BO1 History of Mathematics Lecture III

The beginnings of calculus, continued Part 2: Indivisibles and infinitesimals

MT 2021 Week 2

New methods: indivisibles and infinitesimals

Indivisibles:
geometric objects making up a higher-dimensional object (e.g., points \rightarrow line, lines \rightarrow plane)

Infinitesimal: arbitrarily small but nonzero quantity

New methods: indivisibles and infinitesimals

Indivisibles: geometric objects making up a higher-dimensional object (e.g., points \rightarrow line, lines \rightarrow plane)

Infinitesimal: arbitrarily small but nonzero quantity

But distinction often blurred

New methods: indivisibles and infinitesimals

Indivisibles: geometric objects making up a higher-dimensional object (e.g., points \rightarrow line, lines \rightarrow plane)

Infinitesimal: arbitrarily small but nonzero quantity

But distinction often blurred

During the 17 th century, both concepts saw much use - despite the fact that they appeared to contradict Euclidean principles

Indivisibles

Early treatments by de Saint Vincent in c. 1623 (but not published until 1647) and Roberval in c. 1628-34 (but not published until 1693).

Indivisibles

Early treatments by de Saint Vincent in c. 1623 (but not published until 1647) and Roberval in c. 1628-34 (but not published until 1693).

First published treatment by Bonaventura Cavalieri (1598-1647) in Geometria indivisibilibus continuorum nova quadam ratione promota [Geometry advanced in a new way by the indivisibles of the continua] (1635).

Indivisibles

Early treatments by de Saint Vincent in c. 1623 (but not published until 1647) and Roberval in c. 1628-34 (but not published until 1693).

First published treatment by Bonaventura Cavalieri (1598-1647) in Geometria indivisibilibus continuorum nova quadam ratione promota [Geometry advanced in a new way by the indivisibles of the continua] (1635).

Used by Evangelista Torricelli (1608-1647) in 1644 to calculate the volume of an infinite hyperboloid of revolution.

Indivisibles

Early treatments by de Saint Vincent in c. 1623 (but not published until 1647) and Roberval in c. 1628-34 (but not published until 1693).

First published treatment by Bonaventura Cavalieri (1598-1647) in Geometria indivisibilibus continuorum nova quadam ratione promota [Geometry advanced in a new way by the indivisibles of the continua] (1635).

Used by Evangelista Torricelli (1608-1647) in 1644 to calculate the volume of an infinite hyperboloid of revolution.

Developed by John Wallis (1616-1703) and others.

Cavalieri's Geometria

Torricelli's hyperbolic solid (Opera geometrica, 1644)

Probleme Secundume:

Lemma V.

C
Vinf cumque cylindri ghil intra folidum acurnwadef crip - ti (vrin prgcedenti figura) fuper ficies fine bafibus aquaIs ef crrculo conins fomidiameere firt linea df. nempef emiaxis, fine femilatus verfum ip fius hyperbols. Hoc enim in ipfopregrefuprecedentis lemmatis demonforatum eff.

Theorema.

Olidum acutum hyperbolicuminfinitè longum,fectum planoad axem erecto, vnà cum cy lindro fux bafis, xquale eft cylindro cuidam retto, cuius bafis diameter fit latus verfum, fiue axis hyperbolay, altitudo verò fit zqualis femidiametro bae fisipfius acuti folidi.Efto hyperbola cuius afymptoci $a b, a c$ angulum rectumcontineant; fumptoq in hyperbola quolibet punto d, ducatur $d e$ xquidiftans ipfi $a b, \& d p$ xquidiftans $\& c$. Tūconuertatur vniuerfa figuracirca axé $a 6$. ità vet fiat folidum acutum byperbolicùm ebd, vnacumcylindrofux bafis $f e d c$. Poducatur $b a$ in b. itavt thax Lualis fit integro axi, fiue lateri
 verfo hyperbola.Et circa diametrum Δb intelligaturcircplus crectus ad afymptoton as: \& fuper bafi $a b$ concipiatur cylindrus rect is $a<g h$, cuius altitudo fit ac, nempe femidiameter bafis acuri folidi. Dico folidum vniuerfum $f c b d c$, quanquam fine fine longum, aquale tamen effecylindro argh
Accipiacur in reda ase quodlibetpuncums is \&e per i intelligutur ducta fuperficies cylindrica onli in folido acuto

P 2
com-

Torricelli's hyperbolic solid (Opera geometrica, 1644)

Probleme Secundume

Lemma V. induaditivine \& gos

> Vimp cumque cylindri ghil intra folidum acurnumdeforip ${ }^{t i}$ (vrin prgcedenti figura) Jupecficies inne bafibus aquaIss ef crrculo conins fomidiameerer firt linea df. nempef emiaxis, fine femilatus verfum ipfius hyperbole. Hoc enim in ipfopregrefuprecedentis lemmatis demonforatum eff.

Theorema .

Olidum acutum hyperbolicum infinitè longum,fectum plano ad axem erecto, vnà cum cylindro fux bafis, xquale eft cylindro cuidam retto, cuius bafis diameter fit latus verfum, fiue axis hy perbolax, altitudo verò fit x qualis femidiametro bae fisipfius acuti folidi.Efto hyperbola cuius afymptoti $a b, a c$ angulum rectumcontineant; fumptoq; in hyperbola quolibet punAo d, ducatur $d e$ xquidiftans ipfi $\Delta 6, \& d p$ xquidiftans $\& c$. Tūconvertatur vniuerfa figuracirca axē 16 . itì vt fiat folidum acutum byperbolicum ebd, vnacumcylindrofux bafis $f e d e$. Poducatur $b a$ in b, itavt whag ual is fitintegro axi, fiue latéri
 verfo hyperbola.Etcirca diametruim Δb intelligatuircirculus ecectus ad afymptoton $\& \varepsilon$: $\&$ fuper bafi $a b$ concipiatur cylindrus re tis $a<g h$, cuius altitudo fit «c, nempe femidiameter bafis acuit folidi. Dico folidum vniuerfum $f c b d c$, quanquam fine fine longum, aquale tamen effe cylindro acgh
Accipiaur in reta ase quodlibetpunctum i, \& per i intelligutur ducta fuperficies cylindrica onli in folido acuto

P 2
com-
(See Mathematics emerging, §3.3.1.)

John Wallis (1616-1703)

Studied at Emmanuel College,
Cambridge (BA 1637, MA 1640)
1643-1649: scribe for Westminster Assembly

1644-1645: Fellow of Queens'
College, Cambridge
1643-1689: cryptographer to Parliament, then to the Crown

1649-1703: Savilian Professor of Geometry in Oxford

Arithmetica infinitorum

$\begin{gathered} \mathrm{GE} \\ \mathrm{~A} \end{gathered}$

SIVE
Nova Methodus Inquirendi in Curvilineorum Quadraturam, aliaq; difficiliora

Mathefeos Problemata.

OXONII,
Typit LEON: LICHFIELD Academix Typographi, Impenfis THO. RUBINSON. Amp 1696.

John Wallis,
Arithmetica infinitorum
(The arithmetic of infinitesimals)
Oxford, 1656
Translation by
Jacqueline A. Stedall
Springer, 2004

Arithmetica infinitorum

- Arithmetical methods rather than geometrical

Arithmetica infinitorum

- Arithmetical methods rather than geometrical, but repeatedly appealed to geometry for justification

Arithmetica infinitorum

- Arithmetical methods rather than geometrical, but repeatedly appealed to geometry for justification
- Investigation of sums of sequences of powers (or ratios of these to a known fixed quantity)

Arithmetica infinitorum

- Arithmetical methods rather than geometrical, but repeatedly appealed to geometry for justification
- Investigation of sums of sequences of powers (or ratios of these to a known fixed quantity) - usually decreasing

Arithmetica infinitorum

- Arithmetical methods rather than geometrical, but repeatedly appealed to geometry for justification
- Investigation of sums of sequences of powers (or ratios of these to a known fixed quantity) - usually decreasing
- Fixed an endpoint, dividing interval into infinite number of arbitrarily small subintervals - these are the 'infinitesimals' of Wallis' title

Wallis and indivisibles

PROP. II. Theorema,

SI fumatur feries quantitatum Arithmeticè proportionalium (five juxta naturalem numerorum confecutionem) continuè crefcentium, 2 puncto vel o inchoatarum, \& numero quidem ael finitarum velcinfinitarum (nulla enim difcriminis caufa erit,'; erit illa ad feriem totidem maximæ æqualium, ut 1 ad 2.

Nempe, fi primus terminas fit o, fecundus I , (n nam fifecus, moderatio adhibenda erit,) \& ultimus l erit fumma $\frac{l+\pi}{3} l$. (erit enim, eocafu, numerus terminorum $l \dagger_{1}$) vel, (pofito namero terminorum a, quanturcunq; fit terminus fecundus):

PROP. III. Corollariam:

FRgo, Triangulum ad Parallelogrammwn (Super a-quali bafe, equè altum, eft ut 1 ad 2 .

For the triangle . . . consists of an infinite number of parallel lines in arithmetic proportion...
(See Mathematics emerging, §2.4.2.)

Wallis and indivisibles?

Prop. 14. Arithmetica Infinitoram.

ralis initium. Quamvis enim Sectorum illorum numero infinitorum aggregatum, ipfi figure lineis recta \& Spirali terminatx, (juxta methodum Indiviibilium) xquale ponatur; non tamen illud de omniom Arcubus cum ipfa Spirali (propriè djAa) comparatis obtinebit. Tantundem enim effet, acfi quis, dum infinita numero parallelogramma triangulo infcripta (aut etiam circumfripta)toti triangulo VBS aqualia videat, inde

concluderet eorum omniam latera redtæ $\mathbf{V S}$ adjacentia (re. Ax VB parallela) ipfi VS fimul xqualia effe, vel qux recte VB adjacent (ipfi VS paraltela) xqualia fimul effe coti VB. (Quod fiquando verum effe contingat, puta in triangulo ifofceli, non tamenid univerfaliter concludendum erit.) Atq; hocquidem eo potius admonendum duxi, quod viderim etiam viros doetos nonnunquam fpeciofa ejufmodi verifimilitudine in Iapfum proclives effe. Cur autem omiffa Spiraligenuina, fpuriam hanc peripheriz comparaverim; caufa eft, quod huic poffim , non autem illi, x qualem peripheriam affgnare.

PROP. XIV. Gorolatiam.

ET propterea etiam fegnonta Spiralis, a principio Spiralis exor \int a, funt ad rellas conterminas, ficut Parabole Diametri intercepte, ad ordinatim-applicates.

D d 2
Nempe

For it amounts to the same thing as if, when an infinite number of parallelograms are inscribed in (or circumscribed about) a triangle, it seems that they equal to complete triangle ...
(See Mathematics emerging, §2.4.2.)

Sums of powers

Wallis' method depended upon the summation rule

$$
\sum_{a=0}^{A} a^{n} \approx \frac{A^{n+1}}{n+1}
$$

This was known to Fermat, Roberval, and Cavalieri in the 1630s for positive integers n

Sums of powers

Wallis' method depended upon the summation rule

$$
\sum_{a=0}^{A} a^{n} \approx \frac{A^{n+1}}{n+1}
$$

This was known to Fermat, Roberval, and Cavalieri in the 1630s for positive integers n, but in the 1650s Wallis extended it to negative and fractional n.

Simple 'integrals'

Using the summation rule we can find the quadrature for

$$
x^{2}, \quad x^{3}, \quad \ldots, \quad x^{1 / 3}, \quad \ldots, \quad x^{-4}, \quad \ldots
$$

Simple 'integrals'

Using the summation rule we can find the quadrature for

$$
x^{2}, \quad x^{3}, \quad \ldots, \quad x^{1 / 3}, \quad \ldots, \quad x^{-4}, \quad \ldots
$$

and

$$
(1+x)^{3} \text { or }\left(1+x^{2}\right)^{5} \text { or }
$$

Simple 'integrals'

Using the summation rule we can find the quadrature for

$$
x^{2}, \quad x^{3}, \quad \ldots, \quad x^{1 / 3}, \quad \ldots, \quad x^{-4}, \quad \ldots
$$

and

$$
(1+x)^{3} \text { or }\left(1+x^{2}\right)^{5} \text { or }
$$

but what about

$$
\left(1-x^{2}\right)^{1 / 2} \quad[\text { for a circle }]
$$

or

$$
(1+x)^{-1} \quad[\text { for a hyperbola }] ?
$$

Wallis and the quadrature of a parabola

Wallis sought the area under the parabola $y=x^{2}$ between $x=0$ and $x=x_{0}$

Wallis and the quadrature of a parabola

Wallis sought the area under the parabola $y=x^{2}$ between $x=0$ and $x=x_{0}$

He used the language of ratio, hence sought to calculate the ratio of the area A under the curve to that of the corresponding rectangle ($x_{0} y_{0}$), which we may think of as the fraction $\frac{A}{x_{0} y_{0}}$

Wallis and the quadrature of a parabola

Wallis considered an area to be the sum of the lengths of the lines contained within it (makes sense?)

Wallis and the quadrature of a parabola

Wallis considered an area to be the sum of the lengths of the lines contained within it (makes sense?), so

- A is the sum of the values of x^{2} as x ranges from 0 to x_{0}
- $x_{0} y_{0}$ is the sum of as many copies of x_{0}^{2} (?)

Wallis and the quadrature of a parabola

Break ($0, x_{0}$) into n subintervals, suppose that x only takes the values at the endpoints of these, and consider the ratio

$$
R=\frac{0^{2}+1^{2}+2^{2}+\cdots+n^{2}}{n^{2}+n^{2}+n^{2}+\cdots+n^{2}}
$$

Wallis and the quadrature of a parabola

Break ($0, x_{0}$) into n subintervals, suppose that x only takes the values at the endpoints of these, and consider the ratio

$$
R=\frac{0^{2}+1^{2}+2^{2}+\cdots+n^{2}}{n^{2}+n^{2}+n^{2}+\cdots+n^{2}}
$$

As we make n larger, this ratio will become a closer approximation to $\frac{A}{x_{0} y_{0}}$

Wallis and the quadrature of a parabola

Break ($0, x_{0}$) into n subintervals, suppose that x only takes the values at the endpoints of these, and consider the ratio

$$
R=\frac{0^{2}+1^{2}+2^{2}+\cdots+n^{2}}{n^{2}+n^{2}+n^{2}+\cdots+n^{2}}
$$

As we make n larger, this ratio will become a closer approximation to $\frac{A}{x_{0} y_{0}}$
[Note that we are deliberately avoiding the terminology of limits, and that some $x_{0}^{2} s$ have been cancelled, thanks to the use of ratios]

Wallis and the quadrature of a parabola

Wallis investigated the cases of small n

Wallis and the quadrature of a parabola

Wallis investigated the cases of small n

For $n=1$ (one red line),

$$
R=\frac{0^{2}+1^{2}}{1^{2}+1^{2}}
$$

Wallis and the quadrature of a parabola

Wallis investigated the cases of small n

For $n=1$ (one red line),

$$
R=\frac{0^{2}+1^{2}}{1^{2}+1^{2}}=\frac{1}{2}
$$

Wallis and the quadrature of a parabola

Wallis investigated the cases of small n

For $n=1$ (one red line),

$$
R=\frac{0^{2}+1^{2}}{1^{2}+1^{2}}=\frac{1}{2}=\frac{1}{3}+\frac{1}{6}
$$

Wallis and the quadrature of a parabola

For $n=2$ (two red lines),

$$
R=\frac{0^{2}+1^{2}+2^{2}}{2^{2}+2^{2}+2^{2}}
$$

Wallis and the quadrature of a parabola

For $n=2$ (two red lines),

$$
R=\frac{0^{2}+1^{2}+2^{2}}{2^{2}+2^{2}+2^{2}}=\frac{5}{12}
$$

Wallis and the quadrature of a parabola

For $n=2$ (two red lines),

$$
R=\frac{0^{2}+1^{2}+2^{2}}{2^{2}+2^{2}+2^{2}}=\frac{5}{12}=\frac{1}{3}+\frac{1}{12}
$$

Wallis and the quadrature of a parabola

For $n=3$ (three red lines),

$$
\begin{aligned}
R & =\frac{0^{2}+1^{2}+2^{2}+3^{2}}{3^{2}+3^{2}+3^{2}+3^{2}} \\
& =\frac{14}{36}=\frac{1}{3}+\frac{1}{18}
\end{aligned}
$$

Wallis and the quadrature of a parabola

So as n increases $\frac{A}{x_{0} y_{0}}$ approaches $\frac{1}{3}$, hence $A=\frac{1}{3} x_{0}^{3}$, as we'd expect

Wallis and the quadrature of a parabola

So as n increases $\frac{A}{x_{0} y_{0}}$ approaches $\frac{1}{3}$, hence $A=\frac{1}{3} x_{0}^{3}$, as we'd expect

Wallis called this method of spotting and extending a pattern 'induction' - it was criticised at the time (for example, by Pascal)

