

C4.3 Functional Analytic Methods for PDEs Lecture 3

Luc Nguyen luc.nguyen@maths

University of Oxford

MT 2021

- Duals of Lebesgue spaces.
- L^2 as a Hilbert space.
- Density of simple functions for Lebesgue spaces.

- Weak and weak* convergence in Lebesgue spaces.
- Continuity property of translation operators in L^{p} .
- Convolution. Young's inequality.
- Differentiation rule for convolution.

Definition

Let X be a normed vector space and X^* its dual.

- **(**) We say that a sequence (x_n) in X converges weakly to some $x \in X$ if $Tx_n \to Tx$ for all $T \in X^*$. We write $x_n \rightharpoonup x$.
- We say that a sequence (T_n) in X^* converges weakly* to some $T \in X^*$ if $T_n x \to Tx$ for all $x \in X$. We write $T_n \rightharpoonup^* T$.

Theorem (Weak sequential compactness in reflexive Banach spaces)

Every bounded sequence in a reflexive Banach space has a weakly convergent subsequence.

Corollary

Assume that $1 and <math>(f_k)$ is bounded in $L^p(E)$. Then there is a subsequence f_{k_j} which converges weakly in L^p . In other words, there exists a function $f \in L^p$ such that

$$\int_E f_{k_j}g o \int_E$$
 fg for all $g \in L^{p'}(E).$

Theorem (Helly's theorem on weak* sequential compactness in duals of separable Banach spaces)

Every bounded sequence in the dual of a separable Banach space has a weakly* convergent subsequence.

Corollary

Assume that (f_k) is bounded in $L^{\infty}(E)$. Then there is a subsequence f_{k_j} which converges weakly* in L^{∞} . In other words, there exists a function $f \in L^{\infty}$ such that

$$\int_E f_{k_j}g o \int_E fg ext{ for all } g \in L^1(E).$$

	Dual	Reflexivity	Separability	Sequential
				compactness
				of $\overline{B(0,1)}$
Lp	$L^{p'}$	Yes	Yes	Weak and weak*
1				
L ¹	L∞	No	Yes	Neither
L^{∞}	$\supseteq L^1$	No	No	Weak*

Translation operators: For a $h \in \mathbb{R}^n$ and a measurable function $f : \mathbb{R}^n \to \mathbb{R}$, define $\tau_h f$ by

$$(\tau_h f)(x) = f(x+h)$$
 for all $x \in \mathbb{R}^n$.

Then $\tau_h : L^p(\mathbb{R}^n) \to L^p(\mathbb{R}^n)$ is a bounded linear transformation for $1 \le p \le \infty$. In fact it is an isometric isomorphism.

Theorem (Continuity in L^p)

If $f \in L^p(\mathbb{R}^n)$ for some $1 \le p < \infty$, then

$$\lim_{|h|\to 0} \|\tau_h f - f\|_{L^p(\mathbb{R}^n)} = 0.$$

Continuity of translation operators

- In other words, for $1 \le p < \infty$, for every fixed $f \in L^p(\mathbb{R}^n)$, the map $h \mapsto \tau_h f$ is a continuous map from \mathbb{R}^n into $L^p(\mathbb{R}^n)$.
- The theorem is false for $p = \infty$, e.g. with $f = \chi_Q$ with Q being the unit cube.
- The theorem does ***NOT*** assert that the maps h → τ_h is a continuous map from ℝⁿ into ℒ(L^p(ℝⁿ), L^p(ℝⁿ)). In fact,

$$\|\tau_h - Id\|_{\mathscr{L}(L^p(\mathbb{R}^n), L^p(\mathbb{R}^n))} \ge 2^{1/p}$$
 when $h \neq 0$.

- * Let r = |h|/4 and let $f = c_n r^{-n/p} \chi_{B_r(0)}$ where c_n is chosen such that $||f||_{L^p} = 1$.
- $\star\,$ Then $\tau_h f$ and f has disjoint support. So

$$\|\tau_h f - f\|_{L^p} = \left\{ \|\tau_h f\|_{L^p}^p + \|f\|_{L^p}^p \right\}^{1/p} = 2^{1/p}.$$

Continuity of translation operators

Proof:

- Let \mathscr{A} denote the set of functions f in L^p such that $\|\tau_h f f\|_{L^p} \to 0$ as $|h| \to 0$.
- It is clear that if $f, g \in \mathscr{A}$ then $f + g \in \mathscr{A}$, and $\lambda f \in \mathscr{A}$ for any $\lambda \in \mathbb{R}$. So \mathscr{A} is a vector subspace of L^p .
- We claim that \mathscr{A} is closed in L^p , i.e. if $(f_k) \subset \mathscr{A}$ and $f_k \to f$ in L^p , then $f \in \mathscr{A}$. Indeed, by Minkowski's inequality, we have

$$\begin{aligned} \|\tau_h f - f\|_{L^p} &\leq \|\tau_h f_k - f_k\|_{L^p} + \|\tau_h f_k - \tau_h f\|_{L^p} + \|f_k - f\|_{L^p} \\ &= \|\tau_h f_k - f_k\|_{L^p} + 2\|f_k - f\|_{L^p}. \end{aligned}$$

Now, if one is given an $\varepsilon > 0$, one can first select large k such that $\|f_k - f\|_{L^p} \le \varepsilon/3$, and then select $\delta > 0$ such that $\|\tau_h f_k - f_k\|_{L^p} \le \varepsilon/3$ for all $|h| \le \delta$, so that

$$\|\tau_h f - f\|_{L^p} \leq \varepsilon$$
 for all $|h| \leq \delta$.

- So \mathscr{A} is a closed vector subspace of L^p .
- Now, observe that if Q is a cube in ℝⁿ, then ||τ_hχ_Q − χ_Q ||_{L^p} → 0 as |h| → 0, by e.g. Lebesgue's dominated convergence theorem (or a direct estimate).
- So A contains all finite linear combinations of characteristic functions of cubes. In particular, it contains all finite rational linear combinations of characteristic functions of cubes belonging to a fixed class of dyadic cubes. As this latter set is dense in L^p and A is closed, we thus have A = L^p, as desired.

Definition

Let f and g be measurable functions on \mathbb{R}^n . The convolution f * g of f and g is defined by

$$(f*g)(x) = \int_{\mathbb{R}^n} f(y)g(x-y) \, dy$$

wherever the integral converges.

Theorem (Young's convolution inequality)

Let p, q and r satisfy $1 \leq p, q, r \leq \infty$ and

$$\frac{1}{p} + \frac{1}{q} = \frac{1}{r} + 1.$$

If $f \in L^p(\mathbb{R}^n)$ and $g \in L^q(\mathbb{R}^n)$, then $f \ast g \in L^r(\mathbb{R}^n)$ and

 $\|f * g\|_{L^{r}(\mathbb{R}^{n})} \leq \|f\|_{L^{p}(\mathbb{R}^{n})} \|g\|_{L^{q}(\mathbb{R}^{n})}.$

Proof: We will only deal with the case q = 1 and r = p. We are thus given $f \in L^p, g \in L^1$. We need to show that $f * g \in L^p$ and $\|f * g\|_{L^p} \le \|f\|_{L^p} \|g\|_{L^1}$.

- Observe that |f ∗ g| ≤ |f| ∗ |g|. We may thus assume without loss of generality in the proof that f, g ≥ 0.
- Case 1: *p* = 1.
 - \star Consider the integral

$$I=\int_{\mathbb{R}^n\times\mathbb{R}^n}f(y)g(x-y)\,dx\,dy.$$

This integral is well-defined as $f, g \ge 0$ and the function G(x, y) = g(x - y) is measurable as a function from $\mathbb{R}^n \times \mathbb{R}^n$ into \mathbb{R} .

* Consider $I = \int_{\mathbb{R}^n \times \mathbb{R}^n} f(y) g(x - y) \, dx \, dy$.

* By Tonelli's theorem, we have

$$I = \int_{\mathbb{R}^n} \left\{ \int_{\mathbb{R}^n} f(y) g(x - y) \, dy \right\} dx = \int_{\mathbb{R}^n} (f * g)(x) \, dx$$

= $\|f * g\|_{L^1}$.
$$I = \int_{\mathbb{R}^n} f(y) \left\{ \int_{\mathbb{R}^n} g(x - y) \, dx \right\} dy = \int_{\mathbb{R}^n} f(y) \|g\|_{L^1} \, dy$$

= $\|f\|_{L^1} \|g\|_{L^1}$.

* So
$$||f * g||_{L^1} = ||f||_{L^1} ||g||_{L^1}$$
.

• Case 2: $p = \infty$. This case is easy, as

$$(f * g)(x) = \int_{\mathbb{R}^n} f(y) g(x - y) dy$$

$$\leq \int_{\mathbb{R}^n} \|f\|_{L^{\infty}} g(x - y) dy = \|f\|_{L^{\infty}} \|g\|_{L^1}.$$

• Case 3:
$$1 .$$

 \star We start by writing

$$|(f * g)(x)| = \int_{\mathbb{R}^n} [f(y)g(x-y)^{\frac{1}{p}}][g(x-y)^{\frac{1}{p'}}] dy$$

and applying Hölder's inequality to the above.

• Case 3:
$$1 .
* $|(f * g)(x)| = \int_{\mathbb{R}^n} [f(y)g(x - y)^{\frac{1}{p}}][g(x - y)^{\frac{1}{p'}}] dy$.
* So
 $|(f * g)(x)| \le \left\{ \int_{\mathbb{R}^n} f(y)^p g(x - y) dy \right\}^{1/p} \left\{ \int_{\mathbb{R}^n} g(x - y) dy \right\}^{1/p'}$
 $= [(f^p * g)(x)]^{1/p} ||g||_{L^1}^{1/p'}.$$$

★ It follows that

$$\|f * g\|_{L^{p}} = \left\{ \int_{\mathbb{R}^{n}} |(f * g)(x)|^{p} dx \right\}^{1/p} \\ \leq \left\{ \int_{\mathbb{R}^{n}} (f^{p} * g)(x) dx \right\}^{1/p} \|g\|_{L^{1}}^{1/p'} \\ = \|f^{p} * g\|_{L^{1}}^{1/p} \|g\|_{L^{1}}^{1/p'}$$

• Case 3:
$$1 .
* $||f * g||_{L^p} \le ||f^p * g||_{L^1}^{1/p} ||g||_{L^1}^{1/p'}$.
* So by Case 1,
 $||f * g||_{L^p} \le \left[||f^p||_{L^1} ||g||_{L^1} \right]^{1/p} ||g||_{L^1}^{1/p'}$
 $= ||f||_{L^p} ||g||_{L^1}$.$$

Some notations

- If α = (α₁,..., α_n) ∈ ℕⁿ is a multi-index, we write |α| = α₁ + ... + α_n.
- If f is a function and $\alpha = (\alpha_1, \dots, \alpha_n)$ is a multi-index, we write $\partial^{\alpha} f = \partial_{x_1}^{\alpha_1} \dots \partial_{x_n}^{\alpha_n} f$.
- For $k \ge 0$, $C^k(\mathbb{R}^n) = \Big\{ \text{continuous } f : \mathbb{R}^n \to f : \mathbb{R}^n \Big\}$

 \mathbb{R} such that $\partial^{\alpha} f$ exists and is continuous whenever $|\alpha| \leq k$.

• $C_c^k(\mathbb{R}^n) = \left\{ f \in C^k(\mathbb{R}^n) \text{ which has compact support} \right\}$. Recall that, for a continuous function f,

$$Supp(f) =$$
Support of $f = \overline{\{f(x) \neq 0\}}$.

Convolution with a function in $C_c^0(\mathbb{R}^n)$

Lemma

If $f \in L^p(\mathbb{R}^n)$, $1 \le p \le \infty$, and $g \in C^0_c(\mathbb{R}^n)$, then $f * g \in C^0(\mathbb{R}^n)$.

Proof:

• Fix some $x \in \mathbb{R}^n$. We need to show that $f * g(x + z) - f * g(x) \rightarrow 0$ as $z \rightarrow 0$.

• We compute

$$f * g(x + z) - f * g(x)$$

= $\int_{\mathbb{R}^n} f(y)g(x + z - y) dy - \int_{\mathbb{R}^n} f(y)g(x - y) dy$
= $\int_{\mathbb{R}^n} f(y)[g(x + z - y) - g(x - y)] dy.$

Convolution with a function in $C_c^0(\mathbb{R}^n)$

Proof:

f * g(x + z) - f * g(x) = ∫_{ℝⁿ} f(y)[g(x + z - y) - g(x - y)] dy.
Since g ∈ C⁰_c(ℝⁿ), g ≡ 0 outside of some big ball B_R centered at 0. Then, for |z| < R,

$$f * g(x+z) - f * g(x) = \int_{|x-y| \le 2R} f(y) [g(x+z-y) - g(x-y)] dy.$$

 Note that as g is continuous, it is uniformly continuous on B
_{3R}. Thus, for any given ε > 0, there exists small δ ∈ (0, R) such that

$$ert g(x+z-y) - g(x-y) ert \leq arepsilon$$
 whenever $ert z ert \leq \delta$ and $ert x-y ert \leq 2R$.

• So when $|z| \leq \delta$, we have

$$|f * g(x+z) - f * g(x)| \leq \varepsilon \int_{|x-y| \leq 2R} |f(y)| dy.$$

Proof:

• So when $|z| \leq \delta$, we have

$$\begin{aligned} |f * g(x + z) - f * g(x)| &\leq \varepsilon ||f||_{L^1(\{|x - y| \leq 2R\})} \\ &\leq \varepsilon ||f||_{L^p(\mathbb{R}^n)} ||1||_{L^{p'}(\{|x - y| \leq 2R\})} \\ &= C_n R^{n/p'} ||f||_{L^p} \varepsilon. \end{aligned}$$

• Since the right side can be made arbitrarily small, this precisely means that $f * g(x + z) - f * g(x) \rightarrow 0$ as $z \rightarrow 0$, i.e. f * g is continuous.

Differentiation rule for convolution

Lemma

If $f \in L^p(\mathbb{R}^n)$, $1 \le p \le \infty$, and $g \in C_c^k(\mathbb{R}^n)$ for some $k \ge 1$, then $f * g \in C^k(\mathbb{R}^n)$ and

 $D^{\alpha}(f * g)(x) = (f * D^{\alpha}g)(x)$ for all multi-index α with $|\alpha| \leq k$.

Proof

- We will only consider the case k = 1. The general case can be proved by applying the case k = 1 repeatedly.
- Suppose that $g \in C_c^1(\mathbb{R}^n)$. Fix a point x and consider $\partial_{x_1}(f * g)(x)$. We need to show that

$$\lim_{t\to 0} \underbrace{\frac{(f\ast g)(x+te_1)-f\ast g(x)}{t}}_{=:D.Q.(x,t)} = (f\ast \partial_{x_1}g)(x).$$

Proof

We have

$$D.Q.(x,t) = \int_{\mathbb{R}^n} f(y) \frac{g(x-y+te_1)-g(x-y)}{t} \, dy.$$

As $t \to 0$, the integrand converges to $f(y)\partial_{x_1}g(x-y)$. We would like to show that the above integral converges to

$$\int_{\mathbb{R}^n} f(y) \partial_{x_1} g(x-y) \, dy = (f * \partial_{x_1} g)(x).$$

Differentiation rule for convolution

Proof

• As before, if the support of g is contained in B_R , then, for |t| < R,

$$D.Q.(x,t) = \int_{|x-y| \le 2R} f(y) \frac{g(x-y+te_1) - g(x-y)}{t} \, dy.$$

• When $|x - y| \le 2R$ and |t| < R, we have $|x - y + te_1| \le 3R$. Hence

$$\frac{|g(x-y+te_1)-g(x-y)|}{|t|} \leq \max_{\bar{B}_{3R}} |\partial_{x_1}g| =: M.$$

So the integrand above satisfies

$$||integrand| \leq M|f(y)|.$$

Differentiation rule for convolution

Proof

• So we have, for
$$|t| \leq R$$
,

$$D.Q.(x,t) = \int_{|x-y| \le 2R} f(y) \frac{g(x-y+te_1) - g(x-y)}{t} \, dy$$

where

* integrand
$$\rightarrow f(y)\partial_{x_1}g(x-y)$$
 as $t \rightarrow 0$.

- * $|\text{integrand}| \le M|f(y)|$, which belongs to $L^1(\{|x-y| \le 2R\})$, as $f \in L^p(\mathbb{R}^n)$.
- By Lebesgue's dominated convergence theorem, we thus have

$$\lim_{t\to 0} D.Q.(x,t) = \int_{|x-y| \le 2R} f(y) \partial_{x_1} g(x-y) \, dy$$
$$= \int_{\mathbb{R}^n} f(y) \partial_{x_1} g(x-y) \, dy = (f * \partial_{x_1} g)(x).$$

Proof

- We conclude that $\partial_{x_1}(f * g)$ exists and is equal to $f * \partial_{x_1}g$.
- By the previous lemma, we have that $f * \partial_{x_1}g$ is continuous. So $\partial_{x_1}(f * g)$ is continuous. Applying this to all partial derivatives, we conclude that $f * g \in C^1(\mathbb{R}^n)$.