
C4.3 Functional Analytic Methods for PDEs

Lecture 3

Luc Nguyen
luc.nguyen@maths

University of Oxford

MT 2021

Luc Nguyen (University of Oxford) C4.3 – Lecture 3 MT 2021 1 / 27



In the last lecture

Duals of Lebesgue spaces.

L2 as a Hilbert space.

Density of simple functions for Lebesgue spaces.

Luc Nguyen (University of Oxford) C4.3 – Lecture 3 MT 2021 2 / 27



This lecture

Weak and weak* convergence in Lebesgue spaces.

Continuity property of translation operators in Lp.

Convolution. Young’s inequality.

Differentiation rule for convolution.
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Weak and weak* convergence in Lp

Definition
Let X be a normed vector space and X ∗ its dual.

(i) We say that a sequence (xn) in X converges weakly to some
x ∈ X if Txn → Tx for all T ∈ X ∗. We write xn ⇀ x .

(ii) We say that a sequence (Tn) in X ∗ converges weakly* to some
T ∈ X ∗ if Tnx → Tx for all x ∈ X . We write Tn ⇀

∗ T .
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Weak sequential compactness

Theorem (Weak sequential compactness in reflexive
Banach spaces)

Every bounded sequence in a reflexive Banach space has a weakly
convergent subsequence.

Corollary

Assume that 1 < p <∞ and (fk) is bounded in Lp(E ). Then there is
a subsequence fkj which converges weakly in Lp. In other words, there
exists a function f ∈ Lp such that∫

E

fkjg →
∫
E

fg for all g ∈ Lp
′
(E ).
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Weak* sequential compactness

Theorem (Helly’s theorem on weak* sequential
compactness in duals of separable Banach spaces)

Every bounded sequence in the dual of a separable Banach space has
a weakly* convergent subsequence.

Corollary

Assume that (fk) is bounded in L∞(E ). Then there is a subsequence
fkj which converges weakly* in L∞. In other words, there exists a
function f ∈ L∞ such that∫

E

fkjg →
∫
E

fg for all g ∈ L1(E ).
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A summary

Dual Reflexivity Separability Sequential
compactness

of B(0, 1)

Lp Lp
′

Yes Yes Weak and weak*
1 < p <∞

L1 L∞ No Yes Neither
L∞ ) L1 No No Weak*
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Continuity of translation operators

Translation operators: For a h ∈ Rn and a measurable function
f : Rn → R, define τhf by

(τhf )(x) = f (x + h) for all x ∈ Rn.

Then τh : Lp(Rn)→ Lp(Rn) is a bounded linear transformation for
1 ≤ p ≤ ∞. In fact it is an isometric isomorphism.

Theorem (Continuity in Lp)

If f ∈ Lp(Rn) for some 1 ≤ p <∞, then

lim
|h|→0
‖τhf − f ‖Lp(Rn) = 0.
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Continuity of translation operators

In other words, for 1 ≤ p <∞, for every fixed f ∈ Lp(Rn), the
map h 7→ τhf is a continuous map from Rn into Lp(Rn).

The theorem is false for p =∞, e.g. with f = χQ with Q being
the unit cube.

The theorem does ***NOT*** assert that the maps h 7→ τh is a
continuous map from Rn into L (Lp(Rn), Lp(Rn)). In fact,

‖τh − Id‖L (Lp(Rn),Lp(Rn)) ≥ 21/p when h 6= 0.

? Let r = |h|/4 and let f = cnr
−n/pχBr (0) where cn is chosen such

that ‖f ‖Lp = 1.
? Then τhf and f has disjoint support. So

‖τhf − f ‖Lp =
{
‖τhf ‖pLp + ‖f ‖pLp

}1/p
= 21/p.
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Continuity of translation operators

Proof:
Let A denote the set of functions f in Lp such that
‖τhf − f ‖Lp → 0 as |h| → 0.
It is clear that if f , g ∈ A then f + g ∈ A , and λf ∈ A for any
λ ∈ R. So A is a vector subspace of Lp.
We claim that A is closed in Lp, i.e. if (fk) ⊂ A and fk → f in
Lp, then f ∈ A . Indeed, by Minkowski’s inequality, we have

‖τhf − f ‖Lp ≤ ‖τhfk − fk‖Lp + ‖τhfk − τhf ‖Lp + ‖fk − f ‖Lp
= ‖τhfk − fk‖Lp + 2‖fk − f ‖Lp .

Now, if one is given an ε > 0, one can first select large k such
that ‖fk − f ‖Lp ≤ ε/3, and then select δ > 0 such that
‖τhfk − fk‖Lp ≤ ε/3 for all |h| ≤ δ, so that

‖τhf − f ‖Lp ≤ ε for all |h| ≤ δ.
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Continuity of translation operators

So A is a closed vector subspace of Lp.

Now, observe that if Q is a cube in Rn, then
‖τhχQ − χQ‖Lp → 0 as |h| → 0, by e.g. Lebesgue’s dominated
convergence theorem (or a direct estimate).

So A contains all finite linear combinations of characteristic
functions of cubes. In particular, it contains all finite rational
linear combinations of characteristic functions of cubes
belonging to a fixed class of dyadic cubes. As this latter set is
dense in Lp and A is closed, we thus have A = Lp, as desired.
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Convolution

Definition
Let f and g be measurable functions on Rn. The convolution f ∗ g of
f and g is defined by

(f ∗ g)(x) =

∫
Rn

f (y)g(x − y) dy

wherever the integral converges.
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Young’s convolution inequality

Theorem (Young’s convolution inequality)

Let p, q and r satisfy 1 ≤ p, q, r ≤ ∞ and

1

p
+

1

q
=

1

r
+ 1.

If f ∈ Lp(Rn) and g ∈ Lq(Rn), then f ∗ g ∈ Lr (Rn) and

‖f ∗ g‖Lr (Rn) ≤ ‖f ‖Lp(Rn)‖g‖Lq(Rn).
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Young’s convolution inequality

Proof: We will only deal with the case q = 1 and r = p. We are thus
given f ∈ Lp, g ∈ L1. We need to show that f ∗ g ∈ Lp and
‖f ∗ g‖Lp ≤ ‖f ‖Lp ‖g‖L1 .

Observe that |f ∗ g | ≤ |f | ∗ |g |. We may thus assume without
loss of generality in the proof that f , g ≥ 0.

Case 1: p = 1.

? Consider the integral

I =

∫
Rn×Rn

f (y)g(x − y) dx dy .

This integral is well-defined as f , g ≥ 0 and the function
G (x , y) = g(x − y) is measurable as a function from Rn × Rn

into R.
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Young’s convolution inequality

Case 1: p = 1.

? Consider I =
∫
Rn×Rn f (y)g(x − y) dx dy .

? By Tonelli’s theorem, we have

I =

∫
Rn

{∫
Rn

f (y) g(x − y) dy
}
dx =

∫
Rn

(f ∗ g)(x) dx

= ‖f ∗ g‖L1 .

I =

∫
Rn

f (y)
{∫

Rn

g(x − y) dx
}
dy =

∫
Rn

f (y)‖g‖L1 dy

= ‖f ‖L1‖g‖L1 .

? So ‖f ∗ g‖L1 = ‖f ‖L1‖g‖L1 .
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Young’s convolution inequality

Case 2: p =∞. This case is easy, as

(f ∗ g)(x) =

∫
Rn

f (y) g(x − y) dy

≤
∫
Rn

‖f ‖L∞ g(x − y) dy = ‖f ‖L∞ ‖g‖L1 .

Case 3: 1 < p <∞.

? We start by writing

|(f ∗ g)(x)| =

∫
Rn

[f (y)g(x − y)
1
p ][g(x − y)

1
p′ ] dy

and applying Hölder’s inequality to the above.
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Young’s convolution inequality

Case 3: 1 < p <∞.

? |(f ∗ g)(x)| =
∫
Rn [f (y)g(x − y)

1
p ][g(x − y)

1
p′ ] dy .

? So

|(f ∗ g)(x)| ≤
{∫

Rn

f (y)pg(x − y)] dy
}1/p{∫

Rn

g(x − y) dy
}1/p′

= [(f p ∗ g)(x)]1/p‖g‖1/p′

L1 .

? It follows that

‖f ∗ g‖Lp =
{∫

Rn

|(f ∗ g)(x)|p dx
}1/p

≤
{∫

Rn

(f p ∗ g)(x) dx
}1/p
‖g‖1/p′

L1

= ‖f p ∗ g‖1/p
L1 ‖g‖

1/p′

L1
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Young’s convolution inequality

Case 3: 1 < p <∞.

? ‖f ∗ g‖Lp ≤ ‖f p ∗ g‖
1/p
L1 ‖g‖

1/p′

L1 .
? So by Case 1,

‖f ∗ g‖Lp ≤
[
‖f p‖L1‖g‖L1

]1/p
‖g‖1/p′

L1

= ‖f ‖Lp‖g‖L1 .
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Some notations

If α = (α1, . . . , αn) ∈ Nn is a multi-index, we write
|α| = α1 + . . . + αn.

If f is a function and α = (α1, . . . , αn) is a multi-index, we write
∂αf = ∂α1

x1
. . . ∂αn

xn f .

For k ≥ 0, C k(Rn) =
{

continuous f : Rn →

R such that ∂αf exists and is continuous whenever|α| ≤ k
}

.

C k
c (Rn) =

{
f ∈ C k(Rn) which has compact support

}
. Recall

that, for a continuous function f ,

Supp(f ) = Support of f = {f (x) 6= 0}.
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Convolution with a function in C 0
c (Rn)

Lemma
If f ∈ Lp(Rn), 1 ≤ p ≤ ∞, and g ∈ C 0

c (Rn), then f ∗ g ∈ C 0(Rn).

Proof:

Fix some x ∈ Rn. We need to show that
f ∗ g(x + z)− f ∗ g(x)→ 0 as z → 0.

We compute

f ∗ g(x + z)− f ∗ g(x)

=

∫
Rn

f (y)g(x + z − y) dy −
∫
Rn

f (y)g(x − y) dy

=

∫
Rn

f (y)[g(x + z − y)− g(x − y)] dy .
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Convolution with a function in C 0
c (Rn)

Proof:
f ∗ g(x + z)− f ∗ g(x) =

∫
Rn f (y)[g(x + z − y)− g(x − y)] dy .

Since g ∈ C 0
c (Rn), g ≡ 0 outside of some big ball BR centered

at 0. Then, for |z | < R ,

f ∗g(x+z)−f ∗g(x) =

∫
|x−y |≤2R

f (y)[g(x+z−y)−g(x−y)] dy .

Note that as g is continuous, it is uniformly continuous on B̄3R .
Thus, for any given ε > 0, there exists small δ ∈ (0,R) such that

|g(x + z − y)− g(x − y)| ≤ ε

whenever|z | ≤ δ and |x − y | ≤ 2R .

So when |z | ≤ δ, we have

|f ∗ g(x + z)− f ∗ g(x)| ≤ ε

∫
|x−y |≤2R

|f (y)| dy .
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Convolution with a function in C 0
c (Rn)

Proof:

So when |z | ≤ δ, we have

|f ∗ g(x + z)− f ∗ g(x)| ≤ ε‖f ‖L1({|x−y |≤2R})

≤ ε‖f ‖Lp(Rn)‖1‖Lp′ ({|x−y |≤2R})

= CnR
n/p′‖f ‖Lpε.

Since the right side can be made arbitrarily small, this precisely
means that f ∗ g(x + z)− f ∗ g(x)→ 0 as z → 0, i.e. f ∗ g is
continuous.
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Differentiation rule for convolution

Lemma

If f ∈ Lp(Rn), 1 ≤ p ≤ ∞, and g ∈ C k
c (Rn) for some k ≥ 1, then

f ∗ g ∈ C k(Rn) and

Dα(f ∗ g)(x) = (f ∗ Dαg)(x) for all multi-index α with |α| ≤ k .

Proof

We will only consider the case k = 1. The general case can be
proved by applying the case k = 1 repeatedly.
Suppose that g ∈ C 1

c (Rn). Fix a point x and consider
∂x1(f ∗ g)(x). We need to show that

lim
t→0

(f ∗ g)(x + te1)− f ∗ g(x)

t︸ ︷︷ ︸
=:D.Q.(x ,t)

= (f ∗ ∂x1g)(x).
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Differentiation rule for convolution

Proof

We have

D.Q.(x , t) =

∫
Rn

f (y)
g(x − y + te1)− g(x − y)

t
dy .

As t → 0, the integrand converges to f (y)∂x1g(x − y). We
would like to show that the above integral converges to∫

Rn

f (y)∂x1g(x − y) dy = (f ∗ ∂x1g)(x).
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Differentiation rule for convolution

Proof

As before, if the support of g is contained in BR , then, for
|t| < R ,

D.Q.(x , t) =

∫
|x−y |≤2R

f (y)
g(x − y + te1)− g(x − y)

t
dy .

When |x − y | ≤ 2R and |t| < R , we have |x − y + te1| ≤ 3R .
Hence

|g(x − y + te1)− g(x − y)|
|t|

≤ max
B̄3R

|∂x1g | =: M .

So the integrand above satisfies

|integrand| ≤ M |f (y)|.
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Differentiation rule for convolution

Proof

So we have, for |t| ≤ R ,

D.Q.(x , t) =

∫
|x−y |≤2R

f (y)
g(x − y + te1)− g(x − y)

t
dy

where
? integrand→ f (y)∂x1g(x − y) as t → 0.
? |integrand| ≤ M|f (y)|, which belongs to L1({|x − y | ≤ 2R}), as

f ∈ Lp(Rn).

By Lebesgue’s dominated convergence theorem, we thus have

lim
t→0

D.Q.(x , t) =

∫
|x−y |≤2R

f (y)∂x1g(x − y) dy

=

∫
Rn

f (y)∂x1g(x − y) dy = (f ∗ ∂x1g)(x).
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Differentiation rule for convolution

Proof

We conclude that ∂x1(f ∗ g) exists and is equal to f ∗ ∂x1g .

By the previous lemma, we have that f ∗ ∂x1g is continuous. So
∂x1(f ∗ g) is continuous. Applying this to all partial derivatives,
we conclude that f ∗ g ∈ C 1(Rn).
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