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In the last lecture

@ Duals of Lebesgue spaces.
@ [? as a Hilbert space.

@ Density of simple functions for Lebesgue spaces.
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This lecture

@ Weak and weak* convergence in Lebesgue spaces.
e Continuity property of translation operators in LP.
@ Convolution. Young's inequality.

@ Differentiation rule for convolution.
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Weak and weak™* convergence in LP

Let X be a normed vector space and X* its dual.

@ We say that a sequence (x,) in X converges weakly to some
x € X if Tx, — Tx forall T € X*. We write x, — x.

@ We say that a sequence (T,) in X* converges weakly* to some
T e X*if T,x — Tx for all x € X. We write T, —~* T.
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Weak sequential compactness

Theorem (Weak sequential compactness in reflexive

Banach spaces)

Every bounded sequence in a reflexive Banach space has a weakly
convergent subsequence.

Corollary

Assume that 1 < p < oo and (fx) is bounded in LP(E). Then there is
a subsequence fi; which converges weakly in LP. In other words, there
exists a function f € LP such that

/fkjg—> / fg for all g € L”'(E).
E E
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Weak* sequential compactness

Theorem (Helly's theorem on weak* sequential
compactness in duals of separable Banach spaces)

Every bounded sequence in the dual of a separable Banach space has
a weakly* convergent subsequence.

v

Corollary

Assume that (fy) is bounded in L>°(E). Then there is a subsequence
fi, which converges weakly* in L>. In other words, there exists a
function f € L*> such that

/ fig — / fg for all g € L*(E).
E E
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A summary

Dual | Reflexivity | Separability Sequential
compactness
of B(0,1)
LP L Yes Yes Weak and weak*
l<p<oo
Lt L No Yes Neither
L°° oLt No No Weak*
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Continuity of translation operators

Translation operators: For a h € R” and a measurable function
f:R" — R, define 7,f by

(thf)(x) = f(x + h) for all x € R".

Then 75, : LP(R™) — LP(R") is a bounded linear transformation for
1 < p < 0. In fact it is an isometric isomorphism.

Theorem (Continuity in LP)

If f € LP(R") for some 1 < p < oo, then

li f—f n = 0.
s |75 | Lo ()
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Continuity of translation operators

@ In other words, for 1 < p < oo, for every fixed f € LP(R"), the
map h — 7,f is a continuous map from R” into LP(R").

@ The theorem is false for p = 00, e.g. with f = o with Q being
the unit cube.

@ The theorem does ¥***NOT*** assert that the maps h— 7, is a
continuous map from R” into .Z(LP(R"), LP(R")). In fact,

HTh — IdH;g(Lp(Rn)’Lp(Rn)) > 21/p when h 7§ 0.
* Let r=1h|/4 and let f = c,,r*”/PXBr(O) where ¢, is chosen such
that |||, = 1.

* Then 74f and f has disjoint support. So

1/p
I7af = Fllis = {lmnf 12 + £} = 2277,
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Continuity of translation operators

Proof:
@ Let .o denote the set of functions f in LP such that
|7 — fl|ee — 0 as |h| — 0.
@ ltisclear thatif f,g € o/ then f + g € &/, and Af € &/ for any
A € R. So &/ is a vector subspace of LP.
@ We claim that o7 is closed in LP, i.e. if (fy) C </ and fy — f in
LP, then f € o/. Indeed, by Minkowski's inequality, we have

|7nf — fllee < lITafc — fill e + [[7nfk — Tf o + | — fl|10
= |ITnfec = ficllee + 2[|fc — |10

Now, if one is given an € > 0, one can first select large k such
that ||fx — f|.r < /3, and then select 6 > 0 such that
HThfk — kaLp < 6/3 for all |h| < 5, so that

|7nf — f|le < € for all |h| < 0.
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Continuity of translation operators

@ So 7 is a closed vector subspace of LP.

@ Now, observe that if Q is a cube in R”, then
lThx@ — xolle — 0 as |h| — 0, by e.g. Lebesgue's dominated
convergence theorem (or a direct estimate).

@ So &7 contains all finite linear combinations of characteristic
functions of cubes. In particular, it contains all finite rational
linear combinations of characteristic functions of cubes
belonging to a fixed class of dyadic cubes. As this latter set is
dense in LP and &7 is closed, we thus have &7 = LP, as desired.
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Convolution

Definition
Let f and g be measurable functions on R"”. The convolution f x g of
f and g is defined by

(f*xg)(x) = / f(y)g(x —y)dy

wherever the integral converges.

Luc Nguyen (University of Oxford) C4.3 — Lecture 3 MT 2021 12 /27



Young's convolution inequality

Theorem (Young's convolution inequality)
Let p, q and r satisfy 1 < p,q,r < oo and

If f € LP(R") and g € LY(R"), then f x g € L"(R") and

| *gllr@wey < N llern)l| &1 Lo(rn)-
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Young's convolution inequality

Proof: We will only deal with the case g =1 and r = p. We are thus
given f € LP, g € L'. We need to show that f x g € L? and

I+ gller < [Ifllee llgl]er-

@ Observe that |f x g| < |f| % |g|. We may thus assume without
loss of generality in the proof that f,g > 0.

o Case 1: p=1.

* Consider the integral

I = / f(y)g(x —y) dxdy.
RAXR"

This integral is well-defined as f, g > 0 and the function
G(x,y) = g(x — y) is measurable as a function from R"” x R"
into R.
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Young's convolution inequality

o Case 1: p=1.

* Consider | = [, pn F(y)g(x — y) dx dy.
* By Tonelli's theorem, we have

/:/n{/nf(y)g(x—y)dy}dxz/n(f*g)(X)dX

= |f * gl
lz/n f(y){/ng(x—y)dX} dy = g fF(y)lgll dy

= [1Fllellgll e

* So [[fxgll = [Ifllallglle-

Luc Nguyen (University of Oxford) C4.3 — Lecture 3 MT 2021 15 /27



Young's convolution inequality

@ Case 2: p = co. This case is easy, as
(f*g)(X)Z/ f(y)g(x —y)dy
< i [l g(x = y) dy = [l l|g][12-

@ Case 3: 1 < p < .
* We start by writing

(7)) = [ [F)elx =) llec =) 1 dy

and applying Holder's inequality to the above.
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Young's convolution inequality

o Case 3: 1 < p < .

<)l JanlF)E(x = y)?1lg(x — )7 ] dy.

I(f * g)(x)| < /f X—y)]dy}l/p{/Rng(x—y)dy}l/p,
= [(£P * &) )7 llgll}2”

* It follows that

gl ={ [ 10 =)o}

<{ [ ora el

1
— |17« g|}0Plgl P
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Young's convolution inequality

o Case 3: 1 < p < 0.

1 1/p'
« |IF*glle < [1FP gl 2P llelli?

* So by Case 1,

1/p 1/p'
I+ gl < (177l ligle | gl

= [[fllellgll -
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Some notations

o If a = (a1,...,a,) € N"is a multi-index, we write
la = a1+ ...+ ap.

e If fis a function and a = (a4, ..., @,) is a multi-index, we write

0f = 0gr ... 0 f.
e For k>0, CK(R") = {continuous f:R"—

R such that 0*f exists and is continuous whenever|a| < k}.

o CKR") = {f € C*(R") which has compact support}. Recall
that, for a continuous function f,

Supp(f) = Support of f = {f(x) # 0}.
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Convolution with a function in C°(IR")

Iff € LlP(R"), 1< p< oo, and g € CO(R"), then f x g € CO(R").

Proof:

@ Fix some x € R". We need to show that
frxg(x+z)—fxg(x)—>0asz—0.

@ We compute
fxg(x+2z)—fxg(x)
= /n fly)gx+z—y) dy—/n f(y)g(x —y)dy

=L fy)le(x+z—y)—g(x—y)ldy.
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Convolution with a function in C°(IR")

Proof:
o frg(x+2z)—frg(x)= [pf(Vgx+z—y)—gx—y)dy.
e Since g € CX(R"), g = 0 out5|de of some big ball Br centered
at 0. Then, for |z] < R,
Frglcrs)~Fog() = [ f0lalerzy) sl
x—y|<2R

o Note that as g is continuous, it is uniformly continuous on Bsg.
Thus, for any given £ > 0, there exists small 6 € (0, R) such that

[g(x+z-y)—glx—y) <e
whenever|z| < § and |x — y| < 2R.

@ So when |z| < §, we have

\f*g<x+z)—f*g<x)\s6/ ()] dy.

[x—y|<2R
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Convolution with a function in C°(IR")

Proof:
@ So when |z| < 4§, we have

If * g(x +2z) — f*g(x)| < ellfllgx—yl<2ry)
< e[| o(n)

U e (1x—y1<2r))
= C,R"P'||f||oe.

@ Since the right side can be made arbitrarily small, this precisely
means that f x g(x +z) — f*xg(x) > 0asz—0,ie fxgis
continuous.
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Differentiation rule for convolution

If f € LP(R"),

1< p<oo, and g € CK(R") for some k > 1, then
fxge CKR") and
) =

D(f x g)(x

Proof
@ We will only consider the case k = 1. The general case can be
proved by applying the case k = 1 repeatedly.

@ Suppose that g € C}(R"). Fix a point x and consider
Oy, (f % g)(x). We need to show that

m (f xg)(x + ter) — f x g(x)
t—0 t
:ZD.Z?,.(X,f)

(f x D“g)(x) for all multi-index v with || < k.

= (f % 0x8)(x).

s
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Differentiation rule for convolution

Proof
o We have

D.Q.(x.t) = / f(y)g(x -y + te;) —g(x—y) dy.

As t — 0, the integrand converges to f(y)0y,g(x —y). We
would like to show that the above integral converges to

/ ()80~ y) dy = (F 0,8)(x).
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Differentiation rule for convolution

Proof
@ As before, if the support of g is contained in Bg, then, for
It| < R,
X—y+te) —glx —
Ix—y|<2R t

@ When |[x — y| <2R and |t| < R, we have |x — y + te;| < 3R.
Hence

lg(x —y +ter) — g(x —y)|
]

< max |0y, g| =: M.
Bs

R

So the integrand above satisfies

lintegrand| < M|f(y)].
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Differentiation rule for convolution

Proof
@ So we have, for |t| < R,

D.Q.(x. t) = /l_ » f(y)g(x —y+te)—g(x—y) dy

t

where
* integrand — f(y)0x,g(x —y) as t — 0.
x |integrand| < M|f(y)|, which belongs to L!({|x — y| < 2R}), as
f e LP(R").
@ By Lebesgue's dominated convergence theorem, we thus have

imD.0(x )= [ F(y)oglx—y)dy
[x—y|<2R

t—0

_ / F(y)0ug(x = y)dy = (F + 0,8)(x).
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Differentiation rule for convolution

Proof
@ We conclude that 0,,(f * g) exists and is equal to f * 0, g.

@ By the previous lemma, we have that f x 0,,g is continuous. So
Oy, (f * g) is continuous. Applying this to all partial derivatives,
we conclude that f x g € CY(R").
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