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BO1 History of Mathematics
Lecture III

The beginnings of calculus, continued
Part 2: Indivisibles and infinitesimals

MT 2021 Week 2
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New methods: indivisibles and infinitesimals

Indivisibles: geometric objects making up a higher-dimensional
object (e.g., points → line, lines → plane)

Infinitesimal: arbitrarily small but nonzero quantity

But distinction often blurred

During the 17th century, both concepts saw much use — despite
the fact that they appeared to contradict Euclidean principles
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Indivisibles

Early treatments by de Saint Vincent in c. 1623 (but not published
until 1647) and Roberval in c. 1628–34 (but not published until
1693).

First published treatment by Bonaventura Cavalieri (1598–1647) in
Geometria indivisibilibus continuorum nova quadam ratione
promota [Geometry advanced in a new way by the indivisibles of
the continua] (1635).

Used by Evangelista Torricelli (1608–1647) in 1644 to calculate the
volume of an infinite hyperboloid of revolution.

Developed by John Wallis (1616–1703) and others.
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Cavalieri’s Geometria
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Torricelli’s hyperbolic solid (Opera geometrica, 1644)

(See Mathematics emerging, §3.3.1.)
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John Wallis (1616–1703)

Studied at Emmanuel College,
Cambridge (BA 1637, MA 1640)

1643–1649: scribe for Westminster
Assembly

1644–1645: Fellow of Queens’
College, Cambridge

1643–1689: cryptographer to
Parliament, then to the Crown

1649–1703: Savilian Professor of
Geometry in Oxford
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Arithmetica infinitorum

John Wallis,
Arithmetica infinitorum
(The arithmetic of infinitesimals)
Oxford, 1656

Translation by
Jacqueline A. Stedall
Springer, 2004
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Arithmetica infinitorum

I Arithmetical methods rather than geometrical

, but repeatedly
appealed to geometry for justification

I Investigation of sums of sequences of powers (or ratios of
these to a known fixed quantity) — usually decreasing

I Fixed an endpoint, dividing interval into infinite number of
arbitrarily small subintervals — these are the ‘infinitesimals’ of
Wallis’ title
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Wallis and indivisibles

For the triangle . . . consists of an
infinite number of parallel lines in
arithmetic proportion . . .

(See Mathematics emerging,
§2.4.2.)
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Wallis and indivisibles?

For it amounts to the same thing
as if, when an infinite number of
parallelograms are inscribed in (or
circumscribed about) a triangle,
it seems that they equal to
complete triangle . . .

(See Mathematics emerging,
§2.4.2.)
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Sums of powers

Wallis’ method depended upon the summation rule

A∑
a=0

an ≈ An+1

n + 1

This was known to Fermat, Roberval, and Cavalieri in the 1630s for
positive integers n

, but in the 1650s Wallis extended it to negative
and fractional n.
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Simple ‘integrals’

Using the summation rule we can find the quadrature for

x2, x3, ..., x1/3, ..., x−4, ...

and
(1+ x)3 or (1+ x2)5 or ...

but what about
(1− x2)1/2 [for a circle]

or
(1+ x)−1 [for a hyperbola] ?
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Wallis and the quadrature of a parabola

Wallis sought the area under the
parabola y = x2 between x = 0
and x = x0

He used the language of ratio,
hence sought to calculate the
ratio of the area A under the
curve to that of the corresponding
rectangle (x0y0), which we may
think of as the fraction A

x0y0
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Wallis and the quadrature of a parabola

Wallis considered an area to be
the sum of the lengths of the
lines contained within it (makes
sense?)

, so
I A is the sum of the values of

x2 as x ranges from 0 to x0

I x0y0 is the sum of as many
copies of x2

0 (?)
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Wallis and the quadrature of a parabola
Break (0, x0) into n subintervals,
suppose that x only takes the
values at the endpoints of these,
and consider the ratio

R =
02 + 12 + 22 + · · ·+ n2

n2 + n2 + n2 + · · ·+ n2

As we make n larger, this ratio
will become a closer
approximation to A

x0y0

[Note that we are deliberately
avoiding the terminology of
limits, and that some x2

0 s have
been cancelled, thanks to the use
of ratios]
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Wallis and the quadrature of a parabola

Wallis investigated the cases of
small n

For n = 1 (one red line),

R =
02 + 12

12 + 12 =
1
2
=

1
3
+

1
6
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Wallis and the quadrature of a parabola

For n = 2 (two red lines),

R =
02 + 12 + 22

22 + 22 + 22

=
5
12

=
1
3
+

1
12
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For n = 2 (two red lines),

R =
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Wallis and the quadrature of a parabola

For n = 3 (three red lines),

R =
02 + 12 + 22 + 32

32 + 32 + 32 + 32

=
14
36

=
1
3
+

1
18
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Wallis and the quadrature of a parabola

So as n increases A
x0y0

approaches
1
3 , hence A = 1

3x
3
0 , as we’d expect

Wallis called this method of
spotting and extending a pattern
‘induction’ — it was criticised at
the time (for example, by Pascal)
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Wallis and the quadrature of a parabola

So as n increases A
x0y0

approaches
1
3 , hence A = 1

3x
3
0 , as we’d expect

Wallis called this method of
spotting and extending a pattern
‘induction’ — it was criticised at
the time (for example, by Pascal)


