BO1 History of Mathematics Lecture III

The beginnings of calculus, continued
Part 3: Newton and Leibniz

MT 2021 Week 2

Simple 'integrals'

Using the summation rule we can find the quadrature for

$$
x^{2}, \quad x^{3}, \quad \ldots, \quad x^{1 / 3}, \quad \ldots, \quad x^{-4}, \quad \ldots
$$

Simple 'integrals'

Using the summation rule we can find the quadrature for

$$
x^{2}, \quad x^{3}, \quad \ldots, \quad x^{1 / 3}, \quad \ldots, \quad x^{-4}, \quad \ldots
$$

and

$$
(1+x)^{3} \text { or }\left(1+x^{2}\right)^{5} \text { or }
$$

Simple 'integrals'

Using the summation rule we can find the quadrature for

$$
x^{2}, \quad x^{3}, \quad \ldots, \quad x^{1 / 3}, \quad \ldots, \quad x^{-4}, \quad \ldots
$$

and

$$
(1+x)^{3} \text { or }\left(1+x^{2}\right)^{5} \text { or }
$$

but what about

$$
\left(1-x^{2}\right)^{1 / 2} \quad[\text { for a circle }]
$$

or

$$
(1+x)^{-1} \quad[\text { for a hyperbola }] ?
$$

Enter Newton...

In his own words:
In the winter between the years 1664 and 1665 upon reading Dr Wallis's Arithmetica infinitorum and trying to interpole his progressions for squaring the circle, I found out first an infinite series for squaring the circle and then another infinite series for squaring the Hyperbola ...

Newton extended Wallis' method of interpolation...

Newton's integration of $(1+x)^{-1}$

	$(1+x)^{-1}$	$(1+x)^{0}$	$(1+x)^{1}$	$(1+x)^{2}$	$(1+x)^{3}$	$(1+x)^{4}$. .
x	?	1	1	1	1	1	. .
$\frac{x^{2}}{2}$?	0	1	2	3	4	. .
$\frac{x^{3}}{3}$?	0	0	1	3	6	. .
$\frac{x^{4}}{4}$?	0	0	0	1	4	. .
$\frac{x^{5}}{5}$?	0	0	0	0	1	. .
:	:	:	:	$:$	$:$	$:$.

The entry in the row labelled $\frac{x^{m}}{m}$ and the column labelled $(1+x)^{n}$ is the coefficient of $\frac{x^{m}}{m}$ in $\int(1+x)^{n} d x$. (NB. Newton did not use the notation $\int(1+x)^{n} d x$.)

Newton's integration of $(1+x)^{-1}$

	$(1+x)^{-1}$	$(1+x)^{0}$	$(1+x)^{\mathbf{1}}$	$(1+x)^{2}$	$(1+x)^{3}$	$(1+x)^{4}$. .
x	1	1	1	1	1	1	. .
$\frac{x^{2}}{2}$	-1	0	1	2	3	4	. .
$\frac{x^{3}}{3}$	1	0	0	1	3	6	. .
$\frac{x^{4}}{4}$	-1	0	0	0	1	4	. .
$\frac{x^{5}}{5}$	1	0	0	0	0	1	. .
$:$:	$:$:	$:$	$:$:	\because

The entry in the row labelled $\frac{x^{m}}{m}$ and the column labelled $(1+x)^{n}$ is the coefficient of $\frac{x^{m}}{m}$ in $\int(1+x)^{n} d x$. (NB. Newton did not use the notation $\int(1+x)^{n} d x$.)

The general binomial theorem

CUL Add. MS 3958.3, f. 72

See Mathematics emerging, §8.1.1

Newton's calculus: 1664-5

- rules for quadrature (influenced by Wallis's ideas of interpolation)

Newton's calculus: 1664-5

- rules for quadrature (influenced by Wallis's ideas of interpolation)
- rules for tangents (influenced by Descartes' double root method)

Newton's calculus: 1664-5

- rules for quadrature (influenced by Wallis's ideas of interpolation)
- rules for tangents (influenced by Descartes' double root method)
- recognition that these are inverse processes

Newton's vocabulary and notation

Newton's calculus 1664-5:

- fluents x, y, \ldots (quantities that vary with time t)

Newton's vocabulary and notation

Newton's calculus 1664-5:

- fluents x, y, \ldots (quantities that vary with time t)
- fluxions \dot{x}, \dot{y}, \ldots (rate of change of those quantities)

Newton's vocabulary and notation

Newton's calculus 1664-5:

- fluents x, y, \ldots (quantities that vary with time t)
- fluxions \dot{x}, \dot{y}, \ldots (rate of change of those quantities)
- moments o (infinitesimal time in which x increases by $\dot{x} o$)

Newton's calculus in action (The method of fluxions, 1736)

24

The Metbod of Fiuxions,

12. Ex. 5. As if the Equation $z z+a x z-y^{4}=0$ were propos'd to exprefs the Relation between x and y, as alio $\sqrt{a x-x x}$ $\xlongequal{=B D}$, for determining a Curve, which therefore will be a Circle. The Equation $z z+a x z-y^{4}=0$, as before, will give $2 z z+$ $a z x+a x z-4 y y^{\prime}=0$, for the Relation of the Celerities \dot{x}, \dot{y}, and z. And therefore fince it is $z=x \times \mathrm{BD}$ or $=x \sqrt{a x-x x}$, fubftitute this Value inftead of it, and there will arife the Equation $2 x z+a x x \sqrt{a x-x x}+a x z-4 y^{3}=0$, which determines the Relation of the Celerities \dot{x} and \dot{y}.

Demonstration of the Solution.
13. The Moments of flowing Quantities, (that is, their indefinitely fmall Parts, by the accertion of which, in indefinitely fmall portions of Time, they are continually increafed,) are as the Velocitics of their Flowing or Increafing.
14. Wherefore if the Moment of any one, as x, be reprefented by the Product of its Celerity x into an indefinitely fimall quantity \circ (that is, by $\dot{x}, 0^{\prime}$) the Moments of the others v, y, z, will be reprefented by iv, $j 0, z o$; becaufe $2 v, x a, y o$, and $z o$, are to each other as v, x, j, and z.
15. Now fince the Moments, as x_{0} and $j 0$, are the indefinitely

Ju the Anatie des little acceffions of the flowing Quantitics x and y, by which thofe Quantities are increafed through the feveral indefinitely little intecvals of Time; it follows, that thofe Quantitics x and y, after any indefinitely fimall interval of Time, become $x+\dot{x} 0$ and $y+j 0$. any indefinitely imall interval of 1 ime, become $x+$ and and $y+$ yo.
And thercfore the Equation, which at all times indifferently exprefies And thercfore the Equation, which at all times indifferently exprefies
the Relation of the fiowing Quantities, will as well cxprefs the the Relation of the flowing Quantities, will as well exprefs the
Relation between $x+\dot{x} 0$ and $y+y 0$, as between x and $y:$ So that $x+x_{0}$ and $y+y_{0}$ may be fubftimted in the fime Equation for thofe Quantities, inftead of x and y.
16. Therefore let any Equation $x^{3}-a x^{4}+a x y-y^{3}=0$ be given, and fubftitute $x+x 0$ for x, and $y+y$ for y, and there will arife

$$
\left.\begin{array}{r}
x^{3}+3 x o x^{4}+3 x^{2} a 0 x+x^{3} 0^{3} \\
-a x^{2}-2 a x o x-a x^{3} 00 \\
+a x y+a x o y+a y o x+a x j 00 \\
-y^{2}-3 y y^{2}-y^{y} c o y-y^{3} 0^{3}
\end{array}\right\}=0 .
$$

and Infinite Series.

17. Now by Suppofition $x^{2}-a x^{2}+a x y-y^{\prime}=0$, which therefore being expunged, and the remaining Terms being divided by a, there will remain $3 x x^{2}+3 x^{2} a x+x^{3} c o-2 a x x-a x^{2} 0+a x y+$ $a y x+a x y o-3 y^{2}-3 y^{2} c y-y^{3} \infty=0$. But whereas o is fuppofed to be infinitely little, that it may reprefent the Moments of Quantities; the Terms that are multiply d by it will be nothing in relpect of the ref. Therefore I reject them, and there remains $3 x x^{2}$ $2 a x x+a x y+a y x-3 y y^{2}=0$, as above in Examp. I.
18. Here we may obberve, that the Terms that are not multiply'i by o will always vanifh, as alfo thofe Terms that are multiply d by o of more than one Dimenfion. And that the reft of the Terms being divided by 0 , will always acquire the form that they ought to have by the foregoing Rule: Which was the thing to be proved. to have by the foregoing Rowe: Whew, the other things included in the
19. And this being now fhewn Rule will cafily follow. As that in the propos'd Equation feveral Rule will calily forlow, As that ind the propos the Tequation feveral flowing Qualtiply'd, not only by the Number of the Dineations of the flow-
met multiply C , not only by the Number of the Dimentions of the fow-
ing Quantitics, but alfo by any other Arithmetical Progrefions; fo ing Quantitics, but an by any othcr Arithmeticel Progreflions; 1o that in the Operation there may be the rame difference of the Terms
according to any of the flowing Quantities, and the Progrefion be aecording to any of the flowing Quantities, and the Progrefiion be
difpos'd according to the fame order of the Dimenfions of each of difpos'd according to the farse order of the Dimenfions of each of
them. And thele things being allow'd, what is taught befides in them. And thece things being allow'd, what is tau
Examp. 3,4 , and 5 , will be plain enough of itfelf.

PR O B. II.
An Equation being propofed, including the Fluxions of Quantities, to find the Relations of thofe शuantities to one anotber.

A Particular Solution.

1. As this Problem is the Converie of the foregoing, it mun be folved by procceding in a contrary manner. That is, the Tcrms multiply'd by \dot{x} being difpofed according to the Dimenfions of x; they muft be divided by $\frac{x}{x}$, and then by the number of thair Dimenfions, or perhaps by fome other Arithmetical Progreffion. Then the fame work muft be repeated with the Terms multiply'd by \dot{v}, \dot{y},

Newton's calculus in action (The method of fluxions, 1736)

Demonstration of the Solution.

13. The Moments of flowing Quantities, (that is, their indefinitely fmall Parts, by the acceffion of which, in indefinitely fmall portions of Time, they are continually increafed,) are as the Velocities of their Flowing or Increafing.
14. Wherefore if the Moment of any one, as x, be reprefented by the Product of its Celerity \boldsymbol{x} into an indefinitely fimall Quantity \circ (that is, by $\dot{x} 0$,) the Moments of the others v, y, z, will be reprefented by $\dot{j} 0, \dot{y} 0, z_{0}$; becaufe $v o, \dot{x} 0, y o$, and $z o$, are to each other as $\dot{v}, \dot{x}, \dot{y}$, and \dot{z}.
15. Now fince the Moments, as \dot{x}_{0} and jo, are the indefinitely little acceffions of the flowing Quantities x and y, by which thofe Quantities are increafed through the feveral indefinitely little intervals of Time; it follows, that thofe Quantities x and y, after any indefinitely fmall interval of Time, become $x+x_{0}$ and $y+y_{0}$. And therefore the Equation, which at all times indifferently expreffies the Relation of the flowing Quantities, will as well exprefs the Relation between $x+x_{0}$ and $y+y 0$, as between x and y : So that $x+x_{0}$ and $y+y_{0}$ may be fubftituted in the fame Equation for thofe Quantities, inftead of x and y.
16. Therefore let any Equation $x^{3}-a x^{2}+a x y-y^{3}=0$ be given, and fubftitute $x+x_{0}$ for x, and $y+y$ for y, and there will arife

$$
\left.\begin{array}{r}
x^{3}+3^{x o x^{2}}+3^{x^{2} 00 x+x^{3} 0^{3}} \\
-a x^{2}-2 a x o x-a x^{2} c o \\
+a x y+a x o y+a y o x+a x y 00 \\
-y^{5}-3 y o y^{2}-3 y^{3} c o y-y^{3} 0^{3}
\end{array}\right\}=0
$$

and Infinite Series.

17. Now by Suppofition $x^{3}-a x^{4}+a x y-y^{3}=0$, which therefore being expunged, and the remaining Terms being divided by 0 , there will remain $3 x x^{2}+3 x^{20} 0 x+x^{3} 60-2 a x x-a x^{2} 0+a x y+$ $a j x+a x y o-3 y^{2}-3 y^{2}+a y-y^{\prime} 00=0$. But whereaso is fuppofed to be infinitely little, that it may reprefent the Moments of Quantities ; the Terms that are multiply'd by it will be nothing in relpect of the reft. Therefore I reject them, and there remains $3 \dot{x} x^{2}$ $2 a x x+a x y+a y x-3 y y^{2}=0$, as above in Examp. . .
18. Here we may obferve, that the Terms that are not multiply'd by o will always vanifh, as alfo thofe Terms that are multiply'd by o of more than one Dimenfion. And that the reft of the Terms being divided by 0 , will always acquire the form that they ought to have by the foregoing Rule: Which was the thing to be proved.
19. And this being now flewn, the other things included in the Rule will eafily follow. As that in the propos'd Equation feveral flowing Quantities may be involved; and that the Terms may be multiply'd, not only by the Number of the Dimenfions of the flowing Quantities, but alfo by any other Arithmetical Progrefions; fo that in the Operation there may be the fame difference of the Terms according to any of the flowing Quantities, and the Progreffion be difpos'd according to the fame order of the Dimenfions of each of them. And thefe things being allow'd, what is taught befides in Examp. 3,4 , and 5 , will be plain enough of itfelf.

Leibniz's calculus

Independently, ten years later than Newton...

Leibniz's calculus

Independently, ten years later than Newton...
Leibniz's calculus, 1673-76:

- rules for quadrature - especially the transformation theorem (a.k.a. the transmutation theorem)

Leibniz's calculus

Independently, ten years later than Newton...
Leibniz's calculus, 1673-76:

- rules for quadrature - especially the transformation theorem (a.k.a. the transmutation theorem)
- rules for tangents - by characteristic (or differential) triangles

Leibniz's calculus

Independently, ten years later than Newton...
Leibniz's calculus, 1673-76:

- rules for quadrature - especially the transformation theorem (a.k.a. the transmutation theorem)
- rules for tangents - by characteristic (or differential) triangles
- recognition that these are inverse processes

Leibniz's calculus

Independently, ten years later than Newton...
Leibniz's calculus, 1673-76:

- rules for quadrature - especially the transformation theorem (a.k.a. the transmutation theorem)
- rules for tangents - by characteristic (or differential) triangles
- recognition that these are inverse processes

Differentials: du, dv; integrals: omn. I, later between $S I$ and \int I

Supplementum Geometriae Dimensoriae ... (1693)

No. IX.
 A C T A
 ERUDITORUM

publicata Lipfre,
Calendis Septembris, Anno M DC XCIII.
G. G. L. SUPPLEMENTUM GEOME. tris Dimenforic, feu generalisfima omnium Tetragonifmorum effactio per motum: Similiterque multiplex comfrultio lines ex data tangentium conditione.

DImenfiones linearum, fuperficierum \& folidorum plerorumque, ut \& inventiones centrorum gravitatis, reducuntur ad tetragonifmos figurarum planarum; \& hine nafcitur Grometria Dimenforia, toto ut fie dicam genere diveffa a Determinatrice, quam rectarum tantum magnitudines ingrediuntur, atque hinc quxfita punda ex punctis datis determinantur. Et Geometria quidem determinatrix reduci poteft regulariter ad x quationes Algebraicas, in quibus feilicet incognita ad certum aflurgit gradum. Sed dimenforia fua natura ab Algebra, non pendet; ecfialiquando eveniat (in cafu filicet quadraturarum ordinariarum) ut ad Algebraicas quantitates revocetur; uti Geometria determinatrix ab Arithmetica non pendet; etf aliquando eveniat (in cafu feilicet commenfurabilitatis) ut ad numeros feu rationales quantitates revocatur. Unde tripfices habemes quantitates: rationales, Algebraicas, EE trapfecendentes. Eft autem fons irrationalium Algebraicarum, ambiguitas problematis fou muthipticiuar; neque enim poffibile foret, plures valores eidem problemati fatisfacientes codem calculo exprimere, niff per quantitates radicales; ex vero non niff in cafibus fpecialibus ad rationalitates revocari polluns. Sed fons tranformdentium quantitatum eft infritudo. Ita ut Grometris tranjfendentiom (cujus pars dimenforia eft) refpondens Anslffis, fit ipfifima fiemtis infinitit. Porro quemadmodum ad conftrucedas quantitates Algebraicas, certiadhibentur

$$
\mathrm{Ccc} \text { motus, }
$$

A Supplement to the Geometry of Measurements, or the Most General of all Quadratures to be Effected
by a Motion: and likewise the various constructions of a curve from a given condition of the tangent
(Acta eruditorum, 1693)

Supplementum Geometriae Dimensoriae ... (1693)

390

ACTAERUDITORUM.

occafione defungi tandem praftet, ne intercidant, \& fatis diuifta, ultra, Horatiani limitis duplum preffa, Lucinam expectarunt.

Oftendam autem problema gonerale Qwadraturarsm reduci ad inpentionem lines datans babentis legem dedivitatum, five in qua latera Trianguli characteriftici aflignabilis datam inter fe habeant relationem, deinde oftendam hane lineam per motum a nobis excogitatum defcribi poffe. Nimirum in omni curva C (C) (figur, 2) incelligo triangulum cbaraflerificum duplex: alligoabile TBC, \& inasfgnabile GLC, fimilia inter fe. Et quidem inafignabile comprehenditur ipfis GL LC, elementis coordinatarum CB, CF, tanquam cruribus, \& GC, elemento arcus, tanquam bafi fcu hypotenufa. Sed A/Jignabile TBC comprehenditur inter axem, ordinatam, \& cangentem, exprimitque adeo angulum, quem directio curva (feusjustangens) ad axem vel bafin facit, hoc eft curvxe declivitatem in propofito puncto C. Sit jam zona quadranda $\mathrm{F}(\mathrm{H})$ comprehenfa inter curvam $\mathrm{H}(\mathrm{H})$, duas rectas parallelas FH \& (F$)(\mathrm{H})$ \& axemF (F) in hoc Axe fumto puncto fixo A, per A ducatur ad $A F$ normalis $A B$ tanquam axis conjugatus, \& in quavis HF (producta prout opus) fumaturpunCtum C: (cu fiat linea nova C(C) cujus haxe fit natura, ut expuncto C ducta ad axem conjugatum $A B$ (fi opus productum) tam ordinata conjugata CB , (xquali: AF) quam tangente CT, fit portio hujus axis inter eas comprchenfa TB, ad BC, ut HF ad conftantem A, fea a in BT equetur rectangulo AFH (circumferipto circa trilineum AFHA). His pofitis ajo rectangulum fub A \& fub $\mathrm{E}(\mathrm{C})$ (diferimine inter FC \& (F)(C) ordinatas curvx) aquari zonx F (H); adeoque fi linea H (H) productaincidat in A, trilincum AFHA figurx quadrand x, x equari rectangulo fub a conftante, \& FC ordinata figura quadratricis. Rem nofter calculus flatim oftendit, fit enim $A \mathrm{~F} y ; \& \mathrm{FH}, z ;$ \& BT, t \& FC, x; crit $t=z y: a$, ex hypothefi : rurfus t 二 $y d x$: Ly ex natura tangentium noftro calculo exprefla. Ergo $a d x=z d y$, 2deoque $2 x=\int z d y=A F H A$. Linea igitur $C(\mathrm{C})$ eft quadratrix refpectulinex $\mathrm{H}(\mathrm{H})$, cum ipfius $\mathrm{C}(\mathrm{C})$ ordinata FC , ducta in 4 conftantem, faciat rectangulum zquale arex feu fummzo ordinatarum ipfius $H(H)$ ad abfciffas debitas AF applicatarum. Hinc cum BT Ece ad AF ut FH ada (ex hypothefi) deturque relatio ipfius FH ad AF (azturam exhibens figurx quadrandx) dabitur ergo \& relatio BT

"I shall now show the general problem of quadratures to be reduced to the invention of a line having a given law of declivity

Supplementum Geometriae Dimensoriae ... (1693)

390

ACTAERUDITORUM.

occafione defungi tandem praftet, ne intercidant, \& fatis diuifta, ultra, Horatiani limitis duplum preffa, Lucinam expectarunt.

Oftendam autem problema gonerale Quadraturarsom reduci ad inpentionem lines datank babentis legem dedivitatum, five in qua latera Trianguli charaCteriftici allignabilis dataminter fe habeant relationem, deinde oftendam hanc lineam per motum a nobis excogitatum defcribi poffe. Nimirum in omni curva C (C) (figur, 2) intelligo triangulum cbaralierificum duplex: alligoabile TBC, \& inasfgnabile GLC, fimilia inter fe. Et quidem inafignabile comprehenditur ipfis GL LC, elementis coordinatarum CB, CF, tanquam cruribus, \& GC, elemento arcus, tanquam bafi fcu hypotenufa. Sed A/jogabile TBC comprehenditur inter axem, ordinatam, \& cangen. tem, exprimitque adeo angulum, quem directio curva (feu cjus tangens) ad axem vel bafin facit, hoc eft curvedeclivitatem in propofito puncto C. Sit jam zona quadranda $\mathrm{F}(\mathrm{H})$ comprehenfa inter curvam $\mathrm{H}(\mathrm{H})$, duas rectas parallelas FH \& (F)(H) \& axem $\mathrm{F}(\mathrm{F})$ in hoc Axe fumto puncto fixo A, per A ducatur ad $A F$ normalis $A B$ tanquam axis conjugatus, \& in quavis HF (producta prout opus) fumaturpunCtum C: Icu fiat linea nova C(C) cujus haxe fit natura, ut expuncto C ducta ad axem conjugatum $A B$ (fi opus productum) tam ordinata conjugata CB , (xquali: AF) quam tangente CT, fit portio hujus axis inter eas comprchenfa TB, ad BC, ut HF ad conftantem A, fea a in BT equetur rectangulo AFH (circumfcripto circa trilineum AFHA). His pofitis ajo rectangulum fub a \& fub $\mathrm{E}(\mathrm{C})$ (diferimine inter FC \& (F)(C) ordinatas curvx) aquari zonx F (H); adeoque fi linea $\mathrm{H}(\mathrm{H})$ productaincidat in A, trilincum AFHA figurx quadrand x, x quari rectangulo fub a conftante, \& FC ordinata figura quadratricis. Rem nofter calculus fatim oftendit, fitenim $\mathrm{AF} y ; \& \mathrm{FH}, z ;$ \& BT, t \& FC, x; crit t 二 $z y: a$, ex hypothefi : rurfus t 二 $y d x$: Ly ex natura tangentium noftro calculo exprefla. Ergo $A d x=z d y$, 2deoque $2 x=\int \approx d y=A F H A$. Linea igitur $C(\mathrm{C})$ eft quadratrix refpectulinex $\mathrm{H}(\mathrm{H})$, cum ipfius $\mathrm{C}(\mathrm{C})$ ordinata FC , ducta in a conftantem, faciat rectangulum zquale arex feu fummzo ordinatarum ipfius $H(H)$ ad abfciffas debitas AF applicatarum. Hinc cum BT fic ad AF ut FH ada (ex hypothefi) deturque relatio ipfius FH ad ΔF (atuam exhibens figurx quadrandx) dabitur ergo \& relatio BT
> "I shall now show the general problem of quadratures to be reduced to the invention of a line having a given law of declivity " ...
> i.e., integration is reduced to the finding of a curve with a particular tangent - in modern terms, the antiderivative

For Latin-readers: full paper available online

Newton's calculus and Leibniz's calculus compared

Newton (1664-65):
rules for quadrature rules for tangents 'fundamental theorem'
dot notation
physical intuition:
rates of change

PROBLEM:
vanishing quantities o

Leibniz (1673-76):
rules for quadrature rules for tangents 'fundamental theorem'
differential notation
algebraic intuition rules and procedures

PROBLEM:
vanishing quantities $\mathrm{du}, \mathrm{dv}, \ldots$

An elementary introduction to the development of calculus

