitutes valuable mathematical practice, can enable you to:

- Develop 'Mathematical Resilience'.
- Practice thinking critically about mathematics and mathematical proofs.

In Summary...

Using History of Mathematics to broaden ideas of what constitutes valuable mathematical practice, can enable you to:

- Develop 'Mathematical Resilience'.
- Practice thinking critically about mathematics and mathematical proofs.
- Naturally meet a wider diversity of mathematicians.

In Summary...

Using History of Mathematics to broaden ideas of what constitutes valuable mathematical practice, can enable you to:

- Develop 'Mathematical Resilience'.
- Practice thinking critically about mathematics and mathematical proofs.
- Naturally meet a wider diversity of mathematicians.
- Study history, sociology, politics, linguistics, translation, philosophy...

In Summary...

Using History of Mathematics to broaden ideas of what constitutes valuable mathematical practice, can enable you to:

- Develop 'Mathematical Resilience'.
- Practice thinking critically about mathematics and mathematical proofs.
- Naturally meet a wider diversity of mathematicians.
- Study history, sociology, politics, linguistics, translation, philosophy...
- Understand how mathematics can be presented to different audiences.

In Summary...

Using History of Mathematics to broaden ideas of what constitutes valuable mathematical practice, can enable you to:

- Develop 'Mathematical Resilience'.
- Practice thinking critically about mathematics and mathematical proofs.
- Naturally meet a wider diversity of mathematicians.
- Study history, sociology, politics, linguistics, translation, philosophy...
- Understand how mathematics can be presented to different audiences.

References and sources

Podcasts: You're Dead To Me: Medieval Science, from 24 September 2021, on BBC Sounds; In our time: e, from 25 September 2014, on BBC Sounds

Twitter: @MathHistFacts, @MathsHistory

Bibliography

G. F. A. M. de L'Hôpital. Analyse des infiniment petits, pour l'intelligence des lignes courbes. I'Imprimerie Royale Paris, 1696. Find on Solo here.
C. Truesdell. The new Bernoulli edition. Isis, 49:54-62, 1958. Find on Solo here.

